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RESUMO

JORGE, Oliver Cabral. Recuperação de vídeos baseada em conteúdo a partir de linguagem
natural. 2022. 87 f. Dissertation (Master em Electrical Engineering and Industrial Informatics) –
Federal University of Technology - Paraná. Curitiba, 2022.

Cada vez mais os vídeos estão se tornando os meios mais comuns de comunicação, alavancadas
pela popularização de aparelhos acessíveis de gravação de vídeos e pelas redes sociais como
TikTok, Instragram e demais. As formas mais comuns de pesquisa de vídeos nestas redes sociais
bem como nos portais de buscas, se baseiam em metadados vinculados aos vídeos por meio
de palavras-chaves e classificações prévias. No entanto, buscas por palavras-chaves dependem
de um conhecimento exato do que se deseja, e não necessariamente podem ser eficientes ao
tentar encontrar um determinado vídeo a partir de uma descrição, superficial ou não, de uma
determinada cena, podendo incorrer em resultados frustrantes da busca. O objetivo deste trabalho
é encontrar um determinado vídeo dentro de uma lista de vídeos disponíveis a partir de uma
descrição textual em linguagem natural baseado apenas no conteúdo de suas cenas, sem depender
de metadados previamente catalogados. A partir de um dataset contendo vídeos com um número
definido de descrições de suas cenas, foi modelada uma rede siamesa com função de perda tripla
para identificar, em um hiperespaço, as similaridades entre duas modalidades diferentes, sendo
uma delas as informações extraídas de um vídeo, e a outra as informações extraídas de um texto
em linguagem natural. A arquitetura final do modelo, bem como os valores de seus parâmetros, foi
definida baseada em testes que seguiram os melhores resultados obtidos. Devido ao fato de que os
vídeos não são classificados em grupos ou classes e considerando que a função de perda tripla se
baseia em um texto âncora e dois exemplos de vídeos, um positivo e um negativo, foi identificada
uma dificuldade na seleção de exemplos falsos necessários para o treinamento da arquitetura.
Desta forma, também foram testados métodos de escolha de exemplos de vídeos negativos para
treinamento utilizando uma escolha aleatória e uma escolha direcionada, baseada nas distâncias
das descrições disponíveis dos vídeos em fase de treinamento, sendo a primeira a mais eficiente.
Ao final dos testes, foi alcançado um resultado com presença exata do vídeo buscado em 10,67%
dos casos no top-1 e em 49,80% dos casos no top-10. Mais do que os resultados numéricos, foi
feita uma análise qualitativa dos resultados. Desta análise, foi identificado que o modelo não
se comporta de forma satisfatória para buscas em palavras atômicas, com melhores resultados
em descrições mais complexas. Os bons resultados também estão principalmente relacionados
ao uso de verbos e substantivos, e menos aos adjetivos e advérbios. Ainda, observou-se que os
vídeos retornados possuem, de alguma forma, similaridades de cenas ou de tópicos com o texto
procurado, indicando que a rede identificou o significado do texto procurado. De maneira geral,
os resultados obtidos são promissores e encorajam a continuidade da pesquisa. Trabalhos futuros
incluirão o uso de novos modelos de extração de informação de vídeos e de textos, bem como
maior aprofundamento na escolha de exemplos negativos de vídeos para reforçar o treinamento.

Palavras-chave: Multimodalidade. Deep Learing. Recuperação de Vídeo. Linguagem Natural.



ABSTRACT

JORGE, Oliver Cabral. Content-Based Video retrieval from natural language. 2022. 87 p.
Dissertation (Master’s Degree in Electrical Engineering and Industrial Informatics) – Federal
University of Technology - Paraná. Curitiba, 2022.

More and more, videos are becoming the most common means of communication, leveraged by
the popularization of affordable video recording devices and social networks such as TikTok,
Instagram, and others. The most common ways of searching for videos on these social networks
as well as on search portals are based on metadata linked to videos through keywords and
previous classifications. However, keyword searches depend on exact knowledge of what you
want and may not necessarily be efficient when trying to find a particular video from a description,
superficial or not, of a particular scene, which may lead to frustrating results in the search. The
objective of this work is to find a particular video within a list of available videos from a textual
description in natural language based only on the content of its scenes, without relying on
previously cataloged metadata. From a dataset containing videos with a defined number of
descriptions of their scenes, a Siamese network with a triplet loss function was modeled to
identify, in hyperspace, the similarities between two different modalities, one of them being the
information extracted from a video, and the other information extracted from a text in natural
language. The final architecture of the model, as well as the values of its parameters, was defined
based on tests that followed the best results obtained. Because videos are not classified into
groups or classes and considering that the triplet loss function is based on an anchor text and
two video examples, one positive and one negative, a difficulty was identified in the selection
of false examples needed for the model training. In this way, methods of choosing examples of
negative videos for training were also tested using a random choice and a directed choice, based
on the distances of the available descriptions of the videos in the training phase, being the first
the most effective. At the end of the tests, a result was achieved with the exact presence of the
searched video in 10.67% of the cases in the top 1 and 49.80% of the cases in the top 10. More
than the numerical results, a qualitative analysis of the results was conducted. From this analysis,
it was identified that the model does not behave satisfactorily for searches in atomic words, with
better results in more complex descriptions. Satisfactory results are also mainly related to the use
of verbs and nouns, and less to adjectives and adverbs. Still, it was observed that the returned
videos have, in some way, similarities of scenes or topics with the searched text, indicating that
the network identified the meaning of the original text query. In general, the results obtained
are promising and encourage the continuity of the research. Future work will include the use of
new models for extracting information from videos and texts, as well as further studies into the
controlled choice of negative video examples to reinforce training.

Keywords: Multimodality. Deep Learning. Video Retrieval. Natural Language.
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1 INTRODUCTION

The easy access to video recording devices, such as smartphones, handheld cameras,

and web cameras, has led to an exponential increase in video production worldwide. A huge

percentage of the daily information is recorded in video formats and quickly spread online

following a new generation of “always connected” mindset (VORDERER; KLIMMT, 2020).

Commercial content, personal videos, official speeches, life logs, and even new types of jobs such

as “digital influencers”, which pursue virtual influence by constantly creating new media content

using specific channels and strategies to reach the biggest amount of viewers possible (COTTER,

2019), are generating visual information at a very fast pace, getting to thousands of hours of

videos per day. On YouTube, a popular online social media platform for video publication, over

720,000 hours of video are uploaded daily (Mohsin, Maryam, 2021).

With that number of new videos being produced, it is becoming crucial to have ways to

retrieve meaningful content in an easy and comprehensible way. Popular online search engines

(such as Google, Yahoo, and Bing), specialized video search engines (such as YouTube), or even

streaming service providers (such as Netflix and Amazon Prime) all have in common that the

searches are based on previously indexed texts that are related to the video.

Textual searches that rely on previously produced metadata such as tags, video de-

scriptions, and video names, are an efficient way to retrieve a specific video, but they require

huge previous efforts to produce such metadata. This approach, even being extremely effective

and widely used, requires that the correct words are used to retrieve the expected video, as the

query is based on the match between what is being queried and the available indexed metadata

information.

The way a person thinks about a video or scene may work in a wide range of ways,

which takes into consideration specific scene memories, phrases spoken during the recorded

video, space descriptions, and a mixture of visual, audio, and other modalities that will create the

semantic expectation of what is to be queried. When the semantic expectation is clear, but the

specific indexed words are not used on the search query, it may produce wrong video retrievals

and frustration.

Searches based on object or action descriptions that may be available in a very specific

frame range of a large video are even harder to be retrieved if it relies on regular text-to-text

searches. Then, given a text that describes what is being searched, how can we retrieve a video
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that is not labeled or categorized and so there is no index terms to support the search?

The above-mentioned issues led to a growing area of study aiming at retrieving a video

from a given text in Natural Language (NL) using a multimodal approach.

Multimodality is not a new area of study. In linguistics, it has been used for a few

decades, described as a way to “make meanings in a variety of different ways” (BEZEMER;

JEWITT, 2018). Similarly, in the computation science area, multimodality can be understood as

a system that responds to more than one modality or communication channel (JAIMES; SEBE,

2007). Therefore, it is possible to assert that it is expected that the multimodality will make

a semantic bridge between several different modalities (i.e., image, audio, text, and videos)

reducing the gap between the human perception of the world and the computational relation of

different modalities and so, information recovering.

The main issue raised is how to teach a computer system the similarity between two

different modalities. One of the most common approaches is to create an embedding space in

which two different modalities are compared, teaching the specific models how to identify the

similarities among them. Based on this approach, it is possible to minimize the semantic gap,

meaning the difference between the previously stated human expectations and the automatic

extraction of low-level features between a text query and video content, removing the need to

rely on indexed terms to search and retrieve a video (ENSER; SANDOM, 2003). Descriptions

of a scene such as “a boy wearing a blue jacket playing outside” will be capable of retrieving

videos that best represents what is being queried.

This work addresses the problem of retrieving a ranked list of meaningful videos based

on a description of a particular scene using a free text sentence. The existing studies commonly

focus on improved ways to extract features from the source video and sentences ignoring the

relevance of the learning in the embedding space.

1.1 OBJECTIVES

1.1.1 General Objective

The objective of this work is to propose a method to retrieve a ranked list of meaningful

videos, out of an unlabeled video database, based on the video’s semantic content using a NL

query as input.
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1.1.2 Specific Objectives

• To create a common hyperspace between videos and texts, where modalities with similar

semantic meanings are close to each other.

• To perform an in-depth study over a model to observe the influence of parameters and

methods in the task of video retrieval based on a NL entry.

• To propose an intelligent method for the selection of the training samples so as to improve

similarity learning in the absence of labeled data.

1.2 STRUCTURE OF THE DISSERTATION

This work is structured as follows: Chapter 2 presents the theoretical background needed

to perform the experiments in this work as well as the relevant related work found in the video

retrieval literature. Chapter 3 presents the methods and data used to perform the video retrieval

from NL texts. Chapter 4 presents the experiments and results obtained by this work as well as a

comparison and discussion of those results. Chapter 5 presents the conclusions and future works.
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2 THEORETICAL BACKGROUND AND RELATED WORKS

This Chapter first presents the theoretical background needed to perform this work,

followed by the most recent literature about the problem, showing the main methods, data and

results.

2.1 THEORETICAL BACKGROUND

2.1.1 Neural Networks

NN, also called Artificial Neural Networks (ANN), are computational methods that try

to replicate the learning and decision capabilities of biological neural networks. This science

field was initially theorized by McCulloch and Pitts (1943) which proposed a mathematical

“neuron” model, illustrated in Figure 1, that would act in a binary decision model which accepted

binary values as entries. Based on an aggregation function, it would activate or not the neuron in

a synchronous sequence. Even thou it seems too simple for today’s computational power and

complexity, this model opened the studies for the NN.

Figure 1 – McCulloch-Pitts Neuron representation. The neuron accepts binary values (Xn) that feeds an
aggregation function (f ) to formulate a binary output (g).

Source: Author.

As the NN evolved, and the computational power increased, newer models were theo-

rized, by connecting several neurons, adding activation functions, layers, asynchronous calcula-

tions, and weight sharing, being the base for the Machine Learning (ML) area.
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2.1.2 Deep Learning

Using a very complex architecture of many connected NN layers, DL is a sub-field of

ML that is capable of abstracting meaningful information from a given input data to automatically

learn its representation and make decisions based on adaptable parameters values (weights),

which connects different neurons, as shown in Figure 2.

Figure 2 – DL representation. Layers of NN are connected one after the other increasing the number of
calculated weights as it gets deeper.

Source: Author.

As more layers are connected, more parameter values are needed to be calculated,

requiring a very high computational power to complete its training. To help the training task, it is

common to use Graphics Processing Units (GPU) to take advantage of its parallel processing

capabilities.

In this work, the two DL architectures used are: CNN and RNN.

2.1.3 Convolutional Neural Networks

Mainly used in Computer Vision (CV) to analyze visual contents, CNN is a DL archi-

tecture that can translate a complex grid of information, usually an image, into a feature map

representation through convolutional layers. This abstract representation of the original input

allows the CNN to learn from the input’s most meaningful information to classify the input data



20

based on the learned parameter values. Figure 3 represents a CNN model.

Figure 3 – CNN representation. The input layer receives the data to be processed. The hidden layer performs
convolution and pooling using a kernel to reduce the size of the original data. The output layer
performs the classification.

Source: Author.

A CNN is composed of an input layer, one or more hidden layers, and an output layer.

The input layer receives the data that feeds the model, usually an image.

The hidden layer may have one or more of the basic layers, convolutional and pooling.

