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Resumo

Componentes de memória são sensíveis a variações de processo, tensão e temperatura e,
para assegurar confiabilidade nos dados armazenados, seus fabricantes especificam os pa-
râmetros de operação considerando o pior caso de projeto com uma margem de proteção.
Memórias aproximadas ajustam os parâmetros para fora da margem de proteção, o que
permite economia de energia ao custo de erros probabilísticos nos dados armazenados.
Enquanto diversas aplicações toleram alguma imprecisão em seus resultados, não são to-
dos os seus dados que toleram erros, e até dados resilientes os toleram até um limite. Erros
não controlados podem produzir resultados com mais imprecisão do que o aceitável, o que
os torna inúteis, ou até quebrar uma execução da aplicação inesperadamente por causa
de erros em dados críticos. Interfaces para acesso a dados controlam quais dados são
expostos a erros, por meio da proteção a dados críticos, e quanto erro pode ser inserido
para respeitar o limite de imprecisão dos resultados, por meio da configuração da memória
aproximada. Esse controle depende da aplicação e do impacto do erro nos resultados da
computação. Interfaces tipicamente fiam-se em anotações do programador e métricas de
domínio específico para identificar os dados suscetíveis a aproximações ou para configu-
rar a quantidade de erros permitida. Contudo, anotações prejudicam a portabilidade e
manutenção do código e métricas de domínio específico demandam algum conhecimento
sobre o impacto do erro na aplicação. Além disso, o erro é um elemento dinâmico depen-
dente de um cenário composto de variáveis do ambiente, como temperatura, localidade
e processo de fabricação. Mecanismos de interfaces transparentes procuram, de forma
automática, proteger dados críticos e controlar o erro no limite aceitável da aplicação,
alterando a configuração de erro de acordo com as variáveis do ambiente. Este trabalho
propõe interfaces transparentes para o controle de aproximação de memória que melhoram
a resiliência da execução e aumentam a eficiência energética. Analisamos a execução das
aplicações quando elementos de dados são expostos a erros probabilísticos e encontramos
dados críticos que causam quebras de execução e que são comuns a várias aplicações.
Então, propusemos mecanismos de hardware e software para tratar esses dados e evitar
quebras no intuito de gerar resultados úteis. Apresentamos proteções para endereçamento
físico e virtual e investigamos o impacto do erro de diferentes posições na hierarquia de
memória, além da exploração de alternativas para um sistema supervisor tratar execu-
ções inválidas para recuperar os dados da aplicação. Finalmente, este trabalho relaciona
o comportamento da execução das aplicações com sua tolerância a erros para configurar a
memória aproximada de forma transparente. O comportamento é abstraído de estatísti-
cas de execução mensuráveis que são correlacionadas com a configuração utilizando uma
base de conhecimento de execuções de treinamento prévias. Nossos resultados evidenciam
que as interfaces propostas melhoram a resiliência da execução reduzindo uma fração sig-
nificativa das quebras e configuram memórias aproximadas com economia de energia e
qualidade média próximas às alcançadas por uma busca exaustiva.



Abstract

Memory components are sensitive to process, voltage, and temperature variability and,
to ensure reliability in the stored data, vendors specify operating parameters considering
the worst case in the process design with a guard-band margin. Approximate memories
adjust parameters out of the guard-band range, which allows for energy savings at the
cost of probabilistic errors in the stored data. While several applications tolerate some
imprecision in their results, not all data are resilient to errors, and even resilient data
have limits on their tolerance to errors. Uncontrolled errors may produce results with
more imprecision than acceptable, which render them useless or even crash an application
execution unexpectedly because of errors in critical data. Data access interfaces control
what data are exposed to errors, through critical data protection, and how much error can
be inserted to respect the imprecision limit of the results, through the configuration of
the approximate memory. This control depends on the application and the error impact
in the results of the computation. Interfaces typically rely on programmer annotations
that change the application and domain-specific metrics to identify the data amenable
to approximation or to configure the allowed error amount. Nevertheless, annotations
hinder the portability and maintainability of the code, and domain-specific metrics de-
mand some knowledge about the error impact on the application. Moreover, the error is
a dynamic element dependent on a scenario that is composed of environment variables,
such as temperature and fabrication process. Transparent interface mechanisms attempt
to automatically protect critical data and control the error into the threshold that the
application tolerates changing the error configuration according to the environment vari-
ables. This work proposes transparent interfaces for the control of memory approximation
to improve execution resilience and increase energy efficiency. We analyze the execution
of applications when data elements are exposed to probabilistic errors and find common
critical data that cause execution crashes. Then, we propose hardware and software mech-
anisms to treat these data and avoid crashes aiming to generate useful results. We present
protections for physical and virtual addressing and investigate the impact of error from
different memory hierarchy levels, besides the exploration of alternatives for a supervisor
system to treat incorrect executions for recovering application data. Lastly, this work
relates the execution behavior of applications with their error tolerance to transparently
configure the approximate memory. The behavior is abstracted from measurable execu-
tion statistics that are correlated with a configuration using a knowledge base of previous
training executions. Our results show that these interfaces improve execution resilience
by reducing a significant part of the crashes and configure approximate memories with
energy savings and average quality close to the achieved by an exhaustive search.
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Chapter 1

Introduction

Computation may not, and frequently cannot, be exact. Applications that involve signal
processing, pattern recognition, and data analysis require results that are acceptable
rather than accurate [62, 72]. The acceptance of these results involves limitations on
human perception and statistical behavior of data patterns. Figure 1.1 shows examples of
grayscale images affected by controlled errors in a given percentage of the pixels from the
same baseline image. In these images, each pixel is an integer value that represents a scale
from 0 (blank) to 255 (fully dark), and the errors are manifested through flipping random
bits in the pixels. These errors may depreciate the perceived quality of the images without
corrupting the perception of their content until a certain limit. Thus, image pixels are
examples of data that tolerate some degree of approximation. Applications that tolerate
approximation in their results have data resilient to errors. An opportunity emerges when
computer systems have to deal with scaling challenges that increase the exposition to faults
of the hardware components [22]. As the occurrence of faults increases, mechanisms to
suppress their influence on computation have more impact on performance and energy
efficiency [4, 43]. Thus, the relaxation of these mechanisms can provide improvements in
performance and energy on error resilient applications.

Approximate Computing (AC) comprises techniques that deliberately allow errors on
computational elements, exploring the inaccuracy toleration in the results, in exchange
for energy benefits [79, 128]. Approximation techniques provide opportunities to improve

(a) 10% (b) 25% (c) 75%

Figure 1.1: Result of bit flipping a given percentage of the pixels from the same baseline
image. The results may not corrupt the entire content, we just notice a quality loss.
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the area, performance, and energy efficiency by relaxing accuracy constraints across the
system layers, from applications to circuits [109]. However, uncontrolled errors lead to
unexpected behaviors in the application, causing perturbations that may impact different
aspects of the execution such as control flow, memory protection, and input and output
integrity [115].

Approximations in memory components affect data storage in the application, which
includes code, data, and by extension control flow. Effective use of approximate memo-
ries therefore requires protecting critical data such as code and function pointers, while
allowing for energy efficient (and error-prone) operation for non-sensitive data such as
pixels or time series. Storage and data access represent a significant fraction of overall
energy usage in contemporary systems [12, 107]. For many applications, error-resilient
data comprise the majority of memory usage, and therefore approximating these data can
lead to significant improvements in energy efficiency.

1.1 Approximate Memories

Memories represent a key role in computational systems, especially with the applications
executing and data workloads being produced by billions of low-power devices nowa-
days [1, 107]. Approximately 59 zettabytes were created and processed in 2020, and
this number is expected to increase in each one of the next years [107]. Furthermore,
memories represent a significant part of the total energy consumption of computational
systems, achieving more than half on memory-intensive workloads [12]. Memory compo-
nents are sensitive to circuit variation and, to improve reliability, vendors specify their
nominal operating parameters with a guard-band margin for the worst case in the process
design [13, 71, 94]. However, this margin brings overheads to the computing systems. For
example, access latency is increased by almost 40% and the supply voltage of the data
array is increased by 20% in the error-free operation for usual conditions, which impacts
the energy consumption or performance [12, 13]. Thus, it is possible to explore a wide
range of operating points with insignificant or even no errors.

Approximate memories allow for adjusting parameters out of the guard-band margin
while exposing stored data to errors through a redesign of the memory data interface
to reduce energy consumption [37]. These errors are nondeterministic and may occur at
any point on the exposed data according to a probability related to the configuration
parameters, which provides control of the approximation [130]. Figure 1.2 shows the
relative energy consumption collected from the execution of diverse applications with an
instance of an approximate DRAM face to the error probability per access in this memory,
based on an error characterization of the DRAM voltage [12] executing on a controlled
environment with a median instance of error rate [30]. The energy consumption decreases
as the vdd is adjusted below the guard-band margin, however, the error probability grows
exponentially at each step of the supply voltage. The errors must be controlled to ensure
that their impact does not trespass the resilience of the applications.

Exposing all application data to errors may compromise the results, decreasing their
accuracy or crashing the execution. Execution crashes are premature terminations of the
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Figure 1.2: Relative energy consumption of several applications and error probability
per access on an approximate DRAM with adjusted vdd. As the energy consumption
decreases, the error probability grows exponentially.

execution flow before producing results [118]. Without an output, computational efforts
and energy resources are wasted, resulting in decreased benefits. Interfaces that control
approximations through the protection of data level usually separate application data
into error-resilient and accurate [23, 103]. This separation is necessary to avoid errors
in application data that are critical and do not tolerate errors, such as file headers and
memory references. Errors on these data may cause crashes or nullify execution results,
decreasing the average inaccuracy of the outputs and increasing the energy consumed by
recovery mechanisms, such as re-executions. However, identifying all critical data depends
on the data structures, inputs, approximation technique, and application context [8, 93].
Several interfaces [8, 9, 17, 20, 103] rely on annotations in the application to choose what
data are approximate or protected from errors. While effective in protecting against
crashes, these techniques bring additional complexity, since programmers need to worry
about the approximation control and must have expert knowledge about the application
data. Moreover, an approximation-specific layer of code must be supported over the
lifetime of the application, jeopardizing the portability and maintainability of the code.

Applications tolerate inaccurate results until a certain limit. If errors accumulate and
affect the output more than the tolerable limit, useless results are generated, wasting
computational efforts and reducing potential benefits [112]. Configuration interfaces act
to prevent such waste of effort by controlling the probability of error insertion in the
computation or recalibrating the approximation at runtime [56, 129]. The configuration
of an approximate memory is application-specific and depends on memory access patterns
of the application [126]. Several configuration interfaces [56, 77, 112, 129, 130] also depend
on annotations or on application-specific metrics to evaluate the acceptance of the results
and adjust the parameters of the approximation as knobs. The additional complexity of
the configuration is to tackle the error fluctuation that changes according to the hardware
instance and environment, comprising an error scenario dependent on some variables, such
as temperature, access delay, and fabrication process [13, 65].



19

1.2 Contributions

This work proposes transparent interfaces for approximate memories that improve exe-
cution resilience and configure the approximation knob without requiring domain-specific
annotations and metrics from the application. Moreover, we present mechanisms for a
supervisor system to avoid crashes and recover lost data resulting from the execution
with approximate memories. To this end, we (1) present interfaces for the protection of
critical data with recovery mechanisms that treat data that cause crashes to avoid data
loss, (2) introduce a configuration interface that correlates execution statistics with the
error tolerance of the applications, and (3) propose an architectural model that allows for
the isolation of data regions from errors to store critical data.

In this work, we introduce transparent mechanisms that perform without domain-
specific interventions in the application. In this context, transparent interfaces act with-
out annotations in the source code to protect, recover, and configure the approximate
environment based on general application behavior. Protection mechanisms identify crit-
ical data in common for many types of applications. Recovery considers features from a
supervisor system that triggers re-executions when necessary and maps memory addresses
to the application. Likewise, the configuration of an approximate memory determines the
adjustment of the knob without domain-specific metrics or annotations that indicate the
error tolerance of the application.

While the mechanisms introduced in this work act without requiring changes in the
applications, such as modifications in the source code or recompilation, adaptations in the
runtime and application support system may be required. These mechanisms require a su-
pervisor system that controls the execution and manages the protected and approximate
data. Environments without an Operating System (OS) need a runtime system to detect
execution crashes and control the approximation. Moreover, transparent configuration
demands some analysis of application behavior through architecture counters or execu-
tion statistics that depend on a representative input. Furthermore, some approximation
control techniques of this work may be not fully transparent by interpreting input or out-
put data of the application. A technique that requires data interpretation (e.g., timeout
values and validation of the outputs) can be calibrated at design-time, alleviating the
burden on the application programmer.

For protecting critical application data transparently, we classify execution crashes by
the type of data that cause the deviation and verify that invalid memory references are
the main cause of these lost executions for many applications running on systems with
approximate memories. To validate incorrect memory references without annotations,
we present an addressing scheme that recovers from execution crashes and transforms
the incorrect reference into an access into allowed memory boundaries. Furthermore,
we investigate hardware and software mechanisms that avoid and recover from a large
fraction of critical errors, besides an evaluation of the impact of errors from different
memory hierarchical levels.

To configure the approximate memory, we propose an analysis technique that describes
the approximate behavior of applications as a function of common and easily extractable
execution statistics, without requiring changes in the source code or domain-specific met-
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rics. In this technique, prior knowledge is built upon the execution of training applications,
where we extract the statistics as features of the applications and correlate them with the
specified limit of inaccuracy to establish a configuration of the approximation knob. At
runtime, features of new applications are sampled and knobs are adjusted to correspond
to the predicted error tolerance, according to existing knowledge and the current error
scenario, in consonance with previous hardware characterization. Thus, this interface acts
transparently to the application and mitigates the dynamic fluctuations of the error.

Our architectural model allows the implementation of our interfaces based on an ap-
proximation technique that changes the supply voltage of the memory data array and
provides two global values of voltage. Thus, two reliability modes are provided, which
guarantees the execution of memory operations at reliable and approximate levels. The
approximate level controls the error probability of the unreliable memory array through
a register that defines the approximation knob.

We evaluate our interfaces through simulations with software models that replace mem-
ory accesses to expose the data array to a given error probability. The error probability is
given by characterizations of errors from SRAM or DRAM from the literature [12, 119].
In our evaluation, the protection interface eliminates half of the execution crashes, while
transparent mechanisms of a supervisor system achieve energy savings from 14% to 31%,
depending on the application. Our configuration interface obtains 36% of average energy
savings with acceptable output degradation and configures the approximate memory 97%
closer to an ideal configuration with significantly lower effort and without application-
specific metrics to analyze the quality of the results.

The main contributions of this work are:

1. An addressing scheme that recovers from execution crashes and improves execution
resilience of applications that store data into approximate memories;

2. An analysis of the relation between error tolerance and application features that
determines the configuration of the approximate memory;

3. A memory architecture model that allows the coexistence of accurate and approxi-
mate data of variable sizes in the same system;

4. A transparent runtime system that configures approximate memories according to
different error scenarios that the application can be exposed with negligible overhead
on the reconfiguration;

5. A study of the impact of error amongst levels of the memory hierarchy;

6. An exploration of transparent mechanisms for a supervisor system to detect and
recover from invalid results generated on executions with approximate memories;

7. A study of classes of application features and their impact on the execution with
approximate memories;

8. An evaluation featuring applications from several computing domains and an anal-
ysis of how they behave under the approximation of data elements.
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During the development of the doctoral course, 12 papers were produced among col-
laborations and researches directly related to this work. Table 1.1 shows the list of these
papers relating them with the listed contributions. The publications directly related to
the Ph.D. research are featured in the body of the dissertation, differently from the papers
that are contributions to other research efforts, which are not the focus of this work.

Table 1.1: List of papers produced during the Ph.D. Papers that have a related contribution
are partially on the body of this dissertation.

Rel.
contr.2 Target Title Authors Ref.

1, 8 ERAD-SP
2019*

Tratamento de Ponteiros Incorretos
armazenados em Memórias Aproximadas

J. Fabrício Filho,
I. Felzmann, and
L. Wanner

[27]

1, 3, 8 SBESC
2019

A Resilient Interface for Approximate
Data Access

J. Fabrício Filho,
I. Felzmann,
R. Azevedo, and
L. Wanner

[25]

1, 3, 6, 8 FGCS
Dec/2020

AxRAM: A lightweight implicit interface
for approximate data access

J. Fabrício Filho,
I. Felzmann,
R. Azevedo, and
L. Wanner

[26]

8 ERAD-SP
2020

Sensibilidade a erros em aplicações na
arquitetura RISC-V

J. Fabrício Filho,
I. Felzmann, and
L. Wanner

[28]

5, 6, 8 ARCS
2021

Transparent Resilience for Approximate
DRAM

J. Fabrício Filho,
I. Felzmann, and
L. Wanner

[29]

2, 4, 7, 8 SUSCOM
2022

SmartApprox: Learning-based
Configuration of Approximate Memories
for Energy-efficient Execution

J. Fabrício Filho,
I. Felzmann, and
L. Wanner

[30]

6, 8 planned
to 2022 Transparent Approximate Heap

J. Fabrício Filho,
I. Felzmann, and
L. Wanner

–

- WSCAD
20181

Impact of Memory Approximation on
Energy Efficiency

I. Felzmann,
J. Fabrício Filho,
R. Azevedo, and
L. Wanner

[32]

- TCAD
Nov/20201

Risk-5: Controlled approximations for
RISC-V

I. Felzmann,
J. Fabrício Filho,
and L. Wanner

[34]

- WSCAD
20201

RV-Across: An Associative Processing
Simulator

J. E. Silveira,
I. Felzmann,
J. Fabrício Filho,
and L. Wanner

[110]

- DATE
2021*1

AxPIKE: Instruction-level Injection and
Evaluation of Approximate Computing

I. Felzmann,
J. Fabrício Filho,
and L. Wanner

[35]

- ICCD
20211

How Much Quality is Enough Quality? A
Case for Acceptability in Approximate
Designs

I. Felzmann,
J. Fabrício Filho,
J. R. Oliveira, and
L. Wanner

[33]

*best paper award
1collaboration
2 related contributions of this dissertation
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Chapter 2

Background and Related Work

Susceptibility to faults on modern hardware has increased with the technological scaling
challenges in the dark silicon era [22]. Circuits are less reliable due to higher exposure
to transient faults, and mechanisms to suppress and correct these faults are increasingly
costly with a negative impact on performance and energy efficiency [4, 43, 68]. At the
same time, applications of data mining, classification, and synthesis have emerged as
a significant portion of global computational resources and energy consumption, from
mobile devices to large-scale data centers [1, 14, 62]. For many of these applications that
rely on massive volumes of data, exactness is not required or even possible.

Approximate Computing (AC) provides a spectrum of techniques to achieve perfor-
mance or energy efficiency in applications that allow relaxing their accuracy requirements
through controlled errors in computational elements [79, 80, 128]. The approximate ele-
ments can be at any layer of the computational system from hardware to application [109].
The approximation benefits depend on the accuracy requirements of the application results
that usually rely on the acceptance of a well-defined statistical behavior of the compu-
tational outcome [94]. Approximation techniques have been applied to several contexts,
including wireless sensor networks [3], Internet of Things (IoT) for health monitoring [41],
Deep Neural Networks (DNN) [61], and image processing [54].

In this chapter, we present a review of AC techniques across system layers focusing
on memory approximation techniques and characteristics that represent their behavior.
Furthermore, we present interfaces that mitigate the approximation impact on the appli-
cation, comparing their features with the proposal of this work.

2.1 Approximate Computing across System Layers

Approximation techniques explore system layers to obtain energy savings at the cost of
inaccuracy in the computational results. AC techniques are classified into hardware and
software approximations. In the following sections, we discuss these types of techniques,
the error impact on the results, and how to measure this impact on the execution output.
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2.1.1 Hardware Approximation

Hardware approximation techniques modify variables or structures to relax architectural
accuracy. Two fundamental types of approximations have been proposed in the literature:
replacement of a component by its approximate version, and changes on parameters of
the architecture to ranges that expose the circuit to errors.

Techniques that replace hardware components with the approximate version can target
basic circuits, such as adders [31, 39] and multipliers [47, 63, 87], complex architectural
components, such as accelerators [24, 81], or even the entire circuit synthesis [117, 133].
Basic circuits components are widely used through architecture, such as on arithmetic logic
units, address calculators, and increment operators. Hence, an approximate version of a
component has the potential to achieve benefits by on several operations of the computer
system. However, operations may be critical for the system and demand an accurate
version of the circuit, reducing area gains. Accelerators are specialized components that
improve performance by executing part or the entire computational job in dedicated
hardware, and approximate accelerators replace this dedicated hardware by a mimic of its
behavior, such as with Neural Network (NN) [24, 81]. Techniques that approximate circuit
synthesis have the potential to achieve power and area savings on complex arithmetic
circuits, blocks, or entire data paths [117]. This process can involve improvements in the
resulting circuit by pruning or transformation algorithms [133].

Process variability may affect hardware components bringing a higher susceptibility
to faults, and, thus, their vendors specify a large margin on the parameters to ensure reli-
able operation even in the worst-case design [94]. Approximation techniques that change
parameters of the hardware make components operate below this guard-band, which per-
turbs some operation, exposing components to a noise that may cause circuit switching
or timing failures [16, 19]. Unlike replacement techniques, parameters changes usually
offer control of how much error is inserted into the approximate elements and, thus, are
configurable techniques. The parameters are adjusted to unreliable ranges working as
approximation knobs that control the error. Examples of such parameters are supply
voltage [19, 100], frequency [123], and memory refresh rate [18, 71, 90]. The manifesta-
tion of errors depends on the approximate component, but these techniques usually are
nondeterministic and the error probability has a defined relation with the approximation
knob.

2.1.2 Software Approximation

Software approximation techniques do not depend on hardware to perform unreliable com-
putation with application data. These techniques modify or even skip instructions or data
through changes in the algorithm, code, compiler, or execution flow. Examples of such
techniques are precision scaling [49], loop perforation [50], data reconstruction [58] and
memoization [102]. Approximation techniques that explore numeric precision act on pro-
gramming language types, analyzing and evaluating precision configurations [15, 49]. Loop
perforation consists of ignoring and skipping a subset of the computational work inside a
loop iteration [50, 67]. Less work means less effort, higher performance, and power savings.
Data reconstruction consists of reducing a set of data to a sample to infer the missing data
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when it is necessary [58, 74]. Memoization samples patterns of computations to identify
and return possible similar outputs previously computed and stored [102]. Further ex-
clusive software and hardware techniques, there are co-approximations between hardware
and software that enable control by software to hardware components used only on the
approximation, like on quantized lookup tables controlled by software procedures [52, 91].

2.1.3 Effect of Errors in the Results

An application executing in an approximate environment exposes some computational
elements to errors. The consequence of such errors may be on the execution behavior
or in the data. In the execution behavior, the error is more easily detectable because of
deviations of the execution flow that may cause execution crashes [118]. Errors manifested
in the data may lead to Silent Data Corruption (SDC) [43, 53], which may degrade the
produced output without deviating the execution flow. While execution crashes induce
the loss of the partial execution not producing results, SDCs may compromise the entire
output or trespass a limit of acceptable depreciation in the results.

The perturbation outcome problem consists of guaranteeing a statistical limit of error
impact in the output quality with improvements in energy or performance automatically
for any general-purpose application and perturbation model [115]. The impact of nonde-
terministic errors is not easily predicted when different data is exposed to these errors.
Figure 2.1 shows examples of images generated by a lossy compression algorithm [131]
with the same input (the baseline image) and exposed to the same error probability (10−6)
on the same approximate DRAM main memory but with evident differences in quality.
Figure 2.1(b) has no clear deformations with the baseline, while Figure 2.1(c) has visible
distortions on the pixels in the bottom, evidencing a possible loss in the control loop for
the reference of the pixels, and Figure 2.1(d) contains perceptive noise where more than
half of the pixel references are missed by the application. Therefore, the error effect in
the results depends on other variables than its probability of occurrence and may impact
distinct aspects of the computation.

(a) baseline (b) (c) (d)

Figure 2.1: Resulting of the execution of a lossy compression algorithm with the same
baseline image exposed to the same error probability. Even with the same probability, the
error may have perceptible different impacts on the results.
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2.1.4 Quality Metrics

Approximate systems produce results with some deviation from the accurate value. The
appropriate limit of acceptable depreciation depends on the application and the type of
manipulated data. This depreciation is quantifiable by quality metrics that are more
general and conventional to several data types [79]. A defined quality threshold has the
minimum requirements of an execution output for a useful result of an application. Quality
metrics quantify how different is an approximate output compared to the accurate output.
Thus, a quality metric results from a comparison between the accurate and approximate
outputs of the same application and input. To standardize the values of quality metrics
and to improve readability and understanding of the result analysis, we adopt in this
work normalized metrics that return values between 0 (no quality on output) and 1
(output identical to the accurate). Thus, the quality metrics that have been applied in
the literature and are adopted in this work include the following:

• Mean Absolute Percentage Error (MAPE): The relative error of the approx-
imate points in the results, defined as

MAPE(A,F ) =
1

n

n∑
t=1

|At − Ft

At

| (2.1)

where

– n: the number of elements in the data array;

– Ai: is the i-th element in the accurate array;

– Fi: the i-th element in the approximate array.

• Fraction of Equal Elements (FEE): The fraction of elements (single datum,
lines, or words) in both output data, defined as

FEE(A,F ) =
1

n

n∑
t=1

{1, if At=Ft

0, otherwise (2.2)

where

– n: the number of elements in the data array;

– Ai: is the i-th element in the accurate array;

– Fi: the i-th element in the approximate array.

• Fraction of Elements within a Margin (FEM): The fraction of elements out
of an acceptable margin of error, defined as

FEM(A,F ) =
1

n

n∑
t=1

{1, if |At−Ft|≤(At×M)
0, otherwise (2.3)

where
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– n: the number of elements in the data array;

– Ai: is the i-th element in the accurate array;

– Fi: the i-th element in the approximate array;

– 0 < M ≤ 1: the relative acceptable margin in each element.

• Structural Similarity Index (SSI) [6]: The difference between an accurate (A)
and an approximate image (F), defined as

SSI(A,F ) =
(2µAµF + c1)(2δAF + c2)

(µ2
A + µ2

F + c1)(δ2A + δ2F + c2)
(2.4)

where

– µx: the average of the array x;

– δ2x: the variance of the array x;

– δxy: the covariance of x and y;

– c1 = (k1L)
2, c2 = (k2L)

2 : two variables to stabilize the division with weak
denominator;

– L: the dynamic range of the pixel values (typically 2#bitsperpixel − 1);

– k1 = 0.01 and k2 = 0.03.

All of these metrics return a percentage indicating how similar the application output is
compared to a non-approximate execution, where 100% means they are identical. While
different metrics are not numerically comparable, the normalized range enables us to
define a unique threshold for all applications for a better understanding of the results.
Furthermore, different quality metrics can be used to evaluate the same kind of data, such
as SSI and Peak Signal-to-Noise Ratio (PSNR) measuring the difference between images.
Some metrics, however, are restricted to specific data types, as SSI to images.

Figure 2.2 exemplifies how the occurrence of memory errors affects the output of the
application jpeg from AxBench [131] and how the quality metric SSI captures the quality
depreciation. The first image shows an error-free output, in which the computation result
is identical to the accurately computed baseline. Images 2.2(b)-2.2(d) show two types of
consequences of errors, depending on the code region they affect: incorrectly storing parts

(a) 100% (b) 99% (c) 76% (d) 49%

Figure 2.2: Examples of SSI quality measure of images. Quality metrics show how far an
approximate image is from the accurate one.
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of the Huffman code into memory cause errors isolated to single 8x8 pixels blocks, causing
a lower impact on similarity; and incorrectly retrieving the Huffman coefficients from the
last computed block, where the coefficients are cascaded, causes the image to exhibit
stripes of different brightness, leading to a larger impact on similarity. Since errors are
injected randomly, they can happen at any point in the execution, and the final impact
on quality is not directly a function of the error rate. For example, both images 2.2(c)
and 2.2(d) were subjected to the same error rate of 1.27× 10−5, but in the second case a
high brightness causes the image to appear white at the bottom, thus the difference from
the original image is more evident and the quality metric is lower.

2.2 Techniques for Memory Approximation

Memory cells are intrinsically sensitive to circuit variability due to the size of components
and dense layouts [42]. External factors, such as process variation and temperature, may
affect the data and cause errors, thus vendors define the nominal values of memory pa-
rameters according to the worst-case operating conditions to guard-band a secure margin
to ensure reliability [13, 94]. These parameters add overheads to the performance and
energy consumption of the memory systems [43]. Thus, a typical operation of the memory
components allows for lower overheads at an error-free margin [94]. Approximate mem-
ories adjust parameters out of this margin to achieve benefits on energy or performance
but at the cost of occasional errors in stored data [37]. In the remainder of this section, we
discuss memory technologies and techniques that explore changes in working parameters
to achieve energy or performance benefits.

2.2.1 DRAM

Dynamic Random Access Memory (DRAM) has been used as the main memory system
due to offering relatively high-density storage and low cost [113, 114]. A DRAM device
is accessed by the CPU through a memory controller and is organized hierarchically into
modules, ranks, chips, banks, and cells [37]. A bank is an array of DRAM cells organized
into rows and columns accessed through bitlines shared by each column of cells and sense
amplifiers that convert the received charge to digital binary data [12]. A DRAM cell
consists of a transistor that acts as an access switch to the bitline and a capacitor that
stores binary data in the form of electrical charge. The transistor is activated when the
signal of the wordline is activated, releasing the state of the capacitor to the bitline.
The storage of a DRAM is based on the charge of capacitors. This charge, however,
is slowly decreased because of leakage, and, to prevent the stored data to be lost, a
periodic refresh operation needs to be performed at DRAM cells [69]. A refresh operation
causes the row buffer to read the cell charge and restore it to the full value, being an
identical operation as opening a row, from a circuit perspective [57]. The period between
each necessary refresh depends on the retention time of each cell, defined by the leakage
behavior of the components that varies within cells of the same device [92]. A DRAM
device works through commands by the memory controller. Initially, all DRAM banks are
in the precharge state, ready for activation. The process of accessing data pass through
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activation and read or write commands to access the corresponding column in the row
buffer [12]. New access on another row occurs after a precharge command to prepare
the DRAM bank and restore the previously accessed data. DRAM has timing parameters
that define the period between the change of these states or the refresh operations [65, 69].

Approximate DRAM changes parameters to achieve energy savings or performance.
These parameters can be retention time [83], latency [132], and supply voltage of the
data array [61]. The retention time regards the period between refreshes, a higher period
means less energy spent in these operations but may expose the stored data to retention
errors during the hold operation of the stored data. Latency parameters account for
the time that the controller must wait before another change of state (e.g., access or
restoration) and lower latency allows better performance but an exponential increase in
the error probability on accessing data. The supply voltage has quadratic relation with
the dissipated power but also an exponential relation with the error probability.

2.2.2 SRAM

Static Random Access Memory (SRAM) is a volatile type of memory that is the main
choice for caches due to its relatively lower latency but higher cost-per-bit. A typical
SRAM cell has 6 transistors to ensure the stability of the stored data, which causes this
type of memory to occupy more area and be more complex than a DRAM per stored
bit [37]. The organization of SRAM is in blocks that store the data words. The activation
of a block is performed through bitlines that can have sense amplifiers attached in low-
power environments. The leakage power of the SRAM is a significant fraction of the total
power dissipation on a chip due to mechanisms to ensure reliability in the inherent higher
exposure to hardware failures in these memories [64].

The adjustment of the supply voltage of the SRAM array is an effective technique
for power reduction, however, with a limit that defines the reliability of the memory
operation [5]. The static and dynamic noise margins define the minimum supply voltage
to ensure that the data is not exposed to errors [119, 121]. Out of these margins, the error
probability grows exponentially according to the decreasing of the supply voltage but the
energy consumption decreases quadratically [46]. The transistor count and sizes are other
parameters that can be adjusted at design time to increase or decrease the robustness of
the SRAM cells [2]. Decreasing the sizing or the number of the transistors may increase
the occurrence of read and write failures to gain energy savings.

2.2.3 STT-MRAM

Spin-Transfer Torque Magnetoresistive RAM (STT-MRAM) is a potential candidate for
caches or scratchpad memories due to low leakage and high-density storage [106, 134]. An
STT-MRAM cell has one transistor and one Magnetic Tunneling Junction (MTJ). The
MTJ has two independent ferromagnetic layers separated by an oxide barrier layer. One
of the ferromagnetic layers is fixed (the reference layer) and the other (the free layer) can
have magnetization in parallel or anti-parallel direction to the reference, which defines
the resistance state of the logical value of the stored bit. The read operation in the STT-
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MRAM inserts a low current through the MTJ to sense the resistance state of the cell.
The write operation inserts a large current to switch the magnetization direction of the
free layer, which adds performance and energy issues due to the large current and the long
switching time [134]. Furthermore, thermal factors may affect the data retention capa-
bility and disturb the reading operations of STT-MRAMs, thus, the parameter thermal
stability factor is used to define the current and latency of memory operations [85].

Approximation techniques in STT-MRAM include memory operation with lower ther-
mal stability factor, lower current, or shorter pulse [85, 106]. The thermal stability factor
defines the operation of the memory and a change in this parameter increases the proba-
bility of retention failures and read disturbs but decreases both energy consumption and
performance overheads. Shorter pulse duration in read or write operations leads to less
access delay and higher performance at the cost of write errors, which affect data during
their lifetime (until be overwritten), or read decision failures, causing transient errors.
Lower read or write current can reduce the energy spent on these operations but also
increase the probability of these dynamic errors.

2.2.4 PCM

Phase-Change Memory (PCM) is a non-volatile solid-state memory that can be used as a
storage device or main memory as an alternative to DRAM [104]. This type of memory is
composed of chalcogenide, a material that offers several levels of resistance, which enables
a single cell to store multiple bits [97]. Thus, the Multi-Level Cells (MLC) storage is
essential to reduce the cost-per-bit of the storage on PCMs, however, exposes the data
to the drift phenomenon that may lead data to errors [89]. Elevated levels of density
on multi-level PCM demand more costly validations to ensure data integrity. These
validations are mitigated through set/reset iterations during each write operation. The
drift phenomenon also decreases the lifetime of data in the memory, which is the period
while the data remains in the cell without being overwritten [84].

Approximation of PCM is performed through relaxed set/reset iterations to improve
the write latency but merging intermediate resistance levels and causing persisted errors
in the data. Lowering the number of iterations, the occurrence of the drift phenomenon
continuously increases, worsens the error rate in the approximate PCM [112]. To mitigate
the energy spent on these operations, the voltage pulse of the set/reset iterations may
be decreased but also expose the memory cells to a higher probability of the drift phe-
nomenon [2]. Furthermore, the density of PCM can be changed to achieve performance or
energy improvements, where increasing the number of levels per cell requires more time
and energy per access [104].

2.3 Properties and Models of Memory Approximations

Reliability concerns are the focus of modern memory devices [42]. Volatile and non-
volatile memories face problems in aspects of scaling, performance, energy, or aging that
may affect the reliability of the stored data [12, 64, 84]. As the technology advances are
restricted by these issues, the stored data may be affected by errors that can occur in
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different manners. In this section, we discuss aspects of memories that provide support
to represent the behavior of their errors and components when changing parameters to
unreliable ranges to achieve energy savings. First, we classify errors from memories and
present the characteristics and effects of them in the stored data. Then, we present tools
for simulation and modeling of memory energy and performance.

2.3.1 Types of Errors

Error manifestation can be classified by perdurability, determinism, time, persistency,
and distribution. Perdurability accounts for the physical constancy of the failures into
the components, which may be hard when errors result from permanent physical failures
caused by damages or flaws in the circuit [108], or soft when errors corrupt the data but
the device is not permanently damaged [48]. Determinism considers whether the error
impacts equally the same data with the same values. Adjusting operational parameters
of memories usually exposes data to nondeterministic errors that have a probability of
occurrence according to the approximation knob [37]. Examples of deterministic approx-
imations are types of memory compression [93].

Time relates to the moment of the error manifestation and, consequently, to the vari-
able that its occurrence probability depends on. The manifestation can occur at hold,
read, and write operations on the memory data array. Failures in hold operation (or
static error) depend on how much time the data need to be stored before a reading inserts
them into the computation [60]. These errors may occur, for example, when the retention
time of a DRAM is not enough to ensure the reliability of the stored data. Failures in
read or write operations (or dynamic error) depend on the access operation into the data
array. The characterization of dynamic errors usually is performed through an occurrence
probability per access. An example of errors in read and write operations is on changing
the set/reset iterations in PCM.

Error persistency considers whether the incorrect value is persisted into the data array
or is temporary, only present in the computation without affecting the memory storage.
Persistent errors affect other accesses in the same data until the data is overwritten [12].
Non-persistent errors are multiple Single Event Upset (SEU) that are not propagated in
the data array. Errors from hold and write operations usually have a direct impact on
the stored data, while errors from read operations may be transient (e.g., a voltage glitch
in the circuit) or persisted (e.g., an error in the row buffer that affects the data array on
a precharge).

The error manifestation is specific by approximation and is obtained through the
characterization of the memory devices. A characterization performs several iterations
exposing real or simulated hardware conditions of possible error fluctuations by adjusting
parameters and verifying how the reliability of the stored data is affected [12, 13, 65, 106,
114, 120]. Table 2.1 exhibits some of the major characteristics of techniques for memory
approximation, where techniques that adjust parameters are nondeterministic and depend
on the value of the changed parameter. However, the error rate may fluctuate due to
process variation and other environment variables, such as temperature. The process
variation may affect some cells or memory regions that experience more errors in the
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Table 2.1: Memory approximation and their corresponding principal characteristic of
errors. Memory approximation by adjusting parameters allows for energy and/or perfor-
mance improvements. Despite compression being a generic technique, its errors usually
are deterministic.

memory parameter time persisted energy1 perf.2 dyn.3

DRAM
voltage accessaccess delay
retention time hold

SRAM transistor count or size both
voltage access

PCM
density both
set/reset iterations

access

voltage pulse

STT-MRAM

read pulse
write pulse
read current
write current
thermal stability factor hold

generic compression access
1 energy savings
2 performance improvement
3 allows for dynamic adjustment

stored data than others, called weak cells [13]. The temperature may change according to
the power dissipation of the memory components and may affect the stored data depending
on the approximation technique [65].

2.3.2 Tools for Memory Simulation

Changes in memory architecture are easily performed in platforms for design exploration.
These tools allow simulation according to changes in hardware components or working
parameters of the device. Moreover, these tools support a wide range of standard and
emerging memory subsystems with extensive models.

Ramulator [59] is a cycle-accurate DRAM simulator that provides models for a variety
of standards. This simulator is designed for enabling users to extend models with addi-
tional standards and implementations. The input of Ramulator can be memory traces
or instructions, and the simulator offers options to generate command traces to feed a
controller simulator or other tool for power estimation.

DRAMPower [11] is a tool for energy estimation for several DRAM models based on
JEDEC standards. DRAMPower performs energy analysis based on traces of DRAM
commands or transactions. The model of power estimations is based on the effects of
process variations obtained by MonteCarlo simulations on DRAM cross-sections [10]. The
input for the simulation is a trace of memory commands compatible with the file generated
by Ramulator.

VAMPIRE [40] is a tool for energy estimation of DRAM power and energy consump-
tion based on experimental characterization that accounts for variations among charac-
teristics of data and hardware structure. The authors state that the energy consumption
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of real DRAM modules varies significantly from the specification of their vendors. More-
over, the power dissipation depends on the data value and there is significant structural
variation across banks and rows of multiple DRAM modules from the same model.

CACTI [82] is a set of tools for the simulation of memory design. The user may change
the parameters and conditions of running the simulations among memory hierarchy to
obtain the results in access time, power, cycle time, and area. CACTI offers an analytical
memory simulation supporting models for SRAM caches and DRAM main memories.

In this work, we perform simulations with tools that change the parameters of memory
devices. In the early experiments, we use an energy model based on a characterization
from the literature [119] and account for all memory accesses on an SRAM with lower
supply voltage with a direct calculation of energy savings. In the remaining evaluations,
we consider an energy model from a characterization of the DRAMmain memory also with
underdesigned supply voltage on the data array [13]. We generate memory access traces
of the memory hierarchy to feed Ramulator. We choose Ramulator due to its capacity
of converting them to cycle-accurate memory commands. These commands are input for
the DRAMPower that accounts for energy estimation of the approximate memory.

2.4 Related Work

The impact of the error on the application results depends on how the approximate data
are manipulated during the computation. The benefits of the approximation depend on
the inaccuracy tolerance of the application but also on the impact that the error may
cause. If errors affect application data that is more sensitive, this impact may invali-
date the computational results. Furthermore, if the errors affect the output more than
the tolerable limit of the application, computational efforts are wasted, decreasing en-
ergy benefits. Interfaces for approximate data explore techniques for controlling the error
impact on the execution results through the protection of critical data, recovery at run-
time, or configuration of the approximation knobs. We present interfaces for approximate
memories in two major proposals: AxRAM and SmartApprox. AxRAM contains the major
features for the protection and runtime mechanisms, while SmartApprox is a configura-
tion interface that controls the approximation knobs of an approximate memory. In the
remainder of this section, we list and compare interfaces related to our proposal in these
three categories.

2.4.1 Data Protection Interfaces

Interfaces that control approximations at the data level usually separate application data
into error-resilient and accurate. This separation is necessary to avoid errors in application
data that are critical and do not tolerate errors. Errors on these data may nullify execution
results, decreasing the average quality of outputs and increasing the energy consumed by
recovery mechanisms.

Relax [20] is an architectural framework that offers runtime control to software recovery
of hardware faults. In this work, an ISA extension allows the compiler to guarantee the
state of the program through retrying or discarding computations. Relax also provides
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software support that allows programmers to annotate code blocks that may experience
hardware faults and specify recovery computations in the case of a fault.

EnerJ [103] features type qualifiers that split data into approximate and precise levels
of data reliability through annotations on variables at high-level programming language.
This allows the programmer to protect critical application data from errors, marking them
as precise. EnerJ also provides a system that guarantees the isolation of the precise from
the approximate components.

Energy Types [17] allows more levels of approximate operation through energy spec-
ifications that describe phases and modes of type information that are inferred by the
compiler. The phases indicate the behavior of the program fragment regarding the en-
ergy consumption with different logical goals depending on the workload. A mode is a
programmer-defined and typed energy state, indicating the expected energy usage context
to be used with the specified data and their operations.

DECAF [8] allows error tolerance degrees in the type system on high-level program-
ming language and extends quality constraints to non-annotated data. This work proposes
a compilation system that infers data affected by operations with the annotated data. DE-
CAF, therefore, allows the programmer to annotate only the most crucial data and to
omit annotations where the accuracy requirements can be implied. This system reaches
this implication through static and dynamic analysis of the application.

Truffle [23] is a micro-architecture implementing dual-voltage operation that supports
ISA extensions for data protection. A high voltage guarantees reliable operations with
precise data, while a low voltage allows energy savings for approximate operations. Thus,
approximations are possible in operations, registers, and memory.

Stazi et al. [111] propose a characterization of the heap memory region for targeting
various levels of approximation. This strategy was applied to a video encoding algorithm
and the application was modified to allocate only resilient data into the approximate
region. The authors also propose isolation of the MSB from errors to increase the approx-
imation levels and obtain higher energy savings.

ApproxSymate [21] identifies program approximation paths using symbolic execution
and dynamic analysis to decrease approximation-domain metrics. However, the instru-
mentation for the symbolic execution requires changes in the application to identify each
possible execution path to approximate. The symbolic execution fed a sensitivity analysis
to calibrate the error insertion according to the symbolic expressions.

Aloe [53] aims for static analysis of the reliability of programs with recovery blocks,
extending a programming language interface with checkers for detection and recovery
from selective SDC. The authors propose methods to support unreliable error detection
and approximate re-executions for code blocks exposed to errors.

Protection interfaces usually rely on annotations or changes in the source code of the
application to indicate critical data. While effective to protect against crashes, these inter-
faces bring additional complexity by requiring approximation domain by the programmer
and changing the application, which hinders portability and maintainability of the code.
AxRAM protects regions that store critical data in common for several types of applications
and acts transparently without annotations or changes in the source code. Our interface
aims for execution resilience, protecting and treating data to avoid execution crashes.
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We propose an addressing scheme that avoids access violations on the memory, which
represent a major part of the execution crashes on the use of approximate memories. We
also propose hardware support through an architectural model that divides memory into
reliable and approximate regions controlled by memory-mapped registers.

2.4.2 Runtime Interfaces

Runtime systems control and recover from errors by managing the execution flow to
recover from catastrophic errors, which may cause the loss of significant data. This control
aims to avoid premature interruptions of the program that cause an execution crash and
prevent the application to generate a result. Error management at runtime aims to avoid
unexpected execution behaviors by dynamically capturing the execution flow.

Green [7] is a framework that allows programmers to approximate functions and specify
statistical quality requirements for applications. An offline calibration phase builds a
quality model to be reconfigured at runtime by a quality monitor. The quality monitor
proposed by Green checks the quality after a specified number of executions, comparing
the approximate and accurate outputs.

PowerDial [51] controls knobs at the software level to mitigate fluctuations of the
quality control. This system adapts static parameters of the applications into control
variables to use as approximation knobs that are dynamically changed according to the
quality constraints. This proposal aims for a particular type of application, deployed to
produce results at a target frequency.

Ringenburg et al. [99] propose a dynamic quality monitor with offline debugging in-
strumentation that tracks the data flow of approximate operations. The quality monitor
uses correlations identified by the offline tool between individual operations and output
quality. The online mechanisms allow adjusting the approximation levels to satisfy quality
constraints and re-executing code to recover data.

Rumba [56] aims for online control of large errors in an environment with approximate
accelerators through error predictors. The authors explore predictors based on a decision
tree, moving average, and linear models. To recover from detected errors, Rumba has a
mechanism of selective re-execution of code regions and dynamic parameters tuning to
adjust the system to the required output quality.

STAxCache [96] combines circuit and architectural techniques to control the impact
of errors from a cache memory implementation controlled by user instructions. This ISA
extension allows the user to specify quality requirements on data arrays of the cache
memory. STAxCache proposes an architecture organization for an STT-MRAM cache
that introduces a quality table that contains quality constraints for each memory address
range. Different approximation techniques explore the error tolerance according to read,
write, and refresh operations of the STT-MRAM cache to maximize energy benefits.

Crash Skipping [118] avoids overheads of recovering computations by skipping in-
structions that lead to crashes. If the current instruction causes the interruption of the
execution, it is replaced by a nop, and the control flow continues. The continuation of the
execution occurs based on the granularity of the skip, which can be by instruction or func-
tion. In the instruction granularity, the program continues from the faulting instruction
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to the next sequential instruction. In the function granularity, the program jumps to the
return address of the function currently executing, exiting the function. Furthermore, this
proposal has a counter of avoided crashes and prevents application stalling by imposing
a limit of avoided crashes. Despite improving execution resilience, Crash Skipping does
not protect critical data of the application and neither proposes dynamic changes on the
approximation knob.

Interfaces that implement runtime systems can monitor and recover from computa-
tions that cause execution crashes or lower than required quality. This type of system
usually adds an execution overhead that decreases approximation benefits on energy or
performance with checkpoint and rollback mechanisms. The addressing scheme of AxRAM
is a runtime system that does not need checkpoints, recalibration, or instrumentation.
This makes the interface a lightweight system that does not add significant overheads in
the execution environment. AxRAM avoids redirecting the control flow as a feature since
operations that cause these crashes would deviate the control flow to an unrecoverable
memory region. Furthermore, we explore alternatives for a supervisor system to treat
incorrect executions for recovering application data without changes in the application.

2.4.3 Configuration Interfaces

The control of approximation levels refers to the relation between the approximation knob
and the error rate. In hardware, the approximation knob can be some parameter that
depends on the architecture and applied technique. An approximation level is related to
a value of the knob and represents the amount of error that is inserted into application
data during the execution.

EDEN [61] is a framework for improving energy efficiency and performance for DNN
inference using approximate DRAM. The authors use a retraining mechanism to improve
the accuracy of a DNN when executed on approximate DRAM and explore parameters of
access delay, retention time, and voltage as approximation knob to meet a user-specified
accuracy target based on characterizations of the DRAM error properties. EDEN allows
the characterization of unknown DRAM devices through an offloading that emulates the
errors injected by the target hardware into the DNN through different error models that
are representative of most of the error patterns observed in approximate DRAMs.

Masadeh et al. [78] propose an approach based on Machine Learning (ML) techniques
to change the approximate design according to different input data. The authors use
training inputs to build a cluster of input characteristics and predict the error tolerance
of an application to meet a defined quality. Their proposal is targeted at deterministic
approximation techniques, where the input precisely determines the impact of errors on
the application.

AdAM [112] proposes to determine approximation levels among the memory hierarchy
on the use of STT-MRAM and PCM. The authors explore approximations to change
the parameters of these memories through an integer linear programming optimization
that considers the current workload of the application. At runtime, AdAM adjusts the
approximation according to the response time of applications that are directly affected
by the errors from these memories.
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Ranjan et al. [95] allow programmers to identify data amenable to approximation and
specify a quality target and propose a runtime controller to configure the error constraints.
The runtime controller modulates error by interleaving exploration, in which it dynam-
ically learns values for the error constraints, and evaluation phases, where the system
operates with the learned configuration.

DART [130] is a framework for determining approximation levels among the memory
hierarchy considering different approximation techniques on SRAM caches and DRAM
main memory. This framework has an annotated application as input with specified
maximum error magnitude for each approximate variable and extracts memory footprints
to analyze data significance and infer approximation levels through a search tree.

OPTIMA [129] aims an online control for approximation levels of multiple cache mem-
ories in many-core systems. The authors propose to control output quality by software
routines provided by the programmer. An online controller samples the application out-
puts to manage a tuning procedure that adjusts the approximation knobs. These routines
sample the output of the application from time to time, analyze its quality, and adjust
the approximation knobs accordingly.

SEAMS [77] is a runtime interface for configuring approximation knobs among memory
hierarchy dynamically and based on the workload-specific error tolerance. The authors
propose to tune memory knobs without prior observation of the hardware or application
workload, which makes the interface technology-agnostic and application-independent.
SEAMS require domain-specific metrics to indicate the quality degradation and annota-
tions in non-critical data elements of the application. A quality monitor computes the
degradation at runtime and reports to the system for dynamic configuration.

Interfaces for the configuration of memory approximation usually demand several ex-
ecutions in the approximate environment or are guided by domain-specific components,
such as input interpretation and quality metrics, requiring annotations or changes in the
applications. In SmartApprox, no specifications from the programmer are necessary and
the quality specification comes from a training phase. Furthermore, our interface considers
variables that affect the error rate at runtime and adapts the configuration according to
the current error scenario. None of the related proposals consider the error from approxi-
mate hardware as dynamic nor configure the approximation technique without changes in
the application that require domain knowledge by the user. Our runtime system has no
interleaving with the training phase, once a configuration is learned, the detected error sce-
nario determines what is the approximation level of the application, reducing overheads.
SmartApprox predicts the approximation level that meets the error tolerance based on
the execution of training applications, thus adding a training phase without annotations
in the source code. This training phase can be performed at design time, alleviating the
runtime overhead. Moreover, our proposal considers the error as a dynamic element and
comprises different error scenarios according to hardware characterization and sensors at
runtime. Thus, once a new error scenario is perceived, it determines a new approxima-
tion level without performing a new search, removing the overhead of checkpointing and
rollback mechanisms or several executions of the input application among adjusted knobs.
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2.4.4 Summary

In this work, we propose interfaces for the protection and configuration of approximate
memories that expose data to nondeterministic errors. Table 2.2 shows the list of the
features of the related works in comparison to our proposal. The control of other interfaces
usually relies on annotations in data or code blocks, ISA extensions, and domain-specific
quality metrics that represent the context of the application. Annotations in data or code
blocks bring additional code that should be maintained during the application lifetime [21],
while ISA extensions may demand changes that increase the system complexity [73].
Furthermore, requiring domain or approximation control by the programmer jeopardizes
the applicability of the solution on requiring expert knowledge about application and
approximation technique. The transparent control of our interfaces allows for no changes
in the application level to execute in our environment, where the configuration, runtime,
and protection mechanisms act without annotations.

The configuration of the memory parameters is required to be dynamic to maximize
energy efficiency. Static configurations assume that the approximation level for the ap-
plication does not change in its execution phase. However, interfaces with dynamic con-
figuration [78, 95, 112, 130, 129] usually adjust the approximation knob according to the
workload or the different quality thresholds required per input. SmartApprox adjusts the
knob according to the error changes at runtime, which may be affected by environment
variables, such as temperature. Thus, our interface chooses the configurations amongst
several approximation levels for each application.

The implementation of an interface for hardware approximation requires modifications
at the architecture level. The hardware support considers whether the interface proposes
an architectural model to implement its features. Some interfaces restrict their approach
at the software level and do not propose changes in hardware components.

Some interfaces assume specific contexts, such as a specific video encoding algo-
rithm [111] or DNNs [61]. Our interfaces aim the utilization for general purpose appli-
cations that tolerate some inaccuracy in their results, in an environment with repeatedly
executions with different inputs but without specific restrictions for the application.

Our proposed interfaces improve execution resilience by recovering data that would
cause crashes. Despite providing mechanisms of protection for critical application data,
some interfaces do not allow for recovering lost data or executions. The addressing scheme
of AxRAM tries to restore an invalid memory address to its original value into the allowed
boundaries. Furthermore, we propose mechanisms for attenuating the overhead of the
recovery through approximate re-executions, which decreases the average quality but im-
proves energy savings.
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Chapter 3

Interfaces for Approximate Data Access

Practical use of data approximation requires interfaces for data protection that act be-
tween the application and the approximation technique, controlling what data can or
cannot be exposed to errors, or triggering recovery strategies when critical errors oc-
cur [53, 104]. Transparent interfacesprotect application data without requiring program-
mer annotations [118], acting mainly on execution resilience to improve the chances for a
valid result.

This chapter presents proposals of transparent interfaces for approximate memories
aiming for improving execution resilience. First, we present an interface that protects
common critical data regions, treats data that cause execution crashes, and implements
an architectural model that allows for error isolation of memory regions. Secondly, we
explore alternatives for transparent resilience to detect and recover from lost executions
and implement our interface in an environment that reduces the effects of errors by push-
ing the approximations to other levels of the memory hierarchy. Lastly, we propose an
approximation scheme that also is an execution environment that works transparently or
with easily portable support to approximation control by the application.

3.1 Summary of Protection Interfaces

In this chapter, we present three proposals of transparent interfaces for the protection
of critical data. Despite protecting data considering different aspects regarding to the
memory hierarchy and environment, the three interfaces are implemented with the same
architectural model. Thus, the three setups consider memory approximation controlled
by a knob that exposes the stored data to nondeterministic errors and allows for the
protection of some critical data.

3.1.1 Embedded SRAM Main Memory

Section 3.2 proposes an interface considering an embedded systems environment where
an application has access to the physical addresses of the data array, and the memory is
a single entity that is solely responsible for storing all data, without cache levels. The
environment of Section 3.2 comprises a simple scenario applicable to embedded processors
with limited Static Random Access Memory (SRAM) memory that are often used in
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sensing, control, and Internet of Things (IoT) applications. The evaluation is performed
with a voltage-scaled SRAM main memory on a MIPS32 architecture executing in the
ArchC simulator [98]. The relation between the error rate and the supply voltage is based
on the characterization from Wang and Calhoun [119].

3.1.2 Approximation in Memory Hierarchy

Section 3.3 proposes an interface that explores features from a supervisor system that
controls the memory space and offers access to virtual addresses to the applications.
Thus, the environment considered for this interface needs an Operating System (OS) to
convert virtual addresses to the applications. Furthermore, the OS controls the memory
regions by supervisor or application privileges. Only application accesses are exposed to
errors, which is defined and supported by status registers provided by the architecture. A
runtime system manages the execution and triggers re-executions when necessary. A lost
output may therefore be recovered by re-execution mechanisms.

The scenario in Section 3.3 includes a memory hierarchy with multiple cache levels
that attenuate the access into a main Dynamic Random Access Memory (DRAM). Fur-
thermore, caches are not approximated, and therefore the memory hierarchy alleviates the
impact of errors from the approximate DRAM. Experiments are based on the RISC-V 64
architecture executing in the Spike simulator [66]. The relation between DRAM voltage
and the error rate is based on the characterization from Chang et al. [12], and the energy
savings calculated through simulations in Ramulator [59] and DRAMPower [11].

3.1.3 Protection based on Program Sections

Section 3.4 executes in a similar environment to Section 3.3, except for the inclusion of
status registers to filter supervisor instructions as error-free accesses. The interface pro-
posed on Section 3.4 considers well-defined data regions of the program and the supervisor
system, where only data in the program region is exposed to errors. Thus, if the super-
visor executes a system call manipulating data in the program region, for example, this
access will be exposed to errors.

The experimental setup and the energy parameters are the same as Section 3.3. Ad-
ditional to the transparent mechanisms, Section 3.4 offers optional annotations to the
application. Although annotated applications are non-transparent, the interface pro-
poses these annotations as non-mandatory, maintaining compatibility with applications
designed for traditional environments.

3.1.4 Comparison between Interfaces

The results from each evaluation are not directly comparable due to the differences among
environments. However, a high-level comparison is possible through an analysis of the
implementation and methodology of each one. Table 3.1 exhibits a comparison of the
evaluated features from each environment. Despite Section 3.2 applying a simpler en-
vironment than others, without virtual addressing and cache levels, it proposes general
hardware support on an architectural model for the approximate memory. The simpler
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Table 3.1: Features of the setup for the protection interfaces from each section of this
chapter. A simpler environment allows for higher energy savings, while an approximation
source more distant from the CPU allows for a lower occurrence of crashes.

main control hw
handl.1

cache
levels

allow
anno.3

virtual
addr.

crash
occur.4

rel.
sav.5

evaluation
env.

3.2 Memory-mapped reg-
isters high higher

SRAM /
ArchC /
MIPS32

3.3 Re-execution trigger low high DRAM /
Spike / RV64

3.4 Partition of sections
on loading ELF lower low DRAM /

Spike / RV64
1 Implements handling of errors in hardware
2 Implements acceptance tests of the results
3 Allows annotations (in addition to the transparent features)
4 Occurrence of crashes amongst error rates compared to the other interfaces (lower is better)
5 Relative energy savings in its respective setup compared with the other interfaces (higher is better)

environment from 3.2 allows for higher relative energy savings, however, the energy con-
sumption in the other setups is higher due to the use of cache levels and DRAM main
memory, which indicates that lower energy savings in relative measures may mean higher
in the absolute value.

The higher occurrence of crashes on the setup from Section 3.2 is due to the error
source being closer to the CPU than on the other environments. Thus, the interface
from 3.2 has a higher decrease of crashes but also in the relative occurrence in its envi-
ronment, which has higher occurrence than others. Despite that, applying this interface
to the other environments without adaptations would achieve worst results than other
implementations. In Sections 3.3 and 3.4, an addressing scheme is adapted implementing
features for the virtual addressing of the RV64 Sv39 page system, where the page table is
a radix-tree that should be traversed by the supervisor system to find physical addresses.

Despite having lower relative savings than other interfaces, the execution environment
from Section 3.4 allows optional annotations from the programmer, which reduces the
occurrence of crashes. Thus, this setup allows applying the proposal to contexts where
the recovery from crashes is more costly or not possible.

3.2 AxRAM: A Lightweight Transparent Interface for
Approximate Data

In this section, we present AxRAM, a high-level interface for approximate data access that
improves execution resilience by allowing coarse-grained control of the approximate state
of a data region. We found that invalid memory references are the main cause of crashes for
many applications running on systems with approximate memories. To protect memory
references without annotations in these data, we identify operations with invalid addresses
and protect critical memory regions that store pointers. Thus, AxRAM corrects memory
access violations by only accessing addresses within memory bounds, avoiding interrup-
tions on the execution flow. To protect other references and critical data, AxRAM divides
the data array into fixed-size memory regions, where each region can choose between an
approximate level and an accurate state. To isolate a memory region transparently, we
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identify the system stack as an area that stores control pointers and other critical appli-
cation data. Thus, our implementation isolates this memory location without any user
annotation to identify critical data.

We propose an architecture model that allows the implementation of the AxRAM inter-
face. This model is based on voltage overscaling approximation on an SRAM that has
two global levels of supply voltage. The first, higher, voltage level is the nominal value for
the memory cell, which guarantees the execution of memory operations at the minimal
designed error rate. An adjustable voltage regulator provides the second global voltage
level, at which lower voltages lead to energy savings with higher error rates in the memory
operations. Despite our interface being built to work with a voltage-overscaled SRAM,
it is suitable to other approximate memories that exhibit related error models, such as
DRAMs with voltage, timing, or energy changes.

We evaluated the design by simulating the execution of 12 selected applications from
various computing domains. For each application, we defined as error-free the minimum
number of regions to store the application stack, keeping locally allocated data safe and
avoiding execution crashes on subroutine returns. We detail our evaluation with an analy-
sis of execution crashes, output quality, average energy cost, and quality-energy efficiency
metrics. AxRAM contributions, built upon previous work [25, 26, 27], include:

• An addressing scheme for data stored in approximate memories that avoids execu-
tion crashes;

• Implicit protection of a memory region that stores critical data;

• A memory architecture design that allows the coexistence of accurate and approxi-
mate memories of variable sizes in the same system;

Our experimental evaluation compares AxRAM with the use of a voltage-overscaled ap-
proximate memory, employing no data protection. Our results show that AxRAM eliminates
data crashes, reducing 51% of total execution crashes. When comparing AxRAM with an
approximate memory without any data protection, AxRAM offers energy savings of 9% at
a 95% average quality threshold.

3.2.1 AxRAM design

AxRAM is an interface to improve execution resilience, maximizing the benefits provided
by approximate memories. Our proposal improves the average output quality to increase
energy efficiency by avoiding execution crashes in approximate data environments. This
approach considers that, in a production scenario, an application typically runs multiple
times with different inputs. Every single execution instance is subject to some errors
from the approximate memory, which may lead to quality degradation and, eventually,
an execution crash. By avoiding crashes, we allow many of the previously unsuccessful
execution instances to last longer and produce some output. Thus, the average quality
amongst a whole batch of executions is increased not by better quality for every single
instance, but mainly by producing more results. This reduces the amount of energy
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spent on unsuccessful computations, increases efficiency, and potentially allows the whole
application to be subject to higher error levels.

We propose two modifications in the memory design to avoid execution crashes. Our
improvement focuses on execution resilience by (1) treating accesses out of allowed mem-
ory boundaries and (2) protecting critical data regions commonly found on many ap-
plications. The remainder of this section classifies execution crashes and discusses the
fundamentals of these two approaches.

Types of Crashes

Execution crashes are premature terminations of execution flow that lead to no output
production. Without an output, the quality cannot be computed and is perceived as zero,
which reduces the average quality of executions. These terminations usually are caused
by errors in critical application data. We classify execution crashes into three types:

• Data crashes: when an attempt to fetch data from an invalid memory address
causes an access violation.

• Flow crashes: when the control flow tries to jump to an incorrect region of memory.

• Timeouts: when there is no valid result produced after some reasonable, application-
specific, amount of time.

A load or store operation with an out-of-bounds pointer causes a data crash. An
attempt to jump to an invalid control address causes a flow crash. Timeouts happen
on applications that rely on data convergence, when errors accumulate and prevent the
execution to meet the stop criteria. Besides, the use of data structures based on memory
references may cause these crashes: an error may produce a wrong pointer, causing infinite
iterations over random or irrelevant memory locations.

Treatment of Incorrect Pointers

Memory boundaries are defined by the size of the memory in embedded systems and by
the application limits in virtual memory. A considerable number of crashes are caused by
memory operations on addresses that are out of application boundaries. These addresses
were data pointers, stored in memory, that had one or more bits flipped due to an error.
An attempt to operate with an invalid address makes the system throw an access violation
signal. This signal stops the control flow and discards the remaining computation, causing
an execution crash. This leads to no output being produced and decreases the average
quality of results in the approximate environment.

To correct invalid addresses, we need to identify data pointers stored in memory.
Nonetheless, pointers are indistinguishable from any other data at the memory level,
and identifying them requires additional information from the application level, adding
significant overhead. Hence, we propose to detect data pointers through instructions that
manipulate pointers. When load or store instructions are executed, these instructions
receive a data pointer as a parameter.
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Our proposal is an addressing scheme to treat invalid pointers that are out of allowed
memory boundaries. AxRAM identifies data pointers on memory operations and verifies
whether these addresses are within memory bounds or not. Instead of throwing an access
violation signal, we proceed with the computation after treating the incorrect pointer.
We evaluate three forms of treatment for incorrect pointers during the execution: (1)
discarding the current instruction, (2) zeroing the destination register, and (3) truncating
the address indicated by the pointer within bounds.

Figure 3.1 shows an example of the workflow of the treatment of incorrect pointers with
a load instruction. Depending on the implementation of this treatment, different values
are loaded into the destination register, but, in all cases, the execution flow continues to
the next instruction. This is different in the conventional way, where the execution flow
stops and throws an access violation signal. However, in the case of a branch instruction,
the incorrect pointer refers to the next instruction in the execution flow and, therefore,
the remaining instructions may be lost through a flow crash.

Discarding the current instruction leaves unchanged the value in the destination reg-
ister, and the remaining computation proceeds without any change in context. This
treatment can be advantageous in the case of a loop that uses the destination register to
load temporary values, for example, because the computation proceeds with a value from
the previous iteration. If these values are pixels of an image, the value from a previous
iteration can be similar to the current one.

Loading zero in the destination register can be advantageous in the case of some data
structures like linked lists. These structures depend on pointers that indicate the next

Yes

(AxRAM proposal)

Is $r1 a valid
address?

load $a, $r1

$r1 is an address
 loaded from memory

load data from $r1 in $a

next instruction

throw an access violation
signal

(conventional way)

Treat the incorrect pointer in $r1

No

Zero

Discard

TruncateTreatment of
incorrect pointersload 0x0 in $a

load data from  
($r1 & bit_mask) in $a 

app flow 
[...] 

bit_mask is based 
on the maximum allowed
address

flow to produce a result 

Figure 3.1: Treatment of incorrect pointers working in a load instruction. Instead of
throwing an access violation signal, AxRAM treats the incorrect pointer to continue the
execution in the flow to produce a result.
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Figure 3.2: Example of how the protection of memory boundaries works. A bitflip in the
MSB is corrected by a mask that considers the memory limits.

element. A pointer reading zero is conveniently used to indicate the end of the list. When
finding an incorrect address while iterating over such a structure, there is no way of finding
where the next position is stored, thus zeroing the value would indicate the end of the list
and allow computation to proceed towards some, not necessarily correct, output.

Finally, truncating the pointer value is a more generic approach. The truncation
applies a mask to the value based on the characteristics of the memory space. All bits that
would represent an invalid memory location are zeroed, forcing the address to be valid.
This truncation is an attempt to correct the address to the original value, considering
the common case represented in Figure 3.2, in which the memory is smaller than the
addressing capability of the data word, where invalid addresses would be triggered by
an incorrect reading of higher magnitude bits of the address. This treatment can be
advantageous in more general contexts since it tries to recover the original value of the
pointer. Nevertheless, there is no guarantee that an incorrect pointer will return to its
original value after the mask is applied because an error may occur on the less significant
bits or more than one error may change the pointer. In the case of an incorrect (but valid)
pointer, the computational work proceeds with the wrong data fetched from this address.

The choice for which treatment to perform depends on the implementation of the in-
terface. To simplify the usage of this feature, AxRAM loads the configuration at boot time
and performs the same treatment for all applications. Thus, the treatment of incorrect
pointers requires no user intervention since the execution environment triggers it auto-
matically. This addressing scheme can be implemented on the architecture, OS, or as a
runtime system that encapsulates memory accesses. AxRAM implements an error recovery
mechanism that does not need checkpoints or program instrumentation. Furthermore,
the implementation of AxRAM as a runtime system represents a lightweight avoidance of
and recovery from crashes without programmer intervention or program modifications.
The energy cost of this implementation is lower than runtime systems that recover from
errors by checkpointing, monitoring the execution, and re-executing entire functions or
computational tasks. Moreover, the hardware implementation of this treatment is as sim-
ple as an AND gate in the memory input to modify pointer values, which represents a
negligible overhead in performance or energy.
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Critical Data Protection

Incorrect data pointers cause a significant part of execution crashes. Nevertheless, these
pointers are not the only critical application data. Flow pointers or control indexes, e.
g. return addresses of functions, file headers, and loop control indexes, are critical values
that are not treated by the addressing scheme. Several works [8, 17, 101, 103] propose
the error isolation of critical data by extending the programming language to include
annotations to classify how critical each data portion is. These annotations require,
from the programmer, expert knowledge of the approximated environment, the control
mechanism, and a full understanding of the application data, reducing the portability of
the solution. Thus, the automatic identification of critical data is essential to improve
execution resilience without programmer intervention.

We identify the system stack as a contiguous region, usually small, that contains some
critical data in many types of applications. Compilers use the system stack to store
temporary execution values, such as shorter-lived automatic variables. Errors on these
indexes may cause a loop to execute indefinitely, which leads to a timeout. Furthermore,
return addresses of functions are commonly stored in the stack region. These pointers
indicate where the execution flow must return after the end of a called function. An error
on these data makes the execution flow try to jump to an incorrect address causing a
flow crash immediately. Furthermore, the system stack boundaries are easily traceable at
the architecture level. These characteristics make the system stack a natural candidate
region to be protected from errors without programmer intervention.

3.2.2 Implementation

A memory interface acts between an approximation technique and the application. The
approximation technique depends on an environment implementing an architectural model
that allows the approximation. In this section, we discuss the implementation of our
interface with approximation techniques and other issues that could be faced with the
usage of AxRAM.

Architectural Model

AxRAM offers two main features to protect and recover an application from crashes in an
approximate environment. The treatment of incorrect pointers operates directly at the
memory addressing scheme, independently from the architectural model. Nevertheless,
critical data isolation requires some architecture support to isolate some parts of the
memory from errors.

AxRAM architecture model for data isolation defines two reliability levels in memory
storage. One of these levels should be an operation considered free from errors. Several
proposed architectures [23, 70, 75, 116] separate memory regions by reliability levels to
isolate some data from errors. AxRAM is compatible with the architectural model of Truf-
fle [23], but without the usage of ISA extensions, which would demand changes in some
level of the application. Therefore, we propose an architectural model to avoid excessive
application changes.
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Figure 3.3: Memory architecture of AxRAM. Memory-mapped registers control where and
how much error is allowed on the approximate memory.

Our architectural model also uses voltage scaling as an approximation source based
on an embedded SRAM main memory. Despite that, AxRAM is suitable for other memory
approximations that exhibit nondeterministic data errors and allow the division of memory
into approximate and non-approximate regions. In our architectural model, illustrated in
Figure 3.3, the memory is divided into regions on the data array, where each region has a
common supply voltage. One single configurable voltage regulator supplies a voltage level
below the nominal specification of the memory regions, that is, a voltage level at which
the stored data is more susceptible to errors [119]. A switch in the power line of each
region specifies whether the region should use the nominal, higher, error-free Vin voltage
or the lower error-prone voltage supplied from the regulator.

To control the approximation, the model includes two memory-mapped registers. Reg-
ister $reg_a defines the voltage level supplied by the voltage regulator and register $reg_x
controls the gate switching to define which regions are in the approximate state. These
memory-mapped registers work as knobs to control approximations. In the case of an
embedded systems environment, without the supervision of an OS, these knobs can be
configured before the execution of the application. Thus, the main work to port an ap-
plication to this environment is to find the tolerable error rate for the application. This
error rate represents the limit of imprecision tolerated.

