
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

BRUNO EDUARDO DE OLIVEIRA MENEGUELE

SKEEN: AMBIENTE DE EXECUÇÃO SEGURA DO KERNEL COM INTEL SGX

CURITIBA

2022

BRUNO EDUARDO DE OLIVEIRA MENEGUELE

SKEEN: AMBIENTE DE EXECUÇÃO SEGURA DO KERNEL COM INTEL SGX

SKEEN: Secure Kernel Execution Environment with Intel SGX

Dissertação de Mestrado apresentado como
requisito para obtenção do título de Mestre em
Engenharia Elétrica e Informática Industrial do
Programa de Pós-Graduação em Engenharia
Elétrica e Informática Industrial da Universidade
Tecnológica Federal do Paraná.

Orientador: Prof(a). Dra. Keiko Verônica Ono
Fonseca

Coorientador: Prof. Dr. Marcelo De Oliveira
Rosa

CURITIBA

2022

Esta licença permite compartilhamento, remixe, adaptação e criação a partir do tra-
balho, mesmo para fins comerciais, desde que sejam atribuídos créditos ao(s) au-
tor(es). Conteúdos elaborados por terceiros, citados e referenciados nesta obra não
são cobertos pela licença.4.0 Internacional

https://creativecommons.org/licenses/by/4.0/deed.pt_BR

Ministério da Educação
Universidade Tecnológica Federal do Paraná

Campus Curitiba

BRUNO EDUARDO DE OLIVEIRA MENEGUELE

SKEEN: AMBIENTE DE EXECUÇÃO SEGURA DO KERNEL COM INTEL SGX

Trabalho de pesquisa de mestrado apresentado como
requisito para obtenção do título de Mestre Em Ciências
da Universidade Tecnológica Federal do Paraná (UTFPR).
Área de concentração: Telecomunicações E Redes.

Data de aprovação: 24 de Outubro de 2022

Dra. Keiko Veronica Ono Fonseca, Doutorado - Universidade Tecnológica Federal do Paraná

Dr. Carlos Alberto Maziero, Doutorado - Universidade Federal do Paraná (Ufpr)

Dr. Marcelo De Oliveira Rosa, Doutorado - Universidade Tecnológica Federal do Paraná

Dr. Rubens Alexandre De Faria, Doutorado - Universidade Tecnológica Federal do Paraná

Documento gerado pelo Sistema Acadêmico da UTFPR a partir dos dados da Ata de Defesa em 24/10/2022.

To my wife for my absence and her, always
present, support.

ACKNOWLEDGEMENTS

This project would not have been possible without the support of several people whose I

devote my gratitude. Certainly I will not be able to call out all the names that helped me through-

out this project, but all of them must know how thankful I am.

To my family for the affection and full support.

To my tutors Keiko Fonseca and Marcelo Rosa for guiding and helping me on conceiving

this project.

For Red Hat coworkers with different ideas and clarifications, mostly: Rafael Aquini who

helped me to better understand Linux memory model, Carlos Maiolino for helping with filesys-

tem concerns and Luiz Gonçalves for always being willing to help with all sort of question and

concerns I did not know where to start with.

And last, but not least, my laboratory colleagues Douglas Amaral, Alex Vernize and Filipe

Lemos for countless bad (and good) ideas.

RESUMO

Intel SGX não é acessível do nível mais privilegiado de execução, conhecido como anel

zero, onde o núcleo do sistema operacional está localizado. No entanto, é possível separar a

responsabilidade de execução entre o núcleo e o espaço do usuário criando uma dependencia

entre estes dois níveis que permite dados internos do núcleo de serem armazenados ou

processados dentro de enclaves privados do SGX. Neste projeto é apresentado o SKEEN, uma

maneira de isolar componentes e estruturas internas do sistema operacional utilizando o Intel

SGX, previnindo vazamento de informação para diferentes componentes do mesmo sistema

operacional. Uma prova-de-conceito é apresentada para exemplificar o uso desse projeto.

Palavras-chave: sgx; operating system; linux kernel; data privacy; data isolation.

ABSTRACT

Intel SGX is not accessible from the most privileged execution level, known as ring zero,

where the operating system kernel is placed. However, it is possible to split the execution

responsibility between kernel and userspace by creating a dependency among these two

levels that allows internal kernel data to be stored or processed within SGX private en-

claves. This project presents SKEEN, an enhanced way to isolate internal operating system

components and structures with Intel SGX technology, preventing information leak to different

components of the same operating system. A proof-of-concept is provided to exemplify its usage.

Keywords: sgx; sistema operacional; linux kernel; privacidade de dados; isolamento de dados.

LIST OF TABLES

Table 1 – Bootstrap time for both TresorSGX and SKEEN projects, summing all

requirements for getting the userspace application running. 28

Table 2 – Interprocess communication time for both TresorSGX and SKEEN

projects. The clock being used by ftrace, CLOCK_MONOTONIC, could

not measure SKEEN kernel send operation; a higher resolution clock is

required. At the same time, the number might be lower then 1 microsec-

ond, not adding much to the final time. 29

CONTENTS

1 INTRODUCTION . 9

1.1 Motivation . 10

1.2 Objectives . 11

2 SIMILAR PROJECTS . 12

2.1 TresorSGX . 12

2.1.1 Netlink . 12

2.2 Linux TEE subsystem . 13

2.3 Library Operating Systems and Unikernels 14

3 USE CASES . 15

3.1 Firmware TPM . 15

3.2 Kernel Internal Structures . 15

4 METHODOLOGY . 16

4.1 Background . 16

4.1.1 Software Guard Extension . 16

4.1.2 Linux Usermode Helper . 17

4.2 Threat Model and Assumptions . 18

4.3 Architecture . 19

4.3.1 Userspace Program (Proxy) . 20

4.3.2 Interprocess Communication . 20

4.3.3 Kernelspace Module . 21

4.3.4 SGX Enclave . 24

4.3.5 Data Flow . 24

5 RESULTS AND DISCUSSION . 26

5.1 Security Implications . 26

5.2 Performance Comparison . 27

5.2.1 Architecture Bootstrap . 27

5.2.2 Interprocess Communication . 28

5.3 Difficulties found . 30

5.3.1 Static library . 30

5.4 Future work . 30

5.4.1 Development Environment . 31

6 CONCLUSION . 33

BIBLIOGRAPHY . 34

APPENDIX 36

APPENDIX A – SKEEN ARCHITECTURE INTERNALS 38

A.1–Core . 38

A.1.1 Contexts . 39

A.1.2 Requests . 40

A.1.3 Communication Protocol . 40

A.1.4 Requests and Responses . 43

A.2–Userspace Program . 44

A.2.1 Binary Placement . 45

A.2.2 Application Compilation . 45

A.2.3 Application Execution . 46

A.3–Abstraction Layer . 50

A.3.1 Driver Registration . 51

A.3.2 Driver Usage . 53

9

1 INTRODUCTION

Security of Operating Systems (OS) is a broad subject, mainly when size and complexity

of each of its subsystems (MCKUSICK; NEVILLE-NEIL; WATSON, 2014) are considered. OS se-

curity has been a trending topic between researchers and conferences throughout the world due

to its importance on current business models leaning towards cloud computing solutions (AR-

NAUTOV et al., 2016).

Cloud computing has its bases on different virtualization technologies, which in turn have

their foundation built on top of features provided by the host hardware and the underneath op-

erating system abstraction layers, like hypervisors and containers (Red Hat Inc, 2019). Both

hypervisors and containers are susceptible to the underneath OS kernel vulnerabilities, even

though their architectures differ: with OS components compromised, internal functionalities are

also exposed to the attacker, giving it partial or full control over system resources, including the

virtualization layer (European Union Agency for Network and Information Security, 2017).

Considering the intrinsic interaction between subsystems, a single vulnerability offers

risk to many different points from the OS. In order to minimize the impact an attacker can have

over the entire system, a concept named Trusted Execution Environment (TEE) was conceived.

Originally, the TEE concept was built on top of simpler mechanisms and even older resource

isolation concepts, like virtual barriers completely isolating user applications from the rest of the

system, presenting considerable limitations with relation to its operation and applicability (Sabt;

Achemlal; Bouabdallah, 2015).

In 2016, Intel released the first version of a x86 hardware-based TEE, the Software Guard

eXtension (SGX) technology. By design, SGX defines a secure area (named enclave) that can be

accessed only by the least privileged level processes (in other words, user applications, running

on processor ring 3), preventing accesses from any code with higher privilege, like the operating

system kernel (Intel Corporation, 2019b).

The overall idea is to prevent a compromised operating system to hijack userspace ap-

plications’ confidential data running within SGX enclaves, enabling different solutions for today’s

business model of virtualization and mobile applications. As example we have recent smart-

phones with auxiliary secure processors implementing different TEE solutions, but with goals

close to the defined by Intel SGX. Both Google Android (Android Open Source Project, 2022)

and Apple iPhone (Apple Inc., 2022) operating systems make direct use of their processor TEE

feature to handle cryptographic keys, securely store personal data and isolate data processing.

However, kernel threads can not process or store sensitive data inside enclaves, depriv-

ing any kernel subsystem from protecting its own data in case other subsystem gets compro-

mised. With that in mind, this work describes SKEEN, a Secure Kernel Execution ENviron-

ment architecture, that allows kernel subsystems to use the features exposed by Intel SGX. Its

architecture offers a generic interface that can be extended by each subsystem to match their

own needs. Such architecture has two basic components: (1) a built-in kernel module that de-

10

fines the interface for internal subsystems, and (2) a userspace program that directly interacts

with the SGX technology. The interaction between these two components allows data from the

kernel flow through the userspace and then be processed inside SGX enclaves.

With this architecture many different mechanisms can be created aimed at data privacy

and isolation, increasing the difficulty for an attacker to gather system information by simply

reading runtime memory content or by tracking the data evaluation process. Our experimen-

tal evaluation of SKEEN has demonstrated how an internal kernel subsystem can perform a

cryptographic operation, like cryptographic key generation, encryption and decryption, within an

SGX enclave, despite its limitation of being accessible only by programs in the operating sys-

tem ring three level. Two artifacts are worthy mentioning as results of this work, being (1) the

code repository with all SKEEN’s code base based on the Linux Kernel version 5.191 and (2)

a peer-reviewed paper (MENEGUELE; FONSECA; ROSA, 2020) presenting an overview of the

architecture presented in this work.

This work is organized as follows: Section 2 briefly presents projects with similar con-

cepts; Section 3 proposes some use cases for the proposed architecture; Section 4 presents the

entire discussion and decisions taken to build SKEEN; Section 4.1 presents few important topics

for understanding the project; Section 4.2 describes the threat model and the assumptions made

before conceiving this project; Section 4.3 depicts the system architecture; Section 5 presents

the results this project achieved with the goals presented in Section 1.2 as benchmarks; Sec-

tion 5.4 walks through future ideas to enhance the current state of this project, and Section 6

concludes with all achievements and considerations brought by this project.

1.1 Motivation

Looking at the range of applications that Intel SGX can be used with and the security

guarantees it offers to common tasks that usual people has to perform everyday made we think

about the number of common tasks an operating system has to perform and how we could

leverage the same security guarantees that SGX was designed for at kernel level.

