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AABBSSTTRRAACCTT  

In this thesis, the Cutting Stock Problem is studied, considering three approaches set in an 
automotive spring industry. The first two approaches deal with the optimization of the process 
of one-dimensional bar cutting, minimizing material losses and inventory costs in Integrated 
Lot Sizing and Cutting Stock Problems. Two mathematical models and their respective 
solution methods based on column generation were proposed. The first refers to short term 
decisions, considering parallel machines and matters relative to the items and final products. 
The second model focuses on the medium term, considering the purchase of objects as one of 
the decision variables, besides demand, inventory costs and limits for objects, items, and final 
products. The third approach considers assigning items to the hardening furnace as a Cutting 
Stock Problem. The proposed mathematical model is based on an arc flow formulation. 
Results with real data show that the three mathematical models obtained significantly superior 
solutions in viable computational time, in comparison to the company's practice. Tests with 
random instances were performed allowing for an analysis of the influence of several 
parameters of these problems. Generally, small instances with large items present better 
results, with reduced gaps and computational times. 

Keywords: One-dimensional Cutting Stock Problem; Lot Sizing Problem; Mathematical 
Modeling; Column Generation; Automotive Industry. 

 

  



RREESSUUMMOO  

Nesta tese, o Problema de Corte de Estoque é estudado, considerando três abordagens 
ambientadas em uma indústria de molas automotivas. As duas primeiras abordagens tratam da 
otimização do processo de corte unidimensional de barras, minimizando perdas de material e 
custos de estoque em Problemas Integrados de Dimensionamento de Lotes e Corte de 
Estoque. Foram propostos dois modelos matemáticos e respectivos métodos de solução 
baseados em geração de colunas. O primeiro deles trata de decisões a curto prazo, 
considerando máquinas paralelas e questões relativas aos itens e produtos finais. O segundo 
modelo está focado em questões a médio prazo, considerando a compra de objetos como uma 
das variáveis de decisão, além de demanda, limites e custos de estoque de objetos, itens e 
produtos finais. A terceira abordagem trata da alocação de itens ao forno de têmpera como um 
Problema de Corte de Estoque. O modelo matemático proposto baseia-se em uma formulação 
de fluxo em arcos. Resultados com dados reais mostram que os três modelos matemáticos 
obtiveram, em tempo computacional viável, soluções significativamente superiores em 
comparação à prática da empresa. Testes com instâncias aleatórias foram realizados, 
permitindo uma análise da influência de diversos parâmetros destes problemas. Em geral, 
instâncias pequenas com itens grandes apresentam melhores resultados, com gaps e tempos 
computacionais reduzidos. 

Palavras-chave: Problema de Corte de Estoque Unidimensional; Problema de 
Dimensionamento de Lotes; Modelagem Matemática; Geração de Colunas; Indústria 
Automotiva. 
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The Brazilian automotive industry emerged around 1900, in the beginning the focus 

was on the production of trucks and utility vehicles

passenger cars only reached significant values in the national scenario in the la

(Torres, 2011). Currently, it is the fourth largest industry in Brazil, representing more than 7% 

of industrial Gross Domestic 

Car production by large multinational companies strengthen

and other products, as is the case of the studied company, generating indirect jobs and 

decreasing production costs (

Considering the production

between car springs and truck

However, the springs used 

items to provide cushioning

produce the various items 

illustrates four types of truck

 

Figure 1 – Examples of

For companies which

smaller needed items, minimizing

Stock Problem (CSP) arises

classic problem of combinatorial

such as paper, steel, plastic,

UUCCTTIIOONN  

he Brazilian automotive industry emerged around 1900, in the beginning the focus 

was on the production of trucks and utility vehicles (Torres, 2011)

passenger cars only reached significant values in the national scenario in the la

(Torres, 2011). Currently, it is the fourth largest industry in Brazil, representing more than 7% 

omestic Product (National Confederation of Industry of Brazil, 2021). 

Car production by large multinational companies strengthens the local supply of auto parts 

and other products, as is the case of the studied company, generating indirect jobs and 

decreasing production costs (Sesso Filho et al. 2004). 

production of automotive springs, there are considerable

truck springs. In general, coil springs are used

 in the suspension of trucks are composed of

cushioning for these truck systems. So, steel bars 

 (springs) that make up each type of truck spring

truck spring bundles. 

of truck spring bundles. Source: Mecânica, Torno e Solda

which production process involves the cutting 

minimizing the loss of raw material becomes important,

arises (Kantorovich, 1960; Gilmore and Gomory, 

combinatorial optimization that can be found in a wide

plastic, wood, springs, among others (Abuabara

14 

he Brazilian automotive industry emerged around 1900, in the beginning the focus 

(Torres, 2011). The production of 

passenger cars only reached significant values in the national scenario in the late 1960s 

(Torres, 2011). Currently, it is the fourth largest industry in Brazil, representing more than 7% 

(National Confederation of Industry of Brazil, 2021). 

s the local supply of auto parts 

and other products, as is the case of the studied company, generating indirect jobs and 

considerable differences 

used for car suspension. 

of overlapping cut steel 

 are cut lengthwise to 

spring bundle. Figure 1 

 
Solda 3M (2021). 

 of larger objects into 

important, and the Cutting 

 1961, 1963). This is a 

wide range of industries, 

(Abuabara and Morabito, 2009; 
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Toscano et al. 2017). Problems of this kind require a little variety of small items to be fully 

allocated to a selection of objects of fixed size, which may be identical or heterogeneous 

(Wäscher et al. 2007). According to Hifi (2002), it is well know that a large number of 

possible cutting patterns in this problem means it is highly complex, making it difficult to 

reach a good quality solution. 

The production process of the spring factory considers the one-dimensional cutting of 

objects (steel bars) into smaller items (springs), aiming at meeting a demand for objects, 

items, and final products (spring bundles), which result from the assembly of the items. To 

acquire the necessary properties, the items that make up each type of spring bundle need heat 

treatment. One of the processes of this heat treatment is hardening, for which it is necessary to 

assign the items inside a furnace. The quality of this assignment determines the furnace's 

productivity, impacting its operating time and energy expenditure. 

In this thesis, an automotive spring factory is studied aiming at improving the 

efficiency of the truck springs sector. Therefore, the production process of this sector is 

analyzed focusing in the processes of a higher volume of items and higher loss of resources 

(cutting and hardening). Three approaches are applied, two regarding the process of one-

dimensional cutting of steel bars into items (springs), seeking to reduce the losses of steel and 

stocking costs. One of these approaches refers to matters relative to the company's short term 

and the other considers medium term decisions. These two approaches, besides CSP, already 

defined, also consider the Lot Sizing Problem (LSP), in which the minimum cost of 

production is sought through a balance between setup and inventory costs, while meeting the 

demand for all items (Wagner and Whitin, 1958; Pochet and Wolsey, 2006). The third 

approach is about assigning items to the hardening furnace, seeking to maximize the amount 

of assigned items, minimize furnace setups and thus increase daily production. 

An important issue is the criteria used to classify the approach of each of the three 

studies. These are the criteria proposed by Melega et al. (2018). The authors made a literature 

review, and papers approaching the Integrated Lot Sizing and Cutting Stock Problem 

(ILSCSP) were classified. In their majority, the studies addressed applications either in the 

paper industry (Poltroniere et al. 2008; Poldi and De Araujo, 2016; Leão et al. 2017) or the 

furniture industry (Gramani et al. 2009, 2011; Vanzela et al. 2017). Other industries 

addressed are the textile industry, and the industries of copper, steel, and aluminum. 

The degree of integration between both problems has also been considered by Melega 

et al. (2018) when categorizing the selected articles. The two integration factors analyzed 

during this classification were time and production. The first factor of integration is the 
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connection between the periods of time given by the stock, inside a determined planning 

horizon. The second factor contemplates three production levels. The first one deals with the 

purchase or production of objects, as well as their stock levels and, depending on the case, 

demand. The second production level deals with cutting objects into items, considering 

production capacity, inventory relations, and demand. The third level of production is about 

assembling items into final products, the stock levels, and demand for the final products. The 

authors categorized the studies according to which of these production levels have been 

considered in the model and whether it contemplates multiple time periods. 

