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Abstract. Associative Processing provides high-performance and energy-
efficient parallel computation using a Content-Addressable Memory (CAM).
Emerging big data applications can be significantly sped-up by Associative
Processing, but validation and evaluation are key challenges. We present RV-
Across, a RISC-V Associative Processing Simulator for testing, validation, and
modeling associative operations. RV-Across eases the design of associative
and near-memory processing architectures by offering interfaces to both build-
ing new operations and providing high-level experimentation. Our simulator
records memory and registers states of each associative operation pass, giving
the user visibility and control over the simulation. The user can employ the
simulation statistics provided by RV-Across to compute performance and energy
metrics. RV-Across implements common associative operations and provides
a framework to allow for easy extension. We show how the simulator works
by experimenting with different scenarios for associative operations with three
applications that test the functionality of logic and arithmetic computations:
matrix multiply, checksum, and bitcount. Our results highlight the direct rela-
tion between the data length and potential performance improvement of asso-
ciative processing in comparison to regular CPU serial and parallel operation.
In case of matrix multiplication, the speed-up increases linearly with matrices
dimension, achieving 8X for 200x200 bytes matrices and overcoming parallel
execution in an 8-core CPU.

1. Introduction

High-performance computation and energy efficiency are fundamental in current com-
puter systems due to the recent growth in the development of applications that
require large data processing, such as Neural Network, Image Processing, and
DNA [Kim et al. 2018, Gupta et al. 2019, Mutlu et al. 2019]. These applications high-
light how the bottleneck between memory and CPU is a barrier to achieve better perfor-
mance. Moreover, data movement consumes a significant amount of the overall system
energy. In Google Docs scrolling, for example, moving data represents more than 30% of
energy consumption [Boroumand et al. 2018], and memory can account for up to 41% of
the energy consumption of an entire server system [Lefurgy et al. 2003].

This work was supported by the Sdo Paulo Research Foundation (FAPESP) grant #2018/24177-0; the
National Council for Scientific and Technological Development - Brazil (CNPq) grants #404261/2016-7
and #438445/2018-0; and the Coordination for the Improvement of Higher Education Personnel - Brazil
(CAPES) - Finance Code 001.



A common alternative to improve performance is to adopt separate processing
using CPUs, GPUs, and accelerators, which still requires data movement. Furthermore,
with the end of Moore’s Law and Dennard Scaling, academy and industry have an in-
creased interest in Processing in Memory (PIM) [Mutlu et al. 2019]. PIM is an approach
that aims to take computing into memory, reducing data movement and overcoming the
Von-Neumann bottleneck. Processing directly in memory reduces memory access time
by mitigating the physical distance and increasing the bandwidth between CPU and mem-
ory. PIM also eliminates load and store cycles, increasing energy efficiency. In this
paradigm, an operation can be executed on all words in memory in parallel, in a Single
Instruction Multiple Data (SIMD) approach, thus the execution time is fixed for any data
length. PIM has been used to accelerate the processing of DNA, Neural Networks, and
Graphs [Nai et al. 2017, Dai et al. 2019, Gupta et al. 2019, Kim et al. 2018].

Associative Processing, a PIM approach, performs in-memory parallel, logi-
cal, and arithmetic operations using lookup tables, special registers, and a Content-
Addressable Memory (CAM). Recent advances in Non-Volatile Memories (NVMs) re-
duced the cost of implementing associative processing and attracted interest to this re-
search area [Kaplan et al. 2017, Yantir et al. 2018, Imani et al. 2018]. However, the lack
of a flexible simulation infrastructure for test and validation of in-memory operations is
still an obstacle to enable its adoption [Mutlu et al. 2019].

In this work, we present RV-Across (RISC-V Associative Processing Simulator),
a high-level simulator for design and validation of in-memory operations, built as an ex-
tension of the Spike reference RISC-V ISA Simulator. RV-Across provides a framework
to extend, implement, and test PIM operations based on RISC-V custom extensions and
instructions. Furthermore, RV-Across generates a step-by-step log of the simulation for
enhanced user control. The simulator counts and logs events of comparison, writing,
match, and mismatch in associative processing. These statistics are offered to the user as
a means to calculate latency and energy [Yantir et al. 2018]. Our simulator makes easier
to develop operations using PIM and, consequently, helps with its adoption.