When turning kernel subsystems into “normal” users of other subsystems we can mimic

the same behavior userspace applications have with the kernel, thus subsystem confidential

data should still be confidential to the rest of the operating system.

After some time of research, we found the TresorSGX (RICHTER; GöTZFRIED; MüLLER,

2016) project, which had similar motivations to SKEEN, but with the goal of being a proof-of-

concept for the concept of transferring data from the kernel to SGX, not considering thorough

transparency or flexibility of its interface.

Hence, SKEEN was conceived from the idea of creating a generic interface, improving

usability of SGX for any kernel subsystems. Also, following one of the suggestion from Tre-

1 https://gitlab.com/radlab-utfpr/skeen-linux-kernel/-/tree/rebase-5.19 - SKEEN code on top of Kernel
5.19.0 tag.

https://gitlab.com/radlab-utfpr/skeen-linux-kernel/-/tree/rebase-5.19

11

sorSGX discussion topic, we have implemented on SKEEN a communication channel with less

overhead by using shared memory instead of the Netlink API used by TresorSGX.

1.2 Objectives

SKEEN’s project overall goal is to leverage Intel SGX functionality to operating system

kernel subsystems, providing isolated execution and secure storage.

On the other hand, specific goals can be taken from the overall goal, being the estab-

lished ones as follows:

1. Compare the suggestion brought by a similar project, TresorSGX (Section 2.1), with re-

lation to the interprocess communication channel of choice: instead of using the Netlink

API, use a simple shared memory to reduce communication travel time and overall

overhead;

2. Suggest a generic interface to allow different kernel subsystems to use SGX enclaves

as necessary;

3. Discuss the possibility of making the solution built-in to the kernel, thus allowing its

usage on earlier stages of the kernel boot process or with other security related sub-

systems.

This work focused on creating a stable and flexible architecture where considerations

and decisions that ease future works on the same topic were made, allowing additional ideas

and features to be smoothly integrated.

12

2 SIMILAR PROJECTS

Work related to using SGX directly from Kernel code has not been really explored due to

the general design of SGX, which is intended for userspace usage instead. However, TresorSGX

is worthy mentioning due to its overall design and also the TEE subsystem available into the

Linux Kernel mainline project.

2.1 TresorSGX

SKEEN was inspired on TresorSGX (RICHTER; GöTZFRIED; MüLLER, 2016) project,

which, from an external perspective, has the same goal. However, the architecture implementa-

tion differs significantly when compared to the chosen interprocess communication mechanism,

simultaneous request handling, UMH (Usermode Helper) interface usage, architecture design,

interface extensibility, and other internal details.

These differences may vary depending on the case or workload being used for testing.

However, it is worth to mention a major difference: the interprocess communication protocol with

Netlink.

2.1.1 Netlink

To the IPC (Interprocess Communication) layer TresorSGX made use of the well-known

kernel Generic Netlink interface, which from userspace the libnl (Netlink Community, 2022)

was used as library. Netlink is a generic protocol that allows domain-specific IPC protocols to

be created as needed, allowing multiple level of message headers, payloads and attributes in

a single transmitted message. It was specially designed to support communication between

userspace applications, user to kernelspace and event/notification driven notifications from ker-

nel to userspace (Thomas Graf, 2011). Figure 1 depicts the Generic Netlink stack: the controller

is part of the Netlink itself and is considered an special user responsible for dynamically allocat-

ing other Generic Netlink communication channels and performs different management tasks.

However, Netlink’s flexibility also increases its usage complexity and overall protocol over-

head due to the number of checks and possible choices that interface may have to do in order

to retrieve the requested data. The overall performance hit might not be noticeable in scenarios

where high data rate is not a concern, but when transferring data of arbitrary size to an en-

crypted block volume, as tested by TresorSGX (RICHTER, 2016), data throughput decreases

significantly.

From 2013 to 2016 the Linux Kernel had an specific Netlink interface rooted in the mmap

system call instead of the default BSD socket data transmission method, which allowed subsys-

tems requiring bigger data throughput to use it. However, due to difficulties on maintaining both

13

Figure 1 – Generic Netlink API stack. Based on a Kernel documentation (Kernel.org, 2017a).

Source: Own authorship (2022).

Netlink interfaces compatible and also further improvements on the original Netlink, the variant

using mmap operations was deprecated and later removed from Linux1.

2.2 Linux TEE subsystem

A specific TEE subsystem was integrated into Linux Kernel mainline (Kernel.org, 2017b)

project to officially support different TEE solutions across the industry, but only those based on

a Trusted Application (TA) running on top of a trusted operating system.

Two different solutions are currently supported: the OP-TEE and the AMD Secure Pro-

cessor. The first is an architecture on top of the ARM TrustZone (ARM, 2021) that specifies how

userspace, kernel and the TA communicate between them. The second is the proprietary solu-

tion used on AMD CPUs with a separate chip holding the whole secure environment: both the

trusted OS, firmware within the chip’s memory, and the TA loaded at runtime by a kernel driver.

SGX, on the other hand, enables userspace applications to create private and encrypted

memory regions for both code and data, which ran in the same processor chip directly, without

an intermediate component.

1 https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=
d1b4c689d4130bcfd3532680b64db562300716b6 - Commit removing Netlink through MMAP op-
erations.

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=d1b4c689d4130bcfd3532680b64db562300716b6
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=d1b4c689d4130bcfd3532680b64db562300716b6

14

2.3 Library Operating Systems and Unikernels

Library Operating Systems (LibOS) and, also, Unikernels are part of a class of operating

systems where the application is directly linked with the operating system functionality, being

that the application and the kernel are deployed and executed as a single unit (binary), removing

many different usual kernel features that are not used by the application and, thus, increasing

data throughput and decreasing deployment delay.

LibOSes and Unikernels, although quite similar, they handle application execution privi-

lege differently: an application running with a LibOS has the needed kernel features running at

userspace mode (ring 3), while on Unikernels the application is linked and runs at kernel mode

(ring 0) (TAN et al., 2020). With that, applications on Unikernels are not suitable for SKEEN,

since there is no userspace for accessing SGX enclaves.

At Intel SGX SDK website (Intel Corporation, 2022) many different LibOSes are men-

tioned as possible solutions for an application willing to use Intel SGX feature. However, these

OSes follow the standard SGX application specification, where the application confidential data

completely bypasses the underlying kernel and are stored and processed directly into an SGX

enclave. With that, these solutions are not considered as possible alternatives to the SKEEN

architecture. However, using SKEEN with a LibOS is an interesting path for future work.

15

3 USE CASES

With the ability of both processing and storing information within SGX enclaves, many

different kernel subsystems may employ such mechanism to secure their sensitive data.

3.1 Firmware TPM

Trusted Platform Modules (TPM) are known as secure processors to store, process, and

also generate cryptographic sensitive information such as user asymmetric key pairs. These

platforms are deployed in different range of systems, from embedded devices to personal and

server computers. In general, there are three different modes of implementation for TPMs (RAJ

et al., 2016):

1. Dedicated: a real and small dedicated hardware implementation, delivered as a single

microchip usually soldered to computer’s motherboard;

2. Integrated: part of a different component on the motherboard, such as the chipset (also

known as Platform Controller Hub, PCH), or built-in to the processor’s silicon dice;

3. Firmware: software implementation into platform’s TEE.

Although a TPM is usually meant to be used as the root of trust for the entire system

- from its bootstrap to its runtime, defining the system chain of trust - and in firmware mode

it would only be available once the TEE is fully initialized, it still has a valid usage beyond the

platform source of trust: cryptographic operations ranging from hashing to digital signing and

data sealing (Trusted Computing Group, 2019).

TPM features are used by internal kernel subsystems, such as Integrity Measurement

Architecture (IMA) and Extended Verification Module (EVM) (IMA Project, 2020), through the

concept of encrypted and trusted keys (Kernel.org, 2020) from the Key Retention Subsystem

(KRS), to ensure system integration during normal operations at runtime.

3.2 Kernel Internal Structures

Some kernel structures are referenced only in specific moments and may contain sen-

sitive information, like cryptographic keys managed by the Key Retention Subsystem. These

structures could be stored and/or processed within the TEE, without exposing its real content to

userspace or kernel, noticeably increasing the difficulty for an attacker to get access to the data.

Also, using SKEEN with the Audit subsystem and the internal kernel structures stored into an

SGX enclave, enables the possibility to self-audit the kernel at different times during system’s life

cycle and, thus, increasing the system chain of trust.

16

4 METHODOLOGY

This work implements a new Linux mechanism to achieve the objectives presented in

Section 1.2, being that most - but not all - tools used for building it were already present into

kernel’s current version1 code.

In the following sections both the needed background and the architecture itself are pre-

sented focusing on the overall concepts and ideas. Detailed information on their internals are

depicted in the Appendix A.

4.1 Background

This section presents the two most important concepts needed to understand SKEEN’s

overall architecture. Minor concepts are presented alongside their mention throughout Sec-

tion 4.3.

4.1.1 Software Guard Extension

Intel Software Guard Extension (SGX) is a new instruction set with a conjunction of ar-

chitectural data structures that allow userspace applications to ensure the confidentiality and in-

tegrity of sensitive data, even if any privileged software (operating system, hypervisor, or BIOS)

is compromised (ARNAUTOV et al., 2016). The two guarantees offered by the SGX are:

• Confidentiality : any data or process state handled within the trusted environment cannot

be observed by another system component; only the input and output are observable.

• Integrity : system components, external to the trusted environment, cannot change in-

ternal process behavior or content.

The protection against irregular accesses, from malicious privileged software to stan-

dard direct memory access (DMA), is guaranteed by hardware-assisted memory access control

mechanisms in conjunction with several metadata stored in different architecture data structures

dedicated to the SGX functionality. This control creates secure areas in the main memory known

as enclaves.

Enclaves are stored within the userspace application virtual memory, restricting the own-

ership of each enclave to a single process. An enclave holds a variable number of memory pages

(to store user application trusted data and code) in a structure called Enclave Page Cache (EPC).

Although each page within EPC has a fixed size of 4kB and initially is allocated within the system

cache, they may be evicted to the main memory as any other regular memory page. Therefore,

applications demanding a large amount of pages are not restricted to the EPC maximum size.
1 This work was built on top of the Linux kernel version 5.19.

17

Whichever EPC page is evicted to memory, it will be encrypted by the Memory Encryption Engine

(MEE), ensuring the confidentiality and integrity of that data from any read or write attempt (MC-

KEEN et al., 2013).

The memory access control is done by the processor with some additional information

contained into the Enclave Page Cache Map (EPCM): each entry on this structure has an at-

tribute mapping to a single page within EPC. These additional information are: page type, ac-

cess (read, write and execute) permissions, validity, and so forth, all data are used as filters to

the access control engine.