The convolutional layer is responsible to perform a mathematical transformation called convolu-

tion, using a kernel, or sliding window, which slides across the input object, being activated by

an activation function that creates the mapping feature representation. The pooling layer reduces

the size of the mapping feature by applying a mathematical pooling strategy, such as an average

value or the highest value calculation, also using a kernel. The above process is repeated as many

times as the architecture of the model is designed.

Finally, the output layer uses the created abstract representation to perform the classifi-

cation using fully connected layers, where each neuron of a layer connects to all neurons of the

next layer.

2.1.4 Recurrent Neural Networks

The RNN model was designed to solve the problem where the previous state of the

node, or layer, needs to be considered. This allows the RNN models to be capable of handling

temporal sequences. A temporal sequence may be a video (an ordered sequence of images) or a
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NL sentence (an ordered sequence of words), for instance. Differently from a regular feedforward

NN, where the information flows to only one direction between layers, the RNN introduced a

connection between nodes that forms a directed or indirect graph, as shown in Figure 4, allowing

the information to travel in loops between layers, creating an internal state memory that helps to

weights the nodes correctly with its previous temporal information.

Figure 4 – RNN representation. The connection between nodes creates a temporal internal state memory.

Source: Author.

Among the many RNN known models, this work used Long Short-Term Memory

(LSTM) and Gated Recurrent Unit (GRU) architectures to manage NL sentences and videos,

respectively.

2.1.4.1 Long Short-Term Memory

The LSTM architecture was created by Hochreiter and Schmidhuber (1997) and rev-

olutionized the RNN models with its capability of handling extreme long sequences of inputs,

addressing successfully the eventual loss of previous state information with an architecture that

is capable of deciding, from a given input 𝑥𝑡 at time 𝑡, the influence it will have in storing or

overwriting the previous state, or memory, information.

Figure 5 shows a representation of the LSTM cell. It receives as entries the input 𝑥𝑡,

the previous cell state 𝐶𝑡−1 and the previous hidden state ℎ𝑡−1. The forget gate is responsible to
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decide whether previous information should be kept or thrown away. The input gate, on other

hand, decides which new information will be stored in the current cell state updating its internal

memory. Finally, the output gate decides which information is going to be sent to the hidden

layer.

Figure 5 – LSTM representation of a cell with its internal Forget, Input and Output gates.

Source: Author.

2.1.4.2 Gated Recurrent Unit

As a variant of the LSTM, the GRU architecture was proposed by Cho et al. (2014a)

having fewer parameters when compared with the LSTM as it got rid of the cell state, using only

the hidden state to transfer information. As shown in Figure 6, its architecture also has only two

gates: a reset gate and an update gate.

Figure 6 – GRU representation of a cell with its internal Reset and Update gates.

Source: Author.
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The reset gate is used to decide how much of the past information is needed to be

forgotten, while the update gate helps the model to determine how much of its past information

should be kept and passed along to the hidden state. In the end, both the cell state as well as the

hidden state are merged into a single vector.

2.1.5 Natural Language Processing

Human beings use words and sentences to express themselves and to transmit a message

or information to a subject by using a specific NL. Natural Language Processing (NLP) is the

field of study that merges linguistics and computer science to allow a system to “understand”

those messages and information and create intelligence out of it, by extracting meaningful data

from speeches and texts, for example.

The text-related NLP activities aim to be capable of performing different activities,

such as text classification, summarization, translations, and information extraction. As it is not

possible to go straight forward from raw text to an entry that a computational system can accept,

such as a NN model, there are necessary pre-process steps that need to be performed before the

start of training. The most common steps are:

• Sentence cleansing: knowing the fact that a sentence in NL is a wide-spread space and

that people now use “emojis” and abbreviations to express emotions, situations, and

intentions, it is usually necessary to perform a textual analysis replacing or removing the

existing abbreviations, slang and other textual particularities that may interfere in the NLP

training.

• Tokenization: it is the act of breaking all words and punctuation from a full sentence into

smaller units, called tokens, resulting in an array of individual tokens that can be worked

and pre-processed individually.

• Stopwords removal: stopwords are referred to as the most common words, prepositions,

and punctuation that do not influence the meaning of the sentence. Words such as “a”

and “the” are frequent in the vast majority of the sentences, with the possibility of

happening more than once in the same sentence. Therefore, it can harm the training
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of a NN model since it can confuse the model in identifying the most significant

words in a sentence. To be capable of removing the stopwords from a sentence, there

are publicly available lists of common stopwords from a specific language that can be used.

• Stemming or lemmatization: stemming removes the suffix of words, reducing the word

into its root, or base, form. Words that share the same root as “likes”, “likely”, “liked”

and “liking” are all reduced to their stem “like”. Applying stemming in a text reduces

the number of words having the same meaning, thus resulting in more directed training.

Similar to stemming, lemmatization also returns the root, or base form, of a word. The

main difference between the stem and the lemma is that the latter will always be a valid

word, while a stem, depending on the stemming technique used, may not be a valid word.

For example, depending on the stemming technique, the stem of “believes” may be

“believ”, which is not a valid word, while a lemma will be “believe”.

• Vectorization: this step transforms the tokens from their text form to numeric tensors that

will be acceptable entries for NN models. The vectorization representation of the sentence

can identify each word resulting from the techniques explained before. The problem

with the vectorization representation is that it does not give the positional meaning that a

complex sentence may require. To do so, each token must have a unique representation

that can be achieved with different techniques, as follows:

– Bag-of-Words (BoW): it is a representation that converts a text into a fixed-length

vector, where each position in the vector represents a specific word, and its numeric

value represents how many times that word appears in the given text. It is mostly

used in classification tasks.

– One Hot Encoding: Converts a text in a binary array of vectors. The vector has the

size of the vocabulary size, where each word is related to a specific vector position

having “1” at it while the rest of the vector is “0”. It is useful to represent categorical

data.

– Word Embeddings: It is a floating-point word representation that allows words with

similar meanings to have similar representations. There are some famous algorithms

to perform this task, such as GloVe and BERT.
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2.1.5.1 GloVe

Global Vector (GloVe) (PENNINGTON et al., 2014) is an unsupervised algorithm

used to obtain a vectorized representation of words. It has specific groups of available token

collections, and the larger one is pre-trained on the Wikipedia Corpus with over six billion

tokens.

It uses the Euclidean distance (or cosine similarity) between two words to provide the

nearest neighbor words, measuring the semantic similarity of corresponding words, and bringing

closer similar words such as lion, tiger, and leopard. Figure 7 shows some unexpected, rare, but

relevant words related to the main word “frog”.

Figure 7 – GloVe nearest neighbor results for the word “frog”.

Source: https://nlp.stanford.edu/projects/glove/

GloVe also captures the semantic similarity between groups of words, such as man

and woman, boy and girl, and king and queen. It does so by applying equivalent numeric

representation in the underlying concept that can group or separate those similar, or distant,

words, resulting in linear substructures shown in Figure 8.

Figure 8 – GloVe linear representation of semantic similarity.

Source: https://nlp.stanford.edu/projects/glove/
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2.1.5.2 BERT

Devlin et al. (2018) proposed the Bidirectional Encoder Representations from Trans-

formers (BERT) as a language representation model that is trained to represent NL sentences

using a deep bidirectional model, which can create closer to the human-like understanding of a

specific text. In sentences like “a quarter to six” and “ready to go”, the word “to” have different

meanings in the full context of the phrase, and that’s what the BERT model tries to address.

Its structure is divided into two major phases: pre-training and fine-tuning, see Figure 9.

The pre-training phase was intensively trained using a corpus of over three billion words in free

text formats. The fine-tuning phase uses the same structure and parameters from the pre-training

phase to fine-tune the model using labeled data.

Figure 9 – BERT phase representations. The pre-trained phase was trained in a large free text corpus, while
the fine-tuning phase uses labeled data to fine-tune its learning capabilities, being tested in the
major tasks: SQuAD, MNLI and NER

Source: Devlin et al. (2018)

BERT makes use of transformers, which are attention mechanisms responsible for

learning and understanding contextual relations between a word and its preceding and succeeding

words in a text. There are two transformers: an encoder that is responsible for reading the whole

NL sentence at once in a non-directional way, allowing it to learn the context of the words in the

text, and a decoder, responsible for prediction tasks.

BERT was trained for two main decoder tasks in distinct phases. The Masked LM

(MLM) phase hides 15% of the words in each sentence to enrich its word prediction capability.

The Next Sentence Prediction (NSP) phase aims to predict if a given sentence is probable based

on the first previously known sentence. To do so, it uses 50% of its sentence inputs as identified
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pairs, where one is directly related to the next.

2.1.6 Modalities

As mentioned in Chapter 1, modalities can be understood as different ways to make

meaning or, in other words, different representations of a semantic subject. For instance, these

different modalities could be images, sounds, or text. In this work, the modalities that are used to

represent the same subject are:

• Text: An ordered sequence of words in a specific language that an individual can under-

stand. By using NLP methods, one translates words and sentences of a NL into a numeric

representation.

• Video: An ordered sequence of images that creates the temporal information of an action

or event through visual information. Computer Vision (CV) methods can process and

understand visual data aiming at simulating the way humans do.

2.1.7 Cross-Modality Retrieval

Information retrieval is the action of searching, identifying, and retrieving information

that is relevant to a given query.

Cross-modal retrieval refers to the process of retrieving relevant information from a

specific modal object that is semantically related to input information from a different modal

object, such as retrieving an image related to a text entry.

2.2 RELATED WORKS

The related works presented in this Section are focused on the video retrieval from a

NL query. Section 2.2.1 presents the method used to search and filter the selected papers. Next,

Section 2.2.2 discusses the related studies and groups the papers in a comprehensible way. In

Section 2.2.3 the most used datasets are presented with a brief explanation of each one.
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2.2.1 Search Method

Since the subject of interest in this work may present a wide range of potential appli-

cations as well as areas of interest, the review of the related work was based on the method

proposed by Kitchenham et al. (2010). Such a method includes a sequence of filtering steps, as

follows:

a) Define the sources and keywords;

b) Define a selection rule for filtering;

c) Define a quality assessment rule for further filtering;

d) Begin a data extraction procedure;

2.2.1.1 Definition of the search sources and parameters for search filtering

The search for relevant publications was done on well-known scientific sites: IEEE

Xplore, Web of Science, Science Direct, and Scopus indexing system. As for the period to be

searched, the study focused on the most recent research, limited between January 1st, 2016 to

December 31st, 2021. That is, the literature review was limited to the last six years of scientific

contributions in the subject of interest. The area of interest, when applied, was focused on the

Computer Science field with papers published only in English or Portuguese languages. Finally,

the search terms used were: “Video Retrieval”, “Natural Language” and “NLP”.

Considering that those sites allow advanced searches through queries, we defined a

string query to be used by the advanced search mechanism on the above-mentioned sources.

Scopus allows a complex search, and the query string used was: (TITLE-ABS-

KEY(“Video Retrieval”) AND (TITLE-ABS-KEY(“Natural Language”) OR TITLE-ABS-

KEY(“NLP”))) AND ( LIMIT-TO ( PUBYEAR,2021) OR LIMIT-TO ( PUBYEAR,2020) OR

LIMIT-TO ( PUBYEAR,2019) OR LIMIT-TO ( PUBYEAR,2018) OR LIMIT-TO ( PUBYEAR,2017)

OR LIMIT-TO ( PUBYEAR,2016) ) AND ( LIMIT-TO ( SUBJAREA, "COMP" ) ) AND ( LIMIT-TO

( LANGUAGE, "English" ) OR LIMIT-TO ( LANGUAGE, "Portuguese" ) ).

At the Web of Science, the query string used was: (TS=((Video Retrieval) AND ((Natu-

ral Language) OR (NLP) )) OR AB=((Video Retrieval) AND ((Natural Language) OR (NLP) ))

OR AK=((Video Retrieval) AND ((Natural Language) OR (NLP) ))) AND LANGUAGE: (English
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OR Portuguese). Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI Stipulated

Time=2016-2021 .

At the IEEE Xplorer, the query string used was: (("All Metadata":"Video Retrieval"

AND ("All Metadata":"Natural Language" OR "All Metadata":"NLP"))) with Filters Applied :

2016 - 2021..

Finally, at the Science Direct site, the query string used was: Year: 2016-2021 Title,

abstract, keywords: (Video Retrieval) AND ((Natural Language) OR (NLP)) Subject Areas:

Computer Science.

A total of 318 papers were returned by the searches.

2.2.1.2 Defining the selection rule for filtering

Filtering techniques were applied to the resulting list to clean up and select only

the studies and papers that may be of high importance to this research. Figure 10 represents

graphically the filtering process followed.