The main contributions we present in this work are:

e an extensible simulation tool that enhances associative processing evaluation;
e an architectural model to interface PIM operations with an Associative Processor;

e aperformance analysis of applications in the Associative Processing environment.

We show, in this work, the structure and design flow of the simulator, and how
to implement new operations and evaluate applications. Our experiments show how the
simulator works using two code generation and a matrix multiplication kernels. In a serial
system model, all the cases resulted in fewer accesses to memory and consequently higher
performance. For matrix multiplication, associative processing saves up to 61% cycles
and 71% load/store operations. When considering a multicore scenario, the associative
processing model achieves up to 8x of speed-up on matrix multiplication, overcoming
an 8-core CPU in the 200x200 bytes matrices computation. RV-Across offers the ability
of testing and evaluating in-memory operations in an easily extensible simulation tool,
demonstrating how PIM affects the performance of applications on different scenarios.



2. Related Work

Processing In Memory (PIM) is an approach that increases hardware performance in terms
of bandwidth (between CPU and memory), latency, and power consumption by perform-
ing computation into memory, where the data resides. The PIM concept is gaining at-
tention due to the advancement of two technologies: 3D Memories and NVMs. In 3D
memories, logical operations within the memory are already embedded, which can save
energy by avoiding data movement [Santos et al. 2018, Yang et al. 2019, Nai et al. 2017,
Dai et al. 2019, Zhang et al. 2014]. The advances of NVM allow lowering the implemen-
tation cost of associative processing [Kaplan et al. 2017, Yavits et al. 2018].

The interest in implementing PIM has increased in recent years, as has the
construction of tools for simulating operations in memory. Most PIM simula-
tors use a specific type of 3D memories, the Hybrid Memory Cube (HMC). De-
spite the exploration of CAM and HMC simulators that support full-system simula-
tion [Oliveira et al. 2017, Leidel and Chen 2016, Jeon and Chung 2017, Xu et al. 2019,
Paulo and Lima 2019], these are not compatible with associative algorithms.

In the literature, some simulators provide cycle-accurate PIM simulation using
HMC. HMC-Sim [Leidel and Chen 2016] offers to the users an infrastructure of exper-
iments with HMC 1.0 and 2.0, implementing a model to replace traditional thread mu-
texes with custom HMC mutex commands. In addition, the extension of HMC-Sim
enables the users to craft Custom Memory Cube (CMC) operations and the evaluation
of their efficacy through user applications. CasHMC [Jeon and Chung 2017] is a C++
simulator that allows a cycle-by-cycle simulation of every module in an HMC and gen-
erates analysis results including a bandwidth graph and statistical data. This simula-
tor enables parallel execution of other simulators that generate memory access patterns.
Clapps [Oliveira et al. 2017] is an HMC simulator that has an interface for the user to per-
form vector PIM operations in applications. Furthermore, Clapps is a parallel simulator
that implements all of the HMC instructions.

PIMSim [Xu et al. 2019] and PIM-Gem)5 [Santos et al. 2018] are PIM simulators
with HMC that share many characteristics. Both simulators provide processor simulation
with HMC, analyze the impact of PIM in the memory hierarchy, simulate full-system
with cycles and energy counters, and are configurable. PIMSim integrates DRAMSim?2,
HMCSim, NVMain, and Gem5 for simulation at different levels (fast, Instrumentation-
driven, and full-system simulation) and provides an interface for the user via directives.
Pim-Gem5 implements PIM support in Gem5 and creates a methodology for prototyping
PIM accelerators.

Khoram et al. [Khoram et al. 2018] developed an analytical model to analyze
runtime, energy, and storage for a set of architectures, including Associative Proces-
sor. Specifically, the proposed method asymptotically evaluates the computational met-
rics in a specific architecture, ignoring constants and low-level factors. In NVSIM-CAM
[Li et al. 2016], the NV-Sim simulator is adapted as a tool that estimates the performance,
area, and energy of CAM and other types of NVMs. RV-Across proposes to approach
associative processing, different from both Khoram and NV-Sim models. Yantir et al.
[ Yantir et al. 2018] proposed a methodology that combines approximate computing and
associative processing. The authors developed an in-house simulator for associative oper-
ations. Yavits et. al [Yavits et al. 2015] also developed an associative processor in-house
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Figure 1. AP Diagram

simulator. In this simulator, the associative processor is at the last cache level. It also
estimates energy based on associative processing events.