The SGX instruction set, added to 6th Intel processors generation and onward, is divided

in three main mnemonics, with several underneath leaf functions. These main mnemonics are:

ENCLS, ENCLU and ENCLV (Intel Corporation, 2019b). As can be seen from above, the core

ENCL three suffixes are:

1. S: stands for supervisor, meaning that all leaf function can be executed by privileged

software, like the operating system kernel, generating an software exception in case it

is issued by any other software beyond ring 0 privileged level;

2. U: stands for user, giving the right to the user applications to issue any leaf function

under this category. In case any privileged software issues a function belonging to this

set a software exception is raised, blocking further execution;

3. V: stands for virtualization, being used as support for VTX technology, Intel processor

virtualization extension (Intel Corporation, 2019a).

In short, supervisor functions are restricted to privileged software and are used to man-

age the underlying enclave control structures, regarding enclave creation, initialization and main-

tenance. User functions are related to memory access within enclaves by user applications.

That is the reasoning behind the general goal of this paper: to create an architecture that

enables ring 0 software to indirectly interact with Intel SGX feature, allowing sensitive data to

be held and processed within such enclaves to protect OS sensitive data from its own internal

components.

4.1.2 Linux Usermode Helper

A user program can interact with internal kernel functionalities via system calls, which

have their own special meanings and calling arguments. Sometimes a call from inside the kernel

to a userspace program is needed, for example, when a new device is attached to the machine

and the kernel requests a specific userspace application to load a device driver as soon as the

device gets recognized.

18

This process is done through the usermode helper API (UMH) (M. Jones, 2010), which

is a kernel API that enables kernel code to invoke userspace applications on demand. There are

a couple of ways to actually execute userspace programs:

1. Direct path: the simplest way is to call a binary located in a well-known path, possibly

passing some program and environments arguments through API specific structures;

2. In-kernel binary: the binary is physically located into kernel memory, which was stat-

ically compiled during kernel building time and executed as a user process when re-

quested.

Caution must be taken when using the second approach: the binary may be executed

before any real filesystem was effectively mounted in the system, preventing any dynamic linkage

of shared libraries on such binary. Because of that and other possible side effects the in-kernel

binary must be statically compiled.

The user process created to run the program receives superuser privileges, thus it has

full control over system configuration.

By default, the in-kernel binary approach creates a interprocess communication chan-

nel between the kernel and the user program using pipes. Section 4.3 details about the UMH

interface implementation, which was enhanced with shared memory handling code in order to

improve overall performance.

4.2 Threat Model and Assumptions

The primary software assumption is that the overall system is not trusted and is possibly

compromised by a malicious user - including the operating system kernel (consequently, the

SKEEN itself) and the entire userspace environment - and therefore all components are treated

as hostiles. In case of any kernel subsystem gets compromised, any subsystem data or algorithm

implementation already stored within a SGX enclave must not be accessible.

Although the runtime kernel is not trusted, its compilation and code are considered sane

and trustworthy. Consequently, no known security holes or backdoor are intentionally added to

the code.

Deny of Service (DoS) attacks can be performed in many different ways, preventing any

SKEEN service to run. With that said, handling DoS attacks is out of scope for the current state

of this project.

Cache timing attacks that can affect SGX, for instance, L1TF (L1 Terminal Fault) (Intel

Corporation, 2018), are not checked for their presence, but we assume their respective mitiga-

tion are applied if necessary. Other side-channel attacks (SPREITZER et al., 2018), like power

analysis or any other with hardware access level are also out of scope of this project.

19

4.3 Architecture

Figure 2 presents an overview of the SKEEN architecture proposed in this project and

used as the basis for further discussion. This figure can be exploded in order to observe the

layered design of the architecture as shown in Figure 3. This design was used to accommodate

differences between each client subsystem, allowing specific behavior handling in all three exe-

cution environments: kernelspace, userspace and SGX enclave. Another aspect to be noted is

the common core, which behaves as the arbitrator for the whole architecture.

Figure 2 – In the insecure side of the platform the SKEEN kernel module is used as the interface
for the underneath kernel subsystems to interact with the userspace program, that is
launched to every new subsystem request, through a shared memory IPC scheme. The
data is then insecurely forwarded to secure SGX enclaves where the data is finally pro-
tected against eavesdropping and malicious modification.

Source: Own authorship.

In Figure 3 the client subsystems can be described as Cryptography (Crypto), Network

(NET), Key Retention System (KRS) and Integrity Measurement Architecture (IMA), whose pur-

poses and behaviors are out of this document’s scope.

To further clarify what is presented in Figure 3, NET subsystem makes directly use of

the cryptographic subsystem, while IMA makes heavy use of KRS subsystem; being the reason

why Crypto and KRS were chosen as the abstraction layers on SKEEN side. With that, when the

abstraction layer is called from within kernel’s subsystems a reference is maintained in order to

listen the responses coming from the userspace program.

SKEEN’s data flow will be further explored and explained in Section 4.3.5.

20

Figure 3 – Layered view from clients in the kernelspace to the Intel SGX enclaves, where the
core acts as the main component and communication arbitrator between kernel
and userspace. Each client-specific component has its relative counter part in both
userspace and within Intel SGX, creating the code and data isolation between clients.

Source: Own authorship (2022).

4.3.1 Userspace Program (Proxy)

To allow better isolation between subsystems operating with SKEEN, each initialization

request made launches a new proxy application with a unique process memory and a unique

shared memory region (not shared to any other subsystem). Once all transactions are finished,

the client can request to SKEEN to terminate - by freeing and zeroing any memory region allo-

cated - the proxy program and other structures held within the architecture used to manage each

operation context.

The proxy program is statically compiled against any external library, thus dynamic link-

age attacks are not feasible. At the same time, the program is placed directly within the kernel

image.

Also, the proxy has a reactive behavior, where it only responds (send data to kernel)

when it is requested to (via request coming from the kernel). Every proxy response is tied to a

single kernel request.

4.3.2 Interprocess Communication

Shared memory was the chosen approach to be used on SKEEN IPC mechanism, em-

ploying near-zero overhead in its raw format. However, this approach has two issues: data syn-

chronization and access control, demanding architectural solutions to manage them, which are

shown in the sections below.

21

Data Synchronization

When using shared memory for exchanging data among different processes a synchro-

nization model must be implemented. Our strategy consisted on not sharing the same memory

region among different subsystems, preventing management logic for different subsystem’s re-

quests. Also, each half of this memory is strictly used by each flow direction: upwards for data

coming from the kernel to the userspace, denoted by request, and downwards for data in the

other direction, denoted by response. These data objects have fixed size and are composed of

different fields2.

The memory division and the fact that the proxy program operates reactively to kernel

requests, help to mitigate data concurrency issues. Thus, each side of the channel cares only

to not exceed the buffer size and to signal which message was already handled. Also, requests

and responses are handled sequentially, meaning that data ordering is kept. In the current state

of this project, the communication protocol does not support parallelism.

Proxy Access Control

The shared memory mechanism itself does not imply any access control to the memory,

the proxy program benefits from the memory space isolation and ownership already imposed by

the default memory management behavior, however, any concurrent kernel thread with access

to the list of running processes and their respective structures can have access to the shared

memory. In the current state of this project, it is still unknown the mechanism to control memory

access from concurrent kernel threads. This topic is revisited in Section 5.4.

At userspace level, a specific character driver was implemented to handle the shared

memory mapping and to verify the validity of process’ access request: only processes created

through SKEEN’s UMH mechanism has access to their respective shared memory, any other

external process trying to dig or traverse the memory will be denied.

4.3.3 Kernelspace Module

The kernel module contains separate components that are responsible for enabling and

launching the userspace program, the communication channel and the interface exposed to

subsystems willing to use SGX features.

SKEEN core component acts as an arbitrator between the different subsystems creating

requests and then listening for userspace’s program responses with the data processed inside

SGX enclaves. This in-between component, with structure as presented in Figure 4, was de-

signed to be as transparent as possible, hiding the entire bookkeeping, data tracking, and IPC

mechanism that guarantees that data reaches its destination. Also, considering that each clients

2 Implementation details regarding the communication protocol is presented in the Appendix A.1.3

22

can make use of different structures and expects different data types, the core exposes an ex-

tendable interface that supports an additional subsystem-specific abstraction layer as a plugin.

Therefore the proposed solution is flexible enough to allow each clients specificity to be handled

and maintained as a separated module.

Figure 4 – The core coordinates different instances of clients-specific components and also man-
ages the data flow from both up and downwards directions with a work queue holding
operation requests in different states. clients wait on completion callbacks that are trig-
gered by the dispatcher upon request state change events.

Source: Own authorship (2022).

The only object that is shared among core and clients-specific components is the context,

which is the structure used to perform all bookkeeping and the aforementioned tracing. This

object is initialized before any request is created and lives until the clients explicitly destroys it

when the responses to the requests are sent from userspace. A more detailed explanation of the

data flow throughout the architecture will be given in Section 4.3.5

23

Request List

The Request List shown in Figure 4 is a standard linked list holding the request cre-

ated by kernelspace’s subsystems willing to start a communication with userspace. This list is

maintained by the SKEEN core and is used by the dispatcher to keep track of requests’ life cycle.

Request Life Cycle

Each request keeps an internal state to indicate in which phase of its life it currently is.

There are five different states:

1. DEAD: The request can be completely deleted from the request list by the dispatcher;

2. IDLE: The request was just created and is awaiting any action from the kernelspace

subsystem;

3. RUNNING: The request was built and is ready to be sent or receive a response for it: it

is said that the data flow is running;

4. RECVD: A response was received from userspace;

5. SENT: The request was sent to the userspace.

On every state change, an event is generated to wake up the dispatcher thread, which

is responsible for taking the next action on the respective request. Since the dispatcher is a

single thread handling all requests in the request list, the transient states IDLE and RUNNING

are important to allow the costumer to perform any action before effectively executing any action

with the request; it is also helpful on multiprocessor scenarios, where the number of requests

may increase rapidly alongside the number of state changes.

Dispatcher

The dispatcher is a simple and dormant component within the SKEEN core, acting upon

events caused by request state changes. Whenever a request changes its state, the dispatcher is

responsible for checking the actual request state and execute the required action on that request.

Currently, the dispatcher has only three actions to perform, depending on the state, being them:

1. Execute the costumer subsystem’s abstraction layer callback responsible for handling

requests just sent (sent());

2. Execute the costumer subsystem’s abstraction layer callback responsible for handling

responses received from the userspace (recvd());

24

3. Delete the request from the request list once the costumer subsystem has finished with

it (by calling destroy()).

The whole request list is checked whenever the dispatcher wakes up by an event. How-

ever, in case a new event is generated while the dispatcher is already awaken, it will only restart

the state verification once the current list checking is finished.

4.3.4 SGX Enclave

The trusted program, running within the SGX enclave, is built alongside the proxy pro-

gram, since it is client-specific, and because both must be aware of each other existence and the

interface being exposed. The proxy program makes ECALLs to functions from the trusted side,

while OCALLs are performed in the other way.

Likewise the proxy program, the trusted portion is also built-in to the Kernel image and

loaded at runtime into SGX’s enclave, ensuring its validity and integrity from build time.

4.3.5 Data Flow

Due to the layered architecture, the data objects are also required to be wrapped in

layers to keep it transparent throughout the processing chain. Figure 5 depicts the core data

components from the subsystem operation request to the highest level of abstraction.