OS Support

The architectural model from 3.2.2 supports the execution without application changes in
an embedded systems environment with AxRAM as a runtime system. If an OS supervises
the application, the control knobs should be configured by the OS since other applications
could use the same memory. The OS is the runtime system that implements the interface,
in this case.
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To make the configuration of the approximate memory simpler, our architectural model
supports only two reliability levels concurrently – one considered as precise and another
that exposes data to a configurable error rate. Thus, all data stored in approximate
regions are exposed to the same error rate at a given point in time. This error rate is the
same for all applications running in this environment that have data exposed to errors.
Therefore, a syscall with a probability as a parameter should be available to configure the
memory error rate when necessary.

The reliable regions of the approximate memory contain the program stack, which be-
longs to an application in an environment with an OS. The application stack is previously
allocated by the OS. Thus, to transparently protect this region, the OS has to specify in
the $reg_x register the memory area reserved to store the stack. The OS has control over
all memory pages allocated to the applications, thus the stack protection works without
changes in the application.

3.2.3 Methodology

This work relies on the study of errors’ impact at the application level. This study needs to
evaluate different techniques and error models. A fast alternative to make this evaluation
is the modeling of data errors at higher-level abstractions in a simulation environment. A
simulation environment allows the implementation of different approximation techniques
on several technologies.

Setup

The experimental evaluation of our proposal is in an embedded systems environment where
one single-threaded application runs in bare metal in the CPU without the supervision
of an OS. In this environment, the application has access to the entire memory array
through an SRAM main memory with the architectural model described in 3.2.2. This
implementation is a model with no influence of other applications or a middleware on the
effect of errors and energy savings.

In our modeling approach, an approximate state changes the supply voltage of the
data memory and exposes data to dynamic errors according to a uniform probability. This
model is implemented in an ADeLe-generated [36] CPU model for the ArchC architectural
simulator [98] using a MIPS32 architecture. The simulator replaces all read and write
operations on the data memory with a software model that is susceptible to error, by
performing a single bit flip in a random position of the data word. This bit flip represents
an error according to a uniform probability specified in $reg_a.

We compare AxRAM with an approximate memory in a scenario of a voltage-overscaled
SRAM that implements the same approximate states, architecture, and error model. This
environment implements neither AxRAM addressing scheme nor critical data protection.
The implementation of the same approximate states makes this a fair comparison because
it allows the applications the same data error probability on both techniques, with and
without our proposed features. We refer to this environment as “approximate memory”
in our results section.
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Table 3.2: Applications, their respective type, and quality metrics of the experiments.
We evaluate applications from several computational domains.

Application Type Quality metric
2mm Memory-bound

MAPEnbody CPU-boundspectralnorm
reg_detect Signal processing
bunzip2

Memory-bound FEE
bzip2
dijkstra
floyd-warshall
qsort
fft Signal processing FEM
jpeg SSImandelbrot CPU-bound

Applications

Table 3.2 shows the applications we use on the evaluation, their type, and respective qual-
ity metrics. More details of the quality metrics are presented in Section 2.1.4. These ap-
plications represent a wide range of usages of computational systems, such as linked lists,
function pointers, floating points, compressing, and arithmetic operations. Furthermore,
some applications represent different implementations of a solution to the same problem,
like dijkstra and floyd-warshall (the shortest path problem), or manipulate the same kind
of data inversely, like bzip2 and bunzip2 (compressing/decompressing). We classify ap-
plications into three types: signal processing, CPU-bound, and memory-bound. Signal
processing applications are commonly applied to the context of approximate computing
and include image processing. CPU-bound applications are kernels that stress the CPU
in the majority of its processing with few memory accesses. Memory-bound applications
spend major time of the execution with accesses to memory into the kernel.

Voltage-overscaling is a nondeterministic approximation technique [80], and therefore
we need to perform several executions to evaluate the impact of errors in the application.
Thus, we execute 100 times each application at each error rate. The error rate determines
the approximation level of the technique. We evaluate the applications at 40 error rates
in logarithmic intervals from 1E-9 to 1E-4. The 1E-9 represents an error rate where
most of the evaluated applications do have execution crashes, and, in the 1E-4 error
rate, most of the evaluated applications obtain results with quality equals zero. For
simulation purposes, the approximation technique was applied only to the code in the
main computation stage of each application, to avoid errors happening during I/O phases
that emulate some peripheral behavior. The applications are compiled by ellcc with the
flags -O3, -static, and -target mips32r2-linux.
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Quality Control and Energy

The usage of approximate memory implies errors in some application data. These errors
can result in some quality loss in the output of each execution. Since the minimum
acceptable quality depends on the context of the application, the tolerable limit of error
also depends on this context. Nevertheless, there is no way to measure the output quality
without the accurate result, obtained through a non-approximate execution. To calculate
the energy savings, we define a threshold in the quality metric that each execution output
must obey. Thus, the energy cost is based on several quality thresholds of execution
outputs. To avoid application stalling, we set a timeout as twice the accurate execution
time for each application.

The energy savings are based on a relative value to the nominal voltage of the SRAM.
The data to infer the relative voltage is extracted from Wang and Calhoun [119], where
the authors present error rates for a voltage range of SRAM cells calculated through
the static noise margin of these cells. The data used in this work is from a 45nm 6T
SRAM, where the error rate is independent of the stored data. We implement the errors
in memory read and write operations considering the rate of the highest error probability
at each voltage.

3.2.4 Evaluation

We present in our experimental evaluation a comparison between the three forms of treat-
ment of incorrect pointers. Further, we consider the treatment by truncation as the imple-
mentation of AxRAM in our chosen environment and illustrate in a case study the analysis
of the impact of addressing and data protection on execution crashes. Lastly, we evaluate
and discuss AxRAM considering four main metrics: number of execution crashes, output
quality, energy savings, and quality-energy efficiency.

Treatment of Incorrect Pointers

The purpose of this treatment is to avoid data crashes caused by incorrect pointers.
Figure 3.4 shows execution crashes of all applications with the evaluated error rates to the
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Figure 3.4: Execution crashes implementing techniques to treat incorrect pointers. The
three techniques reduce data crashes but increase timeouts by insisting on executions with
(sometimes) incorrect data.
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three forms of treating incorrect pointers in isolation. Truncate refers to the treatment by
truncating incorrect pointers into allowed memory boundaries, zero refers to writing the
value zero in the destination register, and discard refers to the treatment by discarding
the instruction with the incorrect pointer. The left-most bar shows the crashes for the
use of an approximate memory without any protection or treatment.

As the error rate increases, the number of execution crashes also grows, however to a
lesser extent when applying techniques for the treatment of pointers. The three addressing
schemes have similar behavior considering the type and the number of execution crashes.
Data crashes are do not happen with any application, while flow crashes and timeouts
increase together with the error rate. However, truncate exhibits fewer timeouts and
more flow crashes than the other treatments among several error rates. Timeouts are
energy costly executions that do not produce any result. To avoid such wasted resources
and given that the three techniques are similar in other aspects, we focus our evaluation
on an implementation of AxRAM that uses truncate.

Impact of Addressing and Data Protection

The addressing scheme and the stack protection of AxRAM intend to reduce execution
crashes that the accesses to incorrect memory addresses cause. Figure 3.5 shows the
observed crashes for a case study application in three chosen scenarios. Approximate
memory refers to a voltage-overscaled approximate memory without AxRAM protections.
Truncate refers to the use of the addressing mask to treat incorrect pointers by truncation,
in isolation. At last, stack refers to the AxRAM implementation of critical data isolation
with stack protection only. We omit the results of AxRAM implementation with both
techniques since this scenario eliminates all crashes in the studied application.

The trending scenario of crashes is that the higher error rates determine the higher
number of crashes. Nevertheless, the errors are nondeterministic and may occur at any
point in the execution. An error at a critical point may cause an execution crash. There-
fore, some higher error rates may show a smaller number of crashes, but without effects
on the trending line.

The addressing mask of truncate corrects only pointers that would fall into invalid
memory locations because of a memory error when fetching the pointer. When a pointer
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cation jpeg. No crash happens in combining both Truncate and Stack.
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read from memory contains some error but still falls within a valid memory region, this
error is undetectable by the interface, and the execution proceeds as if no error had
happened. Thus, although valid, the address may point to a memory location that does
not contain the expected value, causing some consequence according to how this value is
used during execution:

• The value is used as part of a data region of the application (e.g., a pixel of an
image for jpeg), the computation proceeds with the wrong value, and some quality
degradation is perceived. This is the most common behavior perceived in our eval-
uated applications, where data crashes are eliminated, and the execution proceeds
with impact in quality;

• The value is used as a reference to a code region (e.g., a function pointer) and the
application jumps to the incorrect address, breaking execution flow and/or causing
a flow crash. Our experimentation scenario includes applications such as qsort that
make use of function pointers and exhibit such flow crash behavior;

• The value is used as a reference to another data region (e.g., a data pointer in a
linked list) and the application fetches and uses data incorrectly, causing quality
degradation or, eventually, entering an infinite loop, a timeout crash. Our experi-
mentation includes applications such as dijkstra that make use of data structures
that rely on data pointers and, thus, exhibit this timeout crash behavior.

The addressing scheme of truncate eliminates data crashes, while these crashes inter-
rupt 50% of executions in approximate memory evaluations at a 1E-4 error rate. Never-
theless, flow and timeout crashes sum 21% of approximate memory executions and 56% of
mask executions. The causes of more crashes of these types are the result of the scenarios
discussed above. Nevertheless, the number of successful executions on mask is 44% in
comparison to 39% on approximate memory at the maximum error rate evaluated.

The stack protection implementation achieves an aggressive elimination of crashes
compared to both other techniques. Stack eliminates flow and timeout crashes at all
error rates. On this technique, the interruptions due to data crash are 26% of executions
at maximum error rate, while truncate eliminates data crashes at this error rate, but
exhibits 17% and 39% of timeout and flow crashes, respectively.

The evaluation demonstrates that stack and truncate attack different types of crashes
and in different ways. The combination of both techniques eliminates all crashes on the
studied application. Therefore, it shows potential improvements in application resilience
in the evaluated scenario.

Execution Crashes

Execution crashes cause premature interruptions in the execution flow, without producing
an output. Thus, an execution crash implies a zero quality output and increases the
energy cost since a new execution is necessary to recover the lost data. The AxRAM
protection cannot eliminate execution crashes for all application domains. Especially
when applications heavily rely on memory references or convergence, an execution flow
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Figure 3.6: Crashes of CPU-bound applications. These applications have a non-intensive
memory usage, then the number of execution crashes is reduced.

deviation may lead to an interruption by timeout. In the use of data approximation,
the number of crashes tends to increase with the error probability. There are downside
deviations at some points, because of the nondeterminism of the errors. A higher number
of executions may soften these deviations.

AxRAM shows no data crashes at any error probability in our evaluation. The addressing
mask of our design avoids data crashes due to truncating out-of-bounds addresses instead
of crashing the execution. To analyze the behavior of all applications, we separate the
analysis by application type. Applications of the same type have some characteristics in
common, but this does not determine their crash behavior.

CPU-bound applications exhibit fewer crashes than other types due to a non-
intensive use of memory, the approximate component. Figure 3.6 shows the execution
crashes of these applications. In general, the use of approximate memory does not
strongly affect CPU-bound applications since just nbody shows a significant number of
execution crashes in this environment. Nbody uses data pointers to iterate over its vec-
tors, which explains the high occurrence of data crashes. The use of AxRAM highly benefits
nbody, once all executions produce results up to the 1E-4 error rate.

Figure 3.7 shows execution crashes to signal-processing applications. These ap-
plications have many error-tolerant data but crashes affect their executions more than
CPU-bound applications in approximate memory. AxRAM eliminates all execution crashes
in the evaluated error rates to these applications.
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Figure 3.7: Crashes of signal-processing applications. AxRAM eliminates all execution
crashes in the evaluated error rates.

Memory-bound applications are commonly more susceptible to crashes due to the
intensive use of memory. Figure 3.8 shows crashes for these applications. The nonde-
terminism of crashes strongly acts on bunzip2 due to error recovery mechanisms in its
kernel. The application bzip2 has similar operations to bunzip2 but does not have the
error recovery mechanisms and is more affected by execution crashes. Dijkstra and qsort
also represent corner cases in the AxRAM technique. Dijkstra uses a list-like structure that
strongly relies on pointers to store its information. If one of these is incorrectly read,
the application would loop over random data in memory, causing a timeout crash – thus
although many data crashes are eliminated, timeouts take their place. Qsort uses function
pointers to call the comparison routine within the sorting algorithm. Differently from data
pointers, these are not recovered by the addressing mechanism and end up causing flow
crashes. These are more noticeable in the AxRAM scenario because, after eliminating data
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Figure 3.8: Crashes of memory-bound applications. Some applications of this type, like di-
jkstra and 2mm, use data structures that make them more susceptible to execution crashes.

crashes, the application ends up lasting longer and increasing the probability of an error
affecting a function pointer. Memory-bound applications are in general strongly affected
by execution crashes in approximate memory, and AxRAM protections show the poten-
tial to decrease and significantly postpone the number of crashes in three applications:
bunzip2, bzip2, and qsort.

Quality

Execution crashes highly influence the average quality since each one represents a null-
quality output. Nevertheless, errors in non-critical data influence the quality degradation
as well and, therefore, also impact the average quality. When compared to approximate
memory, AxRAM allows a higher error rate to achieve the same expected average quality for
the application output, which potentially translates into higher energy savings. Figure 3.9
shows the average output quality to all executions of evaluated applications. Since each
error rate point in the X-axis is a logarithm interval, a small displacement to the right
that AxRAM allows in the curve represents several degrees of energy-quality adjustment.
The results show that 8 out of 12 applications exhibit significant quality improvements
with AxRAM.

CPU-bound applications show different patterns of the quality line behavior. Man-
delbrot has an almost null impact with the use of approximate memories. Spectralnorm
executions show lower quality without a significant number of crashes. Nbody gets low
quality early on an abrupt fall because of execution crashes. AxRAM is capable of postpon-
ing the quality decrease of nbody and holds up the quality of spectralnorm.

Signal-processing applications usually tolerate more errors than other applica-
tions. The behavior of jpeg and reg_detect applications with AxRAM protections is the
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Figure 3.9: Average quality of each application. Most of the applications have a quality
improvement in several error rates with AxRAM.

postponement of quality abrupt decreases in some steps of error rates compared with
approximate memory. The application fft has a similar quality in all error rates in AxRAM
and approximate memory.

Most of the memory-bound applications have a similar quality behavior on AxRAM
and approximate memory environments, with or without error rate steps offset. The
memory-bound applications that do not suffer significant differences in quality with AxRAM
are 2mm and floyd-warshall. Applications bzip2, bunzip2, and dijkstra have an offset of
some error rates, depending on the threshold. Qsort achieves the highest improvements
in quality with AxRAM among memory-bound applications with several error rates offset.

In general, our results show that crashes strongly influence the average output quality
of application executions. Nevertheless, some applications show a different behavior be-
tween crash increases and quality depreciation. This evidences that crashes are not the
only influence on the average output quality.
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Energy

Increasing the average output quality also applications to be executed at higher error rates
while still meeting a quality requirement. Thus, instead of increasing quality at an energy
budget, AxRAM can also save energy for a given quality constraint. To evaluate this, we
calculate the relative energy consumption considering a quality threshold to profile the
application. The baseline can be called an accurate memory, defined as a memory that
yields the very low probability of error of 1 in 10−12 operations. The profiling of the appli-
cation in this environment statistically guarantees an average quality on certain relative
energy consumption. The accurate memory region of the protected stack is negligible
compared to the energy consumption of the entire memory array. In our experiments, the
size of the stack of all applications is at most 250 kB.

To find the relative energy consumption to an average quality, we associate each error
rate with the respective energy consumption. The expected behavior without the influ-
ence of crashes is that energy consumption decreases smoothly as the error rate increases.
Nonetheless, the growth of data and flow crashes causes abrupt decreases in energy con-
sumption due to the termination of executions earlier than expected. Moreover, a large
number of timeouts cause an increase in energy consumption.

Figure 3.10 shows the geometric mean of the minimum required energy to achieve
average quality thresholds from 90% to 100% at a 1% step. AxRAM achieves more energy
savings than approximate memory at all quality thresholds. Nevertheless, depending on
the quality threshold AxRAM does not exhibit energy gains to all applications compared to
approximate memory, e. g. at a 95% quality threshold that AxRAM saves energy to 9 out
of 12 applications with an 8.92% mean of less energy.

Some applications are not achieving 100% quality with both approximate memory
and AxRAM. Thus, an accurate execution is needed to reach this quality, which causes a
considerable increase in energy consumption. Nevertheless, 100% quality represents an
accurate output and a requisite to applications that execute in approximate environments
is that some inaccuracy is tolerated.

Approx. Memory AxRAM

90% 91% 92% 93% 94% 95% 96% 97% 98% 99% 100%

Quality [%]

0%

20%

40%

60%

80%

100%

Re
la

tiv
e 

En
er

gy
 C

on
su

m
pt

io
n 

[%
]

Figure 3.10: Mean of relative energy to achieve average qualities thresholds. AxRAM in-
creases energy savings by improving the error resilience for a given quality threshold.
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Quality-Energy Efficiency

Quality metrics show how much the output deviates from the original result. Energy
metrics show to what extent the approximation provides benefits. These two types of
metrics show different aspects of the results. Thus, we define a combined metric that
represents both aspects, the Quality-Energy Efficiency (QEE). This metric is defined by
Q
E
, where Q is the normalized quality and E is the percentage of energy relative to the

consumption of a reliable memory. Figure 3.11 shows the average QEE to all evaluated
applications and error rates.

An accurate memory has QEE equals 1.0 since the quality of its outputs is 100%
and its relative energy consumption is 100%. Thus, the results of QEE less than 1.0 are
inefficient due to being below the results of an accurate memory. All evaluated applications
show some error rates with QEE higher than 1.0. AxRAM has a higher peak of QEE than
approximate memory for 10 out of the 12 evaluated applications due to the postponement
of the QEE fall to higher error rates. The QEE line of mandelbrot, reg_detect, and
spectralnorm shows that these applications are not affected by memory errors with AxRAM
protections.

Approx. Memory AxRAM
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Figure 3.11: Quality-energy efficiency for the evaluated applications. Without a quality
threshold, the maximum efficiency of quality and energy depends on the error resilience
of each application.
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Despite QEE representing a combined metric of quality and energy, it does not show
individual values for quality or energy. A very low energy consumption may represent an
increase of QEE even with low quality. Applications dijkstra and jpeg show this increase
in the higher error rates with approximate memory, where the average energy consumption
is very low due to crashes at the beginning of the executions, but the average quality is
almost null. Despite that, the peak of QEE in our evaluated scenario to all applications
achieve quality higher than 90% for both AxRAM and approximate memory.

3.2.5 Discussion

AxRAM proposes a generic memory architecture that implements a set of approximate
states, which are operating points that induce read and write errors in the stored data.
By controlling the error rate and the region of the memory array that is affected, the
AxRAM interface allows an external agent to control the degree of approximation provided,
inducing energy savings by tolerating some quality depreciation. In our simulated eval-
uation, however, we employ AxRAM in a limited scenario in which one single-threaded
embedded application runs in bare metal in the CPU, with full control over the entire
memory array and AxRAM control knobs. In this scenario, each induced memory error is a
single random bit flip in the memory data word per operation.

AxRAM exposes to the environment – the application, in the simpler embedded system
scenario, an application-level library, the OS, or the middleware – control knobs in the
form of memory-mapped registers. Although these registers can be written at any point
at execution time, changing the approximate state or the approximated memory banks
is a potentially time-consuming operation, similar to changing power states or Dynamic
Voltage and Frequency Scaling (DVFS). For this reason, it is desirable to perform coarse-
grained control of approximations, reducing state changes to a minimum, such as in the
evaluated scenarios, where we set the approximate region and state at application kernel
start-up and keep the setting until the end.

The proposed interface avoids execution crashes transparently and without signifi-
cant performance and energy costs. AxRAM has two main features that increase execution
resilience: an addressing scheme to treat incorrect memory references and critical data
protection of the system stack. Our experimental evaluation shows that the critical data
transparent protection decreases the number of flow crashes, while the addressing schemes
can avoid data crashes. An implementation of AxRAM in an embedded computing scenario
featuring a dual-voltage SRAM memory with configurable reliability shows a reduction of
51% of execution crashes across all error rates compared to an unprotected approximate
memory. At 95% average output quality, AxRAM shows energy savings of 9% and a higher
peak of quality-energy efficiency for 10 out of 12 applications when compared to unpro-
tected approximate memory. For the same 95% average output quality, when compared
to a system with non-approximate memory producing exact results, AxRAM reduces energy
consumption in half.
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3.3 Transparent Resilience for Approximate DRAM

Checkpointing and rollbacking mechanisms can reduce the error impact from the approx-
imate memories on results, improving average quality by recovering broken results, but
at the cost of instrumentation or modifications in the programming language [53, 122]. A
transparent re-execution restarts the execution without these interventions but requires
twice initialization overheads [118]. An approximate re-execution can alleviate the cost
of restarting an application [53], but memory approximations are probabilistic, and re-
executing into the same approximation level may lead to another invalid result.

In this section, we explore alternatives for transparent resilience of applications with
approximate main memory and recovering by approximate re-executions. We propose
to predetermine approximation levels to perform re-executions at a higher level with a
lower probability of a new invalid result. Furthermore, we introduce acceptance tests with
simple verification that detect invalid results produced by execution crashes or Silent Data
Corruption (SDC). These functions check, without a golden accurate output, whether an
approximate execution result is valid and contains the required data format.

Our previous interface [26] models an error-prone memory as a single high-level entity
that is solely responsible for storing all data, which limits the approximation model on
architectures without hierarchical design. We reduce the impact of errors by pushing the
approximation to DRAM, a more energy-intensive point in the memory hierarchy, which
is accessed through error-free caches that alleviate this impact. Furthermore, we adapt
the addressing scheme of AxRAM for this environment with a software implementation
that considers the virtual addressing space controlled by a supervisor system. The main
contributions, built upon previous work [28, 29], are:

• An approximate re-execution mechanism for instances that generate invalid results
considering the nondeterministic errors in the execution environment;

• Detection of invalid results through lightweight acceptance tests without having a
golden accurate output;

• An evaluation of the impact of error from different memory hierarchy levels and
a comparison between state-of-the-art alternatives for transparent resilience in an
execution scenario more compatible with systems with multi-level memory hierarchy.

Mechanisms of transparent protection have the potential to eliminate execution crashes
at some operating points. Nevertheless, to transform these crashes into instances that fit
a quality requirement, these executions have to generate a valid and higher quality result.
We compare and mix features from the interfaces AxRAM [26] and Crash Skipping [118]
in our proposed environment. Our results show that approximate re-execution improves
energy savings by up to 4 pp when compared to accurate re-execution, with negligible
impact on quality. A combination of features from transparent resilience interfaces avoids
up to 70% of crashes and achieves energy savings from 14% to 31%, depending on the
application, with acceptable quality degradation.
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3.3.1 Design

Transparent protection mechanisms attempt to automatically protect applications from
critical data errors without programmer intervention. We alleviate the impact of errors
on application quality by triggering approximate re-executions when invalid outputs are
detected. Furthermore, we evaluate transparent hardware and software-level resilience
mechanisms for approximate memory that can avoid a large fraction of critical errors.

Impact of Errors in the Memory Hierarchy

Approximations in different levels of the memory hierarchy could represent different im-
pacts on the application in terms of benefits and quality deprecation [76]. In general,
caches alleviate the number of accesses into a more energy-expensive and slower main
memory. In a scenario with an approximate DRAM, a precise cache also alleviates the
impact of errors from this main memory because of the reduced number of accesses on
the main memory. Although previous proposals mitigate approximation among more
than one level in the memory hierarchy [77, 130], our preliminary experiments, shown in
Section 3.3.4, evidence that a precise cache can reduce the number of application-visible
data errors from the last-level DRAM. Thus, the approximation only at the DRAM main
memory could maximize its energy gains with less impact on the output quality using
precise caches. Moreover, an approximate DRAM maximizes energy benefits since this
memory level represents the most energy-hungry point of the hierarchy, which can rep-
resent more than 60% of total memory energy breakdown [130]. Thus, this potentially
represents an improvement of orders of magnitude on error resilience without programmer
intervention.

Approximate Re-execution

To measure the quality of the results, we need to compare them with a reference output.
The reference output is the result of an accurate execution that has no energy benefits,
and, thus, is not feasible at the system-level design. Nevertheless, invalid results can be
detected when caused by execution crashes or errors in critical data. To this end, we need
an evaluation function for each application that distinguishes outputs that are not valid.
Every invalid output is indicated with null quality and certainly needs a re-execution to
generate a valid result. The re-execution is a simple mechanism that can be triggered
without programmer intervention by an OS or a runtime system. Although an accurate
re-execution generates an accurate output, it adds an energy overhead that may reduce
the approximation benefits. Furthermore, in an approximate environment, an accurate
output is not necessary in the first place.

To maximize the benefits of the approximation, we propose to re-execute, in approx-
imate mode, each execution instance that produced an invalid result. Approximate re-
execution has been proposed through specialized source code and programming language
that re-execute parts of the application in the same approximation level [53]. However,
re-executing in the same approximation level exposes the application to the same error
level and the same probability of a crash or invalid outcome, and a specialized source code
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demands changes in applications developed to commodity hardware. To overcome these
issues, we propose to perform the re-execution of a failed instance at a lower level of ap-
proximation than the original execution. If another invalid result is retrieved, another re-
execution is scheduled in the next level, successively. A guard-banded adjustment of mem-
ory parameters defines the approximation level zero, which results in error-free execution.
As a transparent process-level mechanism, this re-execution does not demand changes in
the source code or instrumentation by checkpointing. However, each re-execution adds
process initialization overheads since the application is re-executed from its beginning.
On the proposed approximate re-execution method, the approximation level is decreased
while there is no valid output from the last execution. In the worst case, the last ex-
ecution is performed at approximation level zero without errors and thus a valid result
is guaranteed. Furthermore, we can check the integrity of execution outputs based on a
simple verification of the data. Thus, we propose to use acceptance tests to detect invalid
results even in the case of SDC. This function returns whether an output is evaluable by
a quality metric without having an accurate reference, checking labels and critical infor-
mation required by the application. The simplicity of such a checking mechanism results
in negligible runtime overhead to determine whether the results are valid or not.

Transparent Interface Mechanisms

Transparent protection mechanisms of critical data, in the literature, focus on resilience,
trying to maintain the execution flow and converge to a valid output. Incorrect memory
references are the main cause of crashes, thus protection of control flow pointers and
treatment of data pointers have been proposed in AxRAM [26]. The loss of the control
flow is also a concern in approximate memory environments. Mechanisms of instructions
replacement by a no-operation (nop) instruction have been proposed to overcome this
problem in Crash Skipping (CS) [118].

We propose a combination of transparent mechanisms from AxRAM and CS into an
interface that avoids execution crashes by protecting the control flow, treating data point-
ers, skipping faulty instructions, and preventing application stalling. The allocation of
the system stack addresses into reliable memory protects control flow pointers with a min-
imum penalty in energy savings due to the usually small size of the stack compared to the
entire application data. The treatment of data pointers into an environment with virtual
addressing with MSB truncation validates non-existing addresses but is not sufficient to
avoid all data crashes. Thus, we combine this addressing scheme with the replacement by
nop instructions. However, these mechanisms can increase the number of instances that
fall in indefinite execution, thus another mechanism counts the replaced instructions and
stops the execution if a threshold of avoided crashes is reached.

3.3.2 Implementation

The mechanisms of transparent resilience evaluated in this work are based on AxRAM [26]
and CS [118]. Therefore, we implement these interfaces to show and compare the results
achieved with their mechanisms in our proposed environment. We consider mechanisms
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of hardware and software implementation of the transparent interfaces. The hardware-
level implementation of AxRAM allocates the system stack addresses into a memory
region with the approximate level zero, protecting control flow pointers stored into these
addresses. The other main feature of AxRAM is a treatment to out-of-bounds memory
accesses that we implement with the truncation mask of 39 bits in our virtual memory
environment, following the RV64 Sv39 standard page-based virtual-memory system. The
CS implementation (referred to as CSi) considers the hardware mechanisms, a skipping
threshold of 20 for all evaluated applications, and implements instruction granularity
to skip crashes, which is a configuration calibrated with a unique execution of a single
random application for achieving energy savings.

The base AxRAM hardware implementation to treat out-of-bounds addresses is not
enough to match the expected results in a virtual memory scenario. Truncating the
most significant bits covers only pointers that fall out of the allowed addressing space
but does not validate whether they are a match for an existing virtual memory page.
Thus, a software-level implementation of this scheme considers the page allocation to find
a likely correspondence for the virtual address. In the RV64 Sv39 page-based virtual-
memory system, the 39-bit addressed virtual memory space is divided into 4 KiB pages
and organized into three levels, allocating a 9-bit Virtual Page Number (VPN) identifier
within each level and a 12-bit intra-page offset [125]. We consider that, when the hardware
raises an access violation exception, one of these partial VPNs suffered a bitflip that
corrupted the virtual address. Thus, we search the Page Table Entry (PTE) for a VPN at
a hamming distance = 1 in comparison to the virtual address that caused the exception.
If a correspondence is found, we create a new PTE pointing the faulty virtual address to
the correspondent physical address, allowing the execution to proceed. This PTE avoids
another search in the case of an error with the same incorrect address but adding data
that occupies memory and a possible entry in the Translation Lookaside Buffer (TLB).
If no correspondence is possible, the execution crashes in a segmentation fault. This
alternative implementation is referred to as SW-AxRAM.

3.3.3 Methodology

Transparent interfaces allow for controlling error rates at the hardware level, the OS, or
a runtime system using approximation knobs. We adopt a model where non-user level
instructions are protected, thus only the application is exposed to errors and the OS runs
accurately. Different from the methodology of Section 3.2.3, we evaluate the impact of
the error with multiple cache levels in the memory hierarchy, in which the OS manages a
virtual addressing scheme where multiple applications have access to the memory array.
Furthermore, the energy savings on an approximate DRAM consider the proportional
access to the error-free data, thus, some application that allocates a small error-free
region but has intensive use of it increases the overhead of the protections.

Simulation Environment

Our environment is built upon the Spike RISC-V reference ISA simulator [66], and user-
privileged memory accesses are replaced by software models that can expose data to
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errors [34]. These errors are bitflips persisted in memory that can occur at any bit
of the row buffer with a given probability. The RISC-V Proxy Kernel controls virtual
memory addresses and the execution environment. To enforce a higher stress on the
approximate memory, our simulator performs a cache flush after 105 instruction cycles to
increase the number of memory accesses. In our simulation, traces of DRAM accesses are
transformed into DRAM commands and timestamp marks by Ramulator [59] to evaluate
the energy consumption through DRAMPower [11]. Our simulated memory hierarchy
has two independent 32KB L1 instruction and data caches and a single 128KB L2 cache,
and the DRAM specification is DDR3 1600Mhz 64bit, 8 banks, 2 ranks, 1024 columns,
8 bytes burst length, 16384 rows, tRCD 13.75 ns, tRP 13.75 ns, and 1.35 V nominal
VDD. To account for energy, we consider that each equally-sized fraction of the memory
contributes equally to the aggregated dynamic energy cost. Thus, if certain memory
regions use a different operating point to protect or expose data to errors, their energy
cost is proportional to their utilization.

Error and Energy Model

Our error scenario considers a controlled environment, where the approximation level
refers to a calibrated static error rate. To calculate the energy impact of exposing data
to a certain error rate, we derive a relation between the DRAM supply voltage of the
DRAM array and the bit error probability from data collected with scaled voltage and
fixed temperature and latency parameters [13]. Current commercially-available DRAM
does not support dynamic changes in the supply voltage of the DRAM arrays, thus,
this environment requires minor changes in the power delivery of the DIMMs similar to
Voltron [13]. These changes should avoid errors in the peripheral circuitry, maintaining
the nominal voltage on these components while allowing dynamic adjusts in the supply
voltage of the DRAM array. We assume that these modifications have insignificant energy
impact and model a median scenario of error probabilities. In steps of approximation
that are not covered by the parameters from extracted data, we consider the exponential
relation between voltage and error to design regressions in the form

error = A× e(B×vdd) (3.1)

where error is the bit error probability and vdd is the supply voltage of the DRAM,
validating the error value between 0 and 1. The values for a median error scenario are
A = 1.796 × 1068 and B = −155.87 with coefficient of determination R2 = 98.51%. We
did not consider other variables that could affect the error as a dynamic component of the
memory, such as the temperature. However, we intend to profile the behavior and output
generated by the application exposed to errors, thus a calibration over other factors is
applicable to proposed techniques and also other error models.

Applications and Quality Functions

We evaluate applications from AxBench [131], cBench [38], and Polybench [88] on our
experiments. The considered applications are atax, correlation, dijkstra, fft, jpeg, and
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sobel, which represent the behavior of general-purpose applications that manipulate data
that tolerate approximation in their results. For simulation purposes, we use standard
input and output as the source and the destination of data. However, no other mod-
ifications were implemented within the applications, such as annotations in the source
code, instructions, or data to control approximations, maintaining the transparency of
the interfaces.

The selected quality metrics are Fraction of Equal Elements (FEE) for correlation
and dijkstra; Structural Similarity Index (SSI) for jpeg and sobel; and Mean Absolute
Percentage Error (MAPE) for atax and fft. More details of these metrics are given in
Section 2.1.4. The acceptance test of each application verifies if the respective output is
valid without having the accurate output to trigger a re-execution. The acceptance test
for jpeg and sobel checks whether the data contains a valid image header in the expected
dimensions. For atax, correlation, fft, and dijkstra, the acceptance test verifies if the
number of elements in the output is coherent with the size of the input data.

Approximation Levels and Metrics

We consider the approximation level zero as 1.35 V, the nominal voltage of DRAM.
The predetermined approximation levels are 10 between 1.02 V and 1.11 V with 10 mV
steps. The applications are compiled with GCC/G++ 9.2.0 for RISCV-V from riscv-
gnu-toolchain with flags -O3 and -static. To measure the energy benefits and quality
degradation at the approximation levels, we perform 100 executions of each application at
each approximation level. These executions intend to profile the application to determine
its behavior in the approximate DRAM environment. Since the memory approximations
are nondeterministic, executions in the same approximation level may produce different
outputs. Thus, the expected quality and energy for each level are the average from all
executions.

Each of the 100 random execution instances, at a given approximation level l, of
the target application account for a relative energy cost, measured by DRAMPower,
and an output quality, given by the quality metrics. We aggregate the average energy
consumption and average quality at each level as µWl

and µQl
, respectively. We also

observe the outcome of each execution instance to produce the probability of a re-execution
to be triggered at the given level, δl. Thus, the Expected Quality (El

Q) and Expected
Energy (El

W ) for each level l are taken as the statistical expected value of the random
variables energy cost and quality, considering the mean values µQl

and µWl
, as shown in

Equations 3.2 and 3.3, respectively.

El
Q = (1− δl)× µQl

+ δl × E(l−1)
Q (3.2) El

W = µWl
+ δl × E(l−1)

W (3.3)

Considering the relative energy savings are the difference between the energy consump-
tion from accurate (100%) and approximate executions, the Expected Energy Savings (El

S)
are similarly given by Equation 3.4.

El
S = 1− El

W (3.4)
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3.3.4 Evaluation

The best operating point for each application is the approximation level that achieves
the highest energy savings while still fitting in a quality requirement. Our experiments
search for the best operating point by analyzing several executions in each approximation
level. The remainder of this section presents our evaluation results with the proposed
transparent mechanisms..

Impact of Errors from Levels of the Memory Hierarchy

Figure 3.12 shows how errors injected at three different levels in the memory hierarchy
impact the average quality of results for the jpeg application, for error rates in logarithmic
intervals from 10−10 to 10−3. The highest impact occurs when errors are combined in L2
and L1 caches and the DRAM, zeroing quality at the 10−6 level. For error rates of 10−5,
the L1 alone nullifies the quality of results. Avoiding errors at the L1 cache allows the
applications to survive up to three orders of magnitude more errors. Therefore, amongst
the evaluated hierarchy levels, the error source from cache L1 presents the highest impact
on decreasing the quality of results.

The fewer cache misses and the flush performed by the context switching operation
soften the difference between the impact of errors from L2+DRAM, L2, and DRAM.
However, an improvement of at least one order of magnitude can be noticed with errors
only from DRAM. Thus, the further away is the error source from the CPU, the less
significant is the impact of the error on application results. Taking into consideration a
breakdown of energy consumption of these hierarchy levels where DRAM corresponds to
the major energy consumption in memory hierarchy [130], our evidence shows that the
minor impact of error source is in the most energy-hungry level. Therefore, the use of
error-free L1 and L2 caches have the potential to soften the impact of an approximate
DRAM by several orders of magnitude.

10
10

10
9

10
8

10
7

10
6

10
5

10
4

10
3

error rate

0%

50%

100%

av
er

ag
e 

qu
al

it
y

jpeg

DRAM
L2
L1
L2+DRAM
L1+L2+DRAM

.
Figure 3.12: Average output quality for jpeg when errors are present in different levels of
the memory hierarchy. Quality improves when errors occur only in the main memory, but
not in the caches.
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Acceptance Tests

Transparent resilience interfaces avoid behaviors that would otherwise result in a crash.
However, these behaviors may result in SDC, which leads to invalid outputs. Interfaces
avoid execution crashes but increase the number of instances that generate results with
useless or null quality. Thus, other invalid outputs that cannot be detected by the OS
may need a re-execution to generate a valid result.

Figure 3.13 exhibits the percentage of re-executions triggered by crashes detection, the
proposed output validation with acceptance tests plus crashes detection, and an oracle
that detects every execution that resulted in quality lower than 80%. Such an oracle
implementation is not achievable, since it would need an accurate output as a reference
to validate and measure the output quality, which nullifies the energy gains of the ap-
proximate memory. For all applications and error rates, the inclusion of acceptance tests
covers more instances than crash detection only. Although the crash detection may cause
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Figure 3.13: Percentage of executions invalidated by crash detection only, crash detection
and output validation, and an oracle with 80% target quality. Output validation improves
upon crash detection performance for all operating points. Reaching oracle performance
on all applications would require costly quality assessment.
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false positives, such as when a crash happens after a valid result is generated, as in fft
application where this trigger surpasses the oracle at some levels, it prevents false nega-
tives from the acceptance test, such as when an image header is correctly written and the
execution crashes within the pixel data region. Thus, the combination of acceptance tests
and crashes detection is more efficient as a re-execution trigger than crash detection only.

Approximate Re-execution

The re-execution methods bring another component to the energy-quality trade-off, which
adds energy overhead for each re-execution but increases the average quality by recovering
invalid results. For the approximate method, this energy overhead can be softened with
lower re-execution probabilities in the next approximation level, or be raised when the
chances for another invalid result are high on this level. Nonetheless, higher chances
for other invalid results occur at approximation levels where the low average quality of
results and the nonexistent energy savings prevent these operating points to be valid
levels of execution. Table 3.3 shows the expected savings (ES) and quality (EQ) for all
applications without any transparent resilience mechanisms (AM model), in approximation
levels from 1.07 V to 1.10 V, in which most applications present the more significant energy
savings maintaining high-quality results. In all these levels and applications, the energy
overhead does not make the approximate re-execution surpass the energy cost of accurate
re-executions on our experiments, where the ES of the approximate method is at most
the same as the one of the accurate method.

The probability of a re-execution is a key characteristic to achieve energy savings using
re-execution methods, especially for the approximate re-execution that relies on the re-
execution probability of the next lower vdd. Sobel presents the highest ES values because
of fewer crashes and invalid results on lower vdds, increasing the ES of the approximate
method up to 4 pp at 1.07 V. Dijkstra, fft, and jpeg nullify the energy gains at 1.07 V
through accurate re-execution, because of the higher re-execution probability that adds an
overhead based on the nominal energy consumption. However, this overhead is decreased
by the approximate re-execution, which can present slight energy savings on jpeg and
dijkstra at this approximation level. The higher number of delayed crashes and invalid
results produced by SDC increases the energy overhead of fft, which postpones its energy

Table 3.3: Expected Energy Savings (ES) and Expected Quality (EQ) for approximate
and accurate re-execution. The approximate method achieves higher savings with slight
differences in quality.

vdd → 1.07 1.08 1.09 1.10
application re-execution ES EQ ES EQ ES EQ ES EQ

atax approximate 10.7% 74.8% 18.9% 91.1% 19.3% 98.0% 18.51% 100.00%
accurate 7.7% 76.3% 17.8% 91.2% 19.3% 98.0% 18.51% 100.00%

correlation approximate 15.3% 96.6% 20.0% 98.9% 19.3% 100.0% 18.52% 100.00%
accurate 13.3% 96.7% 20.0% 98.9% 19.3% 100.0% 18.52% 100.00%

dijkstra approximate 1.0% 68.5% 12.5% 83.5% 18.0% 98.7% 17.10% 99.67%
accurate – 80.7% 8.3% 83.8% 17.6% 98.7% 16.92% 99.67%

fft approximate – 44.9% 15.6% 91.6% 17.2% 100.0% 18.52% 100.00%
accurate – 49.0% 12.9% 91.6% 16.6% 100.0% 18.52% 100.00%

jpeg approximate 3.0% 88.6% 20.1% 89.3% 19.3% 99.6% 18.52% 100.00%
accurate – 93.2% 18.6% 89.4% 19.3% 99.6% 18.52% 100.00%

sobel approximate 30.5% 68.5% 22.6% 92.9% 19.6% 99.3% 18.52% 99.99%
accurate 26.5% 69.8% 22.3% 92.9% 19.6% 99.3% 18.52% 99.99%
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savings to 1.08 V on both re-execution methods. Correlation presents equal ES peaks to
approximate and accurate re-executions due to the fewer invalid results and crashes in its
best approximation level. Some operating points show no difference between the accurate
and the approximate methods because of having small chances of triggering re-executions.
For 5 out of 6 applications, the peak of ES occurs with approximate re-execution at the
cost of a decrease on the EQ.

In general, the approximate re-execution shows higher savings at the approximation
level closer to the edge of a high probability of crashes because of the minimum overhead
added when compared to the accurate method. Energy savings are significantly high in
comparison to the depreciation in quality. In all cases when quality and energy metrics
show different results, the approximate method achieves higher efficiency in the combined
efficiency. Therefore, our proposed approximate re-execution method achieves the highest
energy savings for the 6 applications with a minimal impact on quality.

Transparent Interfaces

The number of valid results varies depending on the execution with transparent interfaces.
These interfaces are orthogonal to the re-execution methods, which can recover invalid
results even when no resilience mechanisms are used, as the results with AM. Resilience
interfaces insist on executions that would crash or result in invalid outputs, trying to
generate valid and higher quality results.

Valid Executions
Figure 3.14 shows the percentage of executions that produce valid results for two eval-

uated features, SW-AC and SW-ACw, besides an approximate memory without implementing
resilience interfaces (AM). SW-AC implements software and hardware addressing schemes
from AxRAM plus CSi features and protection of the stack region from errors. SW-ACw im-
plements all these features, except for stack protection. SW-AC shows the higher number
of valid executions, and, consequently, the lower re-execution probability.

In general, the use of interfaces decreases the need for re-executions at lower vdds,
however, higher quality results are usually generated at higher vdds, where crashes and
invalid outputs are not so frequent using our proposed architecture. Furthermore, in
our environment, the error impact is alleviated by error-free L1 and L2 caches, which can
protect small temporary variables, and the approximate re-execution decreases the impact
of recovering invalid outputs, thus reducing any gains of protecting the application stack.
Moreover, triggering fewer re-executions does not necessarily infer more energy savings.
Other factors influence these gains, such as timeouts (the more energy-wasting execution
crash) and the execution phase at which a crash happens. The more delayed an execution
crash is, the higher is the energy overhead of an instance.
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Figure 3.14: Executions that produce valid outputs with the evaluated interfaces. In
general, resilience mechanisms increase the percentage of these valid executions.

Expected Energy Savings and Quality
In our environment, the best operating points are in the vdds where the probability

for a re-execution is relatively low, and, when a re-execution is needed, the approximate
re-execution is performed at a level with this probability almost equal to zero. These
operating points range from 1.07 V to 1.10 V. Comparing data from this range, Table 3.4
shows the operating points with the highest energy savings achieved for all applications
per interface, where the protection mechanisms match the highest expected quality for
5 out of 6 applications. However, the decreased cost of recovering invalid outputs or
crashed instances by approximate re-executions results in higher energy savings for AM,
which matches the highest savings for 3 out of 6 applications.

The software-level addressing scheme achieves the most benefits on quality and energy
for 5 out of 6 applications. However, the stack protection can impact differently depending
on the overhead and structures used by the application. Only for sobel this feature
increases the combined benefits. The stack protection, however, is derived from correct
memory allocation for the stack region and can be configured at runtime [26]. Thus, an
analysis of the impact of each protection feature and its respective overhead is necessary
before associating an application to an interface.
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Table 3.4: Operating points of the best ES for each application.
application interface vdd EQ ES application interface vdd EQ ES

atax
AM 1.09 98.0% 19.3%

fft
AM 1.10 100% 18.5%

SW-AC 1.07 80.3% 20.0% SW-AC 1.09 100% 17.7%
SW-ACw 1.09 99.9% 18.8% SW-ACw 1.09 100% 19.3%

correlation
AM 1.08 98.9% 20.0%

jpeg
AM 1.08 89.3% 20.1%

SW-AC 1.07 98.6% 20.0% SW-AC 1.09 99.6% 18.9%
SW-ACw 1.07 98.5% 19.3% SW-ACw 1.09 99.7% 19.3%

dijkstra
AM 1.09 98.7% 18.0%

sobel
AM 1.07 68.5% 30.5%

SW-AC 1.10 99.0% 10.0% SW-AC 1.07 74.9% 30.5%
SW-ACw 1.11 100% 17.8% SW-ACw 1.07 71.6% 30.6%

Comparison with Other Interfaces
Figures 3.15 shows the expected energy savings for the proposed interfaces compared

with hardware-only implementations of AxRAM and CSi. From a certain point, execution
crashes are rare, and thus resilience interfaces have no significant benefits and add energy
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Figure 3.15: Expected energy savings for evaluated interfaces. The combined interfaces
benefit from the lower overhead of CSi at higher vdds, and the higher savings of AxRAM at
lower vdds.
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overhead, especially when protecting memory regions from errors. This behavior can be
noticed on the decreased benefits with sobel starting from 1.08 V.

Dijkstra is a representative application that shows the highest difference between the
four interfaces. This application performs a lot of accesses on the application stack,
resulting in significant overhead on its protection and favors the energy benefits of CSi,
in isolation. Moreover, CSi is a low-overhead hardware-only mechanism, in comparison
to the software implementation SW-AxRAM. However, if the stack protection is removed
from SW-AxRAM, the energy benefits get closer to pure CSi, while still providing high-
quality results and, thus, maximizing the energy-quality trade-off. This behavior pattern
is perceived in most applications.

Thus, the unprotected stack is determinant for achieving high energy savings for most
of the applications at higher vdds. However, interfaces that protect some critical memory
regions achieve higher savings at lower vdds, as seen in atax. The combined interfaces
have a lower overhead at higher vdds and protect critical data at lower vdds, achieving
most of the benefits of CSi and AxRAM and maintaining high quality results for a wider
range of operations.

3.3.5 Discussion

Approximate memories operate below guard-banding parameters trading energy for qual-
ity degradation of results. In the border of this guard-banding, the execution of some
applications brings low or even no errors. However, as the approximation level grows,
errors may lead to invalid results or crashed executions. Mechanisms for transparent re-
silience aim to avoid execution crashes to generate valid results and improve the chances
for a high-quality result in higher approximation levels without any program annotation.

Despite transparent, these mechanisms require some runtime system to manage the
approximation. Thus, the approximation control is carried to the supervisor layer, where
an OS or a middleware detects invalid executions and triggers recovery methods. The
transparent protection of critical data is also managed by a supervisor system that controls
regions of the memory that usually contains these data, but the higher energy savings
with this protection are achieved at the operating points in the margin of the occurrence
of crashes.

This section compared and explored state-of-the-art mechanisms for transparent re-
silience, detecting invalid results to trigger re-execution mechanisms. Our results show
that approximate re-executions achieve energy savings of 4 pp with negligible loss in qual-
ity. Furthermore, the proposed combined interfaces, that merge transparent mechanisms,
benefit from higher energy savings with lower overhead than interfaces that implement
isolated mechanisms. Despite being application-specific, the use of acceptance tests as
re-execution triggers can improve the detection of invalid outputs up to 30% by simple
and lightweight validations.
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3.4 Approximate Dynamic Allocation

Environments with a supervisor system like an OS have information about memory al-
location, data access patterns, and addressing schemes of each application at runtime
and can act as a middleware in the approximation control. Previous work [111] proposes
the control of an approximate memory through data allocation on the heap region but
restricted to a specific application that needed to be adapted to this environment through
annotations. However, being the dynamically allocated space a region that usually con-
tains most of the data resilient to errors for some applications, the supervisor system can
control the approximate region employing the information of the program allocation.

In this section, we propose an allocation scheme for the approximate data controlled
by the supervisor system. This scheme acts without annotations in the application data
and stores all dynamically allocated data in the approximate region by default. The pro-
gram is divided into a new layout of virtual memory segments, adding the approximate
heap section, which refers to a contiguous physical region of memory addresses, where the
stored data is exposed to controlled errors. Moreover, we provide a method of reliable
dynamic allocation to protect critical data in the case of annotated applications. This
method acts through a system call that increments the program break (the end of the
program’s data segment) and returns the pointer to the beginning of the new allocated
accurate data region, virtually contiguous with the approximate region but physically at
another memory region. Thus, we benefit both portability from and to non-approximate
environments and keep the execution environment compatible with off-the-shelf architec-
tures. The main contributions are:

• A transparent allocation scheme that uses the heap memory region to store approx-
imate data and achieve energy savings;

• A data approximation model compatible with and easily portable from off-the-shelf
environments;

• Approximation controls offered to the application through dynamic allocation into
error-free memory regions.

We evaluate our proposal on a voltage-scaled DRAM and compare the results with
transparent interfaces and annotated applications. Our proposal achieves a reduction
of up to 25 pp of crashes, with energy savings up to 20% with improved quality when
compared with other transparent interfaces.

3.4.1 Design

A typical layout of the data allocation of a program divides memory regions into sections
of text, data, Block Starting Symbol (bss), heap, and stack. The text section contains
read-only data of the executable instructions from the program. These instructions are
fetched from the memory by the processor to decode and execute them. The data section
contains initialized data and the bss section contains uninitialized static variables and
constants of the application. The heap section contains dynamically allocated data, while
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Figure 3.16: Maximum heap size according to three different input sizes and their cor-
responding executed instructions. Some applications, like jpeg, increase the heap space
according to instructions executed, thus the dynamically allocated region has a direct rela-
tion with the input size.

and the stack section contains return addresses and temporary data. Both heap and stack
sizes change during the execution.

Applications that manipulate common resilient data, such as images and audio files,
usually have an input of unknown size to compute. These applications, when memory-
intensive, usually appeal to dynamic allocation to store the data to be processed or the
partial results of their computation. Figure 3.16 shows the size of the heap region accord-
ing to the number of instructions executed with different input sizes for three applications,
jpeg, dijkstra, and pi, with distinct memory access patterns. The jpeg application has
the most heap-intensive utilization because the dynamically allocated data grows together
with the number of executed instructions according to the input size. Dijkstra has a more
slightly growing of the heap, while the workload of pi is indifferent to the input size to
allocate data in the heap region.

We propose to store the dynamically allocated data into the approximate region of the
memory by default, providing a transparent approximation of this region and an easily
portable execution environment. Our proposal takes more advantage of applications like
jpeg, where the dynamically allocated data contains most of the data that are resilient
to errors to be processed. This approximation is transparent since there is no need for
annotations or interventions by the application to ensure data approximation. The exe-
cution environment is easily portable because it exploits a previous memory organization
layout of common environments. Thus, applications built aware of our environment run
in previous commercial off-the-shelf environments without changing their source code.

Transparent Approximation Scheme

The heap section stores the dynamically allocated data of the program. When the OS
loads the binary program, an Executable and Linkable Format (ELF), after the loading of
the instructions, data, and bss sections of the application, the memory has an empty heap.
We propose to allocate the heap section into a memory location of unreliable storage. In
this location, memory parameters are changed to operate with lower energy consumption,
but the stored data are exposed to errors.



75

When the program is loaded and the heap section is empty, we change the physical
region of the new memory spaces requested by the application to allocate data into the
approximate region of the memory. The references to the program continue contiguous
but the physical addresses are allocated into different parts. Thus, instructions, data, and
bss sections are stored in the reliable memory region, and the heap section is stored in
the approximate memory region. The stack section also is stored into the reliable region,
hence, just the dynamically allocated data is approximate by default, in exchange for
energy savings in the memory operation. From the application’s view, this approximation
is transparent since no explicit changes are needed to enable it.

Error-free Allocation

The heap section contains only approximate data by default, which makes this technique
transparent to the application. However, programmers can build or port an application
that is aware of this environment and may need to dynamically allocate some critical
data. Therefore, we propose a method to provide reliable allocation to the application,
which may ask for error-free dynamic allocation to the supervisor system. This method
is performed through system calls that provide a way to dynamically increase the size of
the allocated reliable memory for the application.

In our proposal, the default behavior when the program requires dynamic allocation
is to perform a syscall and mark the addresses as approximate, allocating them into a
different region than the previous memory sections, which are stored into an error-free
region. The program break is a reference of the OS that indicates where the data segment
of the application ends. Unix-based systems have the system call SBRK that allows the
application to increment the program break, receiving an integer value (the increment) as
a parameter [55]. In our environment, the SBRK syscall is available and also increments
the program break but only in the approximate data segment. We propose a new system
call with similar behavior to SBRK, receiving an increment as a parameter but, instead
of allocating approximate data, the newly allocated addresses are marked to point to an
error-free memory region. Thus, instead of providing an allocator for approximating data
and error-free allocation by default, we provide an explicit allocator for reliable storage
and allocate approximate data by default.

3.4.2 Implementation

Controlling the dynamically allocated approximate data involves mapping where to store
these data in the physical memory and where to find the reliable sections of the program.
An OS usually makes available to the program a virtual address space, a range of memory
references that are converted to the physical addresses. In the virtual address space, the
program may have a contiguous memory region that is detached in the physical memory.
The implementation of our proposal involves mapping two physical heaps that are in the
same location from the program’s view but are separated in the physical memory.

Figure 3.17 shows the proposal of our allocation scheme, where the heap section may
contain some blocks of reliable storage when the application allocates them explicitly. All
blocks reliably allocated are contiguous in the virtual address space, but they increment
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Figure 3.17: Allocation scheme of our proposal. By default, the virtual heap contains only
approximate data, however, the application may require reliable blocks in this section that
are allocated in a different physical location.

another reference of the program break in the physical memory. Thus, our system takes
advantage of the reliable memory regions to provide a non-transparent option for the
application to dynamically allocate critical data.

The OS should maintain two references for the program break, one for the approximate
allocation and other for the error-free heap. This proposal takes advantage of the error-free
memory allocated to the application at the cost of dividing the heap addresses. Depending
on the size of each allocation, the page tables size may have detached fragments that could
impact the performance of the data access and the size of the stored data.

3.4.3 Methodology

Our environment is built upon the AxPIKE simulator [35], which replaces memory ac-
cesses within the user region with software models that can expose data to errors. The
simulation environment and configuration are the same as Section 3.3.3, except for the
filter of the user-privileged access that is controlled by user memory regions. Thus, in-
stead of the supervisor system protecting memory accesses from privileged instructions,
it controls memory regions on user and supervisor spaces, where only accesses in the user
space are exposed to errors.
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Error Model

We consider a hardware characterization where the supply voltage of the DRAM data
array is controlled according to the specified error rate. We evaluate fixed error rates of 9
logarithmic intervals from 10−9 to 10−1. To calculate energy from a specific supply voltage,
we formulate a logarithmic regression based on a characterization from the literature [13]
relating Vdd with error:

vdd = loge(
B

√
error

A
) (3.5)

where A and B are constants taken from the characterization with the respective values
of 1.796× 1068 and −155.87.

Applications

We evaluate applications available in AxBench [131] and MiBench [45]. Table 3.5 shows
these applications, their considered quality metric (explained in Section 2.1.4), the val-
idation functions (which validate the results for re-execution), the respective input size
on the experiments, and the number of executed instructions with each input. The vali-
dation functions represent the minimum data requirements to make the execution results
evaluable. Each combination of application and input is executed 100 times to ascertain
nondeterministic error behavior. The applications are compiled with GCC/G++ 9.2.0 for
RISCV-V from riscv-gnu-toolchain with flags -O3 and -static.

Table 3.5: Applications used to evaluate the proposal of a transparent approximate heap.
application input size quality metric exec. insts. acceptance test
dijkstra compl. graph, |V|=100 FEE 2.0× 108 at least 10 paths 5 nodes
inversek2j 10,000 coordinates MAPE 9.1× 108 25% of the expected size
jmeint 5,000 coordinates FEE 4.7× 108 25% of the expected size
jpeg 768x512 image SSI 3.4× 108 check image size
mm 512x512 int matrices MAPE 3.5× 108 25% of the expected size
sobel 512x512 image SSI 4.1× 108 check image size

Comparison Interfaces

We compare our proposal with AxRAM [26] and Crash Skipping (CSi) [118]. The imple-
mentation of AxRAM considers the virtual address space and treats incorrect pointers by
truncating them as explained in Section 3.3.2. CSi is calibrated at instruction granularity
with a threshold of 5 skipped instructions, parameters obtained through a single execution
of a random subset of the applications to maximize energy savings.

We also evaluate our transparent interface (with implicit approximate heap) against
a method of explicit approximation with annotated data through an approximate malloc
function (where the application has error-free data by default and asks for every approx-
imate data). The annotated application is not a transparent interface but serves as an
oracle for their average quality. Moreover, we evaluate this annotation strategy with our
proposal of explicit reliable allocation (where the application is annotated to ask for error-
free allocation). We modify the applications jpeg [131] and dijkstra [45] to perform this
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comparison because jpeg allocates a vector of pointers to then allocate the image pixels
and dijkstra uses an adjacency list to represent the graph. Thus, both applications have
significant critical data that is stored in the heap section.

3.4.4 Evaluation

Transparent interfaces protect critical data in common for many applications. However,
annotations protect specific critical data of the applications, being more effective to pro-
tect against executions crashes and obtaining higher average quality. However, as the
number of error-free accesses increases, also the energy overhead of these protections de-
creases the approximation benefits. In the remainder of this section, we analyze the results
obtained by the proposed transparent approximate heap face to annotations that explic-
itly identify the data amenable to approximation and two transparent interfaces, AxRAM
and CSi. Lastly, we change applications to explicitly protect some critical data allocated
in the heap section and compare strategies that explicitly protect and approximate data
by default versus another that explicitly approximate and protect data by default.

Crashes

Figure 3.18 shows the percentage of invalid executions when executing the application in
Vdds that expose data to errors with protections of our proposed interface (approximate
heap), AxRAM, and CSi. Except for dijkstra at 1.05 V, the transparent approximate heap
exhibits lower crashes than AxRAM and CSi. Thus, protecting non-dynamically allocated
data from errors avoids a large number of crashes.
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Figure 3.18: Invalid results generated by executions when executing with different trans-
parent interfaces. In general, protecting all data but the heap achieves fewer crashes.
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At lower Vdds, the error probability is higher and also the occurrence of crashes and
production of invalid results. For example, at 1.04 V 50% of the executions produce
invalid results with approximate heap, on average. In the same approximation level,
AxRAM produces 59% and CSi 75% of the execution results as invalids. As the error
probability decreases, crashes and invalid results tends to zero. For applications inversek2j,
jmeint, jpeg, and sobel the approximate heap presents zero invalid results at the same
approximation level that at least one interface still generates invalid results.

Quality

Figure 3.19 exhibits the average quality of the interfaces obtained executing amongst sev-
eral Vdds, where the approximate heap is the transparent protection mechanism that is
closer to an annotated application. The annotated application has identified data struc-
tures and variables that are critical through programmer interventions and modifications
in the source code, thus this approach is not transparent. A transparent interface will not
surpass the average output quality of an annotated application in general cases, however,
the results achieved through annotations serve as references to a higher quality oracle to
the transparent interfaces.

The approximate heap has different data isolation from AxRAM, while AxRAM exposes
all application data to errors but the program stack, the approximate heap protects all
data regions but the heap. CSi does not protect any data region from errors, just avoid
execution crashes by skipping instructions that would crash the application. Thus, the
data isolation offered by AxRAM and approximate heap usually improves the average quality
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Figure 3.19: Average output quality of the evaluated applications among several Vdds.
A transparent interface with an approximate heap achieves quality closer to annotated
applications than other transparent interfaces for most of the Vdds.
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of the results. The general case for all applications is the annotation of an approximate
malloc obtaining the higher average quality and the approximate heap being the closer
transparent interface for most of the Vdds.

Energy

Figure 3.20 shows the energy savings relative to an execution at nominal voltage among
different error probabilities, where an annotated application achieves higher savings at
lower vdds due to non producing invalid results, which reduces the number of re-executions.
However, the energy savings depend on how the application produces the approximate
results and accesses the data. For example, dijkstra has 61% of its memory accesses into
the stack section but protecting this region does not represent a corresponding reduction
in the invalid results. Therefore, protecting the stack adds an overhead that decreases
energy savings for this application with approximate heap, AxRAM, and annotations.

The general behavior is the approximate heap having closer curves to the annotated
application. However, in applications inversek2j, jmeint, and jpeg the energy savings
of approximate heap is surpassed by other interfaces at higher Vdds due to the fewer
errors which makes harmless the probability of critical errors. Thus, in these Vdds, the
protection of non-heap sections increases the energy overhead.
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Figure 3.20: Average energy savings relative to a nominal execution. Some applications,
like dijkstra, benefit from lower protections on their data.
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Figure 3.21: Energy savings with explicit approximation, explicit error isolation, and
implicit approximate heap. Approximating dynamically allocated data by default may
guide to higher energy savings.

Changed applications

Our proposal involves the approximation of the heap section by default. However, an
application may be changed aware of this feature and request reliable allocation for some
critical data stored in the heap. Figure 3.21 presents the relative energy savings for jpeg
and dijkstra applications annotated to request reliable allocation of critical data in the
heap, compared to an environment with explicit approximation (where all data but the
annotated are error-free) and the implicit approximate heap. For both applications, the
explicit annotations for protecting data achieve higher energy savings for most of the
error probabilities. This proposal allows for protecting non-contiguous critical data, like
in dijkstra, adding an overhead of memory space but that increases the energy savings
with the approximation.

3.4.5 Discussion

The layout of the program allocation divides the memory into traceable sections. The heap
section contains data allocated on demand by the application. In this section, we explored
the approximation of the heap section by default, exposing all dynamically allocated data
of the applications to errors. This proposal performs transparent approximation without
needing programmer interventions or changes in the application. We also explored an
annotation scheme where the programmer could ask for error-free dynamic allocation in
the environment that approximates all dynamically allocated data by default.

The error-free allocation involves another reference to the program break, thus the ap-
plication has two physical heap regions, one in the approximate and error-exposed memory
and another with reliable and error-free storage. This allocation may cause fragmentation
of the memory data which impacts the access delay and memory performance. Further
implementations of this method are required to ascertain these impacts and the actual
effect on memory storage.

The transparent approximate heap is a transparent approximation that decreases the
number of invalid results obtained in the execution with an approximate DRAM and
improves the average quality for most of the evaluated applications. This makes this
mechanism fit to applications that require improved execution resilience, leading to energy
savings closer to annotated applications than other transparent interfaces at higher error
probabilities.
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Chapter 4

Learning-based Configuration of
Approximate Memories

The proposed interfaces for data protection isolate from error common critical data for
many types of applications to improve execution resilience and increase the average quality
of the results. However, the energy savings or performance improvements from memory
approximation depend also on how much error is allowed for each application due to the
configuration of the approximation knob having a relation with the benefits provided. The
errors from approximate memories typically are nondeterministic, thus a single execution
does not represent the predictable behavior of an application even with the same input.
Our protection interfaces require several iterations over multiple configurations to find
the approximation level with the maximum benefits for an application respecting the
quality threshold. Nonetheless, these iterations add a considerable overhead to configure
an unknown application at runtime.

The error tolerance depends on how the application manipulates data and how the
error affects quality in different degrees. An approximation level is configured by the
relation between the approximation knob, the value of the operating parameter, and the
amount of error it triggers. This relation depends on an error scenario that represents
environment variables, such as fabrication process, locality, temperature, and access delay.

A specific output quality requirement determines a threshold of error that, if surpassed,
may result in wasted computing efforts. The best approximation for an application is,
therefore, the one that has the highest energy or performance benefits and respects this
threshold. Previous proposals of configuration interfaces [78, 112, 130] determine the ap-
proximation level of an application by performing several executions among approximation
levels or measuring the error impact on the results through quality metrics. These metrics
are application-specific and require some domain knowledge. Furthermore, the approx-
imation level may change dynamically according to the error scenario of the hardware
components.

We propose SmartApprox, a framework for determining approximation levels based
on previous knowledge of application features and error tolerance. SmartApprox builds a
knowledge base in a training phase that analyzes a series of measurable features of applica-
tions in the face of a configuration of approximation levels to fulfill quality specifications.
These application features are measurable execution statistics from general-purpose ar-
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chitecture counters that can be collected through a single accurate execution. At runtime,
features are extracted from the input application to determine the approximation level
for the same configuration that built the previous knowledge. The knowledge base evalu-
ates the impact of errors according to a correlation between application features and the
approximation level on the current error scenario of the environment. Thus, no quality
specifications or metrics are required for the input application, and its approximation level
is determined based on the error tolerance of the training applications and the variables
that influence the error rate. Our main contributions, built upon previous work [30], are:

• A framework for determining the configuration of an approximate memory com-
patible with the error tolerance of the application without requiring annotations or
domain knowledge from the programmer;

• A study of classes of application features and their impact on the execution with
approximate memories;

• A runtime system that controls approximation considering different error scenarios
and hardware configurations with negligible overhead on the reconfiguration;

• An evaluation featuring applications from different computing domains amongst
configurations, learning models, and sets of features.

We evaluate SmartApprox on a simulation with a voltage-scaled Dynamic Random
Access Memory (DRAM), wherein three configurations of approximation levels describe
error scenarios that change dynamically according to hardware characterization and sen-
sors. The evaluated features of applications achieve energy savings of 36% with acceptable
quality degradation, depending on the application and error scenario. Our evaluation finds
the sets of features that best correlate with application resilience under different error sce-
narios, which score 97% of an exhaustive search for ideal configurations, with significantly
lower effort.

4.1 SmartApprox Design

SmartApprox is a framework that determines approximation levels for an application,
at runtime, based on previous knowledge that correlates execution features and error
tolerance. Figure 4.1 shows the system overview, in which a training phase builds the
knowledge base for a specific configuration and set of features, and a runtime system
uses the same features and a learning model to determine the approximation level. In
the training phase, a representative set of applications is executed several times over
the approximation levels of each error scenario. When an unknown application is given
as input to SmartApprox, it is executed in an error-free mode to collect the features
and compare them with the same attributes from the previous knowledge. According
to the error tolerance of these applications, our framework associates the binary of the
input application to an approximation level on each error scenario. The error scenario is
detected at runtime, and the environment is configured according to the corresponding
approximation level of the input application.
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Figure 4.1: SmartApprox overview to build a knowledge base and determine the approx-
imation level for an input application. No quality metrics are required at runtime.

The error tolerance of an application depends on the execution behavior at an ap-
proximation level. Higher tolerance implies higher energy savings with acceptable results.
An approximation level contains the configuration of the approximation knob for an error
rate, while the quality evaluation depends on each application and its data manipulation.
An application that compresses audio, image, or video, for example, can measure the
quality loss as the error in the resulting signal, while an application that searches for
paths can measure quality by counting the correct paths in the resulting array. Thus, the
quality metric is domain-specific and requires intervention based on application knowl-
edge. However, features of applications may indicate how the data is manipulated, to
what extent it is exposed to error, and other properties of the execution, thus suggesting
how much error the application tolerates.

SmartApprox determines the approximation levels based on the quality metrics of
training applications. Thus, our interface does not require domain-specific metrics for the
input application to infer its error tolerance. The training phase performs an exhaustive
search to find the approximation level towards the acceptable quality of the training
applications. SmartApprox acts at runtime based on previous knowledge built offline.
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4.1.1 Building the Knowledge Base

The Knowledge Base of SmartApprox is a collection of results obtained by the execution
of applications in the training phase. This phase requires training applications and their
correspondent quality metrics and requirements, besides a hardware configuration that
represents the supported approximation levels and a set of application features to be
extracted from an accurate execution. All applications are executed several times in each
of the configured approximation levels to profile their behavior, since different executions
may have different results in nondeterministic approximation techniques.

The behavior of each application at an approximation level is given by the quality of
its results in the level. A single execution at an error-free level is performed to collect the
features of the applications to compare these values at runtime. Then, the Knowledge
Base accumulates all the collected information and is used in the runtime system to
support the prediction of the appropriate approximation level for a target application.

4.1.2 Hardware Characterization

The configuration of approximation levels depends on hardware characterization to find
the relation between parameters used as approximation knob and the probability of an
error. This relation may include other variables in addition to the approximation knob,
such as temperature, process variation, and environmental parameters. For instance,
the same voltage adjustment in two different DRAM chips may lead to different error
probabilities because of process variations [13], and the same timing parameters may
cause different error configurations depending on temperature changes [71].

Approximation levels refer directly to the tradeoff between the energy gains and the
error that the application data is exposed to. The supported approximation levels should
cover the possible dynamic changes in the source of error or the approximation knob by
sensors and hardware attributes. Thus, the training phase considers the characterization
of the hardware to profile behavior in different error scenarios. Each error scenario is
determined by ranges in variables that can be detected at runtime.

In the runtime system, the hardware characterization and sensors detect the dynamic
changes in variables that affect the error rate. For instance, consider that two error
scenarios are determined, lower error rates with temperatures below 30◦C and higher
error rates otherwise. When a temperature sensor detects that the environment surpasses
30◦C, the approximation knob should be adjusted according to the scenario with higher
error rates. Therefore, SmartApprox can adjust the configuration to the corresponding
error scenario without the overhead of profiling or re-executing the application.

4.1.3 Features of Applications

While environment and hardware characteristics influence how much error is generated,
characteristics of applications influence how much error is allowed. SmartApprox extracts
features of applications, which are measurable characteristics that represent how the hard-
ware is used, data structures, and the behavior on the execution of an application. The
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quality of the output depends on the data manipulation and the execution behavior since
the output represents how the application handles the data exposed to errors.

The application features of SmartApprox are numerical parameters that translate the
execution behavior to support the decision of the approximation level for each application.
Features of different classes and sources can be applied depending on the approximation
technique and error scenario. For instance, energy statistics from memory usage may
guide to a different configuration than the executed instructions of the application.

4.1.4 Learning Model and Error Impact

Changing parameters of approximate memories infers a nondeterministic perturbation in
the application data [80]. The perturbation outcome problem consists of guaranteeing
a limit on the impact in the output and energy savings, automatically, for any general-
purpose application [115]. To assure the impact with probabilistic errors, approximate
systems should control the error rate that application data are exposed to. Nondeter-
ministic perturbation models jeopardize the prediction of the error consequences since
executions with the same input could behave differently. Once an error is introduced
in the application data and the execution flow manipulates these data, that may have
consequences on the output and in the execution flow itself. Thus, a single execution does
not determine the behavior of an application in a nondeterministic approximate system,
however, the behavior of a new application may be predicted through several executions
of other applications.

The behavior of the training applications is summarized in the features stored in the
knowledge base that is visible to the runtime system. At runtime, the same features are
collected from the input application through a single accurate execution. The approxima-
tion level for each application is determined relating these features and the information
available on the knowledge base. To find this relation, a learning model is needed to
control and decide based on the previous knowledge.

A learning model can act as a classifier or regressor. A classifier treats the information
about the approximation level as a label and aims to find a similarity between data from
applications of the knowledge base and the input application. The best approximation
level from the most similar application is predicted to the input. A regressor maps a func-
tion between numeric features and the configured approximation levels. The information
of the knowledge base can be mitigated by single or multiple regression. A single regres-
sion tries to map a function to predict the best approximation level, thus the numeric
value of the approximation knob is related to the extracted features. A multiple regression
tries to map a function to predict the achieved quality at each approximation level to the
extracted features, thus the expected quality is based on the metric of the training appli-
cations, and the same quality requirement is applied. The chosen approximation level is
the one characterized by the maximum error rate that meets the acceptability criteria of
the results based on a quality metric threshold.
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4.2 Implementation

SmartApprox is an interface for determining levels in approximate memory systems that
exposes the application stack to nondeterministic and probabilistic errors. The implemen-
tation of our proposal involves a software control and an approximation knob that modifies
hardware parameters. The software control is responsible for building the knowledge base
at the training phase and determining the approximation level at the runtime system. The
hardware modifications should comprise sensors for detecting the current error scenario,
management for the knobs in the approximate memory, and counters for extracting the
features. Some sensors, such as temperature, are present in commodity hardware and
can be used in the runtime system of SmartApprox, as well as some performance counters
used as application features.

4.2.1 Classes of Application Features

Some features have characteristics in common, as referring to the same aspect of compu-
tation (e.g., executed instructions or memory accesses). To group common characteristics
and measure their influence on the impact of the approximation, we divide features into
classes. Each class has a different impact on the error tolerance depending on the approx-
imation technique. We propose eight classes of application features on SmartApprox:

Executed Instructions (EI): Instructions describe the execution behavior and how
the application manipulates the data exposed to errors. This manipulation can detail
the error impact in the execution flow or the output. For instance, a jump-to-register
instruction may deviate the control flow to an incorrect address, leading to execution
crashes [26]. Although instructions depend on the architecture, a general classification can
represent common commands. This classification groups similar instructions according to
their behavior, such as memory, floating-point, control flow, and other instructions that
expose execution to crashes or manipulate data exposed to errors.

Memory Instructions (MI): Instructions that directly refer to memory accesses
model the insertion of errors into the execution. Mainly, load and store instructions
represent the memory usage behavior of the application. However, other instructions may
affect memory accessing and should be taken into account, such as fence instructions that
impose memory access barriers.

Memory Accesses (MA): While instructions show how an application behaves and
manipulate data exposed to errors, memory accesses are the only source of the actual
errors. Even hold errors are only visible to the application after reading the affected data.
Accesses on all levels of the memory hierarchy are relevant to measure the impact in the
output, even when only one level of the memory hierarchy is approximated since each
level alleviates the number of accesses to the next one [29]. Moreover, memories may be
divided into reliable and approximate regions [23] and the proportion of accesses in each
region can show the error avoidance or the potential energy improvement.

Approximate Memory Accesses (AMA): Features of accesses performed only at
the approximate part of memory describe the number of accesses exposed to errors in the
execution flow. This class also contains the fraction of approximate accesses on memory,
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which expresses how many accesses need to be performed to expose data to errors.
Cache Efficiency (CE): Even when the main memory is subjected to errors, caches

perform an important role in alleviating the impact of errors [29]. The hit ratio refers to
the efficiency of an error-free cache level on avoiding accesses to the approximate main
memory. Each access to the main memory exposes data to errors, thus the cache efficiency
is also a metric of error protection at which higher efficiency decreases the impact on the
execution results. That is, an application that has more effective use of cache has also a
lower impact of errors on its data and produces higher quality results.

Memory Energy Breakdown (MEB): The energy spent at each memory mode
of operation indicates memory usage patterns. For instance, an execution that spends
more dynamic than static energy has relatively more memory read and write operations
during the data lifetime. Furthermore, these data show how intensive is the use of memory
throughout the application execution. Other features on the energy breakdown that refer
to the memory usage patterns are the average power, the total energy at a given time
slot, and the energy spent on some memory operations, such as DRAM refreshes or row
activations.

Data Size (DS): The memory architecture specifies limits on the amount of data
that can be transferred. For example, the size of the row buffer limits the data that
can be read or written at once in a DRAM bank. The size of the data manipulated by
the application influences directly the number of memory accesses. Furthermore, these
features have a direct influence on cache efficiency, the number of instructions, and energy
consumption. Therefore, bytes read or written in the memory hierarchy are relevant to
show usage patterns of the approximate memory and application behavior.

Memory Controller Commands (MCC): Main memory systems usually have a
controller that manages the data access and maximizes the data flow. This management
is performed through commands that depend on memory technology. For instance, a
DRAM controller uses commands of row activation (ACT), precharge (PRE), read (RD),
write (WR), and refresh (REF). These commands are related to the memory usage by
the application but include technology-dependent details that are not described by the
application-level features.

4.2.2 Runtime System

The runtime system determines the current configuration for an input application. This
configuration may change dynamically according to sensors and hardware characteriza-
tion. The features collected from the input applications are used in the configurations
amongst all supported error scenarios in the lifetime of the current execution of the appli-
cation. These configurations are stored into a list to be applied at runtime without new
executions. Therefore, the first workload should be representative of the context of the
following executions of the same application.

Algorithm 4.1 exhibits the implementation of the runtime system of SmartApprox,
where a single accurate execution of the input application collects the features to apply
the learning model and predict its appropriate approximation level. If the application is
known, the global variable Levels contains the determined level for the application and
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Algorithm 4.1: Execution of the runtime system of SmartApprox. If the error
scenario changes, a new configuration is applied with negligible overhead.
Inputs
App: an application and a representative input.
KB : the knowledge base built at the training phase.
LM : a learning model.
Fts: a set of application features.
HWCS : hardware characterization and sensors that identify the current error scenario.

Result: An approximation level.

1 SmartApprox_Runtime(App, KB, LM, Fts, HWCS):
2 if not(KnownApps contains App) then
3 execute(App, ErrorFree) → output, stats;
4 ftValues ← extract(stats, Fts);
5 appLevels ← ∅;
6 foreach errScn in scenarios(KB) do
7 approxLvl ← LM(KB, errScn, ftValues);
8 config ← < errScn, approxLvl >;
9 append config in appLevels;

10 end
11 append App in KnownApps;
12 append < App, appLevels> in Levels;
13 end
14 errScn ← getCurrentScenario(HWCS);
15 level ← Levels[App][errScn];
16 return level;

there is no need for another collection of features. On the search for the approximation
level for a new application, all error scenarios considered in the knowledge base are taken
into account and different levels can be associated with each scenario. After finding the
approximation level for all scenarios, the current error scenario of the system is detected by
reading hardware sensors or by characterization of the components, and the determined
approximation level for this scenario is returned. Therefore, SmartApprox determines
the approximation level indexed by the application according to the error scenario with
negligible overhead.

4.3 Methodology

To demonstrate SmartApprox, we simulate an environment with the training phase and
runtime system. To represent the hardware, we model data errors as high-level software
abstractions. Our simulation replaces accesses on the main memory with these models,
where the data word is exposed to a random bitflip, at the error rate observed by the
knob adjustment in different error scenarios. These errors are persisted in the memory
and may occur at any bit of the data word. The simulation environment is the same as
Section 3.3.3, except for the filter of privileged accesses. In this evaluation, we consider a
protection interface that implements mechanisms from AxRAM, where all accesses into the
data region are exposed to errors, except for the stack addresses.
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4.3.1 Approximation and Energy Models

The approximation based on the AxRAM interface [26], which acts transparently to define
the protected data from the application and has no annotations requirements. To ac-
count for the energy of protected regions, the fraction of accurate accesses relies on their
proportional energy at the nominal memory specification. The approximation technique
used in our evaluation is based on the voltage scaling of DRAM, where the Vdd is lowered
to values that expose all nonprotected data to errors. Although errors can be dependent
on data patterns or spatial distribution, a uniform bitflip model sufficiently represents the
error models for content and region dependency [61].

We limit the approximation technique to reducing the supply voltage of the DRAM
due to the potential of reducing power across different memory operations. To account for
energy, we consider the exponential relation between the supply voltage and the error rate
to model exponential regressions based on data from Chang et al. [13]. These data were
collected from chips of a unique vendor (specified as “Vendor B”) with fixed temperature
and delay parameters, thus the error fluctuation represents the process variation among
memory chips. Exponential regressions were formulated based on these data to instantiate
error scenarios. To comprise aspects of process variability, three scenarios were considered,
based on the minimum, median, and maximum error probability points of the collected
data, named here as best, median, and worst error scenarios. The exponential regressions
are limited between 0 (error-free) and 1 (always injects error) and are expressed in the form
described by Equation 3.1, wherein A values are 5.15× 1078, 1.80× 1068, and 3.55× 1059,
and B values are −175.47, −155.87, and −142.63 for worst, median, and best scenarios,
respectively. Figure 4.2 shows regressions for each considered scenario, where the R2 is
95% for the worst, 99% for the median, and 77% for the best error scenarios.

Since the relation between error and voltage is exponential, a small voltage difference
reflects a significant difference in error. Furthermore, voltage as an approximation knob
is limited by the physical capabilities and variability of regulators and transistors. To
account for these variables, we consider 10 approximation levels on each error scenario,
from 1.02 to 1.11 V, at a 10 mV step. Thus, 30 error rates were considered in our
evaluation.
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Figure 4.2: The error scenarios of our evaluation. The error probability of each voltage
level is obtained according to the current scenario characterized on the hardware.
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4.3.2 Applications and Quality Metrics

We select applications from different computing domains from the benchmark sets de-
scribed in the AxBench [131], Benchmarks Game [44], CBench [38], Mibench [45], and
Polybench [88]. The evaluated applications represent the expected general behavior of ap-
plications that tolerate error in their results (e.g., manipulating images, floating-points,
and data statistics) [128]. The average execution time of each application is approxi-
mately 55 seconds in our environment. Table 4.1 shows the complete list of evaluated
applications, their input workload, and quality metrics. The applications are compiled
with GCC/G++ 9.2.0 for RISCV-V from riscv-gnu-toolchain with flags -O3 and -static.
These quality metrics are detailed in Section 2.1.4.

To evaluate the learning model and features, we build a test methodology using a
knowledge base containing data from 26 applications. The applications are divided into
test and training. Features and quality measures from training applications abstract the
behavior of different classes of programs to compose the knowledge base. The evaluated
applications build a relatively small dataset to abstract the several classes of the test
applications. We therefore selected 7 of the 26 applications to be employed in the test.

Table 4.1: Applications used in our evaluation. Some applications could be not well-
resilient but have representative behavior in the approximate environment.

Application Workload Quality metric
2mm 32x32 double MAPE
atax 500x500 double FEE
blackscholes 1.000 entries MAPE
bunzip2 256x256 image SSI
bzip2 256x256 image SSI
correlation 64x64 int FEE
covariance 32x32 double FEE
dijkstra complete graph, V=60 FEE
fannkuch-redux N=9 MAPE
fasta N=50.000 FEE
fft 8 waves, size 1024 MAPE
floyd-warshall complete graph, V=60 FEE
inversek2j 1.000 coordinates MAPE
jacobi-2d-imper 2x 32 double FEE
jmeint 1.000 coordinates FEE
jpeg 512x512 image SSI
k-nucleotide 2x 50.000 nucleotides MAPE
mandelbrot N=500 SSI
mm 100x100 int MAPE
nbody N=100.000 MAPE
pi N=1.000.000 MAPE
qsort 10.000 strings FEE
reg_detect 10.000 iterations MAPE
reversecomplement 2x 50.000 nucleotides FEE
sobel 256x256 image SSI
spectralnorm N=500 MAPE
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For each experiment, we remove from the training set only the data from its respective
test application, similarly to other methods for cross-validation used with a small number
of instances in a dataset [127]. The selected applications for testing are blackscholes,
dijkstra, k-nucleotide, mandelbrot, jpeg, pi, and sobel. The results are obtained by the
average of the results of 7 evaluations with each one of the test applications out of the
training dataset that has data from the 25 remaining applications.

The exhaustive search to the best approximation level iterates over 100 executions
of each application at each approximation level. In the presence of nondeterministic
errors, these executions are necessary to measure the impact of the probabilistic errors in
the execution output. Therefore, the process of building the knowledge base comprised
100 individual executions of each of the 26 evaluated applications, at each of the 10
approximation levels, for each of the 3 energy scenarios. With approximately 55 seconds of
execution per application, an error scenario with 10 approximation levels takes more than
15 hours of iterative executions to configure a single application through the exhaustive
search.

The error tolerance depends on each application. However, since SmartApprox is inter-
ested in the behavior of each application when executing in the approximate environment,
we have to define a requirement of acceptability for the execution results. Thus, the qual-
ity requirement was defined as 90%, which leads to a reasonable quality of the output
when considering the number of incorrect elements, relative error margin, and acceptable
image noise.

4.3.3 Features and Learning Models

Table 4.2 shows the features of our evaluation following each class from Section 4.2.1.
Our instructions classification considers the RISC-V ISA specification [124] and possible
hardware counters that produce data about the execution. The DRAM commands are
generated by Ramulator [59] and the energy data are provided by DRAMPower [11]. All
values are normalized to the highest value between all training applications.

The features are used to learn the application resilience. The evaluated learning models
are the Nearest Neighbor Algorithm (NNA), Neural Network (NN), Random Forest (RF),
and Support Vector Machine (SVM). NNA is a classifier that calculates the euclidean
distance between the values of features from the input and the knowledge base, where the
approximation level is taken from the best level of the application with the lower distance
to the input application. SVM is a classifier with the Radial Basis Function (RBF)
kernel to predict the approximation levels. NN and RF are considered as classifiers, single
and multiple regressors. NN uses the Multi-Layer Perceptron (MLP) implementation
with 5,000 maximum iterations, where all the evaluated data has been converged, and
the solver kernel of the Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS) with an
alpha of 1e-5 and hidden layers sizes of (5, 2). RF constructs decision trees based on the
application features, with a maximum depth of 2, to predict labels or function values,
depending on the learning type. A random choice is also taken into consideration as a
reference, choosing N random applications of the knowledge base and using their best
approximation level.
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Table 4.2: Classes of applications features of our evaluation. Each feature may belong to
different classes.
Class Features Class Features

AMA Approximate DRAM accesses

EI

Number of barrier instructions
Fraction of approx. accesses on DRAM Number of control flow instructions

CE
IC miss rate Number of floating-point instructions
L1 miss rate Number of jump-to-register instructions
L2 miss rate Number of load instructions

DS

IC bytes read Number of store instructions
IC bytes written Sum of loads and stores
L1 bytes read Total number of instructions
L1 bytes written

MA

Approximate DRAM accesses
L2 bytes read DRAM accesses
L2 bytes written IC accesses

MCC

ACT commands L1 read accesses
Auto-refresh cycles L1 write accesses
PRE commands L2 read accesses
RD commands L2 write accesses
REF commands L2 writebacks
Total trace length (clock cycles)

MI

Number of barrier instructions
WR commands Number of load instructions

MEB

Active idle energy Number of store instructions
Auto-refresh energy Sum of loads and stores
Average power
Total idle energy

4.3.4 Oracle and Evaluation Metrics

The best approximation level for a test application is determined through an exhaustive
search among the configured levels for each of the training applications. Therefore, we
define an oracle choice that indicates the level that has the minimum energy consumption
that fits the quality requirement for each application. This operating point may not be
the one chosen by SmartApprox, however, causing losses on energy savings or quality.
Our evaluation intends to find the best learning models and features set, thus we analyze
each tuple <learning model, features> indicating the approximation level for the input
application. To account for the energy score of this tuple, we consider:

Escore(T ) =

{
E(oracle)
E(level)

, if E(level) > E(oracle)

1.0, otherwise
(4.1)

, where E(x) is the relative energy consumption, compared to nominal, on the approxima-
tion level x, and oracle and level indicate the operating points determined by the oracle
and the used tuple T of <learning model, features>, respectively.

The quality score follows the same logic when the average quality on the operating
point determined by the tuple is above those on the level determined by the oracle. Thus,
the quality score is given by:

Qscore(T ) =

{
Q(level)
Q(oracle)

, if Q(level) < Q(oracle)

1.0, otherwise
(4.2)
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, where Q(x) is the average quality achieved on the operating point x. To evaluate the
tradeoff between energy and quality, the final score is given by:

Score(T ) = Qscore(T )× Escore(T ) (4.3)

When the application is executed at a higher approximation level than the oracle,
in general, it consumes less energy but outputs lower than the required quality. Higher
energy consumption is achieved when the application is executed in a lower approximation
level than the oracle, in general achieving higher average quality. Concomitantly lower
quality and higher energy are possible in variations that account for different execution
crashes (e.g., indefinite loops execution caused by errors).

4.3.5 Search for the Best Features

SmartApprox has a set of application features as a parameter, which is considered in the
learning model to determine the approximation level of an input application. We propose
several classes of features that influence the error tolerance of applications. Nonetheless,
each subset guides to different results that depend on several factors, such as the error
scenario and training applications. Furthermore, features from different classes can be
combined to generate the best possible subset. The search space for this set is combina-
torial regarding the number of application features (e.g., with 37 features, we have more
than 1011 subsets), which makes an exhaustive search unfeasible. Therefore, we perform
this search through a Genetic Algorithm (GA), a metaheuristic that reduces the search
space stochastically by iterating over crossover operations.

We execute this search in the three error scenarios considering as fitness function the
Score metric (Equation 4.3) that comprises aspects of energy and quality. This search
encodes the optimization problem in variable-length chromosomes, each representing a
subset of the features listed in Table 2. The initial population includes all classes that
score more than 90% in the fitness function in Section 4.5 and random individuals. For
example, considering class CE, the chromosome [“IC miss rate”, “L1 miss rate”, “L2 miss
rate”] is a valid member of the initial population. The initial population excludes all
features from classes that did not achieve the 90% score and were not randomly selected,
thus reducing the solutions generated through the crossover operations. Our mutation
operator randomly chooses one of (1) removing, (2) adding, or (3) replacing a feature from
the subset. The mutation probability is calibrated to 5% on non-stagnated generations
and grows 20% after each stagnation to avoid iterating only over similar solutions in
the population. The metaheuristic stops after 5,000 generations after producing at least
200,000 subsets or by stagnating the population on 250 generations, evaluating at least
0.5% of the total subsets produced by the GA. These numeric parameters were determined
by iteratively analyzing the progress of the GA and the scores of the solutions.
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4.4 Evaluation

In this section, we present our evaluation results with a voltage-scaled DRAM. First of all,
we show our results for training applications on three error scenarios and the oracle that
determines the approximation levels on our knowledge base. Further, the learning models
are evaluated with the sets of features listed in Table 4.2, and the results are detailed for
7 selected test applications. Lastly, an evaluation of the application features shows the
most relevant in the three scenarios for all applications in the runtime system.

4.4.1 Oracle and Knowledge Base

Our knowledge base is built through multiple executions of applications at each config-
ured approximation level. A quality metric is taken into consideration for the training
applications, and the average quality is calculated at each approximation level. The level
with the maximum energy savings that satisfy the quality requirement for an application
represents its optimal configuration and the best approximation level. Thus, an optimal
configuration is associated with the application features in the knowledge base. A good
knowledge base should cover different error tolerances, so the applications should be dis-
tributed among the possible approximation levels. We consider an oracle that performs
an exhaustive search among configurations to evaluate the disposition of the best approx-
imation levels at each energy scenario. More details of the oracle and evaluation metrics
are available in Section 4.3.4.

Figure 4.3 shows the distribution of the best approximation levels to achieve 90% qual-
ity across all evaluated applications, for each error scenario, where a higher approximation
(lower voltage) means higher energy savings. This plot indicates the best approximation
level, thus levels that have a higher energy cost (e.g., higher voltage) also fulfill the quality
requirements. Each scenario determines different error rates for each Vdd and affects the
distribution of applications. As the error scenario tends to introduce more errors, the
distribution of the applications is prone to higher Vdds and lower approximation levels,
as shown on the differences between best, median, and worst scenarios.

Applications that are less memory-intensive tend to perform better at lower Vdds.
Examples of these applications in our training set are spectralnorm, pi, nbody, and man-
delbrot. Applications that manipulate sensitive data, such as bzip2, bunzip2, and dijkstra,
tolerate fewer errors and thus have their best approximation level at higher Vdds.

On the best error scenario, the best approximation levels tend to be distributed be-
tween 1.02 V and 1.05 V with some deviation at 1.07 V. The peak of this distribution
is at 1.04 V, which is the best approximation level for atax, blackscholes, covariance, in-
versek2j, jacobi-2d-imper, k-nucleotide, mm, qsort, and sobel. In the best error scenario,
the energy savings are 31% on average.

Considering the median error scenario, most applications are spread in distribution
with peaks concentrating between 1.06 V and 1.08 V. Below 1.03 V, none of the appli-
cations achieved average quality higher than 90%. Spectralnorm is the only application
that tolerates 1.04 V at the median scenario, but its energy gains are limited due to its
reduced number of memory accesses. For instance, mm achieves energy savings of 36%



96

1.0
2

1.0
3

1.0
4

1.0
5

1.0
6

1.0
7

1.0
8

1.0
9

1.1
0

1.1
1

vdd

0%

25%
ap

pl
ic

at
io

ns

(a) best-case error scenario
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(b) median error scenario
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(c) worst-case error scenario

Figure 4.3: Frequencies of best approximation level to achieve 90% quality requirement
throughout applications. When the error scenario worsens, applications tend to tolerate
lower approximation levels with higher Vdd.

at 1.08 V, while spectralnorm saves 28% at 1.04 V. The energy savings for the median
scenario are 29% on average.

In the worst error scenario, the distribution of best approximation levels is accumulated
in the higher Vdds, where half of the applications tolerate only 1.11 V to achieve 90%
quality. None of the applications tolerate less than 1.05 V. The average energy savings in
the worst scenario is 28%.

In each of the error scenarios, we built a knowledge base with different distributions
of the best approximation level of the applications. Thus, an evaluation of a different
error scenario also evaluates other distributions of the error tolerance and different energy
savings for all applications.

4.4.2 Learning Model

Determining an approximation level for an application may result in energy savings and
quality depreciation. Our evaluation oracle represents the level with the maximum energy
savings that meet the required quality. However, SmartApprox uses a learning model that
can determine a different approximation level than the oracle, increasing energy or losing
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quality. In this section, we evaluate and compare the learning models and the random
choice, considering energy and quality and the aggregated Score metric from Section 4.3.4.

Figure 4.4 shows the average quality and energy savings that each learning model
achieves for all test applications. NNA and SVM are classifiers, while NN and RF are
also regressors with single and multiple predictions. The lines crossing the oracle mark
the benefits on energy savings and quality on axes X and Y, respectively. In general,
higher energy savings means lower quality, which has some points of deviation on the
average quality for each learning model. The oracle represents the maximum efficiency,
thus no point achieves higher quality and savings. In the three error scenarios, the multiple
regressors of NN and RF resemble the oracle better than the other models. The single
regressor RF achieves results closer to the oracle in the worst-case scenario but has inferior
results on best and median error scenarios.
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Figure 4.4: Average quality and energy savings of learning models in the three error
scenarios. NN and RF were applied as classifiers (-c), single regressors (-r), and multiple
regressors (-mr). In general, higher savings means lower quality.
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Table 4.3: Average score of learning models for the best, median, and worst error scenarios.
The learning models with multiple regressors achieve the best average scores.

average score
type model best median worst

classifier

NNA 81% 77% 76%
NN 91% 86% 83%
RF 86% 85% 87%
SVM 78% 85% 94%

single regr. NN 91% 73% 87%
RF 91% 90% 95%

multiple regr. NN 91% 95% 91%
RF 93% 96% 97%

random 81% 74% 77%

Table 4.3 shows the average score of the evaluated learning models in each of the error
scenarios. The random choice shows that the achieved average score depends on the error
scenario, where the chances for a better score are improved according to lower error rates
per approximation level. The best error scenario has more chances to waste energy than
depreciate quality. Considering that a single step on voltage may affect quality more than
energy, a learning model that applies conservative approximation levels tends to achieve
a higher average score.