This thesis is organized into papers regarding each of the three approaches from 

Chapters 3, 4 and 5. The Chapter 1 initiates with the introduction. Chapter 2 contains the 

explanation of the production process, with information pertinent to the three studies. The 

same happens with Chapter 6, which presents a general conclusion for the thesis as a whole. 

Regarding Chapters 3, 4 and 5, each one presents its own literature review, mathematical 

model, computational results, discussion and conclusions.  

The paper from Chapter 3 has already been published (Andrade et al. 2021), the paper 

from Chapter 4 is under revision after being submitted to an international journal and the 

paper from Chapter 5 is close to a submission. To avoid information being repeated 

throughout this thesis, the chapters here presented are not identical to the papers. Naturally 

some information has been cut or transferred to other chapters so that this thesis stands as a 

single file. 

The paper in Chapter 3 approaches the one-dimensional CSP applied to the steel bar 

cutting process of the spring industry. The goal is to reduce storage costs together with the 

losses. As the focus of the study is on short term issues, parallel machines were considered as 

well as their operational constraints. However, the focus on the short term makes it difficult to 

consider issues related to the objects, as it has a long delivery period. The model includes 

demand, inventory costs and limits for items and final products. Therefore, according to the 

classification proposed in Melega et al. (2018), considers production levels 2 and 3, and 

multiple time periods (-/L2/L3/M), being called ILSCSP. 

In Chapter 4, the one-dimensional CSP is also applied to the process of cutting steel 

bars with the objective of reducing losses of steel and inventory costs. In this approach, a 

medium-term horizon is considered, enabling the consideration of object related issues. 

However, unlike the article in Chapter 3, parallel machines are not addressed. The approach 

contemplates the purchase of bars and its one-dimensional cutting process to produce the 

springs, and the assembly of spring bundles, in multiple time periods. Demand, inventory 
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costs and limits are considered in every production level, even for bars (objects-level 1), 

springs (items-level 2) and spring bundles (final products-level 3). The purchase of bars is one 

of the decision variables in the model. Therefore, this study takes into account every 

component of the classification presented in Melega et al. (2018), being classificated as an 

ILSCSP of the category (L1/L2/L3/M). 

Lastly, the study presented on Chapter 5 applies the one-dimensional CSP to optimize 

the assignment of items to the furnace of the hardening process, an approach that has not been 

found in literature by the authors. To enable the implementation of the model, several 

operational constraints are considered such as the need for the items to be supported by 

beams, limits for the bending machines after the furnace and possible formula for each item. 

The focus of this approach is the short term as only one period is considered, representing one 

day of production. The proposed mathematical model is based on an arc flow formulation, 

considering additional elements to the one proposed by Valério de Carvalho (2002). 

Considering the approach taken by Melega et al. (2018), this study considers level 2 of 

production and only one period of time (-/L2/-/S), being named CSP. 

Considering all that has been exposed in this introduction, the author states that the 

essence of this thesis is in the analysis of the different approaches to the one-dimensional 

CSP, once this is the central subject of the three articles. The possibilities of these approaches 

in different contexts, how they relate to each other and to other problems, such as the LSP 

(Chapters 3 and 4) and the arc flow model (Chapter 5), are also analyzed. 
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22..  DDEESSCCRRIIPPTTIIOONN  OOFF  TTHHEE  PPRROODDUUCCTTIIOONN  

PPRROOCCEESSSS  

In this chapter, the studied spring factory is described in detail. In section 2.1, the 

production process of the truck springs sector is explained. In Section 2.2, relevant 

information to the optimization of the bar cutting process is presented, regarding both the 

short term and the medium term approaches. In Section 2.3, relevant information to the 

optimization of the hardening furnace is presented. 

 

2.1 Description of the Production Process 

The studied company owns five sectors: truck springs, machining, casting, car springs 

and pins. In this thesis, the truck springs sector is going to be analyzed, and the processes that 

compose it are illustrated in Figure 2. 

 
Figure 2 – Processes of the truck springs sector. Source: Author. 

As illustrated in Figure 2, all springs must first go through cutting and last through 

hardening, being that some items only go through these two processes. So, depending on the 

spring type, needs may vary. It is certain that items that go through Process 3 do not require 

Process 2, and so is the other way around. The same goes for Processes 4 and 5, which never 

occur both for the same spring. The need for Processes 6, 7, 8 and 9 varies according to 

specificities for each spring and there are no precedence rules. 

1. Cutting 10. Hardening

2. Parabolic 
Lamination

6. Drilling

3. Convencional 
Lamination

7. Tip Removal

4. Olhete 8. Dropping

5. Second Fold 9. Face Milling
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One of the variations among the several types of items is in the need for the bending of 

the springs. Bending occurs within the Process 10 (Hardening), explained in detail in Section 

2.3. The items can be either bent or not bent (straight). Being them bent, they may be of the 

conventional or parabolic types. 

According to the company, the processes in which the highest losses occur are the 

cutting and the hardening, possibly due to them having the largest volume of items processed. 

It is understood that both of these processes also have the highest potential for optimization. 

Because of this, the details of the cutting and the hardening processes are explained in specific 

sections (Section 2.2 and Section 2.3, respectively). Details of the other processes are 

explained next, in this section. 

 

2.1.1 Parabolic Lamination  

Parabolic lamination refers to the reduction of the thickness and/or the width of 

parabolic springs (Figure 3). The springs that use this process are 8 mm to 55 mm thick and 

50 mm to 120 mm wide. Initially, the part of the material that is going to be laminated goes 

through an oven until operating temperature is reached. Afterwards, through rolls, the 

laminator compresses the spring until the specified measure is achieved. 

The factory owns two machines for this process, a laminator with automatic handlers 

and a laminator without automatic handlers. The difference between the two of them is that, in 

the case of the laminator without automatic handlers, both the control of temperature and 

exposed time in the oven, as the transport of the material to the cooling counter and its 

palletization are done by an operator. All of these activities are performed in an automated 

manner in the case of the laminator with automatic handlers. 

 
Figure 3 – Springs after parabolic lamination. Source: Author. 

2.1.2 Conventional Lamination 
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Conventional lamination seeks to reduce the thickness of the tips of conventional bent 

springs. The company owns two cells to perform this process, being that the difference 

between them is in how they achieve the heating of the spring before the lamination itself. 

One of the cells performs the heating by means of a gas oven and the other through an 

inductor. After the heating, the operator places the spring in a laminator that utilizes two rolls 

for compression. Afterwards, an eccentric press is used to perform the tip removal and give 

the spring its final shape. A set of springs after conventional lamination is pictured on Figure 

4.  

 
Figure 4 – Springs after conventional lamination. Source: Author. 

2.1.3 Olhete 

The olhete process aims at making a circular fold at the tips of the springs, as 

illustrated by Figure 5. Initially, the tip of the spring is heated and compressed in a laminator. 

At this point in the process some springs require a press for bending. Then, a circular 

movement piston locks the heated tip and performs a fold on the item, which is lastly placed 

on a pallet. 

The studied factory has two cells for the confection of these folds, one counts on 

hydraulic presses and the other on eccentric presses. The cell with eccentric presses processes 

springs that need to be bent and the cell with hydraulic presses processes the remaining types 

of springs. 
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Figure 5 – Springs after olhete. Source: Author. 

2.1.4 Second Fold 

In this process, the goal is to make circular folds at the tips of the springs. The 

difference between the second fold and the olhete rests on the specification of the fold to be 

made. While the olhete is a closed circular fold at the end of the spring, the second fold makes 

a more open fold, as seen on Figure 6. 

 
Figure 6 – Springs after second fold. Source: Author. 

Moreover, chamfers, semi-folds and folds are also performed at this process according 

to each item's projects. Chamfers are small cuts made at the tips of the springs (Figure 7). The 

semi-fold is the making of a curve at the tip of the spring, similar to the second fold but wider 

(Figure 8). The folds on the spring can be made in various ways, according to necessity 

(Figure 9). 

 
Figure 7 – Springs after chamfering. Source: Author. 



22 
 

 
Figure 8 – Springs after semi-fold. Source: Author. 

 
Figure 9 – Springs after fold. Source: Author. 