1. The first filter step was to remove the duplicate publications that could be found in the

research sources based on the publication title.

2. The second filter step removed conference summaries.

3. In the third filter step, an analysis of the papers’ abstract was done to identify the relevance

to the topic, removing all papers that were not related to the area of study. The removed

topics could be related only to NLP or ontology, audio retrieval, medical related topics,

among others.

4. The fourth filter step focused on the relevance to video retrieval only. There are other

different areas of study that are also related to video and NLP, such as video description,

captioning and tags creation, and question answering. Despite the importance of those

areas of study, this work is focused on the NL video retrieval only.

5. The fifth filter step removed the papers that were focused on a specific language solution,

such as studies related to NLP in Spanish, Arabic, or Chinese language.

6. The sixth step removed studies that were identified as an evolution of a specific method of

the previous paper.
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7. In the last step, studies that were too small or too shallow, where the techniques and steps

performed could not be identified or reproduced, were removed.

Figure 10 – Visual representation of the filtering steps.

Source: Author.

A total of 41 papers were selected for this study after the filtering process.

2.2.2 Research Data Extraction

The multimodality between a natural language query and a video is focused on two

main areas: (1) the video retrieval, in which the content of the whole video is to be retrieved, and

(2) the moment localization/retrieval in an untrimmed video, in which a specific part of the video

is to be identified and retrieved. Besides those two main areas, three sub-areas can be focused

on, as follows: (a) the improvement of processing of a NL query and its semantics for feature

extraction, (b) the improvement of a video processing for actions and objects features extraction,

and (c) the improvement of the common embedded space which correlates the natural language

query with the video. Figure 11 shows how the subject of study got attention over the years.

2.2.2.1 Video Retrieval

The video retrieval task is, by definition, to return a ranked list of videos that best

represents what is being queried from a variety of different videos. To perform this task, the
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Figure 11 – A visual representation of how the research areas was focused over the years.

Source: Author.

content of all videos must be taken into consideration, in which the natural language query must

retrieve the video, or list of videos, that are most similar among themselves, usually in a ranking

format.

a) Video feature-based solutions

Fan and Yang (2020) suggested a solution focused on identifying people and actions.

Three vectors of video features were used to strengthen the visual representation to increase the

accuracy of video retrieval. The first vector represents people in a cropped tube, the second the

scene at a frame level, and the last a combination of the first two. The first two vectors were

extracted with a 2D Residual Network - 50 (ResNet50) (HE et al., 2016) and the last one with a

3D ResNet50 network (CARREIRA; ZISSERMAN, 2017).

Similarly, Qi et al. (2021) also focused on people tube1retrieval, which splits its work

in a spatial-temporal encoder-decoder using a Deep Action Proposals (DAP) (ESCORCIA

et al., 2016) model to retrieve and locate temporal segments, followed by the extraction of

short-term temporal features using a 3D Convolutional Network (C3D) (TANG et al., 2013) and

a LSTM network to encode the long-term temporal dynamics. To enrich the visual content, an

Attribute Detection Network (AttNet) captures the video-level semantic attributes, based on an

OxfordNet (VGG16) (SIMONYAN; ZISSERMAN, 2014) model for feature extraction. That

video representation, as well as the embedded text query using a text-CNN (CHEN, 2015), were

binarized through a hashing layer, creating binary-coded matrices that can be easily compared.

b) Natural Language feature-based solutions
1 People tube - A set of connected bounding boxes, or windows, through time-related to the same person.
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Focused in enrich the NL query representation to a better learning model, Otani et al.

(2016) proposed a pre-processing step where the input query was analyzed and fed with static

web-collected images to reinforce the visual concepts relevant to the sentence. In this proposal,

the top-K web images were downloaded, pre-processed, and merged with the embedded sentence.

The resulting feature vector was compared with the video feature vector in an embedding space

to minimize the distance between the two models.

The work of Wray et al. (2019) presented an approach to enrich the language query by

using a Part-of-Speech (PoS) embedded space together with the words embedded space. While in

some solutions the query sentence is broken down into the level of the words, this work presented

a PoS embedded space which takes into account the combination of verbs, nouns, and adjectives

for creating several different and meaningful entities that originate a new space embedding to be

combined with the multiple PoS word level embedded spaces, thus finally creating a fine-grained

action embedding.

Yang et al. (2020) presented an approach in which the sentences are decomposed

into tree structures to give complex queries a better semantic meaning. It first extracts features

at the word level, using a LSTM network that later feeds a Tree Long Short-Term Memory

(Tree-LSTM) (TAI et al., 2015) to create a Latent Semantic Tree (LST) that structurally

describes the query based on a memory-augmented node scoring. That structure-aware query

representation is compared with an encoded video in an embedding space to find the best

matching score based on the cosine similarity.

c) Embedding space-based solutions

With the features extracted from a video and the embedded sentence, Yu et al. (2018)

proposed a Joint Semantic Tensor (JST) that combines the embedded sentence representation with

the features of each frame into a 3D tensor. Later, a Convolutional Hierarchical Decoder (CHD)

computes the compatibility score for a pair of multimodal sequences by positively weighting the

aligned joint semantics while negatively weighting the misaligned patterns using a ranking loss.

The work from Dong et al. (2019) is focused on creating an embedded space that

matches two modalities in a concept-free approach. Here, the video is encoded by frame feature

extraction that is later globally encoded by a mean pooling that captures the visual patterns,
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while the sentences are encoded by a one-hot vector approach. Later, it is fed to a Bidirectional

Gated Recurrent Unit (BiGRU) (CHO et al., 2014b) network, creating the global representation

of both modalities. The two models are trained together using a Visual-Semantic Embeddings

(VSE++) (FAGHRI et al., 2017) for its adaptability to image-text and video-text retrievals.

As an extension of this work, Wang et al. (2020b) proposed a solution that uses a Graph

Neural Network (GNN) (SCARSELLI et al., 2008) to improve the discriminative ability for

finding the positive sample. Here, the fully connected GNN have in its nodes the videos, texts,

and query, the relationship between the nodes is made based on the distance between the features.

Then, the weight of the relationship between the node and its neighbors’ nodes is updated based

on the similarities between all neighboring nodes through a message-passing approach for a

limited number of epochs getting to a model that is capable of searching both a video from the

text as well a text-based from a video entry.

Bansal and Chakraborty (2019) also presented a model that can retrieve a video from a

text as well a text from a video. In this work, there is an offline phase that extracts features from

both the video and its corresponding captions. Then, both are fed to a two-branch embedding

space that learns the similarities between video and sentences based on the Euclidean distance.

Finally, an online phase receives either a video or a sentence as input to find its corresponding

sentence or video, respectively.

As an improvement on the triplet approach for learning the cross-modality, Akula et

al. (2021) proposed a model in which the text query is decomposed into verbs and nouns. Then,

three examples are compared with the anchor query: a positive, a negative, and a partial. All of

them are based on the pair verb-noun, where the positive has the verb and noun (as expected),

the negative does not have any of those and the partial is selected by having either the verb or the

noun, therefore aiming at to minimize the distance to semantically closer video examples.

To improve the representation of each modality, Dong et al. (2021) proposed a multi-

level encoding that considers the concept as well as the latent space of each modality to create

a hybrid space. The latent space is created by the mean pooling of the features extracted from

frames trained with the BiGRU representation of the sentences based on a cosine similarity

between the resultant vectors. The concept space is obtained by identifying the most meaningful

word concept that is common to all the sentences related to a video and training it with the

extracted video representation using the Jaccard similarity approach. The combination of both,

the latent and the concept spaces, feeds a dual encoding network that further creates a strong



34

model for video retrieval.

Taking the advantage of expert models, the works of Liu et al. (2019), Sah et al. (2020),

Gabeur et al. (2020) and Chen et al. (2021) present solutions in which several different domains

of a video (i.e., objects, scene, actions, faces, Optical Character Recognition (OCR), speech,

audio) are used to create a full representation of it. Each of those different domains has its features

extracted by pre-trained expert models, in which the resultant vectors are then aggregated using

different techniques (i.e. pooling). This procedure creates a final representation of the video,

composed of several specific features. This resulting representation is then trained in a common

space against an embedding representation of the sentence where the similar pairs are closer to

each other based on a distance metric.

As an improvement of the expert solution approach, Wang et al. (2021) proposed

to create a shared center to cluster the local features from multiple modalities related to the

same semantic topic. Using this, it is expected that the different modalities help each other

to fill the gaps of the same semantic topic, to improve the similarity ranking of the pair text-video.

d) Summary

A summary of the papers analyzed in Section 2.2.2.1 is shown in Table 1. All results

listed here used the same metrics, to provide a further comparison with the results obtained in

this work. Other works that used different metrics were disregarded. Also, only the results from

text-to-video retrieval were selected. Again, experiments that rely on other modalities, such as

speech and OCR, were disregarded. The metric being used is the Recall at k (R@K) with 𝑘

assuming the possible values: 1, 5, and 10.

Table 1 – Summary of results of video retrieval works.
Paper R@1 R@5 R@10 Dataset used
Dong et al. (2019) 7.7 22.0 31.8 MSR-VTT
Wang et al. (2020b) 8.0 23.2 32.6 MSR-VTT
Dong et al. (2021) 11.6 30.3 41.3 MSR-VTT
Yu et al. (2018) 10.2 31.2 43.2 MSR-VTT
Liu et al. (2019) 4.0 14.1 22.4 MSR-VTT
Otani et al. (2016) 7.6 23.4 34.9 YouTube Dataset
Yang et al. (2020) 7.9 20.8 27.8 MSR-VTT
Wray et al. (2019) 14.3 38.1 53.0 MSR-VTT

Source: Author.
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2.2.2.2 Moment localization

Focused on a specific moment within an untrimmed video, the video moment

localization task searches the whole video for a specific action or moment that happens at a given

time. This type of task requires that start and end times of moments or actions are identified in

the video to then relate those moments using specific NL queries. These queries, in turn, need to

be interpreted so that they can explicitly inform recurrences, actions, etc. Usually, the possible

moments identified are ranked based on a similarity distance metric.

a) Video feature-based solutions

To enrich the visual context to identify specific moments of interest within a video,

Hendricks et al. (2018) proposed a concatenation of three different extracted video features to

compose the video representation of a specific moment. The concatenated final video feature

is composed of a base moment feature (ground truth), a context moment feature (any other

extracted video moment ranked by similarity), and an endpoint feature (extracted video pieces

that relate to possible begin and end moments of an action, usually related to words like "first"

or "last") that later is related to a NL query in an embedded space. That approach shows how

important temporal visual context is for identification.

In addition, Yamaguchi et al. (2017) proposed an approach motivated by the visual

influence of the moment, with a focus on retrieving a person over time. In the paper, the visual

feature is composed of the concatenation of the features extracted from a person’s tube and

the whole frame. That gives the context of both a specific person and their surrounding space

information to the visual embedding. The resulting features are compared with an embedded

query in a common space, having the results ranked by similarity.

b) Natural Language feature-based solutions

Understanding the importance of the position of the words in a sentence query to the

retrieval process, Barrett et al. (2015) presented a work in which the words of the sentence are

related to a specific lexicon of 15 words, which allows sharing low-level features and parameters

across words, giving meaning to the query and being capable of relating to specific tracked
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scenes in the video.

Also focused on decomposing a query sentence, Liu et al. (2018c) proposed the de-

composition in two components related to a relevant cue. One of them was directly related to

the localization of the desired moment, and the other, to the irrelevant cue, not related to that

localization. The relevant word is identified per moment of a whole video using a slide window

approach. With that, the relationship between the video and the text embeddings is reinforced.

Using a graph approach, Zhang et al. (2019d) presented a new model in which a

syntactic Graph Convolutional Network (GCN) (KIPF; WELLING, 2016) can represent the

words relationship based on its contextual representation. The nodes of the graph are represented

by the words themselves, while the edges, first represented by its direct dependencies, are

reinforced by the output of a Bidirectional Gated Recurrent Unit (BiGRU) network. That

approach resulted in a fine-grained representation of learning capable of exploring the potential

relations between a video moment and query contents.

Liu et al. (2018a) proposed a Temporal Modular Network (TMN) that uses the Stanford

Parser (KLEIN; MANNING, 2003) to obtain the grammatical relationships between words and

obtain a parse tree with Part-of-Speech (PoS) tags. With the parse tree, it is possible to obtain

new combined nodes, where grammatically equivalent tags are merged, resulting in a reduced

tree. The original nodes are then compared individually with the many video moment features in

a base model, then creating a map of combined word-level embedding and video encoding. A

combination module, corresponding to the combined nodes of mapped child features maps, gives

an information map in the compositional hierarchy. Finally, the highest score of the combined

module is used to identify the most probable moment of the video.