Figure 5 – Kernel module layered data view. The deeper inside the data is, the closer to the sub-
system requesting data process on Intel SGX.

Source: Own authorship (2022).

The context is the core data transferred between kernel components, since it holds both

the userspace program information, UMH info, and both the request data to be processed in

userspace and its response. SKEEN core wraps the context in another request abstraction to

25

maintain and trace the state of that specific flow, thus it has the ability to destroy it when re-

quested.

Figure 6 depicts the data flow through the architecture using a generic abstraction layer

(GAL) for a subsystem as an example.

Figure 6 – Data flow throughout the SKEEN layered architecture considering a test case with a
cryptographic abstraction layer.

Source: Own authorship (2022).

A subsystem first calls a common operation, exec 1 , as it would normally do if the

actual interface is used, and not an abstraction layer to SKEEN; then a context is created 2

by the core and kept within GAL for possible further operations and for matching the response

code coming from userspace. The core then wraps the context content, as shown in Figure 5,

with enough data to trace it in a work queue, and launches the send (or receive depending on

what the exec call actually does) operation 3 that moves the most basic object (kernel request)

from within the context through the IPC channel 4 . The userspace program, polling the shared

memory, notices a non-processed request is waiting in the shared memory, and then reads 5

the request by checking its internal content in order to select the correct ECALL that matches the

exec operation to be performed within the SGX enclave 6 . Once the process is completed an

OCALL, from the enclave to the userspace program, is performed, returning the response value.

The returned value is then wrapped in the object user response and send back to kernelspace

through the IPC channel. In the kernel, once the user response data is available in memory,

an event triggers the receive operation 7 , waking up the dispatcher component in the core,

as seen in Figure 4. The dispatcher evaluates the overall state of that request and execute the

callback placed in the GAL code. A final check or processing might take place before returning

the response value to the subsystem.

26

5 RESULTS AND DISCUSSION

We used a cryptographic algorithm driver as the test case for validating the entire ar-

chitecture behavior. A cryptographic driver exposes an interface of allowed operations to be

performed with specific algorithms. Our test driver wraps the AES algorithm, which uses an im-

plementation from within the SGX enclave instead of using the existent kernel implementation.

Therefore, the cryptographic operations are guaranteed to be isolated and confidential.

The abstraction layer follows the specification for registering a driver in the kernel and,

at the same time, implements the wrapper functions that will send data to be encrypted or de-

crypted through the SKEEN infrastructure. In this way, any other code directly requesting AES

encryption/decryption operation can normally use the generic in-kernel cryptographic interface,

while our driver handles the translation between crypto data structures and SKEEN structures.

We present in Appendix A.3 the details used in our cryptographic abstraction layer.

Another important aspect to be noted is that both the abstraction component and the

userspace program must be aware of specific data requirements that an AES driver demands,

such as: data size bigger than the algorithm block size are split in different chunks of fixed size.

With that, both sides of the channel must have a common way of handling it. Situations like this

may force the subsystem-specific components to handle fragmentation in somewhat non-trivial

ways, possibly creating different internal fields for both request and response, for instance, on

header, payload or other data field.

5.1 Security Implications

The userspace program’s code can be tampered only in a short time window from within

the kernel execution thread, meaning that the kernel as a whole must be already compromised

by a malicious attacker. However, it is important to note that once the program is fully loaded into

userspace’s memory and is in normal operation, standard vulnerabilities can still be exploited by

a malicious user. With that, keeping the userspace program as simple as possible for improving

its auditability is important.

With the SKEEN userspace program being built into the kernel image, integrity checks

can be added at early boot stages of the system, possibly opening a new set of features related to

the system’s chain of trust when leveraging SKEEN with other mechanism such as Secure Boot,

Integrity Measurement Architecture or any other Linux Security Modules handling the system’s

chain of trust.

Another aspect to be considered in the current state of the project is the fact that the data

being transmitted between kernelspace and userspace is not encrypted, meaning that after the

data is copied from SKEEN’s shared memory into userspace’s program memory its confidential-

ity can be compromised upon runtime vulnerabilities.

27

5.2 Performance Comparison

One of the goals of this work, presented in the Section 1.2, is to implement a inter-

process communication mechanism different from the one used in the project TresorSGX. On

their work (RICHTER, 2016), the suggestion was to use a standard shared memory to store

the data from kernel and userspace to be used with the proposed architecture instead of the

well-known kernel-userspace Netlink IPC protocol; the major assumption was that the overhead

required by the protocol was considerably delaying the data transference, and thus, limiting the

architecture usage.

Since the SGX SDK used in both SKEEN and TresorSGX projects are the same, the

data transfer rate and protocol between userspace and SGX are also the same and, thus, was

not considered or measured. However, we were able to measure a considerable difference with

relation to the interprocess communication channel.

Considering we are not measuring SGX data exchange, the comparison could be done

in a system without Intel processor: the machine used was an AMD Ryzen 5 3600X 6-Core

Processor with 16GB of DDR4 3200MHz RAM memory running Fedora 36 Linux distribution.

5.2.1 Architecture Bootstrap

Generally speaking, the bootstrap performance is not important to this work’s scope.

However, it is important to mention the findings during the comparison.

In both SKEEN and TresorSGX the in-kernel core component is first loaded and initial-

ized, but the userspace application has a bootstrap phase where the memories and structures for

establishing the communication channel with the Kernel is required. On TresorSGX the required

bootstrap includes a structure allocation and declaration and a standard socket creation for the

AF_NETLINK address family, being all cheap operations to the system; since TresorSGX’s ar-

chitecture was strictly built to work as a loadable kernel module, the userspace application has

all system’s features at its disposal at initialization time.

On SKEEN, on the other hand, the userspace application is required to wait until

/dev/usermode is available to be used, which also depends on the kernel device initializa-

tion process, which takes, on average 120𝑚𝑠 (milliseconds). Once the character device is ready,

SKEEN userspace program needs to open and map the shared memory into its own memory

space, but both operations are also cheap to the system.

Adding up all the requirements for the bootstrap phase, we come up with the Table 1

conclusion. The average time was taken from 20 separated runs.

28

Table 1 – Bootstrap time for both TresorSGX and SKEEN projects, summing all requirements for
getting the userspace application running.

Process Average Time

TresorSGX 32.090𝜇𝑠
Structure allocation and initialization 32.090𝜇𝑠

SKEEN 120.032𝑚𝑠

Time waiting on /dev/usermode 120.016𝑚𝑠

Shared memory open and mapping 15.990𝜇𝑠

Source: Own authorship (2022).

5.2.2 Interprocess Communication

The idea of using a simple shared memory was to create a specific protocol to suffice

SKEEN’s requirement, leaving the generic aspect of Netlink API aside, improving the overall

performance by decreasing the overhead needed to maintain protocol’s flexibility.

To measure both SKEEN and TresorSGX IPC mechanisms timing we need to consider

their particularities regarding requests and responses, since they do not follow the same protocol

or message ordering and, for that, we present in Figures 7 and 8 their respective sequence

diagram.

Figure 7 – TresorSGX data flow used to time the Netlink IPC mechanism.

Source: Own authorship (2022).

To measure the time spent in each function or code portion in each userspace pro-

gram we used the clock_gettime() function from the standard C timer library with the

CLOCK_MONOTONIC clock type to avoid disconnected jumps in the system time and also

to do not depend on specific CPU timers. For the kernel portion, the dynamic ftrace tracing

29

Figure 8 – SKEEN data flow used to time the Shared Memory IPC mechanism.

Source: Own authorship (2022).

method (Steven Rostedt, 2017) was used; ftrace allows the user to trace internal kernel function

behaviors and timing, from which CPU is running a certain function to when a certain event was

generated. To setup the trace points to TresorSGX the user can make use of ftrace interface at

sysfs at system’s runtime, since the kernel and userspace application can be executed anytime

after the system is up. However, for SKEEN, early boot tracing must be enabled, which can be

done by setting specific kernel command line at boot time. The results for the average time are

shown in the Table 2.

Table 2 – Interprocess communication time for both TresorSGX and SKEEN projects. The clock
being used by ftrace, CLOCK_MONOTONIC, could not measure SKEEN kernel send op-
eration; a higher resolution clock is required. At the same time, the number might be
lower then 1 microsecond, not adding much to the final time.

Process TresorSGX SKEEN

Userspace send message 56.286𝜇𝑠 1.122𝜇𝑠
Userspace receive message 1.848𝑚𝑠 1.876𝜇𝑠
Kernel send message 1.243𝜇𝑠 N/A
Kernel receive message 2,624𝜇𝑠 1.425𝑚𝑠

Total 1.911𝑚𝑠 1.428𝑚𝑠

Source: Own authorship (2022).

One important note to the results presented in Table 2 is the fact that SKEEN’s ker-

nel receive operation operates in a polling approach, waiting on the userspace program to fill

the shared memory space with a response, increasing the number of wasted CPU cycles and

increasing the time presented in the table. And on TresorSGX userspace read operation the as-

30

sumption for the time spent is related to the number of message data lookups in different header

layers.

In average, the SKEEN’s shared memory IPC mechanism shows 25.27% better perfor-

mance than Netlink IPC mechanism. Although it does not imply an overall architecture better

performance, due to other design choices, it indicates that in the exact same scenarios SKEEN

can perform better up to this percentage, encouraging further studies and investigations.

5.3 Difficulties found

During the development of this work important obstacles had to be handled, otherwise

the conclusion of it would not be possible. In the following subsections these difficulties are going

to be detailed.

5.3.1 Static library

The choice of enabling SKEEN as soon as possible in the Kernel loading/booting cycle

forced the entire architecture to be implemented as a built-in feature, instead of a Loadable

Kernel Module, as it was done in TresorSGX (RICHTER; GöTZFRIED; MüLLER, 2016). Because

of that, the userspace program is loaded before the rootfs is fully loaded, requiring it to be

statically linked against every necessary library, including those shipped with the SGX SDK being

used, which are only shipped as shared objects.

Mangling kernel build system with userspace options showed to be really difficult, to the

point the project could not be tested to its full extent: a full encryption and decryption cycle, being

applied to a real scenario, like done in TresorSGX with block volume encryption, was not tested.

However, considering the good results regarding IPC performance 5.2.2, further investigation on

different SGX SDKs and kernel build system improvements shows to be worthy.

5.4 Future work

Shared memory is the mechanism chosen as the IPC mechanism between kernel and

proxy programs in the current state of this project, however new IPC mechanisms are proposed

to upstream Linux kernel community regularly for many different use cases (BROWN, 2011).

With that in mind, deeper research on new IPC mechanisms or improvements on well-known

ones (NetOS Group, 2019) is a tackle point for future enhancement. Also, a research on how

to control memory access from kernel components to the SKEEN spawned shared memory is

being performed.

Integrating SKEEN to early boot security mechanisms could also improve the overall se-

curity of the system and enhance the SKEEN security scope: leveraging Intel TXT (Intel Corpora-

31

tion, 2019c) technology in order to gather pre-boot platforms measurement values (BIOS/UEFI,

Chipset, and others) enabling a more robust chain of trust for the entire system. Also, enabling an

early handshake between SKEEN and SGX to establish the key to encrypt the data being trans-

mitted through the shared memory with the proxy program greatly enhances overall architecture

security.