For performing the four activities of the second fold process, the company owns two 

cells, one being for conventional springs and the other for parabolic springs. For any of the 

activities, the part of the spring to be processed is first heated in an oven. Following, for 

chamfering, the spring goes through a laminator which compresses the heated tip, and through 

an eccentric press which makes the chamfer. The second fold, or semi-fold, is made in a 

circular movement piston which presses the heated tip and folds it around a stake. The folds 

are made by pressing the heated part of the spring against a matrix. 

 

2.1.5 Drilling 

During the drilling process, holes are drilled into the steel according to each spring's 

specifications (Figure 10). For this process, the company relies on five machines: an eccentric 

press with automated belts, three presses for cold drilling and one cell for hot drilling. 

All machines operate on manual settings, the eccentric press being the one that 

performs automatized transportation of springs and adjustments for drilling. This press is 

capable of processing springs from 70 mm to 101.6 mm wide and 8 mm to 13 mm thick. The 

eccentric presses for cold drilling are able to process springs from 40 mm to 101.6 mm wide 

and 5 mm to 15 mm thick. The cell for hot drilling operates with springs from 40 mm to 120 

mm wide and thicker than 15 mm. 
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Figure 10 – Springs after drilling. Source: Author. 

2.1.6 Tip Removal 

The goal of the tip removal is similar to the chamfer: to make cuts at the ends of the 

spring. The difference is that, as explained on the second fold process, chamfering involves 

hot cutting and tip removal involves cold cutting. The company owns two eccentric presses 

for tip removal that may be used on springs between 40 mm and 101.6 mm wide and 5 mm 

and 15 mm thick. Figure 11 shows a set of springs after this process. 

 
Figure 11 – Springs after tip removal. Source: Author. 

2.1.7 Dropping 

The dropping process (Figure 12) is similar to the folding. The difference between 

both is that one is performed on hot material (folding) and the other on cold material 

(dropping). The company relies on two friction presses to perform the dropping, both with the 

capacity to process springs from 40 mm to 101.6 mm wide and 5 mm to 15 mm thick. 
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Figure 12 – Springs after dropping. Source: Author. 

2.1.8 Face Milling 

The face milling consists of making a small decrease in measures on a specific part of 

the spring, as shown in Figure 13. Besides improving finishing aspects, this process also 

allows for higher precision of measure on the part that has been face milled. Precisely due to 

the need for accuracy, this activity is performed on cold material. The company owns a 

universal milling cutter for this activity. Initially, the spring is placed and fixed by an 

operator, who starts the milling cutter so that the indicated part is face milled. 

 
Figure 13 – Springs after face milling. Source: Author. 

 

2.2 Optimization of the Bar Cutting Process 

The cutting process consists of cutting objects (steel bars) into specific sized items 

(springs) which are used in the manufacture of final products (spring bundles). The company 

owns three machines able to cut up to 4176 items a day altogether: an eccentric press that can 

produce 1560 items per day and cuts thicknesses up to 20 mm; one metal cut-off grinder disk 

with a production capacity of 1560 items per day, which cuts up to 35 mm thickness; and an 

automatic cutting assembly with a production capacity of 1056 items per day, cutting items up 

to 30 mm thick. 

Another operational constraint of these machines is the limit of different types of items 

that can be used in a given cutting pattern (how the object is cut into smaller items). The 
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automatic machine can cut up to 4 different types of item per cutting pattern, while the other 

machines accept cutting patterns up to a limit of 3 different types of item. Also, the automatic 

machine has a limitation in the minimum and maximum length of items that it can produce 

(from 500 mm up to 2000 mm). 

It is worth noticing that there are few adjustments to be made on manual machines 

when changing the cutting pattern, setup times are short when compared to the cutting time. It 

occurs in changing the types of items that make up a cutting pattern, and not necessarily in 

changing the type of bar to be cut. For the automatic machine, there is a short electronic 

adjustment time for each change of bar type or cutting pattern. But this time can be carried out 

externally, that is, while the last units of the previous lot are being cut. Based on this 

discussion, setups will not be considered in the mathematical models that deal with the cutting 

process, in Chapters 3 and 4. 

Cutting patterns of steel bars are designed intending optimal usage whilst producing 

the demanded springs. Company rules state there must be a minimal usage of 95% of the bar. 

If not, a new cutting pattern must be formulated. In the case of a loss below 5% for 

homogenous cutting patterns (with a single type of spring cut from a bar), the company 

customarily accepts them since cutting patterns are manually designed. Effectively, the 

company observes average losses within 4.5% and 5% and sells residual steel by weight at an 

irrelevant price.  

In this factory, there is a demand for bars, unit springs and spring bundles. The 

manufacture of each product is determined by the products’ sales history and information 

regarding current, committed, and minimum and maximum stock. Make-to-Stock is the 

chosen strategy for production, and the company sets a higher minimum and maximum stock 

level, the higher the demand for a spring or spring bundle is. In extreme situations of low 

demand, one seeks the smallest stock possible. The worker responsible for inventory 

information monitors it daily and later determines how much of each spring and spring bundle 

shall be produced. 

Although there are significant inventories of springs and bars, a reduced inventory of 

spring bundles is kept by the company, intending to hold springs in stock that may be sold as 

individual pieces and assembled into spring bundles exclusively when demand presents itself. 

The company mobilizes some workers of different functions to produce spring bundles, only 

when it is needed. The size of this working group varies according the demand for spring 

bundles. Consequently, there is no fixed production capacity for it. 
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The company is supplied with steel bars standard sized in length, width, and thickness. 

The time between order and delivery for bars is considered long and might occasionally reach 

six months. Altogether, 320 varieties of steel bars are acquired, measuring from one to seven 

meters in length and containing different percentages of carbon, molybdenum, vanadium, 

niobium, and aluminium. 

Instead of being used in the production line, the bars in stock can also be sold to 

competitors when demand exists, and the price is advantageous. This is only possible because 

of the company’s high stock levels and the delivery time variation of the steel bars suppliers. 

Every bar is solely able to produce springs types that specifically correspond to its 

characteristics. Hence the division of bars and springs into subgroups of similar features, 

being that each bar may only belong to one subgroup and produce springs from such 

subgroup. It is not viable for a bar to produce springs from any other subgroup. 

In view of all the characteristics described, it was decided to address this problem in 

two ways. The first approach (Chapter 3) is focused on short-term issues, considering the 

company's cutting machines and their specificities. Since object purchases have a long 

delivery time and, in this case, a period corresponds to one day, object issues were not 

considered. This is a viable consideration since the high level of inventories of objects kept by 

the company, means, on a daily horizon, any production decision can be put into practice. 

The second approach (Chapter 4) makes a medium-term analysis, in which a period 

equals two months of production. In this period, it is possible to contemplate bar-related 

issues. Costs and stock limits, demand, and decisions on the purchase of bars were included in 

the model. It is worth mentioning that some detailed operational decisions were not 

considered in this medium-term approach, such as detailed operational aspects of the 

production machines. 

 

2.3 Optimization of the Hardening Process 

The hardening process of the truck spring sector is one of the last processes to be 

performed on the items before assembling the final products. The process consists in the 

assignment of items in the hardening furnace. After hardening, the items that need bending go 

to the benders and then to cooling in oil tanks. The other items go straight to the oil tanks. 

Finally, the springs pass through the tempering furnace. As the goal of the study in Chapter 5 

is to optimize the use of the hardening furnace, the focus of this section is on the hardening 

furnace itself as well as its relations to the benders. 
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To carry out this process, the company has one hardening furnace, three benders for 

conventional items, one bender for parabolic items, four oil tanks for cooling and one 

tempering furnace. Each day of production, the hardening furnace is turned on for about 9 

hours, and energy consumption during this period is among the most significant costs of 

production. 

Due to the high cost of operating the furnace and to avoid production stoppages, the 

company maintains a large intermediate stock before it goes into the furnace, that is, there are 

always many items waiting to be hardened. At the end of each day, it is decided which items 

will be processed the next day. This decision is made prioritizing the items which stock level 

is closer to the minimum stock, as well as those that have been waiting longer for processing. 

In the hardening furnace, the usable width for item assignment is 1,870 millimeters. 

Therefore, the sum of the length of the assigned springs must be less than or equal to this 

measurement, the difference between the two values being an empty space in the furnace and, 

therefore, representing a loss. After assigning items, movable beams transport them along the 

length of the furnace to be hardened. 