Also using a tree representation, Zhang et al. (2019c) decomposed a sentence using a

tree attention network based on a Tree-LSTM. Next, three candidate sentences are created from

the original sentence that represents the descriptions of the main event, the context event, and a

temporal signal. Those representations are concatenated to be matched in a cross-modal space

with a visual focus on visual and location similarities of each proposed moment of the video.

Tang et al. (2022) proposed a work that automatically assigns higher weights to query

words with richer semantic cues. To do so, the feature representations of the image and the query

are analyzed at the frame level. Therefore, the most significant words that represent that particular

frame can be found. When all frames are processed, a matrix is created with the frame-words

representation.
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With a context-aware model that can reduce the noisy background information of a

video, Chen and Gu (2021) presented a network that starts with an embedded representation

of a sequence of video moments and a given query. Then, it learns the semantic temporal

dependencies and applies weights to the most meaningful words per moment, followed by a

global interaction module that integrates both videos and learned semantic features. Finally,

a foreground re-calibration module identifies the meaningful part of the video related to the

meaningful words and cleans up the unnecessary background information, giving a strong

moment relation between the modalities.

c) Embedding space-based solutions

To enhance the learning capability of common space, Liu et al. (2018b) brought the idea

of adding a memory attention layer which, based on a similarity score of each video segment

and the query, passes that score to its future moments to memorize the temporal information.

Such a procedure leverages the context weights of the important moment features and enhances

the moment representations.

Based on a GCN, Zhang et al. (2019a) presented the Iterative Graph Adjustment

Network (IGAN), capable of encoding complex temporal dependencies that can control the

relational information between different moments. In IGAN, each moment is identified as a

node in which the information is processed in a cell. In each cell, a residual component from

the previous node representation is aggregated with the current node information to produce

a representation matrix. This matrix is used to feed the next node, transmitting the temporal

information and creating the temporal relationship.

Yu et al. (2020) proposed a multi-stream language aggregation model, based on semantic

information that can train each moment individually to improve the similarity between a query

and a video moment. When all probable moments are trained with the sentence query, the

ensemble model combines every single stream to improve its similarity weights.

Using an adversarial approach, Cao et al. (2020) proposed a solution in which a

generator is set to produce possible video moments, and a discriminator, based on a pairwise

ranking model, tries to rank the generated video moments and the ground truth using a triplet

approach.

The dual path interaction proposed by Wang et al. (2020a) creates both, a frame-to-
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candidate representation, and a candidate-to-frame representation. Such an approach takes the

advantage of learning boundary information from the whole video representation (frame-level)

as well as from the candidate moment-specific information (candidate level). Then, the learned

features are cross transferred from one to another. This gives the model awareness of the moment

boundaries representation. Consequently, it strengthens the capability of identifying the most

probable moment to be retrieved.

Also using two simultaneous networks, Qu et al. (2020) takes the encoded video and

query features to create two-modal information, where both video-aware sentence and sentence-

aware video representations are considered to find the temporal coordinates of the start and

end frames of a moment. In this dual network iterative attention module, both the query-video

and the video-query share learned weights to better score the probable moment within a video,

increasing its accuracy of it.

The model proposed by Jiang and Wu (2021) focused on reducing the divergence of the

probability distribution of the video and natural language modalities. It trained both, the specific

video, and query subnets to later use transfer-learning techniques to map the extracted features

of both, before sending them to a common embedded space. There are three subnets: (1) a video

one, (2) a sentence one, and (3) a temporal-based information one. The last one tries to identify

the possible available moments. All three models were trained individually and then, merged

into a joint model that identifies the distance between the three pre-trained models, and gives a

final score to the most probable moment.

Using a one-shot approach, Liu et al. (2021) proposed a model that slides over the

video and extracts clip features to compare with a text embedding in a common space, where an

enhanced cross-modal attention layer is capable of adjusting the weights of the video features

according to the text features. Then, a multi-layered perceptron works as a score predictor, and

gives a score of the most probable start and end time of the expected video clip.

The model proposed by Sun et al. (2021) addresses the problems of having a limited

amount of training moments for selection, and insufficient comprehension of structural contexts.

Their model is a multi-agent boundary-aware that is focused on finding the best start and end

of a probable moment. Here, two agents work together to fine-tune the exact start and end of

a moment. One agent focuses on the start point, while the other on the finish. The agents are

based on three parameters that are adjusted at each batch run: one for large movement, one for

the middle moment, and the last one for small movement.
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Focused on a weakly supervised moment retrieval model, Wu et al. (2020) proposed

a boundary adaptive refinement framework to help the reinforcement learning of temporal

boundaries, not using a classical sliding window approach to find the most probable moment

within a video. It starts with the extraction of the query features, followed by an extracted clip

video feature which is, then, compared with a cross-modal evaluator. As result, a similarity score

was computed. Those scores were sent, together with the previously extracted features, to an

adaptive layer that keeps the memory of the previous scores by a GRU model followed by two

fully connected layers, which works as actor and critic. The critic model provides an estimation

value of the current state that the actor model uses to infer the estimation of a gradient. It is used

to reinforce the model for the next runs using different extracted clips.

Ma et al. (2020) also proposed a model for weakly supervised video moment retrieval. It

used a sliding window approach that creates overlapping probable video moment features. Those

features, together with a query representation, are fed into a Cascade Cross-Modal Attention

(CCA) module that learns the attention weights of probable moments, pruning the irrelevant

moments and locating the relevant ones.

Li et al. (2021) suggested an approach that creates a 2D representation matrix, by

extracting the features of a video with a sliding window and adding the resulting feature vector in

a multi-scale 2D Temporal Network (TN). Such a network is later used as input in an embedded

space where each proposed moment is jointly merged with the text query representation. Since

not all the moments are directly related to the text query, a second step generates pseudo-labels

from the top-K scored moment candidates, serving as supervision for training, and enhancing

the weakly-supervised model.

d) Video and moment retrieval solutions

The next works perform both, the correct video related to a query, followed by the

correct moment retrieval. They are a merge of the two major areas presented.

The Find and Focus model in Shao et al. (2018) first performs filtering of the top-K

ranked videos, based on a global analysis of their features. Then, the candidate videos are

narrowed down to a small representation out of a large number of videos. Then, it applies a

clip localization over all the probable video moments, ranking the most meaningful results. The

multiplication of the global video retrieval score and the clip localization score presents the most
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probable video moment that relates to the query, out of a large number of videos.

Miech et al. (2019) work is focused on the HowTo videos (online available videos that

explain visually and with a textual legend, how to perform many different tasks). From that, they

perform training on the pair caption-text of a specific moment with its exact video clips moment

(as the positive example), and a mixture of the intra-video segment and random inter-video

segments (as negative examples), to train a model that is capable of identifying both moments as

well as unrelated videos.

The work of Zhang et al. (2019b) proposed a feature extraction of key frames of a

specific video clip using the Fast Forward Moving Picture Experts Group (FFMPEG) codec

(TOMAR, 2006) that is later combined with the global video extracted features, to give context

information to each clip. A pair of keys verb-object is identified from that specific video clip and

is used to enrich the final visual extracted features. To retrieve the most probable videos out of

a list, a list of the key objects is identified from each keyframe and then, they are captioned in

words that are used to filter the probable videos. Next, the sentence query is crossed with the

enriched visual clip from which features were extracted to retrieve the most probable moment

out of videos, ranking the results.

Hou et al. (2021) model first identifies the top-K probable videos out of a large list

of available untrimmed videos, followed by a moment localization on those selected videos,

to retrieve the correct clip out of a list of videos. It merges the features extracted from non-

overlapping clips with its text descriptions, such as subtitles or Automated Speech Recognition

(ASR) that can vary in time length, depending on the size of the subtitle. With the most probable

clip selected, second and third rounds of executions are done to fine-tune the finding of the

beginning and end of the clip.

2.2.3 Datasets

Based on the literature review, many different datasets were cited in the published

papers. Some of those were developed for specific research, while others are widely used. Based

on this fact, we created a rank of the number of times a dataset was used in papers. The top-5

most used datasets cited in Table 2 are shown in Figure 12 as how they are referenced per year.

Next in this Section, a brief explanation of these selected datasets will be presented.
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Figure 12 – Top-5 most used datasets referenced per year.

Source: Author.

Table 2 – Top-5 most used datasets as identified in Section 2.2.2
Dataset Name Number of references
ActivityNet 15
Charades-STA 13
MSR-VTT 12
DiDeMo 11
TACOS 9

Source: Author.

2.2.3.1 ActivityNet

The ActivityNet dataset was created by Heilbron et al. (2015) and it is a large-scale

video benchmark for human activity understanding. It aims at providing a semantic organization

of videos focused on human activities. In its first release, the dataset had examples of 7 top-level

categories: Personal Care, Eating and Drinking, Household, Caring and Helping, Working,

Socializing and Leisure and Sports and Exercises. From these top-level classes, a subset of other

203 activity subcategories was used, such as Painting, Walking the dog and Changing Wheel.

With the activity categories selected, the videos were collected from online repositories,

such as YouTube, based on text queries. The selected videos were checked, and those not related

to the expected category were deleted. Finally, the videos were labeled using the Amazon

Mechanical Turk (AMT) workers. The second round of filtering was done to discard the videos

that had labels not directly related to the identified video segment.

The result of this filtering process resulted in a list of 203 activity classes, each of those

having an average of 137 untrimmed videos and 1.41 activity instances (or identified moments)

per video, in a total of 849 video hours. All videos are shorter than 20 minutes long, with an

average length between 5 to 10 minutes. Around 50% of then were recorded in High Definition

(HD) resolution (1280 × 720), and the majority have a frame rate of 30 Frames per Second

(FPS).
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2.2.3.2 Charades-STA

The Charades-STA (GAO et al., 2017) was proposed to be a dataset focused on temporal

activities. It was built on the top of the Combining Human Assessment and Reasoning Aids

for Decision-Making in Environmental Emergencies dataset (Charades) (SIGURDSSON et al.,

2016), by adding sentence temporal annotations. There are a total of 157 activity categories and

around 10,000 videos with multiple video-level descriptions.

The temporal annotations were semi-automatically extracted from original sentences

from Charades. The original sentences are long, consisting of sub-sentences connected by a

comma, period, and conjunctions, such as then, after and while. Based on this, the sentences

were split into sub-sentences by a set of manually collected conjunctions. For each of those sub-

sentences identified, the subject of the original sentence was added to the start. Then, keywords

were extracted for each activity and matched to the sub-sentences. If they match, a temporal

annotation is assigned to the sub-sentence. Finally, a human check is done for each pair of

temporal clip annotations and the sub-sentence.

The videos are of an average length of 30.1 seconds long. They have representations of

15 types of indoor scenes, with interactions with 46 object classes. Videos have an average of 6.8

actions per video.

2.2.3.3 MSR-VTT

The MSR-VTT, created by Xu et al. (2016), is a large-scale video dataset with 41.2

hours of web-collected videos from all kinds of scenarios. The videos were selected by listing

the 257 most popular queries on a commercial video search engine. From there, the top 150

videos were downloaded at their maximum resolution, and the duplicate videos were removed. It

has a total of 10,000 video clips and 200,000 clip-sentence pairs, covering 20 categories, and

having around 20 natural sentence annotations per clip.

For each video, at most three clips per video were selected (with an average of 2 per

video) giving a total of around 30,000 clips. From those, 10,000 were randomly selected and

sent to annotation on AMT. Then, all duplicate sentences were filtered, as well as the too-short

ones, reaching a total of 20 annotations per clip.
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2.2.3.4 DiDeMo

DiDeMo was created by Hendricks et al. (2017) and it is a dataset that consists of

real-world videos randomly extracted from Flickr videos with a Creative Commons License

(CCL). There are a total of over 10,000 personal videos, each one 25-30 seconds long, which

were annotated with over 40,000 localized text descriptions.

The videos were segmented into 5-seconds segments to speed up the annotations. Once

a moment in the video was annotated, it was validated by another three different annotators.

A given moment is added to the dataset as a valid description only if all four annotators agree

on it. The major difference presented in the dataset is that, as it has a validation step, the text

description describes a specific moment of the video.

As the dataset was built using random real-world videos from Flickr in an open domain

with no categories applied, it may consist of open vocabulary, having words such as “man” and

“woman” as well as “parachute” and “violin”. Also, the dataset allows the descriptions to use the

camera movements as a point of comparison having descriptions as “zooms in on...” or “...runs

towards the camera”.