RV-Across is a simulator, focused on Associative Processor, which also allows the
addition of customized operations such as HMC-Sim, implemented in C++ as CasHMC,
and uses special instructions to in-memory processing as Clapps. The user, using our
tool, with the events counted by the simulator will be able to extract energy statistics
based on a separate model. RV-Across allows modeling extended operations and provides
an interface for associative processing experiments. RV-Across uses a similar format
of associative algorithm, allowing operations between vectors. However, our tool offers
the freedom to build and experiment with customized operations. Our tool, as well as
these simulators, delivers an interface to high-level programming (custom instructions)
and enables experiments to evaluate latency and energy. RV-Across performs Associative
Processing in a low-latency scratch-pad memory closely tied to the main processor, with
direct access to the main memory, bypassing the cache hierarchy and avoiding memory
accesses by favoring DMA bulk transfers.

3. Associative Processor

An Associative Processor (AP) is a CAM that provides additional processing capabilities,
retrieving data from part of the content and operating through logical and arithmetic oper-
ations without moving data to a separate processor. In an AP, the operations can be made
in several words of the memory simultaneously, reading, comparing, and writing inside
the associative module without content transition. This processor needs the following
components to perform computation:

e CAM: Associative Memory in which the data will be stored. A Content-
Addressable Memory fetches the stored data from part of its content, such as a
hardware implementation of a hash table.

e Lookup Table (LUT): Table containing the values of the bits that will be compared
and written, resulting in the operation.

e Mask: Register designed to select the columns that the processor will compare.

e Key: Register used to represent the bits of the LUT that are used for comparison.

e Tag: A bit that represents the Match state. This state indicates that the LUT
comparison bits, represented by the Key, are the same as those of the operators.
Then, the bits determined in the LUT in the result are written.

The Associative Processing can be summarized in three actions: selection, com-
parison, and writing of bits. First, the Mask register is set to select the columns (operands)
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to be compared. Then, the Key is configured, representing the LUT comparison bits. If
the bits of the Key and the bits selected by the Mask are the same, there is a Match, and
therefore, the bit 7ag related to the operation becomes 1. Finally, it is verified which lines
had a match looking at the Tag. If the Tag is 1, the corresponding value defined in the
LUT is written in the result. The Mask is set for all bits of the word, depending on the
associative operation, and the Key for all passes of the LUT. Figure 1 illustrates a diagram
showing this operation flow.

Figure 2 represents the simulation of an associative XOR between two vectors: A
[1,2,3] XOR B [0,1,2]. See that the LUT summarizes an XOR truth table. The resulting
vector C is initialized as [0,0,0], thus the entries of A and B that result in O are excluded
from the LUT. Note that the Mask is the same for all passes computed for the same bit of
the operands. Consider the first pass executed on the bit zero of the operands. The Mask
selects the first bit of each operand, and the Key is read from the LUT for the first pass.
Comparing the Key and the values, for the selected bit, two Matches occur (lines 1 and
3), and the Tag is set accordingly. The respective bits on vector C are written to 1 in the
next pass (bit 0, pass 1), and the process is repeated for each bit and pass. In the end, after
comparing all the passes with all the bits, the vector C will have the result of the XOR to
be associative. Thus, the operation can be performed in constant time for N elements of a
vector without moving data. The execution time depends, then, in the number of passes,
particular to the operation being performed, and the length of each word in the data, not
the size of the dataset.

4. The RV-Across PIM Simulator

RV-Across is based on an Associative Processing architectural model to support PIM.
Figure 3a shows the overall architecture that our simulator represents. Inside the Tile, the
processing components and instructions and data caches are located, and off the tile, the
L2 cache and main memory. The main processor is a RISC-V core connected to the exten-
sion module (RoCC Interface), that provides control support for associative operations.
The main core communicates with the RoCC Interface using custom instructions.
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Figure 3. RV-Across architectural model (a) and design flow (b).

The RoCC Interface, when triggered, sends setup and command information to
the control registers coupled to the Associative Processor, such as the addresses of the
operands and output vectors and which operation to be performed. After configuring the
registers, the operation is executed while the CPU waits for a response on the status of
the operation. The AP contains the LUT for the associated operations and the configured
algorithms. For simplification in both hardware and software simulation, the associative
operations and CPU instructions do not run in parallel.