Depending on the types of items to be processed, the furnace speed and the 

temperature must be changed. All types of items are hardened at temperatures between 860°C 

and 980°C, with possible temperature levels every 10°C. To perform temperature and/or 

speed change of the furnace, a setup is required. At each setup, to ensure that all item types 

are processed within the specified conditions, about half the length of the furnace is empty 

between items of one type and another. Items of one specification pass through the furnace 

until they reach the end of processing, when items of another specification are already at the 

beginning of the crossing. At this point, the furnace is stopped until the working temperature 

of the incoming items is reached. Then, the movable beams perform the steps again, at the 

speed specified for the springs that are at the beginning of processing. 

Theoretically, setups can be performed to either increase or decrease the furnace speed 

and/or the temperature. However, in practice, the company starts production with light and 

thin items, which specification requires the coldest furnace (about 860°C to 920°C), in 

addition to a higher speed (about 20 to 22 minutes to go through the furnace). Throughout the 

day, items of intermediate thickness and weight are chosen and the thicker and heavier springs 

are processed at the end of the day at temperatures from around 940ºC to 980ºC, taking 

around 35 to 41 minutes to go through the furnace. Therefore, the setups currently carried out 

by the company generate a reduction in speed and an increase in temperature over the course 

of each day. 
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In addition, the company defined standardized formulas to simplify the 

parameterization of furnace speed and temperature. Each formula specifies a temperature and 

speed to be used as well as the thickness range of the items that can be processed under these 

conditions. Therefore, each formula can only be used to process items that fall within the 

defined thickness range but each item can be covered by more than one formula. 

The objective of the company is to process at least 30 tons of springs daily. When 

good assignments are made, empty spaces in the furnace are reduced. Additionally, good 

production planning allows for fewer setups, which also reduces wasted space in the furnace. 

High occupancy of the furnace reduces the planned processing time for the day or allows for 

total production above the forecast. Therefore, the objective of this approach is to maximize 

the amount of items assigned in the furnace, minimizing the number of setups needed and, 

consequently, improving furnace productivity. 

An important issue to be considered, for the viability of the solution, is the need for all 

items to be supported by at least two beams, otherwise they will fall, making the assignment 

unfeasible. Therefore, the distance between the beams must be considered when deciding 

which items to assign. Figure 14 shows a birds-eye view of the hardening furnace 

measurements. 

 

11 11 11 11 11

850
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Figure 14 – Internal dimensions, in top view, of the hardening furnace (centimeters). Source: Author. 
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Each of the gray colored objects in Figure 14 represents a movable beam. At the top of 

the figure are the measurements of each beam (110 millimeters each), at the bottom the 

measurements of the spaces between the beams. Each of these measurements is associated 

with what will be called the furnace section (in the example in Figure 14, there are 11 

sections). The sum of all measurements (sections), of the beams and the spaces between the 

beams, equals the furnace width (1,870 millimeters). On the right side of the figure is the 

measurement of the length of the furnace (8,500 millimeters). The black lines represent the 

lateral limits of the furnace and, according to this representation, the items enter the furnace 

from the top of the figure, are transported by the movable beams to the bottom, where they are 

released for the next processes. At each step of the beams, the items advance 85 millimeters 

along the length of the furnace, which in this case is 8,500 millimeters. Therefore, it takes 100 

steps for an item to traverse the entire length of the furnace. To change the furnace speed, the 

time for the completion of each step is changed. 

The benders process the items after the hardening furnace. Parabolic bent springs must 

be processed in parabolic benders, in the same way as conventional bent springs are bent in 

conventional benders. Items not bent, after hardening in the furnace, go straight to the cooling 

in the oil tank. Therefore, each bender can process only a subset of items. At each assignment, 

the number of parabolic and conventional items must respect the number of benders of each 

type available. Items that are not bent can be freely assigned because they do not use the 

benders. 

The following example illustrates a situation with possible assignments and impossible 

assignments in a hardening furnace. 

 

2.3.1 Example 

In this example, 6 item types are considered, and Figure 15 illustrates their main 

characteristics. The furnace considered has 5 movable beams. As the purpose of this section is 

to illustrate possible and impossible assignments, it is not necessary to provide exact 

measurements for the item types and the furnace. For the assignment of items in the furnace, 

the following restrictions must be considered: the items must be supported by at least two 

beams; the limitation on the number of benders must be respected; and for each assignment, 

only items from the same formula can be assigned together. In this example, consider that the 

limit of the benders is 2 for conventional items and 1 for parabolic items. As explained in the 

previous section, straight items do not need to use any bender. Figure 16 shows examples of 

possible assignments and Figure 17 shows impossible assignments. 
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Figure 15 – Item types and their characteristics. Source: Author. 

 
Figure 16 – Illustrative example of possible assignments. Source: Author. 

 
Figure 17 – Illustrative example of impossible assignments. Source: Author. 

Note that, in Figure 16, all assignments respect the restrictions. In Figure 17, 

assignment 1 shows the use of items from different formulas. In assignment 2, item 1 is not 

supported by two beams and, in assignments 3 and 4, the limits of conventional and parabolic 

items, respectively, were not respected. 

 

  

Item Representation Formula Type
Item 1 1 - P 1 Parabolic
Item 2 2 - S 2 Straight
Item 3 3 - C 2 Conventional
Item 4 4 - C 1 Conventional
Item 5 5 - S 1 Straight
Item 6 6 - P 2 Parabolic

Possible Assignments

Assignment 1 1 - P 4 - C 5 - S

Assignment 2 1 - P 4 - C 4 - C

Assignment 3 3 - C 6 - P 2 - S

Assignment 4 2 - S 3 - C 6 - P

Impossible Assignments

Assignment 1 1 - P 2 - S 3 - C

Assignment 2 1 - P 5 - S

Assignment 3 3 - C 3 - C 3 - C

Assignment 4 6 - P 2 - S 6 - P
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33..  TTHHEE  IINNTTEEGGRRAATTEEDD  LLOOTT  SSIIZZIINNGG  AANNDD  

CCUUTTTTIINNGG  SSTTOOCCKK  PPRROOBBLLEEMM  IINN  AANN  

AAUUTTOOMMOOTTIIVVEE  SSPPRRIINNGG  FFAACCTTOORRYY  

In this chapter, the production of truck springs in an automotive spring factory is 

addressed. The goal is to reduce storage costs together with the losses in the cutting of steel 

bars. The approach considers the one-dimensional cutting of objects (steel bars) into smaller 

items (springs) that are assembled into final products (spring bundles). There is demand for 

items and final products, besides their inventory costs and limits. 

Aiming to improve the company's practice, an integrated approach between the CSP 

and the LSP is proposed. As already demonstrated by several authors (Gramani et al. 2009; 

Vanzela et al. 2017; Melega et al. 2018; Do Nascimento et al. 2020), these two problems are 

quite dependent, and an integrated approach can improve the global result, compared to 

treating each problem separately. It is important to state that no optimization approach in the 

spring industry, similar to this one, has been found in the literature so far. 

The main contribution of this chapter lie in the mathematical model proposed to 

represent the practical problem in an integrated approach. The model was developed to meet 

the needs of the factory, considering short-term issues. Multiple time periods, parallel 

machines, stock limits for items and final products are considered in this model, besides 

machines capacities, and operational constraints such as the limit of item types by cutting 

patterns, thickness, and length limits in each machine. Besides the cutting process of items 

(springs), the assembly of final products (bundles) is also considered. According to the future 

research agenda proposed in the recent review of Melega et al. (2018), this chapter helps fill a 

gap in the literature, by considering multiple, heterogeneous, parallel and capacitated cutting 

machines, applied to an industrial sector that has not yet been explored in this context. 

Regarding the solution method, the simplex method with column generation was used 

to solve the linear relaxation, according to Gilmore and Gomory (1961), followed by 

obtaining an integer solution through a computational package. The formulation of the 

subproblems is new since it considers the specificities of the company; in this case, the limit 



32 
 

of item types by cutting pattern, as well as machine limitations and others. The cutting knife 

limitation, considered by Gilmore and Gomory (1963) in an application in the paper industry, 

is similar to the consideration of the limit of item types by cutting pattern, performed in this 

chapter. Note that this is a straightforward solution method with innovative aspects, which is 

justified because the main focus of this chapter is the application and not the methodology. 