Moments can include any combination of the 5-second long segments, which means

that a 30-second long video contains 21 possible moments, which may or may not have text

descriptions.

2.2.3.5 TACOS

Focused on cooking activities, Regneri et al. (2013) created the TACOS dataset that

contains videos of different activities. It has a total of 127 high resolution (1624 × 1224 pixels

resolution, at 29.4 FPS) videos of 1-23 minutes long, with an average of 4.5 minutes per video.

There are a total of 41 basic cooking tasks, each with 4 to 8 videos.

Each video was annotated with 20 different textual descriptions collected by AMT,

leading to 2,540 annotations. A filtering activity was applied to these annotations to remove

duplicates or sentences that did not match the correct clip of the video.

2.2.3.6 Datasets comparison

Table 3 shows a comparison between the main features of the top 5 most used datasets.
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Table 3 – Top 5 most used datasets comparison
Dataset Videos Clips Sentences Domain Source Hours Classes
ActivityNet 19,994 ± 28,000 ± 28,000 Open YouTube 849 203
Charades-STA 9,848 ± 67,000 ± 67,000 Daily Activities Homes +83.3 157
MSR-VTT 7,180 10,000 200,000 Open YouTube 41.2 20
DiDeMo 10,464 26,892 40,543 Open Flick +69.4 None
TACOS 123 7,206 18,227 Cooking Lab Kitchen +9.2 41

Source: Author.

While ActivityNet have YouTube-sourced HD resolution videos in an open domain

space that enhances the training ability, it lacks many description sentences, which was later fixed

by the introduction of the ActivityNet-Captions. Similarly, MSR-VTT have YouTube-sourced

videos, resulting from the most common searches made in the channel but split into fewer Classes

than ActivityNet. DiDeMo introduced the camera as a point of comparison in its descriptions,

but it was designed to focus its training on moment localization tasks. Finally, Charades-STA

and TACOS are controlled domain types of videos, the first focused on human activities and the

second on kitchen actions, aiming its usage to specific training conditions.
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3 METHODS

This Chapter presents and explains the methods applied to perform video retrieval using

a natural language sentence as a query and the dataset selected for the experiments. Figure 13

shows the architecture of the proposed solution. First, a brief description of the selected dataset

is presented. Then, a description of the steps necessary to perform the video retrieval.

Figure 13 – Solution architecture.

Source: Author.

3.1 THE DATASET

The study presented in Chapter 2 allowed us to identify the advantages of each dataset as

well as their focus areas. Based on this, the dataset used in this work is that created by Yamaguchi

et al. (2017), which is a subset of the original ActivityNet dataset, where 5,293 videos of human

actions were selected, giving a total of 13.7 hours of videos.

From this list of videos, the authors have selected 6,073 clips to be annotated, some

addressing different people from the same video when there was more than one actor in it. Each

clip was annotated with 5 related sentences using the AMT approach, where the sentences must

have a minimum length of 8 words, be focused on the people’s action, and have additional

information when possible. A total of 30,365 descriptions were obtained.

In the dataset, there is a variety of actions being described in an open-world domain
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with no classes identified. The author split the dataset in Train / Validation / Test following the

proportion of 90% / 5% / 5% respectively. Table 4 presents more information about the dataset.

Table 4 – Dataset statistics showing the total amount of available video clips per dataset, the total duration in
minutes, the number of people described, and the number of available descriptions.

Videos Duration People Descriptions
Train 4,734 732 min. 5,437 27,185
Val 276 44 min. 313 1,565
Test 283 46 min. 323 1,615

Source: Author.

The dataset corpus contains a total of 3,785 nouns, 1,982 verbs, 1,451 adjectives, and

262 adverbs. The usage of the words is very imbalanced since there are words that are more

commonly found in many sentences, such as those that identify people or colors. Figure 14

presents the top 30 most frequent words of the four classes used in this work.

The available videos in the dataset have an average of 121 seconds, from which an

average of 13% is annotated. The videos were cut to extract only the annotated clip of the

video to have the model learn the relevant information in the training phase, removing all the

unnecessary information from it. This procedure resulted in smaller videos to be used in the

training and validation phases.

3.2 PROPOSED WORKFLOWS

The solution proposed in this work has three different workflows. The first two are

related to the training phase: one is for the training of the video, responsible for extracting the

visual and temporal features extracted from a video, while the second is for the training of the NL

sentence, responsible for extracting the features of the related sentence. Those two models are

merged and trained in a common embedding space in which a function minimizes the distance

between the correct pair of video and sentence and maximizes the distance of any other unrelated

pair of video and sentence.

The last workflow is for the retrieval, or test, of the videos using the trained models. It

is responsible for returning a ranked list of selected videos using the trained models. Here, the

features extracted from a NL sentence by the trained model are used to be compared with the

features extracted from a list of videos, resulting in the mentioned ranked list, where the smaller

the distance, the most probable the video is related to that NL query.
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Figure 14 – Top 30 most common words per selected classes in the used dataset Corpus.

Source: Author.

3.2.1 The video workflow

A video can be understood as a 4D matrix, representing the static image pixels in a

3D matrix of Red, Green and Blue (RGB) information, and another 1D space representing the

temporal information.
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A two-step approach was used to collect all that information. First, using a CNN model

to extract frame-level features, followed by a RNN model that gives the temporal information.

Figure 15 shows the end-to-end approach from a selected video to a spatial-temporal feature

representation.

Figure 15 – Video feature extractor workflow. Frame-level features are extracted using CNN models which,
in turn, are used as input to a RNN model, thus resulting in a spatial-temporal representation of
the video.

Source: Author.

3.2.1.1 Video frame analysis

A clipped video clip may have different sizes in shape (width and height), as well as

different time lengths, as they are in the original videos. Figure 16 shows the comparison between

two video clips with their related information. Therefore, some analyses were done on every

resulting video clip to understand its features and normalize it, before feeding the CNN model.

Figure 16 – Video clip comparison to exemplify the difference in lengths and frame shapes.

Source: Author.

Understanding that the duration of a video (𝑉𝑑) can be achieved with a simple calculation

of the number of available frames (𝑓𝑟𝑛𝑢𝑚) multiplied by the FPS rate (𝑓𝑝𝑠) (Equation 1), the

first analysis done was to identify the average number of frames in the video clips to choose the

ideal number of frames per video to be used in the training that causes the minimal information

loss.
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𝑉𝑑 = 𝑓𝑟𝑛𝑢𝑚 * 𝑓𝑝𝑠 (1)

Given a video file, a frame extractor was used to collect the image representation of each

frame. To do so, the well-known Open Source Computer Vision Library (OpenCV) (BRADSKI,

2000) library was used for image manipulation.

In Figure 17 it is easy to realize that most of the video clips have a maximum number

of frames of around 300. Consequently, that was the number of frames used in this work to

represent a video clip and to feed the model for training. Any other video clip with more than

300 frames was limited to this upper bound. As for the videos that have less than 300 frames, an

approach of masking was performed.

Figure 17 – Number of maximum frames per video clip.

Source: Author.

Masking a video clip is a way to use a support array to inform which of the extracted

frames should be considered in the training and which should not. This can be achieved by

creating fixed-length vectors filled with zero values that are updated with the frame-extracted

information. For each updated vector position, a support vector indicates if the vector position

is valid or not. In the end, a pair of feature and mapping mask vectors are created. Algorithm 1

illustrates the process, and Figure 18 shows an example of a pair of feature and mask vectors

expected for a given video.

3.2.1.2 Video frame feature extraction

The frame level feature extractor can be done using many known CNN models, such as

VGG16 and ResNet50. As the dataset used in this work does not have identification of classes

and does not have a large example representation for training from scratch, a transfer learning
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Algorithm 1 – Video feature extraction with masking.
1: 𝑀𝑎𝑥𝐹𝑟𝑎𝑚𝑒𝑠 = 300
2: 𝑉 𝑒𝑐𝑡𝑜𝑟𝑓𝑒𝑎𝑡𝑢𝑟𝑒 = New 𝑉 𝑒𝑐𝑡𝑜𝑟[𝑀𝑎𝑥𝐹𝑟𝑎𝑚𝑒𝑠] of Zeros
3: 𝑉 𝑒𝑐𝑡𝑜𝑟𝑚𝑎𝑠𝑘 = New 𝑉 𝑒𝑐𝑡𝑜𝑟[𝑀𝑎𝑥𝐹𝑟𝑎𝑚𝑒𝑠] of False
4: for 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 in 𝑉𝑑 extracted frames do
5: 𝑉 𝑒𝑐𝑡𝑜𝑟𝑓𝑒𝑎𝑡𝑢𝑟𝑒[𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛] = CNN frame extraction
6: 𝑉 𝑒𝑐𝑡𝑜𝑟𝑚𝑎𝑠𝑘[𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛] = True
7: if 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 > 𝑀𝑎𝑥𝐹𝑟𝑎𝑚𝑒𝑠 then
8: Stop
9: end if

10: end for
11: return 𝑉 𝑒𝑐𝑡𝑜𝑟𝑓𝑒𝑎𝑡𝑢𝑟𝑒 and 𝑉 𝑒𝑐𝑡𝑜𝑟𝑚𝑎𝑠𝑘

Source: Author.

Figure 18 – Pair of feature and mask vectors. Each frame of a video has its extracted features filling a position
of the vector. Parallel, a mask vector informs that the vector position is a valid one.

Source: Author.

approach (GUTOSKI et al., 2021) was used. Four models were compared at the frame-level

feature extractors, all pre-trained on the ImageNet dataset: VGG16 (SIMONYAN; ZISSERMAN,

2014), MobileNet-V2 Network (MobileNetV2) (SANDLER et al., 2018), ResNet50 (HE et al.,

2016) and Inception-V3 Network (InceptionV3) (SZEGEDY et al., 2016).

The architecture of all four models can be compared in Table 5. VGG16 is a very

well-established model, and it is largely used in the studies presented in Section 2.2.1. However,

it has the caveat of being extremely complex with several thousands of parameters, besides being

the oldest of the feature extractor models tested. ResNet50 is the second largest model, with

fewer parameters than the previous, but with a large number of layers. InceptionV3 is as large as

ResNet50. Finally, MobileNetV2 is the newest and the light-weight model of them all, with the

lowest number of trainable parameters.

Table 5 – CNN models architecture comparison.
Model Parameters Layers Output vector Reference
VGG16 138.3 M 16 512 Simonyan and Zisserman (2014)
ResNet50 25.6 M 50 2048 He et al. (2016)
InceptionV3 23.8 M 48 2048 Szegedy et al. (2016)
MobileNetV2 3.4 M 53 1280 Sandler et al. (2018)

Source: Author.
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The usual process to extract the features, regardless of the model, is to execute the CNN

extractor without its top layers (the dense layers that perform the classification). Since this is not

a classification problem, but an extraction of features, this top layer is not needed. Also, since

there are limitations in input shapes for the extractor models used, the largest common shape

was used to standardize the size of the frames. In this work, all frames were resized to the shape

of 224 pixels for both the width and height of the image using OpenCV.

With the frame features extracted and the map masking to inform which frames should

be considered in training, a RNN model was run using the frame-level features as input to give

the temporal perception of the video. A GRU model was used as the RNN model for being a

smaller model, as shown in Section 2.1.4.2, expecting it to use less memory and be faster than

other larger RNN models.

3.2.2 The natural language workflow

The description of the scenes, the subjects, and the actions happening in a video is

presented as NL sentences. Therefore, it is a key point to be capable of mapping and extracting the

correct features from the NL sentences. The first step is to select only the words that have relevant

meaning to the sentence. The filtered words must be converted to a numeric representation that

is used to define an embedding matrix which, in turn, contains all known words from the corpus

of the dataset. Finally, a RNN model gives a positional-temporal meaning to the whole sentence.

Figure 19 represents the workflow for NL feature extraction.

Figure 19 – NL feature extraction workflow. Meaningful words from the sentence are converted to numeric
representations that are used as input to a RNN model, resulting in a positional-temporal
representation of the sentence.

Source: Author.
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3.2.2.1 Preprocessing

As explained in Section 2.1.5, there is a logical sequence of steps that must be taken

to prepare and convert the NL sentence into a numeric tensor that can be understood by a NN

model.

The Natural Language Toolkit (NLTK) (LOPER; BIRD, 2002) library was used for the

preprocessing steps required for this task. This library provides a powerful NLP suite using an

Application Programming Interface (API) that helps in most of the steps, also having over 50

corpora and lexical resources in many different languages.

From the previously presented steps in this work, the sequence used for the NLP is:

“sentence cleansing”, “tokenization” and “stopword removal”. Neither stemming nor lemmatiza-

tion was performed to not cause the words to be unexpectedly misinterpreted by their reduction.