The AP works as a Scratch-Pad Memory (SPM). In addition to reading and writ-
ing, this SPM serves as a support for data processing. The AP can access the main mem-
ory using DMA (Direct Memory Access). This reduces data movement since the main
core does not need to act as a bridge to transport data from the main memory to the AP.
To use the AP, the user must configure the data to be processed in the SPM and activate
the associative operations using custom instructions. To gain simplicity in the implemen-
tation, the SPM is small in size, since its cost in area can be high. For all test scenarios,
the SPM is no larger than 128 KB.

RV-Across is coupled to the RISC-V reference ISA simulator, Spike. This sec-
tion describes the interface provided between the target application and our simulator,
detailing how to insert custom instructions in the application to communicate with the
simulator, how to configure metrics, add and edit operations, and how the output is gen-
erated for the user. Figure 3b shows an overview of the development flow.

4.1. User interface

RISC-V RoCC instructions are used as communication interface between the associative
accelerator and the main RISC-V processor. They are used in RV-Across for configure
the associative operations, defining the operation code and the parameters forwarded to
the accelerator. Then, for the use of associative operations, it is necessary to insert the
interface instructions in the application. For this purpose, RV-Across includes a library
with predefined macros, at which it is possible to enter the parameters of what operation
to use, the value for the registers, and the operation code.

The code in Figure 4 shows the shape of the generic macro
ROCC_INSTRUCTION, that represents the default type-R RISC-V instruction used in
the RoCC extension. The first parameter, x, indicates which of the four RoCC custom
instructions is used in the implementation. In RV-Across, a vectorized associative



#define ROCC_INSTRUCTION(x, rd, rsl, rs2, funct)

#define ADDRVA(in_a, in_b, out, length, word_size) \
ROCC_NSTRUCTION (2, 0, in-a, in-b, 0); \
ROCC_INSTRUCTION (2, 0, length, out, (word_size << 3) | 1);

Figure 4. RoCC instructions lib

for(i = 0; i < DIMENSION; i++) {
row = i *x DIMENSION ;
for(j = 0; j < DIMENSION; j++) {
column = j * DIMENSION;
SET RVA(buff, DIMENSION, x(A + row + j), 1);
MULTRVA(buff, B + column, buff, DIMENSION, 1);
ADDRVA(C + row, buff, C + row, DIMENSION, 1);

}
}

Figure 5. Matrix multiply with AP

operation is triggered after two steps, in which the first configures the position of two
input vectors (rs/ and rs2) and the second configures the length of the vectors (rs/)
and the position of the output vector (rs2). The output register rd, not used in this
implementation, is reserved for future use. The funct field is used to send additional
information to the AP control. If the funct is ’0’, the AP loads the pointers of the input
vectors. If it is different from ’0’, the AP control extracts the operation that will be
executed, from the 3 least significant bits and the word size from the remaining 4 most
significant bits. For example, ADD_RVA (addition) is an associative operation that
receives the pointers of the input and output vectors, the size of the vectors, and word
size in bytes. The operation is implemented using the RoCC custom-2 instruction, and
addition is defined by the operation code ’1’ in the funct field. Thus, using this interface
and considering that no other RoCC extension accelerator coexist in the target system, a
designer can define up to 32 distinct associative operations, that load up to two vectors
and write to one, of arbitrary length and word size of up to 15 bytes.

Figure 5 shows the square matrix multiplication (A x B = () kernel using RV-
Across. In this code, it is assumed that the linearized matrices A, B and C are already
initialized in SPM using DMA. The constant DIMENSION represents the matrix dimen-
sion size. SET_RVA is an operation in the AP that works as a memset, copying an element
for each position of the vector. The buffer used has the same size of DIMENSION. The
application uses this buffer, that stores each element of array A, operates in parallel, per
column, with all elements of array B, and accumulates the result in C. For each iteration
of the internal loop, the result for a row of C is generated. The application gains perfor-
mance through the parallelism provided by the AP, eliminating a third most internal loop
used in the conventional matrix multiplication algorithm.

4.2. PIM operations

RV-across provides a library implementing associative logical and arithmetic operations
using the algorithm explained in Section 3. Table 1 shows the associative operations
implemented in our simulator and the number of execution passes, or AP execution cycles,
they require according to the word length. The number of passes is defined as the number
of comparisons needed in an Associative Processing operation. Besides comparisons,
the operations may execute a variable number of writes, that depend on the result of the




Table 1. Number of comparison passes for associative operations implemented
in RV-Across to a word length of n bits.