The implementation, with extensive computational tests, of such a new approach 

applied to a factory in the Brazilian automobile sector, among the most important in the 

country, contributes to both current practice and to the literature. The approach is validated by 

solving instances with both real and random data. The solution of the spring company 

instance, obtaining a very significant reduction in losses (almost 50%), demonstrates the 

quality of the model and the relevance of the study. Solving the random instances allows for 

analysis of the influence of different parameters, giving a better understanding of the problem 

and enabling managerial insights that can further improve practical results. 

This study has already been published in an international journal (Andrade et al. 

2021), and the contributions of the author of this thesis were: visits to the company to collect 

information; conception of the mathematical model; implementation of programming 

techniques; running the instances; analysis of results; and writing the text. 

This chapter is divided into five sections, these being: the literature review (3.1); the 

proposed mathematical model (3.2); the explanation of the solution method (3.3); the 

presentation of the computational results (3.4); and the conclusions (3.5). 

 

3.1 Literature Review 

Many companies have turned their efforts to integrated approaches, looking for a 

global optimal solution, naturally better than optimizing isolated problems (Gramani et al. 

2011). Consequently, studies on the ILSCSP have been increasing (Melega et al. 2018). 

Among the reasons for this, is the great potential for economic gains in several industries, in 

addition to the recent advances in computation, which allows the approach to address more 

complex problems. 

The ILSCSP basically captures the trade-off between material losses in the cutting 

process and inventory costs (Poldi and Arenales, 2010). Depending on the approach, 

inventory costs for items, objects and/or final products are considered. In addition, each 

practical application results in specific constraints to be added to the model, such as object 

production, inventory limits, machine capacity, among others. 
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In a recent literature review of papers that deal with the ILSCSP, Melega et al. (2018) 

found 34 studies conducted over 32 years, nine of which had been published in the last two 

years of the research (2016 and 2017). Using the same criteria, searching for papers from 

2018 onwards, it has been found another six papers.  

The present study considers the cutting process of objects, together with the assembly 

of final products, over multiple periods of time. Therefore, according to the nomenclature 

proposed in Melega et al. (2018), it is an ILSCSP classified as (-/L2/L3/M). In their review, 

the authors found 9 papers with this same classification. Considering the years of 2018, 2019 

and 2020, only the paper of Melega et al. (2020) was found with this specific classification. 

Considering the papers that approach the same integrated problem (-/L2/L3/M), 

Ghidini et al. (2007) propose a mathematical model for the ILSCSP that arises in a small 

furniture factory. In order to solving using the Simplex method with column generation, the 

model is simplified, disregarding the cutting machine setup costs. Two instances with real 

data are solved, and the authors highlight the importance of considering practical aspects, 

such as capacity limits and demand fluctuation for the solution's applicability. 

A heuristic method, based on Lagrangean relaxation, to solve an ILSCSP in a furniture 

industry is presented in Gramani et al. (2009). The model considers guillotine cutting in two 

stages, in addition to setup costs for both problems. Shortly after that, in Gramani et al. 

(2011), the model is adjusted, considering item inventory costs and disregarding final product 

setup. These changes allowed the solution of the model through the Simplex method with 

column generation. 

In Santos et al. (2011), the mathematical model of the ILSCSP in a furniture industry 

is presented. An operational constraint specific to the furniture industry is considered, aiming 

to reduce the number of saw cycles. For the solution of the model, cutting patterns generated 

a priori are used and the authors suggest that a column generation approach could improve 

the results. 

Suliman (2012) formulate the ILSCSP as a non-linear integer model and propose an 

algorithm to solve it. The algorithm works backwards, solving the last period first. It is not a 

complete integration, as it solves the LSP first, and then the CSP. The authors test the method 

with a practical example in the aluminum industry, and with fictitious instances. 

In two sequential papers, Alem and Morabito (2012, 2013), study a small furniture 

factory and strategies to deal with the risks arising from uncertainty scenarios. In Alem and 

Morabito (2012), robust models are proposed for the ILSCSP that consider uncertainties in 

several parameters, such as production and storage costs, and demand. The model is tested 
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with real data and simulated instances. In Alem and Morabito (2013), a deterministic model is 

presented, which considers, among other constraints, setup costs in the cutting and drilling 

sector. The authors analyze different models of two-stage stochastic programming to make 

decisions on risk-neutral or risk-averse strategies. 

Vanzela et al. (2017) propose a mathematical model to contemplate this integrated 

approach in a small furniture factory. In order to obtain a practical feasible solution, saw 

cycles are considered in capacity constraints. The authors compare the integrated model 

solution with the simulation of factory practice, where decisions are made separately, 

concluding that the model can improve the production planning of the company. 

The work in Wu et al. (2017) is essentially theoretical, focusing on the performance of 

techniques for solving the ILSCSP. The authors propose a new progressive selection 

algorithm, in addition to two Dantzig-Wolfe decomposition approaches with column 

generation. The authors claim that the proposed methods are computationally feasible and 

capable of improving the results in comparison with other methods. 

In Melega et al. (2020), the authors consider the ILSCSP with sequence-dependent 

setup times and setup costs, i.e., the cutting patterns must be sequenced in order to obtain a 

solution for the problem. The solution method uses column generation and the integer 

problem is solved by decomposition approaches. Computational results, with randomly 

generated instances, are presented.  

Finally, considering papers that approach this integrated problem in a single period (-

/L2/L3/S), Farley (1988) study a textile factory, creating two models to describe it, a quadratic 

and an integer. Both models consider several specificities at the company being considered, 

such as setup costs in the cutting machines, and minimum and maximum production levels of 

final products. Lemos et al. (2021) study the integration of a one-dimensional CSP in an 

environment of multiple manufacturing modes, an unexplored approach. The main goal is to 

adapt the model to solve the practical problem of a concrete pole factory. In addition to 

solving the real problem, the proposed model is tested with several instances of random data. 

Table 1 shows the summary of information about each article: 

 

 

 

 



35 
 

Table 1 – Classification of the related papers from the literature. 

Authors Application Dimensionality Periods 

Farley (1988) Textile Two-dimensional Single 

Ghidini et al. (2007) Furniture Two-dimensional Multiple 

Gramani et al. (2009) Furniture Two-dimensional Multiple 

Gramani et al. (2011) Furniture Two-dimensional Multiple 

Santos et al. (2011) Furniture Two-dimensional Multiple 

Suliman (2012) Aluminium One-dimensional Multiple 

Alem and Morabito (2012) Furniture Two-dimensional Multiple 

Alem and Morabito (2013) Furniture Two-dimensional Multiple 

Vanzela et al. (2017) Furniture Two-dimensional Multiple 

Wu et al. (2017) General One-dimensional Multiple 

Melega et al. (2020) General One-dimensional Multiple 

Lemos et al. (2021) Construction One-dimensional Single 

 

As can be seen from Table 1, most papers deal with the furniture industry in a two-

dimensional approach (Ghidini et al. 2007; Gramani et al. 2009, 2011; Santos et al. 2011; 

Alem and Morabito, 2012, 2013; Vanzela et al. 2017). All the studies, except Wu et al. (2017) 

and Melega et al. (2020), similar to the present study, have as main objective the solution of a 

practical application, considering several real word constraints, and also carrying out 

computational tests with fictitious instances. Futhermore, the Simplex method with column 

generation is a technique widely used in these approaches (Ghidini et al. 2007; Gramani et al. 

2011; Vanzela et al. 2017; Wu et al. 2017; Melega et al. 2020; Lemos et al. 2021). 

No mathematical model was found that considers the same aspects that are being 

considered in this chapter. The most similar is Gramani et al. (2011), but the authors only 

consider the linear relaxation of the model. Moreover, they do not consider parallel machines 

and operational constraints, which make our subproblems to generate columns totally 

different from the subproblems considered in Gramani et al. (2011). 