The recognition of similar words was transferred to the embedding phase.

Given the fact that a complex sentence is constructed by different words from different

grammatical classes, or Part-of-Speech (PoS), first, it is necessary to be capable of identifying

the words that have a semantic meaning for the correct understanding of the sentence. In this

work, the PoS of interest are those belonging to classes of Nouns, Adjectives, Verbs and Adverbs.

It is understood that with the words from these grammatical classes it is possible to capture the

relevant meanings of a specific sentence from the subject, i.e., its description, the action being

taken, and any subtle specific description of the action. NLTK is also capable of identifying the

correct grammatical class of a word based on its full sentence, as shown in Table 6.

Table 6 – NLTK grammatical classes conversion used.
Grammatical Class NLTK Classes
Noun NN, NNS, NNP, NNPS
Adjective JJ, JJR, JJS
Verb VB, VBD, VBG, VBN, VBP, VBZ
Adverb RB, RBR, RBS

Source: Author.

3.2.2.2 Vectorization

With the sentences tokenized, the conversion of the tokens into numeric representations

followed a simple mapping approach in which each unique token from the whole identified

corpus receives an exclusive numeric representation following an increasing sequence.
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Next, since the tokenized sentences have different sizes with different numbers of

tokens, a normalization of the lengths of the sentences had to be done. To do so, all sentences

were padded based on the biggest tokenized sentence, filling the difference in sizes with “0”

(zeros). That process is called NLP masking, and, like the video approach, has the purpose to

indicate to the NN model which vector position to use or not.

For the embedding of the words and the creation of the embedding matrix, the GloVe

algorithm explained in Section 2.1.5.1 was used. As a result, it was able to generate an embedding

matrix that can represent each word’s meaning, semantic relationship, and the context in a dense

vector representation format.

As the sequence and the relationship of words matter for this work, a BoW approach

may not be suitable, generating a lack of dependencies between words. In a BoW approach,

semantic relations would be lost, causing the sentences "boy rides a bicycle" and "bicycle rides

boy" to have the same words and so the same numeric representation. To avoid this situation, a

RNN model was used to create the positional and temporal meaning of a sentence. The LSTM

(HOCHREITER; SCHMIDHUBER, 1997) model was used for this purpose.

3.2.3 The embedding space

The results of the video and NL feature extractors are a pair of vectors that need to

have the similarity metric calculated between them. To do so, the solution used was to develop a

Siamese, or Twin, neural network.

The Siamese neural networks are composed of two, or more, identical NN as inputs

that share weights and parameters to have the models to be trained in a joint embedded space.

They have to learn how to maximize the relevant features to reduce the distance between similar

examples.

Since the modalities under comparison are of different natures, that is, NL sentences

and videos, the models have different base models, but identical dense layers. Figure 20 presents

how the Siamese models can be created from different modalities.

In this work, the Siamese network used to train the models was the Triplet-Loss function

(SCHROFF et al., 2015). This model uses the concept of an anchor point in which two input

samples, a positive and a negative, are compared. The objective is to minimize the distance

between the anchor and the positive sample at the same time, maximizing the distance between

the anchor and the negative sample, as is illustrated in Figure 21. In this work, the anchor is the
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Figure 20 – Siamese model showing the video and NL different input models sharing the same dense layers
to produce similar results that can be compared in 𝑓𝑠 Siamese function to calculate the Euclidean
distance 𝐸𝑑.

Source: Author.

NL query, the positive example is a video mostly related to the NL query, and a negative example

can be any other unrelated video, as shown in Figure 22.

The similarity distance between the query and videos is calculated in the embedding

space, using Equation 2.

𝑇𝑙 = 𝑚𝑎𝑥(0.0, 𝐸𝑑(𝐴𝑠, 𝑉𝑖𝑝)− 𝐸𝑑(𝐴𝑠, 𝑉𝑖𝑓) + 𝑎) (2)

where 𝑇𝑙 is the calculated Triplet-loss, 𝐸𝑑 is the Euclidean distance, 𝐴𝑠 is the feature vector

extracted from the anchor sentence, 𝑉𝑖𝑝 and 𝑉𝑖𝑓 are the feature vectors extracted from the positive

and negative videos, respectively, and 𝑎 is an alpha value that is responsible for fine-tuning the

calculation of the loss.

Figure 21 – Triplet-loss function illustration. Based on an anchor, a positive and a negative example, the
model is trained to minimize the distance between positive examples and maximize it, otherwise.

Source: Author.

Given the fact that the dataset used in this work is not categorized, there is, still, a

challenge to identify the optimal negative samples for a given anchor. That is because of the

semantic meaning of a video. For example, given an anchor as (A) “A man working in an office.”
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Figure 22 – A NL sentence as an anchor, and a pair of videos as a positive and a negative example.

Source: Author.

and two videos, which descriptions could be (Ex1) “A man playing soccer.” and (Ex2) “A woman

working in an office.”, which one would be the best negative sample?

To tackle this problem, two different techniques were proposed in this work: (1) random

selection of an example, fully transferring the responsibility of finding the subtle differences to

the neural network model, and (2) calculating the distance between the anchor sentence and the

videos-related sentences (known in Train and Validation datasets) to find the sentence with the

largest distance to the anchor and use its the related video as a negative example, in a way to

improve the negative example selection for training the models.

3.2.3.1 Intelligent selection of the negative example video

As explained in the previous Section, the selection of the negative example may cause a

direct impact on the training result, since its features are directly related to the resulting value of

the loss function.

A random selection of those negative examples may or may not bring a video that is not

similar to the anchor sentence. Therefore, an intelligent process to choose the video based on

its descriptions was built to reduce randomness in such a procedure by finding a more suitable

negative example. This process follows a specific sequence of steps taking advantage of the

known video descriptions available at the train and validation datasets.



56

(1) Sentence selection

As shown in Section 3.1, the dataset used has five different sentences for describing

each video. This number of videos is intended to provide a diversity of video descriptions

to enrich the training, however, it can also mislead the selection of a negative example. The

proposed solution is to create a sample of sentences and select one sentence per video, allowing

a direct comparison of descriptions.

(2) Embedded procedure of the sample sentences

Once the sentences were sampled, the embedding of all the NL descriptions was done,

so to allow further mathematical comparison between texts.

As presented in Section 2.1.5.2, the BERT model can translate the full meaning of a text,

taking into account words and their surrounding words to give a more meaningful understanding

of the video description. The Sentence-Bert (sBert) framework (REIMERS; GUREVYCH,

2019) was used to facilitate the use of BERT model. sBert helped with the encoding of the

sample data and the target (or anchor) example texts. By the end of this processing step, a vector

containing the extracted features of all sample data is available for comparison.

(3) Ranking process

From a given anchor text, related to a positive example video, this step created a ranked

list of the less similar texts, related to the anchor, from the sample data. To do so, the anchor

text was encoded using sBert to have a vector representation of the same shape as the embedded

sample data. Then, a one-to-one comparison was done, from the anchor data to all the available

embedded texts in the sample. This was accomplished by using a cosine distance between the

vectors to find their similarities.

Those calculated distances were sorted from the lowest to the highest values and, then,

the data samples were ranked and sorted by the text with the lowest similarities. Figure 23 shows

some examples generated from given anchor examples.

(4) Video selection for negative example
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Figure 23 – Ranked negative example texts. The ranked sentences in the middle column are ranked as
opposite to the anchor sentence in the left column. The related distance similarity found is listed
in the right column.

Source: Author.

Once the ranked negative sample data was created, as well as the anchor and positive

and negative video examples, the last step was the generation of the dataset used for training and

validation. For this task, the ranked sample data were used to identify their related video.

From there, each anchor text can be related to one or more negative video examples

based on the ranked sample data, starting from a controlled desired position of more or less

similar videos. Keeping in mind that a video has five related descriptions, the same negative

example video must not be repeated. Therefore, the iteration over the ranked sample data must

be sequential while at the same positive video example.

Also, considering that one may want to provide more than a single negative example

for the same anchor positive example, the datasets followed a logical sequence of selection and

movement over the ordered list of negative examples. This sequence considers these rules: (1) if

starting from the first or last position, it must progress by selecting the next available video in an

ordered sequence; (2) if starting from any point in the middle of the list, it must stay as close

as possible to the starting point, interleaving examples from the top and bottom of this starting

point; (3) if it starts from a middle point and reaches any of the edges of the list, it must change

its behavior and progress as an ordered sequence, where available examples are available; (4)

at the change of a positive example of the same anchor, it must continue from the last selected

negative example, not repeating any negative video. An illustrative example of the rules can be

seen at Figure 24.
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Figure 24 – Example of the rules applied to select the negative examples. The steps taken to select four
negative examples for each positive video are shown, from the starting video followed by three
selection loops.

Source: Author.

3.2.4 The retrieval workflow

With both the video and NLP models trained in the embedded space, the retrieval

workflow uses the learned common characteristics between the two modalities to rank videos,

out of a list of unseen videos, that better matches the NL sentence.

In the video portion of the workflow, the pre-trained video model is used to predict the

resulting vector of each video in the list. This will generate a list of embeddings to be compared.

In the NLP part of the workflow, a specific sentence is preprocessed following the steps

shown in Section 3.2.2.1. Next, it uses the tokenizer map and the GloVe embedding matrix,

explained in Section 3.2.2.2, to convert the tokens into a padded numeric vector. Then, the

pre-trained NLP model predicts the sentence and generates the NL embedding to be compared.

Finally, for each embedded video, the cosine distance is calculated with the embedded

NL sentence. That distance is the metric used to rank the similarity between the NL sentence and

the video, such that the smaller distances mean high similarity between both modalities.
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4 EXPERIMENTS AND RESULTS

This Chapter explains the experiments done, their objectives, procedures, and parame-

ters, as well as the results obtained. First, Section 4.1 presents the experiments done to compare

the influence of deeper layers and most common optimizers that defined the architecture model

used for further experiments (See Chapter 3). Section 4.2 compares the influence of the model

used to extract video features (see Section 3.2.1). Next, Section 4.3 compares the influence

of the grammatical classes used to create the sentence embeddings (see Section 3.2.2). Sec-

tion 4.4 presents the experiments related to the parameters of the triplet-loss embedded space

(see Section 3.2.3). In Section 4.5, a sequence of tests was done to observe the impact of using

a controlled selection of negative example videos (see Section 3.2.3.1). Finally, Section 4.6

presents a qualitative analysis of the retrieval results achieved in the previous experiments.

All experiments were run on a server with an Intel Core i7 processor (8 cores) at

3.30GHz and 32GB RAM, and two TITAN Xp GPUs, running the Ubuntu 18.04 operating

system. For implementing the DL models and all experiments, the following software were used:

Python 3.8, Tensorflow (ABADI et al., 2015) 2.7, and Keras (CHOLLET et al., 2015) 2.7.

The models were trained for 30 epochs using the dataset explained in Section 3.1. An

early stopping approach was tried, but that made the model stop its training in less than five

epochs, so it was decided to remove it and force the 30 epochs of training. Since there is no

categorical classification for the data in the dataset used, all results were measured using R@K

of the top-k in the retrieval results. Recall is a metric that calculates the fraction of relevant

instances that were retrieved from the top-k videos returned from the retrieval given a query.

During the execution of the initial experiments, we noticed that each training took an

average of 4.5 hours to complete. An automated testing procedure was developed to be capable

of performing the necessary experiments in an optimized way. Such automation creates both

models, trains and validates them, and executes a retrieval over the test dataset to calculate the

metrics and collect random results examples. All the results are reported in a text file for later

analysis. The automation works by accepting as input a configuration file that informs all the

necessary configuration parameters needed per test, including:

• Test identification;

• Encoder model being used;
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• Video extraction model;

• Video RNN model;

• NLP grammatical classes;

• NLP RNN model;

• Number of dense layers for the encoder, video, and NLP;

• Dropout for video and NLP;

• Encoder optimizer and its configurable parameters;

• Encoder alpha value for fine-tuning.

The same configuration file also receives a list of the test identification that are expected

to be executed, allowing control of either linear or parallel experiments.

4.1 MODEL ARCHITECTURE

Chapter 3 presented the overall architectural model that was designed to meet the objec-

tives of this work. Some empirical tests were done to adjust the model to its best performance.

The main objective of the experiments reported in this Section is to obtain an efficient structural

model to be used in further experiments.

To have a fair comparison between the architectural proposals, all video features were

extracted using MobileNetV2, and then fed a GRU RNN, while all NLP process was done using

all four identified grammatical classes listed in Table 6, with GloVe embedding that fed a LSTM

RNN model. At the triplet-loss embedding space, the negative example needed was randomly

chosen.

The main questions these experiments aim to answer are:

1. What is the impact of deeper dense layers?

2. Does stacked RNN layers improve the temporal and positional perception of the model?

3. Would a faster optimizer perform better in a cross-modal task?

4. What is the impact of the dropout factor to avoid overfitting?
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Starting from a model composed by a single GRU RNN layer for video, a single LSTM

RNN layer with GloVe embeddings for NLP, both followed by a single dense layer, this ground

architecture was referenced as the minimum base needed to execute the proposed work. The

Stochastic Gradient Descent (SGD) optimizer was used with a learning rate of 0.01.

To answer Questions 1 and 2, two executions were performed over the ground model

by first adding two extra dense layers that kept the same size of nodes across the layers. Then,

another stack of RNN layers was included in both, the video and the NLP models. Table 7

presents the results of this experiment for 𝑘 = {1, 3, 5, 10}.

Table 7 – Top-k results in percentage for model architecture comparison.
k Ground Model Extra Dense Stacked RNN

R@K R@K R@K
1 0.79 10.67 0.39
3 2.37 24.90 1.18
5 3.95 33.99 1.97

10 7.90 49.80 3.95
Source: Author.

It was expected that the ground model would not perform well, but the results obtained

in the stacked RNN model were much lower than expected. That may be due to the level of

abstraction obtained in stacked RNNs, which led to a lack of semantic information in different

modalities. Because of that, the next experiment used the model with two extra dense layers.

The next experiment compared the impact of reducing the number of neurons by half in

each extra dense layer, to take advantage of the convolutions in a NN model. Table 8 shows the

results of the experiment.

Table 8 – Top-k results in percentage, for training with reduced layer’s size.
k Same layers size Reducing layers size

R@K R@K
1 10.67 3.95
3 24.90 9.48
5 33.99 15.81

10 49.80 24.90
Source: Author.

Even though the convolutions should keep the semantic meaning of what is being

trained, the results of the approach with a reduction in the number of nodes per layer were

worse than keeping the size across layers. The explanation might be related to the fact that in

this cross-modality problem, the bigger resultant vector might carry more information that can

be used for comparison, not losing, or transforming, any feature that could be relevant to the

comparison.
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Based on these results, the answer to Questions 1 and 2 is to use an architecture that has

two dense layers, but only a single RNN layer for video and NL. Also, the size of nodes should

be kept the same across the dense layers. The model with the best performance was used in the

next experiments.

With the architectural model defined and focused on answering Question 3, different

optimizers were also tested to compare the convergence of the model during training and their

impact on the results.

Other than the traditional SGD, the optimizers Adaptive Moment Estimation (Adam)

and Root Mean Square Propagation (RMSProp) were tested. Both Adam and RMSProp are

optimizers that should show a faster convergence, improving the learning speed. Table 9 shows

the results for this experiment, while Figure 25 shows the related loss curve.

Table 9 – Top-k results in percentage for comparing the optimizers.
k SGD Adam RMSProp

R@K R@K R@K
1 10.67 0.39 0.39
3 24.90 1.18 1.18
5 33.99 1.97 1.97

10 49.80 3.95 3.95
Source: Author.

Figure 25 – Loss curve for comparing the optimizers.

Source: Author.

Observing the results and the loss curve it is clear that the Adam and RMSProp led

to a premature convergence during training, in a quite small number of epochs. This possibly

indicates that the model is overfitting.

Also, comparing the Adam and RMSProp columns in Table 9 with the stacked RNN

column in Table 7, a pattern can be identified, indicating that those small numbers may be related
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to a random selection of results in the Validation dataset, showing that the models did not learn

how to correlate the different modalities.

Given the fact that it is a cross-modal model with no categorical classification, a faster

optimizer may quickly lead to an overfitting scenario, thus answering Question 3.

Still related to overfitting, the next experiment tried different dropout values for both,

video and NLP models. The dropout variation (𝑑) increased from small to large, demonstrating

that the variation applied can affect overfitting. Table 10 shows the experiments with various

𝑑 values in the video workflow. Following that, and keeping the best value found for the video

workflow, Table 11 shows the results for the variation of 𝑑, but in the NLP workflow.

Table 10 – Top-k results in percentage for video dropout (𝑑) variation.
k 𝑑 = 0.1 𝑑 = 0.3 𝑑 = 0.5 𝑑 = 0.7

R@K R@K R@K R@K
1 10.67 9.48 9.48 0.39
3 24.90 20.94 18.57 1.18
5 33.99 31.22 26.87 1.97

10 49.80 45.45 40.71 3.95
Source: Author.

Table 11 – Top-k results in percentage for NLP dropout (𝑑) variation.
k 𝑑 = 0.1 𝑑 = 0.3 𝑑 = 0.5 𝑑 = 0.7

R@K R@K R@K R@K
1 10.67 9.09 9.88 7.90
3 24.90 21.73 22.92 17.78
5 33.99 38.06 29.64 26.48

10 49.80 42.68 48.61 39.13
Source: Author.

A negative impact on the results was found as the value of 𝑑 increased. Most probably,

this is related to the fact that the higher the value of 𝑑, the more random input values were

altered to “0”, losing meaningful information for the cross-modality comparison, similar to what

happened in the layer size reduction experiment. So, Question 4 is answered.

4.1.1 The Proposed Architecture

Based on the results of the previous experiments, we propose the Triplet network

architecture shown in Figure 26. It accepts three different feature vectors as input, one for the

NL anchor, and two for positive and negative video examples, followed by a sequence of three

same-sized dense layers. The optimizer defined was SGD, with a learning rate of 0.01 and
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momentum of 0.5, and the dropout was set to 0.1 to avoid overfitting and not cause an impact

with the loss of information.

Figure 26 – The triplet function architecture.

Source: Author.

4.2 INFLUENCE OF EXTRACTED VIDEO FEATURES

In this Section, the experiments were focused on verifying the influence of the video

feature extraction on the model.

As explained in Section 3.2.1, the video workflow is composed of a frame-level extrac-

tion phase that is responsible for collecting the content information of an image, followed by a
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RNN model that gives the temporal perception of the video as a sequence of extracted frame

information.

In Section 4.1 a single layer RNN was shown capable of acquiring the necessary

temporal information for the cross-modality training. Therefore, the frame-level phase is the

object of testing in this Section. The question to be answered with this experiment is:

5. Given the fact that there are differences in the number of parameters and depth in the CNN

extraction models, how do they impact the training results?

As presented in Table 5 (Section 3.2.1.2), there are significant differences between

the four tested models, such that VGG16 the largest and MobileNetV2 the smallest. There is

also a difference in the size of the output vector, which, based on the results of the experiments

performed in Section 4.1, the amount of information for cross-modality comparison seems to be

relevant. All four models were tested using the architecture previously defined using a transfer

learning method previously trained on the ImageNet dataset. The outcomes can be compared in

Table 12.

Table 12 – Top-k results in percentage for video feature extractor models.
k MobileNetV2 VGG16 InceptionV3 ResNet50

R@K R@K R@K R@K
1 10.67 5.13 3.95 6.71
3 24.90 12.25 11.85 18.97
5 33.99 20.55 16.99 28.45

10 49.80 37.94 28.06 43.08
Source: Author.

The best results were obtained with the MobileNetV2 model, followed by ResNet50.

Curiously, InceptionV3 presented the worst results.

MobileNetV2 was a model recently introduced, which may indicate that the method

used to extract features can be more effective than the older approaches. It does not have the

largest output vector, but the extraction method may collect the most meaningful and relevant

information from the image from a cross-modal perspective, answering Question 5.

4.3 INFLUENCE OF GRAMMATICAL CLASSES

The NL is the entry of the query, the base of the cross-modal retrieval task. Section 3.2.2

introduced the model that translates a given sentence to a numeric vector based on words, or

tokens, from selected grammatical classes listed in Table 6.
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Since NL is very complex, having a variety of nuances and semantic meanings, the

question to be answered in this experiment is:

6. What is the influence of verbs and adverbs in the content description of a video?

Understanding that a query is composed of several descriptions of a specific scene and

that the description may rely only on nouns and adjectives (i.e., “a boy with a blue jacket”), this

experiment ran tests using only the grammatical classes of nouns and adjectives, as well as a

completed test with nouns, adjectives, verbs, and adverbs. The results are shown in Table 13.

Table 13 – Top-k results in percentage for training using different grammatical classes.
k Nouns, Adjectives, Verbs and Adverbs Nouns and Adjectives

R@K R@K
1 10.67 7.90
3 24.90 20.94
5 33.99 30.83

10 49.80 42.29
Source: Author.

Observing the results, it is clear that describing actions using verbs and adverbs has a

positive impact on the extracted features. It may not be related to the number of words used,

given that there is no discernible difference in the maximum size of usable tokens identified

when only nouns and adjectives are used (the maximum size of usable tokens is 17 tokens long)

and when both verbs and adverbs are used (maximum size of usable tokens is 20 tokens long),

but it is most likely related to the fact that a verb can help to identify the action occurring in the

video.

Then, the answer to Question 6 is that verbs and adverbs represent a meaningful part of

the information in the description of a NL sentence, needing to be taken into account in further

experiments and analyses.

4.4 THE TRIPLET ARCHITECTURE

As explained in Section 3.2.3, the triplet-loss function used in this work relies on an

anchor (the NL query), a positive example (the NL query related video) and a negative example

(any other video not related to the NL).

The embedding space is trained based on the distance from the anchor and the two

example videos, fine-tuned by an 𝛼 parameter that can increase or decrease the training rate, as

shown in Equation 2. The tests performed in this Section aim to answer the following question:
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7. What is the direct impact on the retrieval results based on the value of 𝛼?

To answer the question, a sequence of tests was accomplished by varying the value of

parameter 𝛼 in the range 0.05, 0.2, 0.5, 0.8, 1.0. The results are available in Table 14.

Table 14 – Top-k results in percentage for Triplet-loss impact analysis over 𝛼 variation.
k 𝛼 = 0.05 𝛼 = 0.2 𝛼 = 0.5 𝛼 = 0.8 𝛼 = 1.0

R@K R@K R@K R@K R@K
1 9.88 10.67 3.95 0.39 0.39
3 22.92 24.90 13.43 1.18 1.18
5 34.38 33.99 21.34 1.97 1.97

10 47.43 49.80 33.20 3.95 3.95
Source: Author.

On the one hand, it was discovered that as 𝛼 increases, the model’s learning capability

is negatively affected, such that no learning occurs for values of 𝛼 equal to or greater than 0.8.

On the other hand, when 𝛼 is too small, it has minimal relevance to the learning, probably related

to the fact that the triplet function relies on distances, and a small value of 𝛼 may have a small

influence on the distance between the anchor and its examples, leaving the similarity calculation

more subjective, thus answering Question 7.

4.5 CONTROLLED SELECTION OF TRAINING SAMPLES

All tests performed up to this point used a random selection of the videos for negative

examples related to the anchor text. This means that the video can be of any subject scene other

than the positive-related ones. As introduced in Section 3.2.3.1, the following tests demonstrate

the impact of having a controlled selection of negative examples, using the cosine distance

between the BERT extracted values of the original sentence and all the other video-related

sentences available in the training dataset.

Considering that there will be an ordered ranking list of sentences and related videos

compared to the anchor being processed, it is easy to manipulate the selection of the desired

distance from the anchor using the positions of this ranked list. Here, the tests performed aim at

answering the following questions:

8. What is the impact of controlling the negative examples for a given anchor?

9. Considering its impact, what is the most significant distance from an anchor?
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10. Considering its distances, is it better to use a single distance group or a mixture of different

distances for a given anchor?

The first set of tests was focused on analyzing the impact of the distance of the negative

example from a given anchor. It was expected to see how the variation of the distance affects

the results obtained at the tests, starting from the most distant negative example, and gradually

moving the distance up to reach the closest negative example available.

To do so, the positions of the ordered list of negative examples were used to identify a

given distance to be tested. The ordered list’s total length was divided into five folds, resulting in

starting positions that may represent distances (𝑑) of 0%, 25%, 50%, 75%, and close to 100%

similarity to the anchor video. It can be understood that position 0 of the ordered list is the most

distant from the anchor possible, while the last position is the closest distance possible from the

anchor.

As observed in Table 15, the examples that are too far (𝑑 = 0%) or too close (𝑑 = 100%)

to the anchor presented results that had no impact on the training of the model, leading to random

results. That can be explained by considering that examples too far away are so different that

it does not require any effort for the model to identify their differences, while examples too

close are very similar, making it hard for the model to identify differences between the original

positive video and the negative example, resulting in a poorly trained model in both cases.