Associative operations \ Number of passes
Unsigned multiplication 4 x n?
Addition, Subtraction 4xn

OR, XOR 2xn

NOT, AND, Shift Right and Left n

comparisons. The sum of the number of passes and writes is the number of execution
cycles needed to conclude the operation.

RV-Across comes with an extensible structure that allows the user to modify the
existing operations or implement their own within its core. This structure has methods to
configure the key, the mask, and the LUT, as well as performing comparisons and writing
values to the data vector during associative processing. Then, to create new operations,
the user just needs to describe the associative algorithm in terms of these base structures.
Also, RV-Across supports a trace function to analyse the operation pass by pass, produc-
ing cycle-accurate information about the execution and aiding on the development and
debugging of new associative algorithms.

4.3. Output

RV-Across generates a log for each step of the operation, showing the control registers
and the SPM with the data of the operators. This data is provided for each operation both
for didactic purposes and the user to control the simulation. Also, writing, comparison,
match, and mismatch events are counted and recorded in a file so that the user can extract
latency and energy metrics using an appropriate model of their simulation scenario.

5. Experimentation

We evaluate our proposal in two scenarios. In the first scenario, we compare our AP
approach with a conventional single-core CPU (spike model). This demonstrates how
our simulator represents associative processing operations, showing different behaviors
between the performance of AP and CPU according to the input size in different appli-
cations. Then, in the second scenario, we show a performance comparison between the
AP and a multicore CPU, both running a matrix multiplication kernel. This scenario
demonstrates the associative processing efficiency to execute vectorized operations when
compared with the overhead of including additional execution cores in the target system.

5.1. Single-core scenario

We choose three applications to execute in this comparison scenario: matrix multiply,
checksum, and bitcount. The input sizes vary from the minimum possible value at step 1
to a packet size of 1500 bytes, for bitcount and checksum, or to a 100x100 bytes matrix
for matrix multiply. The CPU model uses a naive serial implementation of the applica-
tions, optimized by the compiler, tracing memory accesses on the simulator. The matrix
multiply algorithm parallelizes the computation of each row in the output matrix as shown
in Figure 5. To compute the checksum, the data vector is divided into halves, and each
half is summed in parallel, wordwise, repeating the operation in a divide-and-conquer ap-
proach. For bitcount, the number of active bits in all individual words in the data vector
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Figure 6. Number of cycles and memory accesses for AP and CPU execution.

is computed in parallel, and then the result is accumulated using the checksum algorithm.
Our environment implements individual 32 KB L1 instruction and data caches and a sin-
gle 128 KB L2 cache. The caches are only considered in memory accesses originated on
the CPU. The data handled in the AP is transferred from the main DRAM using Direct
Memory Access (DMA). In this scenario, the AP model uses at most 32 KB of the SPM
for associative processing.

CPU instructions and memory accesses are the basis for calculating the perfor-
mance of the CPU and AP models. To quantify each relevant operation of memory, AP,
and CPU, we consider the latency of a single CPU instruction, L1 cache accesses, and AP
individual comparison and writing to be 1 cycle. Accesses to the main memory and the
L2 cache cost 100 and 10 cycles, respectively. The DMA latency is also assumed as 100
cycles. Since the SPM is a small memory block implemented close to the main processor,
we assume that CPU and AP are clocked synchronously.

Figure 6 shows the number of cycles and load/store operations in the execution
of each application, according to the input size. For small dimensions of data, the AP
execution costs more than the CPU. The algorithm to execute the in-memory operation is
more expensive than the dedicated CPU instructions to perform in a single data word be-
cause of the overhead imposed by the Associative Processor configuration. Nevertheless,
differently from the CPU, the AP can execute the same operation in a wide data vector
in parallel. As the data vector length grows, the AP execution increases in efficiency and
overtakes the CPU execution. This intersection point occurs in the 11x11 bytes matrix
size for matrix multiply, 182 bytes packet for checksum, and 152 bytes for bitcount. Even
in the worst-case scenario (matrix size 2x2 bytes and packet size 1 byte), the AP overhead
in comparison to the CPU execution is at most 2.5% for all applications.

For the maximum size of each input in the experiment using AP, matrix multipli-
cation costs 39%, checksum 95%, and bitcount 82% of the CPU execution, leading to ex-
ecution times 61%, 5% and 18% shorter, respectively. For all applications, less load/store
operations are executed with associative processing, 71% in matrix multiplication, 13%
in checksum, and 31% in bitcount due the avoidance of data movement between memory
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and CPU. The implementation overhead of the parallel operations is higher for checksum
and bitcount than for matrix multiplication, and the data vector sizes are smaller, which
explains the lower impact of PIM for these applications. However, the trends show that
the larger are the data vectors, the higher is the performance increasing.

5.2. Multicore scenario

In the multicore scenario, we adapt the bare-metal multi-threaded matrix multiply ref-
erence implementation to use the AP modeling. Then, we compare the performance of
both AP and CPU executing the multiplication kernel in 1, 2, 4 and 8 cores for matrices
dimensions of 50x50, 100x100, 150x150, and 200x200 bytes. In AP, we consider that our
SPM can store the input and output matrices and temporary values, which represents a
size of at most 128 KB in the 200x200 scenario. The data is read from the main memory
using DMA with a latency of 100 cycles. For the CPU, we disregard any influence of the
memory hierarchy in the performance accountancy, assuming that all data is previously
loaded in the lower latency level for computation, and thus the number of executed in-
structions determines the execution time. Thus, this evaluates the best-case scenario of
the multicore execution in the comparison with the AP.

Figure 7 shows the speed-ups over of the AP and CPU with 2, 4, and 8 cores, using
the single-core execution as baseline. In small data sizes (50x50), the control overhead
of the AP dominates and affects performance, which makes its speed-up in the same
order of magnitude of a 2-core CPU. Nonetheless, increasing the input size maximizes
the performance gains that AP provides. From a 100x100 matrix, AP achieves a speed-up
of 3.96x against 1.98x, 3.88x, and 7.77x of 2, 4, and 8 cores, respectively. This trending
intensifies at a 200x200 input size, where AP overcome all tested multicore configuration,
with 8.01x speed-up over 7.72x from the 8 core CPU. Furthermore, the performance gains
of the AP approach scale up linearly with the dimension of the matrices, suggesting that
a larger SPM can provide higher speed-ups for larger matrices even in comparison with
larger multicore CPUs.

5.3. Simulation performance

Finally, we evaluate the performance of RV-Across itself to run the execution scenarios.
Table 2 shows the average simulation time to run the matrix multiply application into the
Vanilla Spike and the simulator modified with the RVA extensions, for a input 100x100
bytes matrices. Although RV-Across introduces significant overhead, the modified simu-
lator includes routines to generate significantly more data to evaluate the execution, such



Table 2. Simulation Time for 100x100 matrix multiply.

Vanilla simulator RV-Across
Simulations | 1 core 2cores 4cores 8cores | 1core 2cores 4 cores 8 cores AP
Avg time (s) | 0.009 0.009 0.011 0.013 0.103 0.101 0.105 0.107  29.810

as instruction counters and memory accesses traces. Additionally, in the AP scenario,
RV-Across emulates the associative operations step-by-step, generating statistics from al-
gorithms, such as the number of passes, comparisons, matches, mismatches, writings,
miswrites, and a full trace for the designer to understand the behavior of the operation.
All these induces a lot of expensive I/O operations and impact significantly in execution
time, but add data to get a more accurate simulation of the associative operations.

6. Conclusion

Associative processing is a PIM approach that has interested scientists and industry in
the potential to process data in parallel and save energy by avoiding data movement.
In this work, we present a simulator, RV-Across, which provides an interface for the
user to test and validate associative operations in their applications as well as develop
customized in-memory operations. Also, the simulator generates reports detailing all the
steps of each operation and event of the Associative Processor. Thus, our tool exposes
the behavior of an associative operation and the impact it has on the system, helping in
the adoption of Associative Processing. RV-Across has the purpose of allowing the user
to control and modify associative operations in the simulated system. We demonstrated
the operation of RV-across by implementing and simulating three applications: matrix
multiplication, checksum, and bitcount. Using a RISC-V infrastructure, we assess how
much Associative Processing can affect a system. In the case of matrix multiplication
with AP, 61% of execution cycles are saved in comparison to the application running on
a single-core CPU, and overcomes multi-core CPUs providing speed-ups that increase
linearly with matrices dimension. Thus, we demonstrate that PIM can be an interesting
alternative for applications that move a lot of data, and the advantages increase the larger
is the amount of data. Thus, our future work includes an energy assessment of the impact
of AP in a system, understanding the trade-off between cost and size of an AP.
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