 

3.2 Mathematical Model 

The proposed mathematical model considers cutting objects (steel bars) into items 

(springs) and assembling items into final products (bundles). Both items and final products 

have their own demands, inventory costs and limits. Setups are not considered, as well as the 
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limitation of production capacity of final products, since, as explained in Section 2.2, this 

does not make sense for the considered company. The limit for item production capacity is 

considered according to the specification of each cutting machine. Parallel machines are 

considered, as well as their operational constraints, which will appear in the subproblem, to be 

explained in section 3.3. Each term used in the mathematical model is defined as follows: 

Sets: 

I: set of item types {i = 1, ... , |I|} (index i); 

K: set of object types {k = 1, ... , |K|} (index k); 

J: set of cutting patterns {j = 1, ... , |𝑁 |} (index j). Where 𝑁  is the number of 

cutting patterns of object type k; 

P: set of final product types {p = 1, ... , |P|} (index p); 

F: set of cutting machines {f = 1, ... , |F|} (index f); 

T: set of periods {t = 1, ... , |T|} (index t). 

Parameters: 

𝑑𝑟 : demand of item type i in period t; 

𝑑𝑝 : demand of final product type p in period t; 

𝛼 : quantity of item type i produced by cutting pattern j from object type k; 

𝑧 : quantity of item type i in one unit of final product type p; 

𝑐𝑎𝑝 : production capacity (in number of items) of the machine f in period t; 

𝑐 : cost of cutting (mm of bar) of an object type k according to the cutting pattern 

j on machine f in period t; 

𝑐𝑟 : storage cost (in mm of bar) of item type i in stock at the end of period t; 

𝑐𝑝 : storage cost (in mm of bar) of final product type p in stock at the end of 

period t; 

𝑟𝑚𝑖𝑛 : minimum stock of item type i; 

𝑟𝑚𝑎𝑥 : maximum stock of item type i; 

𝑢𝑚𝑖𝑛 : minimum stock of final product type p; 

𝑢𝑚𝑎𝑥 : maximum stock of final product type p; 

𝐿 : length of object type k; 

𝑙 : length of item type i. 

Decision Variables: 

𝑥 : number of objects type k cut according to cutting pattern j on machine f in 

period t; 
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𝑦 : number of final products type p produced in period t; 

𝑟 : number of items type i in stock at the end of period t; 

𝑢 : number of final products type p in stock at the end of period t. 

The mathematical model is as follows: 

𝑀𝑖𝑛 (( 𝑐 𝑥

|𝐹|| ||𝐾|

) + 𝑐𝑟 𝑟

|𝐼|

+ 𝑐𝑝 𝑢

|𝑃|

)

|𝑇|

                                                                  (1) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 

𝛼 𝑥

|𝐹|| ||𝐾|

+ 𝑟 , = 𝑑𝑟  + 𝑟 +  𝑧 𝑦

|𝑃|

 , ∀ 𝑖, 𝑡,                                                        (2) 

𝑦 + 𝑢 ,  = 𝑑𝑝 +  𝑢 ,       ∀ 𝑝, 𝑡,                                                                                                             (3) 

𝛼  𝑥

| ||𝐾||𝐼|

≤  𝑐𝑎𝑝  , ∀ 𝑓, 𝑡,                                                                                                     (4) 

𝑟𝑚𝑖𝑛  ≤  𝑟  ≤  𝑟𝑚𝑎𝑥  , ∀ 𝑖, 𝑡,                                                                                                                   (5) 

𝑢𝑚𝑖𝑛  ≤  𝑢  ≤  𝑢𝑚𝑎𝑥  , ∀ 𝑝, 𝑡,                                                                                                              (6) 

𝑥  ∈  𝑍 ,   𝑦  ∈  𝑍  ,   𝑟  ∈  𝑅  ,   𝑢  ∈  𝑅  ,                 ∀ 𝑖, 𝑘, 𝑗, 𝑓, 𝑝, 𝑡.                                             (7) 

The cost of cutting an object type k according to cutting pattern j, on machine f, in 

period t, represented by 𝑐 , is equivalent to the loss of material, in millimeters, generated 

by this cutting pattern, that is: 

𝑐 =  𝐿  – 𝛼 𝑙

|𝐼|

, ∀ 𝑘, 𝑗, 𝑓, 𝑡.                                                                                                           (8) 

In the model (1) - (7), the objective function (OF) (1) minimizes costs with loss of 

material in all periods (days), as well as the costs of storing items (springs) and final products 

(spring bundles). Constraints (2) ensure that the demand for all items in all periods is 

satisfied. Under these restrictions, for all items in all periods, the quantity available in stock at 

the beginning of the period 𝑟 , ,  plus the quantity produced for this item 

(∑ ∑ ∑ 𝛼 𝑥 ) must be equal to the sum of the demand for this item (𝑑𝑟 ), the 

quantity used in the production of all the bundles types (∑ 𝑧 𝑦 ), and the quantity left in 

stock for the next period (𝑟 ). In (3) the demand for final products is satisfied, since for all 

products p in all periods t, the quantity in stock at the beginning of the period (𝑢 , ) plus the 
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quantity produced (𝑦 ), should be equal to product demand (𝑑𝑝 ) plus quantity left in stock 

for next period (𝑢 ). Constraints (4) ensure the production capacity of each cutting machine 

is respected in all periods. Constraints (5) and (6) establish the minimum and maximum 

stocks for items and final products, respectively. The initial stocks 𝑟  and 𝑢  are parameters 

that vary with each instance and can assume any value between the established limits. Finally, 

in (7), the domains of the decision variables are defined. 

 

3.3 Solution Method 

The method used to solve the linear relaxation of the model presented in Section 3.2 is 

the Simplex method with column generation (Gilmore and Gomory, 1961). A computational 

package was used to obtain integer solutions. Similar approaches were used by Vanzela et al. 

(2017), Poldi and De Araujo (2016), among others. In this section, the application of this 

method is explained in detail. 

The mathematical model presented in Section 3.2 has a large number of integer 

variables, 𝑥  and 𝑦 , making it difficult to obtain an optimal solution. And so, these 

variables have their integrality constraints relaxed (using 𝑥  and 𝑦 ∈ 𝑅 ) and the Simplex 

method with column generation is used. This model is usually called the "master problem" or 

“relaxed master problem” when it do not consider integrality constraints for variables 𝑥  

and 𝑦 . 

The objective of the method is to add columns (cutting patterns, in this case) to the 

relaxed master problem in order to improve the OF. Columns are generated through the 

solution of subproblems, which are mathematical models of the knapsack problem. Iteratively 

repeating this process until no generated column can improve the OF, the optimal solution of 

the relaxed master problem is obtained (Poldi, 2007). 

Initially, the master problem is solved considering only the homogeneous maximal 

cutting patterns, that is, cutting patterns containing only one item type as many as possible. 

This procedure ensures that, even with an initial reduced set of columns, it is possible to find 

a feasible solution to the master problem (Lemos, 2020). In a feasible solution, each constraint 

of the master problem is associated with a dual variable, and each column is associated with a 

reduced cost. The reduced cost of a column is the difference between its coefficient on the OF 

and the sum of the product of its coefficients on the constraints and the dual values of those 

constraints. When the reduced cost of a column is negative, it means that the penalty it 
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imposes on the constraints is less significant than the gain it generates in the OF, that is, 

adding this column to the master problem improves the quality of the current solution. 

To generate columns that improve the solution of the master problem, the OF of 

subproblems, presented in (9), aims to minimize the reduced cost of the generated columns. 

Considering that the variables 𝑥 , which represents the cutting patterns, only appears in 

Constraints (2) and (4), only the dual variables of these two constraints influence the reduced 

cost value of this variables. Therefore, as can be seen in the OF in (9), only the values of the 

dual variables referring to Constraints (2) and (4) are used. 

At each iteration, the number of subproblems solved is equal to the product of the 

number of objects (K), machines (F) and periods (T). The items assigned to a cutting pattern 

are only those that can be produced from a given object type k and by a given machine f, 

ensuring that the cutting patterns generated are technically feasible. 

Adaptations were made to the formulation of the subproblems to consider the 

specificities of this particular company. As a subproblem is generated for each type of object, 

each machine and each period, resulting in a cutting pattern, the indexes k, j, f and t are fixed 

in each subproblem. Therefore, the terms 𝐿 , 𝜋  and 𝑖𝑚𝑎𝑥 , given below, are treated as 

constants. The variable 𝛼  has the fixed indexes j and k, with only index i varying. In 

addition to those presented previously, the terms used in the mathematical model of the 

subproblems are: 

Sets: 

𝐺 : Set of item types that can be produced from object type k; 

𝐻 : Set of item types that can be produced on machine f. 