The best-observed similarity distance between the negative example and the anchor

relies on the range of 25% to 50% distance, probably because in this range the negative example

videos have differences but yet some similarity, even if it may be small, causing the model to be

able to learn how to differentiate both videos.

Table 15 – Top-k results in percentage for the impact of controlling the distance 𝑑 of negative examples for a
given anchor.

k 𝑑 = 0% 𝑑 = 25% 𝑑 = 50% 𝑑 = 75% 𝑑 = 100%
R@K R@K R@K R@K R@K

1 0.39 1.58 1.18 0.79 0.39
3 1.18 3.55 3.95 1.97 1.18
5 1.97 5.53 5.92 3.55 1.97

10 3.95 8.30 8.69 7.11 3.95
Source: Author.

The last round of tests aimed to observe how a balanced distribution of examples could

affect the results. These tests used a distribution of examples in two and three groups of distances.

When using two groups of distances, the weights were applied at the edges of the list.

Having four negative examples to each positive example, the balanced weights tested used a
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proportion of one distance to the three closest example videos, and then three distances to one

close example video.

When using the three groups of distances, the weights were applied at the edges and in

the middle of the list. The first test had one for each of the three distances, having a proportion

of three negative examples to each positive video, while the second test had two at each edge

and six in the middle, having a proportion of ten negative examples to each positive video.

Table 16 – For negative examples for a given anchor, top-k yields a percentage of the balanced distribution of
controlled distance 𝑑. The percentage distributions indicate the weights applied considering the
left number as the most distant to the anchor and the right one as the closest.

k 25% - 75% 75% - 25% 33% - 33% - 33% 20% - 60% - 20%
R@K R@K R@K R@K

1 0.39 0.39 0.39 0.79
3 1.18 1.18 1.18 1.97
5 2.37 1.97 1.58 4.34

10 4.74 4.74 5.92 8.69
Source: Author.

The results observed at Table 16 confirmed that a distribution focused on the middle

examples has better results than the ones focused on the edges of the ordered list. Also, when

comparing with Table 15, it is observed that the introduction of edge examples to a test focused on

the middle (50% distance) confuses the model, reducing the R@K values. This can be explained

by the fact that the introduction of edge examples is the same as forcing “noise” to the datasets

in a relevant proportion of 40% of their examples, causing more harm than good to the model

The controlled choice of the negative examples used in the triplet architecture has a

direct impact on the results of the training of the model. A wrong choice of negative examples

can cause the model to behave differently than expected, making it a delicate process to fine-tune

the training. Therefore, Question 8 is answered. Also, the tests confirmed that the best-observed

similarity distance between the negative example and the anchor relies on the range of 25% to

50% distance, with a caveat that adding edge examples to the training dataset may cause “noise”

which results in a worse model, answering both Question 9 and Question 10.

4.6 RETRIEVAL ANALYSIS

Other than the numeric analysis, the cross-modality field requires strong semantic

analysis to identify the most meaningful video subject that the model learned, related to a NL

sentence. In this Section, visual and semantic analysis was done over the results obtained in the

retrieval workflow, focusing on answering the following questions:
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11. How did the model learn to identify the similarity? Is it based on the scene or the action?

12. Given a specific sentence with verbs, nouns, and adjectives, will the model focus its results

on nouns, adjectives, or verbs?

13. How does the model behave when it is confronted with a word for which it was not trained?

To better illustrate the results, a grid of images was created for comparing the ground

truth image and the 1st, 2nd, 3rd and 4th ranked results. The Figure 27 explains how to read it.

Figure 27 – Grid results explanation – the left square is the ground truth, while the squares number 1, 2, 3
and 4 represents the 1st, 2nd, 3rd and 4th ranked results. At the top of each square, the related NL
sentence is shown.

Source: Author.

an example of the results obtained in the execution of the model focused on a 1st, 2nd,

and 3rd match, as well as an example where there was no match in any of the first four ranked

videos, is presented to have a deeper understanding of the model’s behavior. The analysis is

focused on the combination of the scenes, subjects, and actions taking place, as identified in the

sentences.

Figure 28 successfully returned the expected video at the first position, but looking at

the other top-ranked images, it is possible to observe that all images are related to water sports,

more specifically, boat-related being conducted by a man. The color of the boat was not matched

in the subsequent images, nor was the vest of the person, understanding that it took into account

the scene and the main information from the NL sentence.

In Figure 29 the model was able to identify the action of mixing a drink behind a bar,

but not in the last one, in which a desk can be seen as some sort of bar, where the person is

located behind it. The fact that only one of the videos is about a woman suggests that the person’s

gender was not obvious. The test dataset was analyzed to make sure there were other video
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Figure 28 – Retrieval example matching the 1st ranked image.

Source: Author.

Figure 29 – Retrieval example matching the 2nd ranked image.

Source: Author.

examples of a woman making drinks. In the test dataset, there are eight drink-related videos, of

which three have a woman mixing them.

The ranked sequence of Figure 30 presented a good relationship between the expected

and the presented videos, even because the ground truth image was located at the 3rd position,

only. In all the videos, a person is playing the guitar. Also, in all of them, the person is wearing
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Figure 30 – Retrieval example matching the 3rd ranked image.

Source: Author.

dark clothes.

Figure 31 – Retrieval example with no match on ranked image.

Source: Author.

Finally, analyzing Figure 31, the example in which there was no matching ranked video

with the ground truth one, it is possible to see that in all of them there are an animal and a person

in an outside space. Of the four images, three are dog-related, as expected, and in one of the

dog-related videos, the person is playing frisbee, as happened in the ground truth video. It is
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possible to infer that the model understood the scene and the animal relationship, failing to find

the correct video although returning relevant videos.

4.6.1 Ad hoc analysis

The previous analysis was done over existing sentences and videos, where it is possible

to compare what was expected with what was retrieved. This Section presents the results obtained

when executing the retrieval process over sentences that are not part of the test dataset.

There are two approaches performed: (1) using random sentences, not based on any

visual content; and (2) using sentences generated after watching available videos in the test

dataset, knowing what should be returned.

Figure 32 shows the retrieved images after a round of random sentences, while Figure 33

shows the retrieved images after a round of observed videos.

It is easily noticed that the random free sentences did not meet the expectations for

retrieval tasks. The first clear observation is that the model does not perform well on small

sentences or atomic words. Simply entering a word like “woman” returned random videos with

no relation at all to what would be expected. This is probably because the model was not trained

for single-word recognition, needing longer sentences to generate the vector that it was trained

to compare.

The second observation is to note that the quality of the retrieval is related to the

available examples on the test dataset. When there are many videos related to the topic, the

retrieval performs better. But, when there is only a single video about the topic, it does not work

well. It is possible to infer that the more video examples a specific topic may have, the easier it is

for the model to identify it.

When observing the results from the retrieval using sentences from video observation,

it is possible to notice that the results are better and closer to what was searched for. The subject

being queried is visible in most cases. The other related videos also exhibit similar scenes

(gymnastic equipment, instruments, etc).

The improvement in the results may be related to both (1) the situation where the

sentence is directly related to a video that is available and (2) the improvement in the description

of the sentence.

Given the tests done and the observations of the results, it is not possible to answer

Question 11 by affirming that the model bases itself only on an action or on a scene, but it seems
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to have a balanced distribution of importance between both. Querying specific actions may return

videos that are related to them (“dancing”, for example), but it may also return videos where the

scene is similar, like indoor situations or where a wooden background can be seen, or having

similar objects on the scene, like “bars” or “animals”.

Also, it is possible to say that the model gives high importance to the verb, or action,

relating actions such as “riding” and “playing” with videos that have semantic similarities. It is

also possible to notice that the nouns also represent an important part of the query. That is easy

to notice when comparing results from queries such as “playing an instrument” and “playing

a guitar” because both will return musical instruments, but the second will target a specific

instrument. That answers Question 12.

Finally, querying words that are not part of the corpus, like “Easter” or “mainframe”

returns results based on the rest of the sentence query because those unknown words are ignored

by the model, answering Question 13.
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Figure 32 – Retrieval example for random free sentences.

Source: Author.
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Figure 33 – Retrieval example for video observation free sentences.

Source: Author.
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5 CONCLUSIONS AND FUTURE WORKS

This Chapter presents the contributions of this dissertation for the video retrieval from a

NL query. The achievements and the limitations of the proposed work are discussed according to

the experiments done. Recommendations for improvements and future works are also presented.

In this work, we introduced a study related to how to retrieve a video, from a list of

available videos, using a NL query. A model using a triplet siamese network was presented with

the evolution of its configuration and parameters as well as the impact of specific models for

feature extraction.

The initial tests aimed to achieve the best model architecture for the work. Stacked

RNN layers showed a negative impact on the learning capability of the models, probably related

to the excessive abstraction level they created. On the other hand, a stacked sequence of dense

layers presented an improvement in the learning of the models. Different optimizers were also

tested, showing that faster optimizers, like RMSProp and Adam, led to a quicker convergence,

causing overfitting, while a slower optimizer, like SGD, led the model to a more stable learning

rate. It was possible to understand that the size of the available information resultant from both

video and NLP extraction models had a direct impact on the learning, suggesting that cutting or

reducing the size of the vectors may harm the learning.

Next, four different CNN models for video feature extraction were tested to show

the differences of VGG16, ResNet50, InceptionV3 and MobileNetV2. From these models,

MobileNetV2 achieved the best performance, leading to an understanding that newer models

are more effective in extracting features, possibly having a smarter or better-designed internal

structure, in which the most meaningful features are taken into consideration, even having a

smaller number of trainable parameters.

On the PoS impact, a test comparing the results when using only nouns and adjectives

were compared with when using those plus verbs and adverbs. Even though the difference in the

maximum size of available tokens was not aggressive, it was possible to observe that the usage

of verbs for action descriptions led the model to better understand what was being requested in

the query, thus resulting in better results.

In the tests related to the embedding space, the impact of the 𝛼 value used to fine-tune

the loss function of the triplet architecture was tested. It was clear that a higher 𝛼 negatively

impacted the learning rate. Probably, this was caused by removing the subtle capability of small
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adjustments on the loss function, similarly to what a small 𝛼 did, due to not punishing negative

examples as expected.

The controlled selection of specific negative examples for a given anchor showed that

the distance to their examples is of high importance to the quality of the training. If the distance

from the video to the anchor is too high or too low, the model may be negatively affected, leading

to bad results. We observed that there is an optimal range for the distance, between 25% to 50%

close to the anchor. Yet, the use of a dataset of negative examples created by a random selection

returned better results, probably because it was created with a mixture of good and bad examples,

increasing the robustness of the dataset.

The observation on the ad hoc queries using free texts showed that the models do not

understand single words, or atomic, queries. Simply querying words like “man” or “woman”

returns almost random results. Improved queries return much better results, but they appear to be

directly related to the number of available video examples and have difficulty retrieving actions

with few examples. Besides, the model gives high importance to the verb, or action, related to

the video, followed by considering the similar scene surroundings. The importance of nouns

was also significant, but it was directly related to the number of example videos used during

tests. “Instruments”, “animals”, “boats” and other common nouns presented good results, while

not-so-common nouns, such as “hammer” had poor results. Adjectives were not highly effective

in retrieving the videos, probably because there are many different adjectives for the same noun,

making it harder to train specific words such as colors.

This work used a batch approach for all of its feature extraction processes. That approach

was selected because the real-time response does not matter and does not affect the results. On

the one hand, the batch approach requires a large amount of storage available to store the

preprocessed videos and sentences, taking a long processing time before the learning and testing

phases start. On the other hand, it makes the tests faster, given the fact that all the required

infrastructure requirements are already available. The online approach aims for the opposite

advantages and disadvantages, not needing any kind of preprocessing steps as well as large

storage availability. However, it does require a long training and testing time, since it requires all

feature extractions to occur simultaneously with the learning and testing.

Overall, the results obtained in this work were promising. A possible list of future

work may include the exploration of an online processing approach to understand the model’s

behavior and its impact on the response time and quality of results. Also, there are newer
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CNN models available for video extraction that could be tested, as well as test models that

take advantage of a single layer, such as C3D for video and BERT for NLP. As identified in

Section 2.2.2.1, item “c) Embedding space-based solutions”, there is a new line of study that

uses multi-modal Transformers to enrich the retrieval using several different modalities available

in the same video and that should be further explored. Regarding the controlled selection of

negative examples, a combined approach where the videos are randomly selected but from a

specific and controlled range of videos may improve the training dataset. Finally, training the

model with atomic examples may lead to better learning of the model to be more generalist when

queried with less complex sentences.
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