Following the same thought of booting a system with possible malicious components, the

proxy could have its hash measured and verified before effectively executing it with the help of

the IMA (Integrity Measurement Architecture) Linux subsystem; the enclaves could also be at-

tested before being actively executed. Also, the proxy program can apply the usage of a sandbox

mechanism like seccomp (KERNEL.ORG, 2019), preventing any not allowed system calls to be

performed in case it gets compromised.

As previously mentioned in Section 3, using SKEEN for implementing a software Trusted

Platform Module which can not be tampered with when the kernel is compromised, can mitigate

security concerns related to default software TPM implementations/emulators.

Another point to be considered is the number of different SGX SDKs created in the past

years, during the time this work was being written. Intel presents a list of different available SDKs

in their own SDK page (Intel Corporation, 2022).

A final suggestion is to slightly tweak some implementation decisions in order to get better

overall performance, for instance, (i) bound the request list to a specific CPU to take advantage

of cache locality or use semaphores instead of polling for waiting requests and responses in the

shared memory in both Kernel and proxy sides.

5.4.1 Development Environment

Since the SKEEN project is directly tied to the Kernel version and also the SGX SDK

being used. With that, for future work it is important to meet the follwing requirements:

• Kernel version: SKEEN’s kernel code was built using the available interfaces exposed

by the Kernel version 5.19.0, released on July 31 2022. The UMH interface is the most

susceptible to change due to its relation with other important subsystems that are con-

tinuously being modified, such as btfilter.

• Intel SGX SDK: The SGX SDK used in this project was the official Intel SDK (Intel

Corporation, 2022), consequently, the userspace’s program Makefile is dependent on

Intel’s SDK particularities, from runtime libraries to compilation and linking options.

• Compiler toolset: Since the userspace program is being compiled with kernel’s build

system, the toolset for compiling the SKEEN-enabled kernel must use the SGX-aware

tools, such as as, ld, ld.gold and objdump. These are all delivered as part of the SDK.

32

A set of scripts were created to help on the compilation and testing phases, these were

called SKEEN-OSTest and they can be found on their own Git repository1. The most important

scripts are:

• run.pl: Perl script to launch a qemu instance running a custom kernel with SKEEN

enabled and allow remote GDB debugging session.

• kernel-compile.sh: Bash script for compiling a minimal kernel image with the

SKEEN configuration options enabled and other different configuration options to im-

prove testing, such as dynamic tracing enabled, address space layout randomization

and stack frame pointer optimization disabled.

• osimage-gen.sh: Bash script to generate a distribution image with required pack-

ages defined by the user using the mkosi tool. This allows distribution level testing

instead of only basic system tests in a basic ramdisk image console.

Usage for each of these scripts can be found on their own help message by executing

them with the flag --help.

1 https://gitlab.com/radlab-utfpr/skeen-ostest - Scripts to help compiling and testing SKEEN features

https://gitlab.com/radlab-utfpr/skeen-ostest

33

6 CONCLUSION

The architecture proposed in this paper employs the Intel SGX technology for data and

process isolation of internal kernel components, which, at first glance, are not allowed to have

access to such technology. It is accomplished by moving data from kernel to userspace and then

wrapping it into SGX enclaves. A test case creating a crypto algorithm driver was created, giving

in-kernel code the ability to perform encryption and decryption of data directly from within SGX

enclaves using the standard Linux Kernel Crypto API.

The code for both the architecture implementation and test cases are being kept with

open source license1.

1 https://gitlab.com/radlab-utfpr/skeen-linux-kernel - Linux Kernel code with SKEEN patches applied on
top.

https://gitlab.com/radlab-utfpr/skeen-linux-kernel

34

BIBLIOGRAPHY

Android Open Source Project. Trusty TEE. 2022. Disponível em: https://source.android.com/
docs/security/features/trusty.

Apple Inc. Apple Platform Security. [S.l.], 2022. Disponível em: https://help.apple.com/pdf/
security/en_US/apple-platform-security-guide.pdf.

ARM. Learn the architecture - TrustZone for AArch64. [S.l.], 2021. Disponível em:
file:///C:/Users/Bruno/Downloads/learn_the_architecture_-_trustzone_for_aarch64_102418_
0101_01_en.pdf.

ARNAUTOV, S. et al. SCONE: Secure linux containers with intel SGX. In: 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 16). Savannah,
GA: USENIX Association, 2016. p. 689–703. ISBN 978-1-931971-33-1. Disponível em:
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov.

BROWN, N. Fast interprocess communication revisited. 2011. Disponível em:
https://lwn.net/Articles/466304/.

European Union Agency for Network and Information Security. Security aspects of
virtualization. [S.l.], 2017.

IMA Project. Integrity Measurement Architecture Wiki. 2020. Disponível em: https:
//sourceforge.net/p/linux-ima/wiki/Home/.

Intel Corporation. L1 Terminal Fault. 2018. Disponível em: https://software.intel.com/
security-software-guidance/software-guidance/l1-terminal-fault.

Intel Corporation. Intel® 64 and IA-32 Architecutres Software Developer’s Manual, Volume
3C: System Programming Guide, Part 3. [S.l.], 2019. v. 3C, n. 326019-071US. Disponível em:
https://software.intel.com/sites/default/files/managed/7c/f1/326019-sdm-vol-3c.pdf.

Intel Corporation. Intel® 64 and IA-32 Architecutres Software Developer’s Manual, Volume
3D: System Programming Guide, Part 4. [S.l.], 2019. v. 3D, n. 332831-071US. Disponível em:
https://software.intel.com/sites/default/files/managed/7c/f1/332831-sdm-vol-3d.pdf.

Intel Corporation. Intel® Trusted Execution Technology (Intel TXT), Software Developement
Guide, Measured Launched Environment. [S.l.], 2019. Disponível em: http://www.intel.com/
content/www/us/en/software-developers/intel-txt-software-development-guide.html.

Intel Corporation. Software Guard Extensions - Get Started. 2022. Disponível em: https://
www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/get-started.html.

Kernel.org. Generic Netlink HowTo. 2017. Disponível em: https://wiki.linuxfoundation.org/
networking/generic_netlink_howto.

Kernel.org. Generic TEE Subsystem. 2017. Disponível em: https://git.kernel.org/pub/scm/
linux/kernel/git/torvalds/linux.git/commit/?id=a2d9214c730f54ff72c2940bcd7f22d1fccb26ec.

KERNEL.ORG. Linux Userspace SECCOMP manpage. 2019. Disponível em: http:
//man7.org/linux/man-pages/man2/seccomp.2.html.

Kernel.org. Trusted and Encrypted Keys. 2020. Disponível em: https://www.kernel.org/doc/
html/latest/security/keys/trusted-encrypted.html.

https://source.android.com/docs/security/features/trusty
https://source.android.com/docs/security/features/trusty
https://help.apple.com/pdf/security/en_US/apple-platform-security-guide.pdf
https://help.apple.com/pdf/security/en_US/apple-platform-security-guide.pdf
file:///C:/Users/Bruno/Downloads/learn_the_architecture_-_trustzone_for_aarch64_102418_0101_01_en.pdf
file:///C:/Users/Bruno/Downloads/learn_the_architecture_-_trustzone_for_aarch64_102418_0101_01_en.pdf
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov
https://lwn.net/Articles/466304/
https://sourceforge.net/p/linux-ima/wiki/Home/
https://sourceforge.net/p/linux-ima/wiki/Home/
https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
https://software.intel.com/sites/default/files/managed/7c/f1/326019-sdm-vol-3c.pdf
https://software.intel.com/sites/default/files/managed/7c/f1/332831-sdm-vol-3d.pdf
http://www.intel.com/content/www/us/en/software-developers/intel-txt-software-development-guide.html
http://www.intel.com/content/www/us/en/software-developers/intel-txt-software-development-guide.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/get-started.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/get-started.html
https://wiki.linuxfoundation.org/networking/generic_netlink_howto
https://wiki.linuxfoundation.org/networking/generic_netlink_howto
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=a2d9214c730f54ff72c2940bcd7f22d1fccb26ec
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=a2d9214c730f54ff72c2940bcd7f22d1fccb26ec
http://man7.org/linux/man-pages/man2/seccomp.2.html
http://man7.org/linux/man-pages/man2/seccomp.2.html
https://www.kernel.org/doc/html/latest/security/keys/trusted-encrypted.html
https://www.kernel.org/doc/html/latest/security/keys/trusted-encrypted.html

35

M. Jones. Invoking user-space applications from the kernel. 2010. Disponível em:
https://developer.ibm.com/articles/l-user-space-apps/.

MCKEEN, F. et al. Innovative instructions and software model for isolated execution. In:
Proceedings of the 2Nd International Workshop on Hardware and Architectural Support
for Security and Privacy. New York, NY, USA: ACM, 2013. (HASP ’13), p. 10:1–10:1. ISBN
978-1-4503-2118-1. Disponível em: http://doi.acm.org/10.1145/2487726.2488368.

MCKUSICK, M. K.; NEVILLE-NEIL, G.; WATSON, R. N. The Design and Implementation of
the FreeBSD Operating System. 2nd. ed. [S.l.] : Addison-Wesley Professional, 2014. ISBN
0321968972, 9780321968975.

MENEGUELE, B.; FONSECA, K.; ROSA, M. Secure kernel execution with intel sgx.
In: X Simpósio Brasileiro de Engenharia de Sistemas Computacionais. Porto
Alegre, RS, Brasil: SBC, 2020. p. 168–173. ISSN 2763-9002. Disponível em: https:
//sol.sbc.org.br/index.php/sbesc_estendido/article/view/13108.

Netlink Community. Netlink Protocol Library Suite (libnl). 2022. Disponível em:
https://www.infradead.org/~tgr/libnl/.

NetOS Group. ipc-bench: A UNIX inter-process communication benchmark. 2019.
Disponível em: https://www.cl.cam.ac.uk/research/srg/netos/projects/ipc-bench/.

RAJ, H. et al. ftpm: A software-only implementation of a tpm chip. In: USENIX Security.
[s.n.], 2016. Disponível em: https://www.microsoft.com/en-us/research/publication/
ftpm-software-implementation-tpm-chip/.

Red Hat Inc. What is Virtualization. 2019. Disponível em: https://www.redhat.com/en/topics/
virtualization/what-is-virtualization.

RICHTER, L. Isolation of Operating System Components with Intel SGX. May 2016.
Dissertação (Mestrado) — Friedrich-Alexander-Universitä, May 2016.

RICHTER, L.; GöTZFRIED, J.; MüLLER, T. Isolating operating system components with intel
sgx. In: Proceedings of the 1st Workshop on System Software for Trusted Execution. New
York, NY, USA: ACM, 2016. (SysTEX ’16), p. 8:1–8:6. ISBN 978-1-4503-4670-2. Disponível em:
http://doi.acm.org/10.1145/3007788.3007796.

Sabt, M.; Achemlal, M.; Bouabdallah, A. Trusted execution environment: What it is, and what it
is not. In: 2015 IEEE Trustcom/BigDataSE/ISPA. [S.l.: s.n.], 2015. v. 1, p. 57–64. ISSN null.

SPREITZER, R. et al. Systematic classification of side-channel attacks: A case study for mobile
devices. IEEE Communications Surveys & Tutorials, v. 20, n. 1, p. 465–488, 2018.

Steven Rostedt. Kernel ftrace - Kernel Function Tracer Documentation. 2017. Disponível
em: https://www.kernel.org/doc/html/latest/trace/ftrace.html.

TAN, B. et al. Towards lightweight serverless computing via unikernel as a function. In: 2020
IEEE/ACM 28th International Symposium on Quality of Service (IWQoS). [S.l.: s.n.], 2020.
p. 1–10.

Thomas Graf. Netlink Library Documentation. 2011. Disponível em: https://www.infradead.
org/~tgr/libnl/doc/core.html.

Trusted Computing Group. TPM 2.0 - A Brief Introduction. 2019. Disponível em:
https://trustedcomputinggroup.org/wp-content/uploads/2019_TCG_TPM2_BriefOverview_
DR02web.pdf.

https://developer.ibm.com/articles/l-user-space-apps/
http://doi.acm.org/10.1145/2487726.2488368
https://sol.sbc.org.br/index.php/sbesc_estendido/article/view/13108
https://sol.sbc.org.br/index.php/sbesc_estendido/article/view/13108
https://www.infradead.org/~tgr/libnl/
https://www.cl.cam.ac.uk/research/srg/netos/projects/ipc-bench/
https://www.microsoft.com/en-us/research/publication/ftpm-software-implementation-tpm-chip/
https://www.microsoft.com/en-us/research/publication/ftpm-software-implementation-tpm-chip/
https://www.redhat.com/en/topics/virtualization/what-is-virtualization
https://www.redhat.com/en/topics/virtualization/what-is-virtualization
http://doi.acm.org/10.1145/3007788.3007796
https://www.kernel.org/doc/html/latest/trace/ftrace.html
https://www.infradead.org/~tgr/libnl/doc/core.html
https://www.infradead.org/~tgr/libnl/doc/core.html
https://trustedcomputinggroup.org/wp-content/uploads/2019_TCG_TPM2_BriefOverview_DR02web.pdf
https://trustedcomputinggroup.org/wp-content/uploads/2019_TCG_TPM2_BriefOverview_DR02web.pdf

APPENDIX

37

APPENDIX A – SKEEN Architecture Internals

38

A.1 Core

SKEEN’s core is responsible for creating and maintaining all the infrastructure needed

to keep the communication from the external module, user of SKEEN’s abstraction layers, and

the userspace program interacting with the SGX enclaves. The way the core components are

tied together was previously presented in Figure 4, but to improve readability the same image is

shown as Figure 9 below.

Figure 9 – The core coordinates different instances of customer-specific components and also
manages the data flow from both up and downwards directions with a work queue hold-
ing operation requests in different states. Customers wait on completion callbacks that
are triggered by the dispatcher upon request state change events.

Source: Own Authorship (2022).

Each core component has its particularity and importance to keep the parts working

together. In the following sections these components are detailed with code snippets taken from

the SKEEN project source code repository1.

1 https://gitlab.com/radlab-utfpr/skeen-linux-kernel/-/tree/rebase-5.19/security/skeen

39

A.1.1 Contexts

Within SKEEN, a context is a structure used for holding information that connects

SKEEN’s user request to the userspace program response and also information regarding the

userspace program itself2 handling that request. With that, it can be considered that the context

is the most important data structure within SKEEN core and is used by all its components on

their operations, being passed directly as function parameter or being retrieved from a SKEEN

base request. The Listing A.1.1 shows the context structure declaration and its members.

Listing A.1 – Context structure at include/linux/skeen.h used for store information regarding the
entire data flow of a specific request.

1 /*

2 * Context related structure and functions

3 */

4 struct skeen_context {

5 struct umd_info umd_info; /* general information about umh */

6

7 struct skeen_kreq *kreq; /* request from kernel to us */

8 struct skeen_ures *ures; /* response from us to kernel */

9 unsigned int timeout; /* how long should polling lasts */

10

11 struct skeen_completion_operations *cop;

12 };

13

14 /*

15 * Internal kernel interface (callbacks) structure

16 */

17 struct skeen_completion_operations {

18 void (*recvd)(struct skeen_context *ctx);

19 void (*sent)(struct skeen_context *ctx);

20 };

Source: Own Authorship (2022).

Contexts are created from abstraction layer level, as detailed in the Appendix A.3, by

calling skeen_context_create(). While some structure members are simple to initialize,

2 A more detailed information on how the userspace program is launched and its execution is presented
in the Appendix A.2.

40

the umh_info requires specific information and attention, since it is directly related to the

userspace program memory loading and execution.

A.1.2 Requests

Requests are the base communication unit used between in the SKEEN core code. They

basically hold a context (Section A.1.1) reference and the data structures needed to maintain

a request state in a request linked list. The Listing A.1.2 shows the inner details of a request

structure.

Listing A.2 – Base request structure at security/skeen/core.c with the data to place it into a linked
list, work queue and to maintain the life cycle of a SKEEN context.

1 struct skeen_request {

2 struct list_head list;

3 struct work_struct work;

4

5 struct skeen_context *ctx;

6 req_state_t state;

7 };

Source: Own Authorship (2022).

To help the reader, this base request is not the same as a SKEEN’s user request, that is

transferred to the userspace program as part of the communication protocol. The base request

is used as a helper structure within SKEEN core to aggregate both SKEEN’s user request and

userspace program response in a single chunk of data, easing their life cycle management. Both

user’s request and userspace responses are going to be better detailed in the Section A.1.3.

Base requests are created at the same time as the contexts, as previously explained at

Section A.1.1, but different from a context, they are used as both tasks in an internal work queue

and items in a request list. The work queue allows parallel processing of different requests, while

the request list is used for maintaining the request life cycle within SKEEN’s core even after the

task related to that request were already completed.

Requests’ life cycle were presented at Section 4.3.3.

A.1.3 Communication Protocol

As presented in the Section 4.3.2, every request and its respective response is passed

through a memory that is shared between the kernel and the userspace program and is used for

a single SKEEN’s costumer at a time, preventing concurrent subsystems access vulnerabilities.

41

Before diving into the actual request and response protocol, it is fundamental to present

how the shared memory between the kernel and the user process is managed.

Shared Memory Management

The shared memory used for SKEEN’s communication protocol was implemented as a

new option for the IPC mode with UMH processes, whose had only the option of communication

through pipes. With that, the solution created also benefits any other module in the kernel willing

to use UMH for launching userspace programs from within the kernelspace.

For that, a new character driver was created exposing an interface file under

/dev/usermode. The code at drivers/char/usermode_shmem.c implements han-

dlers for the open(), close() and mmap() system calls with additional attention to prevent

memory swap and dump on the memory being allocated.

Since the userspace program execution and memory allocation happens in different ker-

nel threads, SKEEN’s context creation must be aware when both components are ready to be

used, thus begin any request/response processing. To keep these three entities in sync, a wait

queue is used to put the SKEEN context launch on hold. The wake up event is only sent when

the userspace program finally mmap()s the shared memory interface file. The Listing A.1.3

presents the mmap() handler where the wake up event is sent to all threads waiting on the wait

queue (in this case, SKEEN context launch thread).

Listing A.3 – MMAP handler in the UMH shared memory IPC driver at drivers/char/usermode_-
shmem.c. The 𝑤𝑎𝑘𝑒_𝑢𝑝() call at the end of the handler is going to wake up SKEEN’s
context launch thread.

1 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)

2 {

3 int err;

4 /* ipc.shm_info was already assigned on userprocess creation */

5 struct umd_shmem *shm_info = &(current->umd_info->ipc.shm_info);

6 void *addr = kzalloc(UMD_SHMEM_LEN, GFP_KERNEL);

7 phys_addr_t paddr = virt_to_phys(addr);

8

9 /* make page non-swappable, always on memory after first access

*/

10 SetPageReserved(virt_to_page(addr));

11

12 vma->vm_ops = &vma_remap_ops;

13 /* protect memory from some runtime operations */

42

14 vma->vm_flags = VM_SHARED|VM_LOCKED|VM_DONTEXPAND|VM_DONTDUMP;

15 err = remap_pfn_range(vma, vma->vm_start, paddr >> PAGE_SHIFT,

16 vma->vm_end - vma->vm_start,

17 vma->vm_page_prot);

18 if (err)

19 return -EAGAIN;

20

21 vma->vm_private_data = addr;

22 /* prepare to launch kthreads waiting on shm */

23 shm_info->mm_map = addr;

24 shm_info->wait_event = 1;

25 wake_up(&shmem_wait_queue);

26 return 0;

27 }

Source: Own Authorship (2022).

And the code being waked up by the mmap() is presented in the Listing A.1.3.

Listing A.4 – Code to launch SKEEN’s context processing at security/skeen/core.c, from receiv-
ing the kernelspace module request, to launching the userspace program. This code
waits until the userspace program mmaps the UMH shared memory.

1 static void skeen_context_launch(struct work_struct *work)

2 // ...

3

4 err = umd_load_blob(&ctx->umd_info, &skeen_umh_start,

5 &skeen_umh_end - &skeen_umh_start);

6 if (err)

7 return;

8

9 fork_usermode_driver(&ctx->umd_info, UMD_IPC_SHMEM);

10 pr_info("skeen: userspace program called with pid: %d\n",

11 pid_nr(ctx->umd_info.tgid));

12 shm_info = &ctx->umd_info.ipc.shm_info;

13

14 /* Wait until userspace process mmap’s the usermode shm */

15 wait_event(shmem_wait_queue, shm_info->wait_event != 0);

16 kreq = kzalloc(sizeof(struct skeen_kreq), GFP_KERNEL);

43

17 if (!kreq)

18 return;

19 ctx->kreq = kreq;

20

21 // ...

22 }

Source: Own Authorship (2022).

In-depth details regarding the userspace program loading and execution is presented in

the Appendix A.2.

A.1.4 Requests and Responses

Both requests and responses flowing through SKEEN’s communication channel have a

specific data structure to allow continuous mapping of their data to which kernelspace subsystem

that data request or response belongs to.

The data structure for both request and response are similar, with only one different field,

and could have been merged into a single structure, however, to increase flexibility for future

features, two different structures were created. In the Listing A.1.4 both request and response

structures are presented.

Listing A.5 – Request and response data structure declaration at include/uapi/linux/skeen/proto-
col.h. They are quite similar and the only field that differentiates is the first field into
fields structure, where for the userspace response retval is used while for the ker-
nelspace request it is an opcode field.

1 /* SKEEN underneath protocol structure.

2 * Every other abstraction should fit it */

3 struct skeen_ures {

4 struct {

5 uint32_t id;

6 } header;

7 union {

8 uint8_t data[SKEEN_PROTO_MAX_PAYLOAD_LEN];

9 struct {

10 skeen_proto_retval_t retval;

11 uint32_t data_len;

12 uint8_t data[SKEEN_PROTO_MAX_DATALEN];

13 } fields;

44

14 } payload;

15 uint8_t private[8];

16 /* align structure to 64 bits */

17 uint8_t reserved[12];

18 } __attribute__((packed));

19

20 struct skeen_kreq {

21 struct {

22 uint32_t id;

23 } header;

24 union {

25 uint8_t data[SKEEN_PROTO_MAX_PAYLOAD_LEN];

26 struct {

27 skeen_proto_opcode_t opcode;

28 uint32_t data_len;

29 uint8_t data[SKEEN_PROTO_MAX_DATALEN];

30 } fields;

31 } payload;

32 uint8_t private[8];

33 /* align structure to 64 bits */

34 uint8_t reserved[12];

35 } __attribute__((packed));

Source: Own Authorship (2022).

The declaration was placed in a specific SKEEN UAPI header, which is installed into

system’s userspace at /usr/include/skeen/ directory, making it available to userspace

programs and, consequently, preventing structure declaration issues.

The private field was added to for internal SKEEN use, with no direct relation to the data

being transmitted. However, in the current state of the project, this field is not used.

A.2 Userspace Program

In order to narrow the attacker’s surface to SKEEN’s userspace program the mechanism

Usermode Helper was used to load and execute a binary blob from within the kernel image

as a userspace application. The same mechanism is used by the kernel initialization code to

instantiate the init process.

45

A.2.1 Binary Placement

At first glance, the userspace application can be compiled as usual: using the standard

kernel Kbuild infrastructure with specific userspace Makefile targets, however, the binary will

be executed by the UMH mechanism later, which explicitly requires a reference to the binary’s

start point (memory address) and also its total size, forcing an explicit amendment to the kernel

image, as shown in Listing A.2.1.

Listing A.6 – Assembly code at security/skeen/umh_blob.S to explicitly include the binary blob
into kernel’s image as a read-only data.

1 .section .rodata, "a"

2 .global skeen_umh_start

3 skeen_umh_start:

4 .incbin "security/skeen/skeen_us"

5 .global skeen_umh_end

6 skeen_umh_end:

Source: Own Authorship (2022).

Compiling the above code appends the userspace binary blob to the kernel’s image.

Later, both skeen_umh_start and skeen_umh_end are used to calculate the binary size

to be used at binary execution.

A.2.2 Application Compilation

The userspace program must be compiled alongside the kernel image, but many different

cares must be taken with relation to linkage options to allow it to be compiled with SGX support.

The Listing A.2.2 presents part of the linking flags used to link the trusted portions of SKEEN’s

userspace program. Most of the options were taken from the Intel SGX SDK3 code and are re-

quired to make sure the default options do not interfere with the SGX usage: no system standard

library or header should be used, but only those exposed by the SDK, also, the trusted portion is

loaded into an SGX enclave at runtime as a shared library, meaning that the standard execution

stack should not be handled by regular rules, and so forth.

Listing A.7 – Compilation and linking options for the trusted portion of userspace’s program at
security/skeen/Makefile.

1 T_CFLAGS := $(T_INCLUDE_PATH) -nostdinc -fvisibility=hidden -fpie -

ffunction-sections -fdata-sections

2 T_LDFLAGS_SEC := -Wl,-z,relro,-z,now,-z,noexecstack -Wl,-fuse-ld=gold

-Wl,--rosegment

3 https://github.com/intel/linux-sgx

46

3

4 T_LDFLAGS := $(T_LDFLAGS_SEC) \

5 -nostdlib -nodefaultlibs -nostartfiles -L$(SGX_LIBRARY_PATH) \

6 -Wl,--no-undefined -Wl,--whole-archive -l$(TRTS_LIB) -Wl,--no-

whole-archive \

7 -Wl,--start-group -lsgx_tstdc -lsgx_tcrypto -l$(TSERVICE_LIB) -Wl

,--end-group \

8 -Wl,-Bstatic -Wl,-Bsymbolic -Wl,--no-undefined \

9 -Wl,-pie,-eenclave_entry -Wl,--export-dynamic \

10 -Wl,--defsym,__ImageBase=0 -Wl,--gc-sections \

11 -Wl,--version-script=$(T_LDS)

Source: Own Authorship (2022).

Any library needed by the userspace application must be statically linked in this step,

otherwise the application will not be able to find the shared library in case it is launched before

the rootfs is fully mounted and ready to be used. This relates directly to the issues mentioned at

Section 5.3.1.

A.2.3 Application Execution

Executing the userspace program demands three different stages, binary blob memory

loading, launching and healthy check, the following sections show each of these stages.

Binary Loading

When a new request is created by a SKEEN’s abstraction layer user a new context is

created and the userspace application to handle the SGX enclaves starts to be prepared. The

first step is to load the binary blob into userspace memory and save a reference to it into a

umd_driver structure, as shown in the Listing A.2.3 and Listing A.2.3.

Listing A.8 – UMH call at security/skeen/core.c to explicitly load the binary into userspace’s mem-
ory.

1 static void skeen_context_launch(struct work_struct *work)

2 // ...

3 err = umd_load_blob(&ctx->umd_info, &skeen_umh_start,

4 &skeen_umh_end - &skeen_umh_start);

5 if (err)

6 return;

47

7 // ...

8 }

Source: Own Authorship (2022).

Listing A.9 – UMH driver declaration at include/linux/usermode_driver.h with the reference to the
userspace memory.

1 struct umd_shmem {

2 void *mm_map;

3 int wait_event;

4 };

5

6 struct umd_ipc {

7 int mode;

8 struct umd_shmem shm_info;

9 struct file *pipe_to_umh;

10 struct file *pipe_from_umh;

11 };

12

13 struct umd_info {

14 const char *driver_name;

15 struct umd_ipc ipc;

16 struct path wd;

17 struct pid *tgid;

18 };

Source: Own Authorship (2022).

In the Listing A.2.3, both umd_ipc and umd_shmem structures were added to the UMH

mechanism on SKEEN development as part of the Shared Memory IPC mode support imple-

mentation, in order to allow better separation and selection of IPC modes.

Binary Launching

Once the binary is loaded, it can be executed by directly calling kernel’s exec system call

through a wrapper on UMH module. The binary memory is allocated to a new userspace process,

which is asynchronously placed in a work queue for the execve() call. The Listing A.2.3 shows

the wrapper being called at SKEEN’s core code.

48

Listing A.10 – UMH execution call at security/skeen/core.c. fork_usermode_driver() is a wrapper
around the execve() operation with additional code to handle the IPC setup process.
The previously loaded memory is then executed as a userspace process.

1 static void skeen_context_launch(struct work_struct *work)

2 // ...

3 fork_usermode_driver(&ctx->umd_info, UMD_IPC_SHMEM);

4 pr_info("skeen: userspace program called with pid: %d\n",

5 pid_nr(ctx->umd_info.tgid));

6 // ...

7 }

Source: Own Authorship (2022).

Healthy Check

Once the binary is executed, the first thing that should happen is a healthy check from

SKEEN’s core to userspace’s program, ensuring the program started fine and that the commu-

nication channel is working correctly. However, as mentioned in Section A.1.3, the core code will

wait until userspace program mmap()s the UMH shared memory created by SKEEN to then

perform the healthy check, preventing data loss due to launching delays.

In Listing A.2.3 it is possible to see different error cases where the healthy check might

fail. In Listing A.2.3 is the actual check code to ensure a dummy request with a small data (e.g.

hello) reaches userspace. In the same way, a response from userspace is expected to make

kernel side under a certain timeout threshold.

Listing A.11 – Valid return codes for the healthy check code at security/skeen/core.c, triggered on
context launch phase.

1 static void skeen_context_launch(struct work_struct *work)

2 // ...

3 if ((err = skeen_umh_health_check(ctx)) != 0) {

4 switch (err) {

5 case -ENOMEM:

6 pr_err("skeen: failed to allocate data\n");

7 break;

8 case -ETIME:

9 pr_err("skeen: failed to receive data in time\n");

10 break;

11 case 1:

49

12 pr_err("skeen: userspace program not healthy\n");

13 break;

14 default:

15 pr_info("skeen: healthy check succeeded\n");

16 break;

17 }

18

19 return;

20 }

21 // ...

22 }

Source: Own Authorship (2022).

Listing A.12 – Code to handle the healthy check logic at security/skeen/core.c. Since this code is
ran strictly by SKEEN core before enabling any other data flow starts, the request
list and work queue is bypassed.

1 static int skeen_umh_health_check(struct skeen_context *ctx)

2 {

3 struct skeen_request *req;

4 struct skeen_context **pctx = &ctx;

5 char *kreq_data = "hello";

6 char *ures_data;

7

8 req = container_of(pctx, struct skeen_request, ctx);

9

10 /* send the healthy data to userspace process */

11 skeen_proto_set_opcode(ctx->kreq, SKEEN_PROTO_OP_HEALTHY);

12 skeen_proto_set_data(ctx->kreq, kreq_data, 6);

13

14 /* health check is executed to make sure the userspace process is

15 * actually running, before any other work can actually be

16 * performed, because of that, call the __request_* functions

17 * directly, bypassing workqueue */

18 __request_send(&req->work);

19

20 /* [debug-mode] poll the memory forever */

50

21 ctx->timeout = 0;

22 __request_recv_poll(&req->work);

23 if (PTR_ERR(ctx->ures) == -ETIME)

24 return -ETIME;

25

26 ures_data = kmalloc(SKEEN_PROTO_MAX_DATALEN, GFP_KERNEL);

27 if (!skeen_proto_check_crc32(ctx->ures) ||

28 (skeen_proto_get_retval(ctx->ures) != SKEEN_PROTO_RET_OK) ||

29 (skeen_proto_get_data(ctx->ures, ures_data,

30 SKEEN_PROTO_MAX_DATALEN) != 6)) {

31 pr_info("skeen: health check failed: %d %s\n",

32 ctx->ures->header.id, ures_data);

33 return -1;

34 }

35

36 if (!memcmp(ures_data, kreq_data, 6))

37 return -1;

38

39 return 0;

40 }

Source: Own Authorship (2022).

On userspace side the code is similar, the only caution is to read the shared memory

following the convention presented in Section 4.3.2, where the memory is divided into two parts,

being that one is a circular buffer for requests and the second is a circular buffer for responses.

With that, SKEEN core must write directly to the first address of the shared memory, while the

userspace writes to the beginning of UMH_SHM_LEN/2, where UMH_SHM_LEN is the total size

of the shared memory allocated by UMH.

Once the healthy check is complete, requests and responses start to be processed fol-

lowing the standard mechanisms implemented.

A.3 Abstraction Layer

When a new module is created to implement a new cryptographic algorithm or just to

implement a known algorithm using different techniques within the kernel, this new module must

be registered and adhere to the standard crypto subsystem interface, allowing other modules to

51

use this new implementation just by changing the algorithm driver name, but keeping the function

calls and callbacks the same.

In this appendix some snippets are shown to exemplify how an AES algorithm imple-

mented within a SGX enclave can be called from another kernel module using the SKEEN ab-

straction layer for cryptography.

A.3.1 Driver Registration

The SKEEN abstraction layer for the AES cryptographic algorithm implemented within a

SGX enclave is used as the new module that must be registered into the crypto subsystem as

an algorithm driver and also adhere to the subsystem’s interface. The Listing A.3.1 shows how

the registration is done by defining the crypto_alg structure.