Parameters: 

𝜋 : the dual variable of Constraint (2), referring to item type i in period t; 

𝜋 : the dual variable of Constraint (4), referring to machine f in period t; 

𝑚𝑎𝑥 : maximum number of different types of items for a cutting pattern on 

machine f; 

M : sufficiently large value. 

Variables: 

𝛼 : quantity of item type i produced by cutting pattern j from object type k; 

𝛽 : whether or not item type i is present in the cutting pattern. 

The mathematical model of the subproblems (for each k = 1, ... , K, f = 1, ... , F, and t 

= 1, ... , T) is described below: 
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𝑀𝑖𝑛 𝐿  – 𝛼 (𝑙 + 𝜋 + 𝜋 )

∈𝐺𝑘⋂𝐻𝑓

,                                                                                                            (9) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 

𝛼 𝑙

∈𝐺𝑘⋂𝐻𝑓

≤ 𝐿 ,                                                                                                                                            (10) 

𝛽

∈𝐺𝑘⋂𝐻𝑓

≤ 𝑚𝑎𝑥 ,                                                                                                                                            (11) 

𝛼 ≤ 𝑀𝛽 ,       ∀ 𝑖 ∈ 𝐺𝑘⋂𝐻𝑓,                                                                                                                          (12) 

𝛼 ∈ 𝑍 ,   𝛽 = {0;  1},     ∀ 𝑖 ∈ 𝐺𝑘⋂𝐻𝑓,                                                                                                      (13) 

In (9)-(13), the objective function (9) minimizes the relative cost of the generated 

column. Constraints (10) ensure that the sum of the lengths of items in the cutting pattern is 

not greater than the length of object type k. In (11), the number of different item types that can 

make up a cutting pattern on machine f is limited. Furthermore, constraints (12) link the 

decision variables, ensuring that, if an item type i is not in the cutting pattern (𝛽  = 0), the 

variable 𝛼  for this item is equal to zero. Otherwise, (𝛽  = 1), the variable 𝛼  can be any 

value, provided that the constraints are respected. Finally, (13) defines the domain of 

variables. 

To strengthen the linear relaxation, the value of M should be as small as possible. 

From (10), it is known that 𝛼  ≤  𝐿 𝑙⁄ . Therefore, the value for M is the smallest integer 

number greater than: 𝐿 𝑙⁄ +  1, 𝐿  being the length of the largest object, and 𝑙  the length of 

the smallest item. 

As previously explained, when the relative cost of the column generated by a 

subproblem is negative, it means that the column improves the quality of the current solution, 

and it should be added to the master problem. The lower the value, the greater the 

improvement generated by this column. It is known that adding more columns to the master 

problem can improve the quality of the final solution, and it also can lead to fewer iterations 

required to reach this solution. On the other hand, adding more columns increases master 

problem (relaxed and integer) processing time. Additionally, as it can be seen in Section 3.4, 

the most significant processing time in the largest instances, especially the real data instance, 

is required to solve the relaxed master problem, and the integer master problem, rather than 

the subproblems. 

Computational time is also a scarce resource, either because of the risk of memory 

overflow in very long processing or, in real cases, the need for a solution in the right time for 
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its utilization. Therefore, to reduce the computational time of the master problem and seeking 

to minimize the impact on the quality of the final solution, a strategy was created. It consists 

in selecting only better columns to add in the master problem at each iteration, those with the 

lowest relative costs. After solving K * F * T subproblems in an iteration, the average of the 

negative relative costs is calculated. Then, only columns generated by subproblems with 

relative cost less than or equal to the value of the mean multiplied by 0.1 are added to the 

master problem. This value (0.1) was obtained based on initial tests. Since we are dealing 

with negative values, the lower the value, the more columns are added. 

It is important to clarify that the parameterization of this value to 0.1 causes a small 

part of the generated columns to be excluded. For example: if the average of negative relative 

costs is -100. After multiplying by 0.1, columns with relative cost less than -10 would be 

accepted, that is, the majority of cases would meet the established criteria. 

Figure 18 shows a flowchart that summarizes the proposed solution method. In the 

first iteration, homogeneous maximal cutting patterns are generated and the relaxed master 

problem is solved. The dual variables are used in the objective function of the subproblems to 

be solved (K * F * T subproblems at each iteration), the generated columns are added to the 

master problem according to the explained criterion. It is important to note that the columns 

considered for calculating the mean are only those that obtain a negative relative cost. Thus, 

to start a new iteration, the master problem is solved considering the new columns along with 

the columns from the previous iteration. 

When, after solving all subproblems, no generated cutting pattern obtains a negative 

reduced cost, it means that the optimal solution of the linear relaxation of the master problem 

was reached. Then a procedure is applied to determine an integer solution. In this procedure, 

the homogeneous columns initially generated, and the columns added during the iterations are 

used in the master problem, which is solved considering the integrality constraints. Finally, 

the gap is calculated, which is the difference in percentage between the integer solution and 

the optimal solution of the linear relaxation. 

It is possible to observe, in Figure 18, that no processing time limit was defined in the 

column generation, but in the solution of the master problem with integrality constraints, the 

time limit was set at 20 minutes for the random data instances and 1 hour for the real instance. 

 



 

Figure 18
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terms of item thickness and length, and the limited types of items per cutting pattern were 

taken into consideration. 

Although in practice, the daily inventory costs of most of the items or final products 

are not relevant, they were considered in the model to balance inventory levels, preventing 

them from rising excessively. According to company specifics, inventory costs are quite low 

for almost all items. Items with high demands had inventory costs per period defined as 0.5% 

of their lengths. For items with low demand, the established costs were 1% of their lengths. In 

addition, for items with very low demand, the inventory cost is set to 50% of their lengths. 

Inventory costs for final products were defined as the sum of inventory costs for all items that 

comprise it. These definitions were made in consultation with the production manager. Thus, 

the percentage values established for each item, as well as the calculation of inventory costs 

for final products were considered quite reasonable by the company. 

The total demand for the week studied is 13,305 items and 221 final products, which 

need 1,779 items to be produced. The total production capacity is 20,880 items. The average 

number of item types per subgroup is 3.9, and the largest subgroup has 53 item types. There is 

only one item type in the smallest subgroup. The average number of object types per 

subgroup is 1.2, and the number of object types per subgroup ranges from 1 to 3. Considering 

stocks of all types of items, the average difference between the maximum stock and the 

minimum stock is 164 items, with the smallest difference being 31 items and the largest, 

3,030 items. Table 2 presents the relevant data in this instance with the minimum, maximum 

and mean values, as well as standard deviations. 

Table 2 – Spring factory data. 

Parameter Minimum Maximum Mean Standard Deviation 

Object Length (mm) 1,200 7,000 6,052 875.3 

Item Length (mm) 300 2,220 1,178 475.6 

Item Demand (un) 4 1,200 76.0 148.6 

Final Product Demand (un) 6 82 31.6 23.4 

Item by Subgroup (un) 1 53 3.9 7.8 

Object by Subgroup (un) 1 3 1.2 0.48 

Item Stock Range (un) 31 3,030 164.0 427.9 

Final Product Stock Range (un) 30 52 38.0 6.5 

Item Stock Cost (% Item Length) 0.5%  ;  1%  ;  50% 16.9% 23.2% 

Item Production Capacity (% need for items) 138% of the need for items 
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Table 3 shows the quality of the solution obtained using the proposed approach. The 

value of the OF and its percentage difference in relation to the optimal solution of the linear 

relaxation (Gap) are presented. This table also presents the number of objects used, the total 

length of objects cut, the total length of the losses (both in millimeters) and the percentage of 

losses. Finally, the inventory costs (Stock Cost), the inventory usage index (Usage %) and the 

inventory cost index (Cost %) are shown for both items and bundles. 

To find, for example, the value of the inventory usage index of items for each instance, 

the inventory range is calculated (𝑟𝑎𝑛𝑔𝑒  = 𝑟𝑚𝑎𝑥  - 𝑟𝑚𝑖𝑛 ) for all item types. The average 

stock occupation of each item type is also calculated (𝑟𝑜𝑐𝑝  = 𝑟𝑚𝑒𝑎𝑛  - 𝑟𝑚𝑖𝑛 ), where 

(𝑟𝑚𝑒𝑎𝑛  = 
∑

), for all item types. So, the inventory usage index is equal to (
∑

∑
 . 

100). The calculation is the same for the final products. The same criterion is used to calculate 

the inventory cost index, but referring not to the number of units in stock, but the cost of those 

units in stock. 

Table 3 – Results of the model using real data. 

Factor Model Factory 

Solution 
OF (mm) 1,574,639 - 

Gap 9.83% - 

Loss 

Objects Used 3,109 3.308 

Total Cut (mm) 19,767,110 - 

Loss (mm) 470,216 - 

Loss % 2.38% 4.75% 

Item 

Stock 

Usage % 10.86% 11.5% 

Stock Cost (mm) 602,049 - 

Cost % 3.18% 51.2% 

Bundles 

Stock 

Usage % 13.16% 15.2% 

Stock Cost (mm) 502,374 - 

Cost % 1.68% 16.8% 

 

Taking into account the size of this instance and its characteristics, the gap in this 

solution can be consider a good result. In section 3.4.2.2, it is clear that the biggest gaps occur 

in larger instances with small items, exactly the characteristics of this real instance. 

At the spring company, the loss from the cutting process is measured in kilograms of 

steel lost, which means that the loss in objects with larger width and thickness, is more 
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significant than the loss from smaller objects. During production in the week being studied, 

the loss in practice at the company was 4.75%, losing 6,657 kg of steel after cutting 3,308 

objects whose total weight was 140,207 kg. The proposed mathematical model use loss 

calculated in millimeters, but to allow the comparison, in this case, the solution was analyzed 

in terms of weight: 3,960 kg of steel was lost after cutting 3,109 objects weighing a total of 

165,908 kg, which represents a loss of 2.39%. 

Note that, besides cutting 25,701 kg more, the model lost 2,697 kg less. The proposed 

solution also used 199 fewer objects and, as can be seen below, produced a total of 674 more 

items. To compare the solution, the percentage of losses generated by the model was 

compared with actual company data. In view of this, it can be concluded that the loss was 

reduced by 49.7%, from 4.75% to 2.39%. In the actual company solution, this reduction 

would represent a weekly saving about 3,307 kg of steel. When analyzing the loss of the 

proposed solution in terms of length, as will be done with all other instances of this chapter, 

470,216 mm of steel were lost after cutting of objects measuring 19,767,110 mm in total, 

which represents a 2.38% loss. 

Regarding the inventory usage index, the solution reaches aceptable values both for 

the items (10.86%) and final products (13.16%). The values of the inventory cost index are 

much lower, 3.18% for items and 1.68% for final products. This large difference is made 

possible by the large difference in inventory costs established in the model, with inventory 

costs of 0.5% for some units and 50% for others. This difference between the inventory usage 

index and the inventory cost index also means that the model was capable of avoiding stocks 

of high cost, accumulating inventories mostly from low-cost units, in this case, both for items 

and final products. 

In practice, the inventory usage index of the company was slightly higher than the 

proposed solution, 11.5% for the items, and 15.2% for the final products. Even if the company 

does not measure storage costs, and therefore does not make decisions based on them, for 

comparison purposes only, the actual company solution was evaluated with the same criteria, 

obtaining an inventory cost index of 51.2% for items and 16.8% for final products. 

The solution of the proposed model uses 83.71% of the total capacity, producing 

17,478 items in the five periods, meeting the demand for items and final products. By 

comparison, the company solution in practice used 80.48% of the capacity to produce 16,804 

items. As the total need for items was 15.084 units, both solutions increase inventories. In the 

solution of the model, production close to the demand period allowed that, even with an 

increased production, the inventory cost indexes remained low. Additionally, the increase in 
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production occurs mainly in items with low stock costs that allow good cutting patterns, 

consequently reducing losses. Achieving this result was facilitated by considering low 

inventory costs. In addition, it is important to note that even though inventories have been 

accumulated, there is a limitation for this increase, since all types of items and final products 

remain, in all periods, below the maximum stock established by the company. 

Table 4 shows the computational performance of the model applied to the spring 

factory data. The first lines show the number of subgroups of items and objects and the 

number of iterations required for the solution. The number of columns, considering initial 

columns from homogeneous patterns (Homogeneous), and the columns generated during 

iterations (Generated) are given next. The total time and the time per iteration (both in 

seconds) spent solving the relaxed master problem and subproblems (By Iteration and Total) 

follow. Finally, the time needed to solve the master problem with integer constraints at the 

end of the run and the total computer time for all stages are shown. 

Table 4 – Computational performance of the model with real data. 

Factor Value 

Number of Subgroups 45 

Number of Iterations 16 

Columns 
Homogeneous 487 

Added 762 

Relaxed Master 

Time (s) 

By Iteration 189 

Total 3,031 

Subproblem 

Time (s) 

By Iteration 40 

Total 637 

Integer Master Time (s) 3,874 

Total Time (s) 7,543 

 

As can be seen in Table 4, most of the 2 hours and 6 minutes total computational time 

was used in solving the integer master problem. The processing time of the integer master 

problem was limited to 1 hour, and the excess time (274 seconds) was consumed in loading 

the data. In the column generation, most of the processing time was spent solving the relaxed 

master problem. To compare the time taken to find the solution, the spring company estimates 

that an employee takes 42,000 seconds (11.7 hours) per week or 8,400 seconds (2.3 hours) per 

day to do this manually. A practical gain lies in the fact that the solution is automatically 

found, requiring only a few minutes for an employee to enter the data and export the solution. 
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3.4.2 Random Data 

In order to evaluate the performance of the model (1)-(7), random instances with 

different characteristics generated as described in Section 3.4.2.1 were used. These instances 

also allowed additional managerial insights to be obtained. The results are presented in 

Section 3.4.2.2. 

 

3.4.2.1 Generation of the Random Data Instances 

These instances were divided into 18 groups, which differ in terms of the number of 

items types and object types, inventory costs, and length of the items. The characteristics of 

each group are shown in Table 5: 

Table 5 – Groups of instances with random data. 

Random Instances 

Size of the Instances 

35 Item Types; 15 Object Types; 

5 Final Product Types 

70 Item Types; 30 Object Types; 

10 Final Product Types 

Item Inventory Costs 

0-5% 10-15% 20-25% 0-5% 10-15% 20-25% 

Length 

of Items 

(mm) 

500-1,000 G 1 G 4 G 7 G 10 G 13 G 16 

1,000-1,500 G 2 G 5 G 8 G 11 G 14 G 17 

1,500-2,000 G 3 G 6 G 9 G 12 G 15 G 18 

 

For each of the groups, 10 instances were generated with random data, within the 

levels fixed above, totaling 180 instances. Each instance has, besides the characteristics of 

each group, four periods and three machines having the same characteristics as those used by 

the spring company. The other necessary information was randomly defined, based on the 

mean and standard deviation of the real data. The parameters considered and their ranges are 

shown in Table 6. 
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Table 6 – Range of variation of the parameters of the random instances. 

Parameter Minimum Maximum 

Item Demand 10 300 

Final Product Demand 5 40 

Object Length 5,200 6,800 

Item Stock Range 0 ; 20 ; 45 ; 80 30 ; 55 ; 90 ; 140 

Final Product Stock Range 0 – 10 15 – 20 

Item by Subgroup 1 7 

Item by Final Product 4 10 

Object by Subgroup 50% current subgroup, 50% next subgroup 

Production Capacity 115% of Items Demand 

 

The demand for each item and final product occurs in only one of the four periods, 

which is also defined at random. The definition of minimum and maximum inventories for 

each item is based on their demand, so that limits are higher for stock items with high 

demand. The initial stock for items (𝑟 ) and final products (𝑢 ) is equal to the minimum 

stock 𝑟𝑚𝑖𝑛  and 𝑢𝑚𝑖𝑛 . 

To bring the instances closer to the company’s practice, the inventory levels of final 

products are low. The inventory cost of final products, in the same way as the real data 

instance, is the sum of inventory costs for all items that comprise it. