Use este identificador para citar ou linkar para este item: http://repositorio.utfpr.edu.br/jspui/handle/1/29735
Título: Avaliação do potencial antioxidante de extrato de folha de oliveira nanoencapsulado frente a oxidação lipídica de óleo comestível
Título(s) alternativo(s): Evaluation of the antioxidant potential of nanoencapsulated olive leaf extract against the lipid oxidation of edible oil
Autor(es): Carvalho, Amarilis Santos de
Orientador(es): Leimann, Fernanda Vitória
Palavras-chave: Oliveira (Árvore)
Oxidação
Óleo - Indústria
Antioxidantes
Alimentos - Conservação
Olive trees
Oxidation
Oil industries
Antioxidants
Food - Preservation
Data do documento: 3-Mai-2022
Editor: Universidade Tecnológica Federal do Paraná
Câmpus: Campo Mourao
Medianeira
Citação: CARVALHO, Amarilis Santos de. Avaliação do potencial antioxidante de extrato de folha de oliveira nanoencapsulado frente a oxidação lipídica de óleo comestível. 2022. Dissertação (Mestrado em Tecnologia de Alimentos) - Universidade Tecnológica Federal do Paraná, Campo Mourão, 2022.
Resumo: As folhas de oliveiras (FO) são matéria-prima barata (bio-resíduo da produção de azeite e azeitonas), e fonte de compostos antioxidantes. Estes compostos podem perder atividade quando em contato com luz, calor e oxigênio e visando prolongar seu efeito, recorreu-se à nanoencapsulação por nanoprecipitação. A extração e nanoencapsulação do OLE foram realizadas concomitantemente, otimizando o tempo e reduzindo a quantidade de solvente. As FO e a zeína foram misturadas com o solvente (etanol:água, 80:20) sob agitação em sistema rotor-estator para garantir a extração dos compostos e a interação da zeína (agente encapsulante) com os mesmos. Após a centrifugação da mistura, foi realizada a nanoprecipitação pelo gotejamento desta em solução aquosa de caseinato de sódio (surfactante)a 12.000 rpm e finalmente as nanopartículas (NPs) foram secas em estufa. O OLE foi obtido na mesma proporção FO/etanol/água da encapsulação, mesma agitação, centrifugação e secagem em mesmas condições. Foram realizadas caracterizações das NPs e OLE por FTIR (Fourier Transform Infrared Spectroscopy), DSC (Differential Scanning Calorimetry) e TGA (Thermogravimetric Analysis). As NPs também foram analisadas por MET (Microscopia Eletrônica de Transmissão) e DLS (Dynamic Light Scattering). Com a caracterização térmica foi possível verificar uma massa residual maior das nanopartículas ao final da análise quando comparado ao extrato puro, indicando maior resistência térmica das mesmas. Verificou-se por FTIR, a redução de intensidade das bandas características dos grupamentos OH, CH e NH, indicando a interação entre os componentes e encapsulação efetiva, além de reticulação da zeína por ligações de hidrogênio com os compostos fenólicos. O DLS indicou índice de polidispersão (PDI) de 0,9 ± 0,1 e um diâmetro médio Dz igual a 638,5 ± 55,8 e a MET confirmou a morfologia em formato esférico e dimensão nanométrica (100 a 500 nm), contudo, aglomerados foram detectados. O OLE e as NPs foram aplicados em óleos comestíveis nas concentrações de 47,1, 94,2 e 141,3 mgOLE/kgóleo. Adicionou-se para fins de comparação o antioxidante sintético BHT (hidroxitolueno butilado) a 300 mgBHT/kgóleo, e como controle os óleos sem antioxidantes. Os óleos foram analisados por Rancimat, sendo o BHT o melhor antioxidante para o óleo de soja, o OLE não encapsulado a 141,3 mgOLE/kgóleo para o de palma, sendo estatisticamente semelhante ao contendo BHT. Para o óleo de palmiste as amostras adicionadas de 94,2 mgOLE/kgóleo de OLE não encapsulado e de 141,3 mgOLE/kgóleo de NPs apresentaram-se semelhantes à adicionada de BHT. As análises de ABTS, DPPH e FRAP, confirmaram a capacidade antioxidante das NPs. Por fim, o ensaio Schaal Oven Test foi realizado com a aplicação das nanopartículas no óleo de palmiste. Os espectros de UV-Vis foram analisados então pelo método quimiométrico PARAFAC em que se determinou a maior estabilidade do óleo adicionado de 300 mgBHT/kgóleo e 141,3 mgOLE/kgóleo de NPs (300 mgNPs/kgóleo). Conclui-se que as NPs podem ser produzidas utilizando solventes verdes e polímeros comestíveis pelo processo integrado de extração/encapsulação, garantindo capacidade antioxidante as mesmas com grande potencial a ser explorado quando comparado à capacidade antioxidante oferecida pelo BHT.