Listing A.13 – SKEEN crypto abstraction layer registration as a new and valid cryptographic mod-
ule. It is valid to note that the headers needed to compile this code were not included
just for the sake of brevity.

1 static struct crypto_alg skeen_aes_alg = {

2 .cra_name = "skeen-aes",

3 .cra_driver_name = "skeen-aes",

4 .cra_priority = 100,

5 .cra_flags = CRYPTO_ALG_TYPE_CIPHER,

6 .cra_blocksize = AES_BLOCK_SIZE,

7 .cra_ctxsize = sizeof(struct crypto_aes_ctx),

8 .cra_module = THIS_MODULE,

9 .cra_u = {

10 .cipher = {

11 .cia_min_keysize = AES_MIN_KEY_SIZE,

12 .cia_max_keysize = AES_MAX_KEY_SIZE,

13 .cia_setkey = skeen_aes_setkey,

14 .cia_encrypt = skeen_aes_encrypt,

15 .cia_decrypt = skeen_aes_decrypt,

16 }

17 },

18 .cra_init = skeen_aes_init,

19 .cra_exit = skeen_aes_exit,

20 };

21

52

22 static int __init skeen_aes_mod_init(void)

23 {

24 pr_info("skeen-crypto: registering AES alg\n");

25 return crypto_register_alg(&skeen_aes_alg);

26 }

27

28 static void __exit skeen_aes_mod_exit(void)

29 {

30 crypto_unregister_alg(&skeen_aes_alg);

31 }

32

33 late_initcall(skeen_aes_mod_init);

34 module_exit(skeen_aes_mod_exit);

35

36 MODULE_DESCRIPTION("SKEEN AES Crypto Interface");

37 MODULE_ALIAS_CRYPTO("skeen-aes");

Source: Own Authorship (2022).

Since the AES algorithm is also present in the generic kernel code, the default values

for some of the fields were used from the generic kernel header crypto/aes.h, but in case

a different algorithm, not present in the current version of the kernel, is used, the values would

respect the algorithm specification.

Once the abstraction layer is registered as a bew algorithm driver in the crypto sub-

system, a module, user of the abstraction layer, can use it only by changing the driver name

to skeen-aes in the crypto_alloc_tfm() call, or any other wrapper. The Listing A.3.1

shows how the request for SKEEN’s abstraction layer can be done from an external module

willing to use it.

Listing A.14 – Initial algorithm driver request using the standard SKCipher crypto subsystem in-
terface, which wraps more basic and low-level functions, and the set key operation
for later encryption and decryption operations.

1 char key[16] = {0}; /* BAD key, that’s just an _example_ */

2 struct crypto_skcipher *tfm = crypto_alloc_skcipher("skeen-aes", 0,

0);

3 crypto_skcipher_setkey(tfm, key, sizeof(key));

Source: Own Authorship (2022).

53

A.3.2 Driver Usage

To help understanding the module usage it is important to note that the abstraction layer

was divided in two different scoped modules:

1. AES Module: used to register the module in the crypto subsystem;

2. SKEEN Core Interface: used to communicate the crypto data to the SKEEN core.

Therefore, hereafter called inner scope due to its proximity to the SKEEN core when

compared to the other scope.

The code shown in the Listing A.3.1 comes from the AES Module scope and every

function pointed in the crypto_alg structure definition is present in the same scope. These

functions are simple wrappers calling code from the SKEEN Core Interface scope with argu-

ments passed by the user of crypto abstraction layer, for instance, buffers containing data and

keys and operation code for both encryption and decryption operations, as can be seen in the

Listing A.3.2

Listing A.15 – Functions from the abstraction layer AES Module scope, calling a single function
from SKEEN Core Interface scope to pass specific information from the abstraction
layer user and the required code of the cryptographic operation.

1 static int skeen_aes_setkey(struct crypto_tfm *tfm, const u8 *key,

2 unsigned int keylen)

3 {

4 u8 aes_key = key;

5 skeen_crypto_op_t opcode = SKEEN_CRYPTO_OP_SETKEY;

6 return skeen_crypto_exec(tfm, opcode, aes_key, &keylen);

7 }

8

9 static void skeen_aes_encrypt(struct crypto_tfm *tfm, u8 *dst,

10 const u8 *src)

11 {

12 u8 *input_buffer = src;

13 skeen_crypto_op_t opcode = SKEEN_CRYPTO_OP_ENCRYPT;

14

15 if (skeen_crypto_exec(tfm, opcode, dst, input_buffer))

16 memset(dst, 0, 16);

17 }

18

54

19 static void skeen_aes_decrypt(struct crypto_tfm *tfm, u8 *dst,

20 const u8 *src)

21 {

22 u8 *input_buffer = src;

23 skeen_crypto_op_t opcode = SKEEN_CRYPTO_OP_DECRYPT;

24

25 if (skeen_crypto_exec(tfm, opcode, dst, input_buffer))

26 memset(dst, 0, 16);

27 }

Source: Own Authorship (2022).

The function skeen_crypto_exec() is the entry point for the inner scope that han-

dles the actual SKEEN core interface, maintaining the data flow from the kernelspace subsystem

SKEEN costumer and the userspace program through an internal context reference, which is

used for waiting the whole data flow cycle completion.

The aforementioned internal context that is kept for future use is created when a module

willing to use a cryptographic algorithm calls the function crypto_alloc_tfm() or other

wrappers like crypto_alloc_skcipher(), leading directly to the execution of the function

defined at the crypto_alg.cra_init structure field, and thus, to the creation of the context

that is used throughout the abstraction layer as reference for the caller’s request.

Each time a new module allocates SKEEN’s abstraction layer as their crypto algorithm

driver, a new context is created and kept in a dedicated linked list known only by the abstraction

layer, meaning that this list is not maintained by SKEEN core. The reason for keeping the context

control at the abstraction layer level is to avoid increasing core’s complexity for each SKEEN

costumer with different requirements.

The Listing A.3.2 shows the code that creates the internal context and later, in the List-

ing A.3.2, how it is used for setting the key for a specific request.

Listing A.16 – Internal context creation to maintain the data flow from kernelspace module to the
userspace program interacting with SGX enclaves. This context is a way to keep
track of the actual crypto subsystem context, the module that called for it (user)
and SKEEN core context.

1 /*

2 * AES Module scope at security/skeen/crypto_aes.c

3 */

4

5 /* We need a way to link crypto_aes_ctx to our internal skeen_context

. It’s

55

6 * done with an intermediate context object, skeen_crypto_context,

which

7 * basically contains both contexts into it and must be initialized

before

8 * the crypto algo actually is ready for performing any action */

9 static int skeen_aes_init(struct crypto_tfm *tfm)

10 {

11 struct crypto_aes_ctx *tfm_ctx = crypto_tfm_ctx(tfm);

12 int err;

13

14 err = skeen_crypto_ctx_init(tfm_ctx);

15 if (err)

16 return err;

17

18 return 0;

19 }

20

21 /*

22 * Inner scope at security/skeen/crypto.c

23 */

24

25 LIST_HEAD(ctx_list);

26

27 int skeen_crypto_ctx_init(void *tfm_ctx)

28 {

29 struct skeen_crypto_context *ictx;

30

31 ictx = kzalloc(sizeof(struct skeen_crypto_context), GFP_KERNEL);

32 if (!ictx)

33 return -ENOMEM;

34

35 ictx->skeen_ctx = skeen_context_create("skeen_crypto");

36 if (IS_ERR(ictx->skeen_ctx))

37 return PTR_ERR(ictx->skeen_ctx);

56

38

39 ictx->skeen_ctx->cop = &complete_ops;

40 ictx->tfm_ctx = tfm_ctx;

41 init_completion(&ictx->completion);

42 list_add_tail(&ictx->list, &ctx_list);

43

44 return 0;

45 }

Source: Own Authorship (2022).

Listing A.17 – Function for the setkey operation. The code initializes the request and response
structures and populates the request with the key to be set and the operation code
to be passed to the AES algorithm within the SGX enclave. The request is then sent
and the function waits for the response.

1 static int __crypto_exec_setkey(struct skeen_crypto_context *ctx,

2 const u8 *key, unsigned int keylen)

3 {

4 struct skeen_kreq *kreq;

5 struct skeen_ures *ures;

6 u8 *data = (u8 *)key;

7 u32 data_len = (u32)keylen;

8 int err = 0;

9

10 kreq = kzalloc(sizeof(struct skeen_kreq), GFP_KERNEL);

11 ures = kzalloc(sizeof(struct skeen_ures), GFP_KERNEL);

12 ctx->skeen_ctx->kreq = kreq;

13 ctx->skeen_ctx->ures = ures;

14

15 skeen_proto_set_opcode(kreq, SKEEN_PROTO_CRYPTO_OP_SETKEY);

16 skeen_proto_set_data(kreq, data, data_len);

17

18 err = skeen_request_send(ctx->skeen_ctx);

19 if (err)

20 return err;

21

22 wait_for_completion(&ctx->completion);

57

23 err = skeen_proto_get_retval(ures);

24 return err;

25 }

Source: Own Authorship (2022).

The waiting operation uses the standard kernel’s completion API, which is built on top

of the wait queue and wake up infrastructure of the scheduler, meaning that it does not use

conventional mechanisms as mutex, semaphore or busy-wait, but a lightweight and low-level

solutions that allows other threads in the same CPU core to run until a specific event is yielded.

The code for the entire SKEEN project can be found on its own Git repository4.

4 https://gitlab.com/radlab-utfpr/skeen-linux-kernel/-/tree/rebase-5.19/security/skeen

	Dedication
	Acknowledgements
	Resumo
	Abstract
	List of Tables
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Objectives

	2 Similar Projects
	2.1 TresorSGX
	2.1.1 Netlink

	2.2 Linux TEE subsystem
	2.3 Library Operating Systems and Unikernels

	3 Use cases
	3.1 Firmware TPM
	3.2 Kernel Internal Structures

	4 Methodology
	4.1 Background
	4.1.1 Software Guard Extension
	4.1.2 Linux Usermode Helper

	4.2 Threat Model and Assumptions
	4.3 Architecture
	4.3.1 Userspace Program (Proxy)
	4.3.2 Interprocess Communication
	4.3.3 Kernelspace Module
	4.3.4 SGX Enclave
	4.3.5 Data Flow

	5 Results and Discussion
	5.1 Security Implications
	5.2 Performance Comparison
	5.2.1 Architecture Bootstrap
	5.2.2 Interprocess Communication

	5.3 Difficulties found
	5.3.1 Static library

	5.4 Future work
	5.4.1 Development Environment

	6 Conclusion
	Bibliography
	Appendix
	A SKEEN Architecture Internals
	A.1 Core
	A.1.1 Contexts
	A.1.2 Requests
	A.1.3 Communication Protocol
	A.1.4 Requests and Responses

	A.2 Userspace Program
	A.2.1 Binary Placement
	A.2.2 Application Compilation
	A.2.3 Application Execution

	A.3 Abstraction Layer
	A.3.1 Driver Registration
	A.3.2 Driver Usage