Classifiers treat the approximation knob as a label and do not consider its numeric re-
lation to the application features. The average score of NNA is similar to a random choice
in the three evaluated scenarios, thus a relation of this type is the least representative.
SVM is surpassed by random on the best error scenario but achieves better results as
the error rate of the approximation levels gets worse. NN and RF classifiers can achieve
better results than a random choice but have inferior performance in terms of the score
for most scenarios.

Single regressors evaluate the relation between the numeric value of the approxima-
tion knob and the application features, while multiple regressors explore the relation
between the expected quality in each approximation level with these features. The mul-
tiple regressors predict, then, one value per approximation level, 10 per error scenario,
in our environment. Thus, in our evaluation, multiple regressors achieve better results
by considering more aspects of the approximate environment. Both NN and RF present
promising results with multiple regression, but only RF maintains high scores with single
regression on the three evaluated error scenarios. RF with multiple regressions achieves
a higher average score than all the evaluated learning models also due to a conservative
determination of approximation, where it usually chooses lower energy savings in a linear
magnitude over quality loss in an exponential magnitude. Therefore, in the remaining
evaluations, we adopt multiple-regression RF as the learning model.

In our experiments, running the learning model to determine an approximation level
for the input application takes seconds, while the simulated exhaustive search for the
golden approximation level determined by the oracle takes hours. Moreover, the learning
model does not require any information on how to obtain the quality of the results of the
input application. Assuming characterization in real hardware, the exhaustive search still
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requires hundreds of executions in several knob configurations for reliable and statistically
significant results, while the learning model can be executed offline, in a more powerful
machine. These observations highlight the reduced effort of SmartApprox compared to
determining the appropriate approximation level on a per-application basis.

4.4.3 Classes of Features

To evaluate the influence of each class of application features, we analyze them grouped
by classes (Section 4.3.3). The selected test applications are different in structure and
manipulate different data. Table 4.4 shows the average score of the test applications in
the three error scenarios. We consider high scores when the value is higher than 90%,
which means quality and energy close to the oracle.

Table 4.4: Average score of multiple-regression RF. A set with features from a single class
has quality and energy results that depend on the particularities of the input application.

Class avg score
best median worst

AMA 83% 88% 89%
CE 97% 97% 86%
DS 90% 99% 94%
MCC 83% 84% 78%
MEB 88% 95% 92%
EI 99% 98% 96%
MA 89% 99% 96%
MI 97% 98% 96%

The class AMA has an 87% average score. This class has not achieved high scores
with dijkstra, which uses linked lists with sensitive data to reference its elements. These
are not distinguished by features of approximate DRAM, thus the approximation level
determined using this class depreciates quality more than tolerated, lowering the score.

CE shows a metric of error avoidance from the approximate DRAM. This class achieves
a high 97% average score on the best and median error scenarios. Only for jpeg, the
approximation levels result in too low quality because of the poor information about the
data size provided by CE features.

The DS class achieves 99%-average scores on the median error scenario. However, in
the best scenario, this class misses the error sensitivity of dijkstra, and it is too conserva-
tive in the worst scenario for k-nucleotide and sobel. The more conservative choices have
less influence on the score than the quality-deprecating ones, thus the average score, con-
sidering all applications, are 90% and 94% to best and worst error scenarios, respectively.

MCC expresses application behavior on the use of memory but cannot detect the
error sensitivity of dijksta. Furthermore, this class of application features determines
approximation levels of low quality to jpeg and conservative levels to k-nucleotide and
sobel. The scores are 83%, 84%, and 78% for the best, median, and worst scenarios,
respectively.

MEB achieves average scores of 88%, 95%, and 92% for best, median, and worst error
scenarios. In the median scenario, just jpeg does not have a high average score, as this class
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has some information about the data size but is not sufficient to detect the appropriate
level. In the best error scenario, the level for the dijkstra application decreases the average
score, depreciating the average quality.

EI represents the entire behavior of execution, data manipulation, and memory usage,
thus achieving a 97% average score. Except for the overly conservative choice for k-
nucleotide, this class of features achieves high scores for all applications.

MA represents some of the data size information, thus detecting the workload for jpeg.
However, the specific needs of dijkstra were perceived only in the median and worst error
scenarios, decreasing the score on the best scenario. Some energy savings are achieved in
sobel application but none in k-nucleotide, where the conservative determination of the
approximation level decreases the average score. The average scores are 89%, 99%, and
96% for the best, median, and worst scenarios, respectively.

MI achieves the same average scores that EI, considering all applications and error
scenarios, 97%. There is no significant difference between error scenarios, averaging 97%
for best, 98% for median, and 96% for worst. Except for jpeg in the worst scenario, this
class of application features achieves high scores for all applications and error scenarios.

4.4.4 Features Search

Each class of features represents a different impact on the tolerated error rate and ap-
proximation level. However, combining them can improve the sensitivity of how the
approximation levels impact application structures, workloads, and behavior on approx-
imate memories. In this section, we evaluate the determination of approximation levels
for all applications, thus the learning model should indicate the appropriate approxima-
tion for the 26 evaluated applications at each iteration of the Genetic Algorithm (GA) in
Section 4.3.5. The GA searches for the best combination for the evaluated applications.

We start our search with an initial population that has the features in classes CE,
DS, MEB, EI, MA, and MI as individuals. These classes achieve an average score higher
than 90% at all error scenarios. The population is completed with random size sets
with randomly chosen features, considering all classes. Figure 4.5 shows the best and
the worst scores in the population for all generations of the GA in the three evaluated
error scenarios. In all scenarios, the GA stopped after the maximum stagnation. The
initial population is the same for all scenarios, however with a different score since the
resulting quality and energy depend on the configuration of approximation levels. Thus,
the median error scenario, which has the higher score of 95.0% in the initial population,
converges after 1301 generations. The worst error scenario has more limited search space
than other scenarios, where 50% of applications have the same best approximation level
due to the higher number of errors. Therefore, even with a higher score of 92.7% in the
initial population, this scenario converges after 1347 generations. With a more complex
search space, the best error scenario starts the search with a higher score of 91.8% and
converges after 1991 generations.

The initial population of the GA has an average score of 89.7% (σ = 1.2 p.p.), 91.5%
(σ = 1.8 p.p.), and 90.9% (σ = 0.92 p.p.) for best, median, and worst error scenarios,
respectively. The lower score of the population tends to grow after each generation and,
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Figure 4.5: The best and the worst average score on the population of sets of features
among all generations of the GA. The best scenario has a more complex search space and
lower initial scores, thus showing delayed convergence.

according to the stagnation of the best solution, the standard deviation of the population
tends to decrease. The standard deviations of the final population are below 0.05 p.p.
for all error scenarios. The low standard deviation shows that the solution converges to
values near the best score found, and, then, the GA stops after the maximum stagnation
with average scores of 96.9%, 96.7%, and 95.5% for best, median, and worst scenarios.

The set of features that has the best average score for each error scenario is listed in
Table 4.5. Features from classes MEB and EI are on sets of all scenarios, which shows
how energy and instructions features affect the error tolerance of applications. Although
directly related to memory use, features from class MI are not in the resulting set for any
scenario.

In the best scenario, higher energy savings are achieved due to fewer errors at lower
Vdds. The search space is distributed among the higher approximation levels, and the
average energy savings are 30.6% with 95.8% average quality. In this scenario, most of
the features on the best resulting set are related to lower levels of cache. The idle energy
of DRAM is considered and the number of floating-point instructions shows some of the
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Table 4.5: Best features set found for each error scenario. In the best scenario, caches
are determinant, while the median scenario considers more energy features, and the worst
considers the usage among memory hierarchy.

scenario features class

best

IC miss rate CE
L1 miss rate CE
L1 bytes read DS
Total Idle Energy MEB
Number of floating-point instr. EI

median

Approximate DRAM accesses AMA, MA
L1 bytes written DS
Active idle Energy MEB
Auto-refresh Energy MEB
Total Idle Energy MEB
Number of floating-point instructions EI

worst

Approximate DRAM accesses AMA, MA
L1 miss rate CE
L2 bytes read DS
L1 bytes written DS
RD commands MCC
Auto-Refresh Energy MEB
Number of floating-point instructions EI
IC accesses MA
L2 read accesses MA

behavior of application manipulating data.
The median scenario shows an almost normal distribution of best approximation levels

of applications, tending to determine higher Vdds than average. Considering all applica-
tions with the best set of features, the average energy savings is 28.0% and output quality
is 95.7%. Most of the features of the set for this scenario consider the energy breakdown
of DRAM, including the energy of the auto-refresh operation, which changes on differ-
ent voltages. As the set of the best scenario, floating-point instructions are considered,
however without the major focus on information from caches of lower levels.

In the worst error scenario, the appropriate approximation levels are concentrated in
the higher Vdds to most of the applications. Therefore, lower energy savings are achieved,
being the best set with 25.9% of average savings and 95.8% of average quality. In this
scenario, the resulting set has a higher number of features than other scenarios, and
the resulting set does not have a general reference of the memory hierarchy. Thus, to
determine conservative approximation levels, SmartApprox considers features from L1,
L2, IC, and DRAM to achieve the highest score of the worst error scenario.

The resulting sets of each error scenario evidence that aggressive approximations tend
to consider more features from lower cache levels, while conservative approximations con-
sider the usage and behavior on the entire memory hierarchy. On a likely normal distribu-
tion, as in the median scenario, the energy breakdown of DRAM operations is important
to determine better approximation levels.
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4.5 Discussion

SmartApprox determines approximation levels without requiring specific metrics or an-
notations in the source code. Our work proposes a generic memory interface that senses
modifications in the error scenario and changes the approximation level according to ap-
plication features. In our simulated environment, however, SmartApprox is evaluated into
a limited scheme where the approximate memory is a voltage-scaled DRAM with the exe-
cution of a single application and normalized quality metrics with the same acceptability
threshold for all applications.

Approximate memories achieve energy savings at the cost of error exposition of the
application data. The impact of such errors depends on the data manipulation and
behavior of the executed application. Furthermore, errors are tolerable only until a certain
limit. In this chapter, we analyze and propose a relation between application features
and error tolerance. SmartApprox explores different application features to determine
approximation levels based on previous knowledge. To this end, we list classes of numeric
features that refer to details of memory usage and instructions that could affect the error
tolerance and can be extracted from a single accurate execution. We evaluate three error
scenarios that vary according to dynamic components of the approximate memory. We
detail how learning models can be used to determine the appropriate approximation level
for a new application and perform a search for the best set of features that expresses the
error tolerance. Our results show that SmartApprox achieves 28% average energy savings
with 96% output quality in a median error scenario and the best found set of features.
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Chapter 5

Conclusion

Errors in the computational results are often tolerated and sometimes the accurate results
are even not possible. Approximate Computing (AC) exploits degrees of error tolerance
while maintaining acceptable results. However, applications exposed to errors may have
unexpected behavior or trespass a limit of the tolerated inaccuracy when executing in
approximate environments. Thus, interfaces are required to control the error and main-
tain the quality of the results and the energy gains. In this work, we proposed interfaces
that explore approximations at the memory level and raise the likelihood of tolerated
inaccuracy to achieve energy gains. AxRAM is an interface with data protection and recov-
ery, besides some mechanisms explored in this work being independent of this interface.
SmartApprox is an interface to configure approximate memories that infers the adjust-
ment of the approximation knob according to an input application. The protection and
recovery mechanisms act transparently without requiring approximation-specific changes
in the applications. Nonetheless, these interfaces assume some controls in software and
changes in the hardware to perform. In this chapter, we discuss the implications of such
control and the applicability of our interfaces, listing requirements, limitations, and the
future directions of this research.

5.1 Discussion

In our evaluation scenario, we target applications or kernels that repeatedly execute over
many different inputs. Therefore, it is possible to recover from lower than tolerable quality
outputs by re-executing or discarding useless outputs. Additionally, our interfaces apply
to other scenarios of data approximation that could benefit from their protections or
configurations.

5.1.1 Applicability

The applicability of the general AC techniques depends on the context of the applications.
Thus, our interfaces also depend on this context that determines the inaccuracy limit of
the application results. AxRAM assumes that applications executed in its platform are
resilient to errors. SmartApprox infers the context through the applications from the
knowledge base that reflect the domain of the input applications. Therefore, our interface
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configures the approximation knob without requiring domain-specific metrics at runtime
and the executing application must correspond to the domain abstracted from the training
phase.

The data that tolerate errors should be substantial to achieve the benefits that the
protection mechanisms provide. Thus, the energy savings that our interfaces provide
are limited to how intensive accessing and storing the application is with the data re-
silient to errors. The evaluated voltage-scaling technique reduces power across activation,
precharge, and refresh operations, besides the portion of the static power that comes from
the data array [12]. Thus, different patterns of access and data storage benefit from this
technique with a reduction in static and dynamic power from the memory. However, the
features of our interfaces are suitable to other techniques for memory approximation that
have nondeterministic error behavior and allow for memory partition into error-free and
approximate.

5.1.2 System Implementation

Our interfaces execute in approximate memory systems where the application stack is ex-
posed to nondeterministic and probabilistic errors. The implementation of our proposal
involves a software control and an approximation knob that modifies hardware parame-
ters. The software control is responsible for recovery and data treatment, by triggering
re-executions or treating incorrect virtual memory addresses, but also for configuration
steps, such as building the knowledge base and determining the approximation level at
runtime. The hardware modifications should comprise the architectural model of AxRAM to
provide isolation of some memory regions, and also sensors for detecting the current error
scenario, and counters for extracting the features of SmartApprox. Some sensors, such as
temperature, are present in commodity hardware and can be used in the runtime system
of SmartApprox, as well as some performance counters used as application features.

5.1.3 Features Extraction

SmartApprox uses features of the applications to determine a relation between their error
tolerance. These features are statistics from the execution in the same hardware that could
be collected through general-purpose architecture counters. Depending on the features
set to be collected, some instrumentation or analysis tool is necessary. However, the
extraction of the features is needed on a single accurate execution of a new application only
and, thus, approximate executions can be performed without this tool or instrumentation.
Instrumentation can be automatically performed by compilers, while analysis tools collect
data through the OS or hardware counters.

5.1.4 Multi-application Environment

When multiple applications are competing for an approximate memory that admits only
one approximation level, the knob could be adjusted according to the level that has the
lower error rate. Although this policy decreases the energy benefits of the application
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more resilient to errors, it maintains the execution producing outputs with acceptable
quality for all concurrent running applications.

These decreased benefits could be mitigated through other approximation techniques
that do not depend on memory regions to perform, such as STT-MRAM write parameters,
or other architectural models that allow for multiple regions with different approximation
levels. However, the use of the techniques configured at access restricts the memory
approximations, while the complexity and overheads of the architectural model increase
with the supported approximation levels.

5.2 Limitations

We propose an architectural model for memories that implement a set of approximate
states, which are operating points that induce errors in the stored data. By controlling
the error rate and the region of the memory array that is affected, this interface allows an
external agent to control the degree of approximation provided, inducing energy savings
by tolerating some errors in the stored data. In our evaluation, however, we employ the
interface in a limited simulation scenario. In the remainder of this section, we discuss
some limitations and implications of the execution with our interfaces in production with
real hardware conditions.

5.2.1 Perturbation Model

We restrain our approach on nondeterministic and probabilistic perturbation models,
where different executions with the same input may generate different results. Thus, the
configuration has to correspond to a statistical threshold of inaccuracy. Our evaluation
considers the supply voltage as the knob of an approximate memory, which allows energy
savings at several memory operations. Other memory approximations with nondetermin-
istic error behavior could be applied with our interfaces. These parameters are used as
approximation knobs to obtain energy savings, and the probability of an error occurrence
has a direct relation with the changes in their values. Our proposal mitigates the pertur-
bation outcome problem to predict how an application reacts in several approximation
levels in the presence of these errors.

The error from adjusting memory parameters may present behavior dependent on
data patterns, spatial distribution, and even sensitivities that affect nearby cells [12, 86].
Our simulated evaluation scenario considers single-bit soft errors with uniform bitflips
on software models to simplify the error representation. The uniform bitflip sufficiently
represents the modeling for data patterns and region dependency [61], while the effects
with our interfaces under single-bit errors are similar to those of multi-bit errors. In-
correct pointers resulting from multi-bit errors would also be truncated by the AxRAM
addressing mask that would avoid data crashes caused by these pointers. The correction
provided by this mask would achieve similar results on both scenarios, with the same level
of approximation, in the same order of magnitude on single and multiple-bit errors. Fur-
thermore, evidence suggests that the single bitflip model is enough in resilience studies for
less pessimistic fault injection scenarios since the outcomes are similar in most cases [105].
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5.2.2 Hardware Characterization

SmartApprox configures the approximate memory based on approximation levels that set
the values of the approximation knob. The approximation levels depend on a hardware
characterization to understand the relation between error and the approximation knob,
as well as the changes in this relation that can be detected at runtime. For example, the
fabrication process of the memory can affect some cells to be more susceptible to errors.
These cells are weaker than others and usually exhibit spatial concentration at certain
regions of the memory [13, 70]. Thus, if some data are stored into a memory region that
concentrates more weak cells, the approximation knob should be adjusted according to a
characterized error scenario that realizes this situation. In addition to detecting regions
of weaker cells, the hardware characterization should comprise other variables that cause
dynamic changes on the error probability according to the approximation technique, such
as temperature, aging, and data density.

The complexity of the characterization increases the supported error scenarios by the
combination of the considered variables (e.g., a characterization that previews one change
in N variables supports 2N error scenarios). Our evaluation simplifies the characterization
in favor of the understanding with only three error scenarios, however, an implementa-
tion of SmartApprox depends on such complexity to detect the current error scenario at
runtime. Furthermore, the training phase should include the characterization and the
possible changes that the application will be exposed in the real hardware.

5.2.3 Quality Control in Production Scenarios

In production environments, applications accept some quality loss in approximate en-
vironments, but with a tolerable limit. Thus, our configuration interface adjusts the
application to an approximation level that respects this limit. To calculate the relative
energy savings of our technique, we consider an average quality threshold achieved in
each error rate, where it is possible to obtain lower than required quality in individual
executions. However, we ensure through profiling that, on average, the application meets
the required quality target.

After deployment, the output quality cannot be computed for every execution instance.
Nevertheless, we configure the approximation knob to correspond to the observed error
rate that achieves each average quality threshold. Since AxRAM decreases the number
of crashes and quality has already been considered in the training phase, a watchdog
technique can be employed to avoid application stalling (timeout), leading quality and
energy to converge to the observed in the training phase. In our evaluation, the application
runs in a computation environment where one input represents the workloads of the entire
lifetime of the application. In case a more dynamic evaluation is required, some execution
instances may be sampled and elected for non-approximate computation, fine-tuning the
operating point selection and configuring the approximation knobs according to another
round of features collection.
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5.2.4 Acceptable Quality

The configuration of the approximation knob depends on an application-specific quality
threshold defined in a training phase. We simplify the evaluation with normalized quality
metrics with a unique threshold for all applications (90%). We consider that this threshold
is enough for a useful result for the tested applications, however, depending on the context,
an application may tolerate more or less quality depreciation.

SmartApprox does not require quality metrics in the runtime system, thus the quality
obtained by the training applications should be treated as analogous in the input ap-
plication. Thus, the interface depends on a correspondence of the acceptability criteria
between the input and the training applications. When this correspondence cannot be
directly defined, a sufficiently high-quality threshold is enough to guide the search for
useful results.

5.3 Future Directions

The proposed interfaces mitigate the energy-accuracy tradeoff on the exploration of mem-
ory approximations that prospect for proposals that could present contributions and ad-
vances on the state-of-art. In this section, we discuss future work that could emerge from
this research.

5.3.1 Data Protection at Instruction Granularity

The memory architecture model of AxRAM controls the data error exposition by the division
of the memory array into reliable and approximate regions. This partition allows for
protecting coarse-grained critical data identified previously. As we state in our work,
some critical data may be identified at runtime, and then we propose a treatment for
incorrect memory references. However, the control only through the partition of the
memory restricts the protection at the storage region.

A more detailed characterization of the voltage-induced errors in DRAMs shows that
longer access latency may soften the error at lower voltages [13]. Therefore, even with
a lower supply voltage, a memory cell can be reliably read or written if the latency
parameters were changed. This change impacts the performance but allows for error
protection at each instruction. Further studies would mitigate the tradeoff between error
protection at this granularity and the performance overheads that it causes.

5.3.2 Configuration with Multiple Knobs

Our configuration interface adjusts the approximation knobs according to approximation
levels from the training phase. To consider more than one approximation knob amongst
the memory hierarchy, each approximation level should be defined in the training phase
with these multiple knobs. For example, a combined approximation with scaled voltage
in an SRAM cache and adjusted refresh rate on a DRAM main memory should have each
approximation level with a correspondent value on the voltage and refresh rate.
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The knowledge base would be built with the approximation level of the correspon-
dent values of the knobs and the hardware support should allow the adjustment of these
multiple knobs at runtime. Future work can explore the benefits of multiple knobs to
improve energy savings or to explore multi-objective gains, combining knobs to achieve
performance and energy benefits.

5.3.3 Domain-oriented Knowledge Base

The knowledge base of SmartApprox guides the configuration of each new application at
runtime. The knowledge base is built in a training phase that requires a representative
set of applications and their quality specifications that reflect the context of the input
applications. Our evaluation is based on quality metrics and enough threshold to define
a useful result. However, the definition of a useful result depends on the computational
outline that the application is inserted [33]. For instance, a domain of object detection
in images has more well-delimited acceptability with an algorithm that identifies objects
than an SSI value of the quality threshold. Therefore, we propose as future work an envi-
ronment with a specific domain on the acceptability criteria of the training applications
on SmartApprox, which would contribute to showing the correspondence between a more
precise definition of useful results with the input applications.

5.3.4 Error Tolerance Benchmarks

The context of the configuration that SmartApprox applies depends on the representative-
ness of the training applications, as also the effectiveness of the proposed protection and
recovery mechanisms. Our experimental evaluation considers applications from several
computing domains from available benchmarks where we specify quality requirements.
However, the available benchmarks have general applications that may not represent a
specific domain or analyzed representativeness in the context of AC.

An analysis of several contexts of applications that tolerate errors with different quality
specifications and workloads would contribute to a more complete evaluation of different
environments of error tolerance with configuration and protection of critical data. This
analysis may comprise aspects of different data access patterns and the entire context of
data usage, with well-defined and specific thresholds of quality acceptability.

5.4 Final Remarks

We propose interfaces for configuration, protection, and recovery for applications that
execute in environments with approximate memories. We introduce transparent inter-
faces that do not require changes in the applications to indicate computational elements
amenable to approximations. Our protection interface isolates from errors common crit-
ical data to many types of applications, improve execution resilience by treating data
that would cause crashes, and recover from lost executions through re-execution and
validation mechanisms. Our configuration interface determines approximation without
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requiring specific quality metrics for the input application and senses modifications in the
error scenario according to hardware characterization and sensors.

Our interfaces explore different application features to determine approximation levels
based on previous knowledge. We detail how learning models can be used to determine
the appropriate approximation level for a new application and perform a search for the
best set of features that expresses the error tolerance. Our results evidence that the
proposed interfaces configure approximations with energy savings and average quality
close to the achieved by an exhaustive search, while improve execution resilience and
reduce a significant part of the crashes, depending on the application and environment.
The sources from AxRAM implementation are available with the AxPIKE simulator 1, while
the data, evaluated applications, and source code from SmartApprox are available on the
page of our research group 2.

1https://github.com/VArchC/axpike-isa-sim
2https://varchc.github.io/smartapprox/

https://github.com/VArchC/axpike-isa-sim
https://varchc.github.io/smartapprox/
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