Abstract: Olive leaves (FO) are a bio-residue from the production of olive oil and olives and a source of antioxidant compounds, that can lose their activity. Aiming to prolong their effect the olive leaf extract (OLE) was submitted to nanoencapsulation by nanoprecipitation. The extraction and OLE nanoencapsulation were performed concomitantly, optimizing the time and solvent amount. FO and zein were mixed with the solvent (ethanol: water, 80:20) under stirring in a rotor-stator system to guarantee the compound's extraction and zein (encapsulanting agent) interaction with them. After the mixture centrifugation, nanoprecipitation was performed by dripping this solution into an aqueous sodium caseinate (surfactant) solution at 12,000 rpm, and finally, nanoparticles (NPs) were dried in an oven. OLE was obtained under the same proportion of FO/ethanol/water used for encapsulation, same stirring rate, centrifugation, and drying conditions. The OLE and NPs were characterized by FTIR (Fourier Transform Infrared Spectroscopy), DSC (Differential Scanning Calorimetry), and TGA (Thermogravimetric Analysis). The NPs were also analyzed by TEM (Transmission Electron Microscopy) and DLS (Dynamic Light Scattering). With thermal characterization, it was possible to verify a higher residual mass for NPs at the end of the analysis when compared to OLE, indicating higher thermal resistance. By FTIR, it was verified an intensity reduction of the characteristic bands of OH, CN, and NH groupings, indicating an interaction between components and effective encapsulation, in addition to zein crosslinking by hydrogen bonding with the phenolic compounds. The DLS indicated a polydispersion index (PDI) equal to 0,9 ± 0,1 and the average diameter Dz equal to 638,5 ± 55,8 nm, and TEM images confirmed the morphology of spherical format and the nanometric dimensions (100 to 500 nm), however with particle agglomerates. OLE and NPs were applied to edible oils at the concentrations of 47.1, 94.2 e 141.3 mgOLE/kgoil. To allow a comparison BHT (butylated hydroxytoluene) was added at 300 mgBHT/kgoil, and as a control the oils without antioxidants. The oils were analyzed by Rancimat, being BHT the best antioxidant for soya oil, free OLE at 141.3 mgOLE/kgoil for palm oil, being statistically equal to BHT. To palm kernel oil the samples that were added with 94.2 mgOLE/kgoil of free OLE and 141.3 mgOLE/kgoil of NPs presented a similar stability to the BHT added sample. The ABTS, DPPH, and FRAP analyses confirmed the antioxidant capacity of NPs. Finally, the Schaal Oven Test was performed with the NPs in the palm kernel oil. The UV-Vis spectra were then analyzed by the PARAFAC chemometric method, where it was determined higher stability of the oil added with 300 mgBHT/kgoil and 141.3 mgOLE/kgoil of NPs (300 mgNPs/kgoil). It can be concluded that the NPs can be produced using green solvents and edible polymers by the integrated process of extraction/encapsulation, guaranteeing the antioxidant capacity with great potential to be explored compared to the antioxidant capacity offered by BHT.
URI: http://repositorio.utfpr.edu.br/jspui/handle/1/29735
Aparece nas coleções:MD - Programa de Pós-Graduação em Tecnologia de Alimentos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
extratofolhaoliveiraoxidacao.pdf3,38 MBAdobe PDFThumbnail
Visualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons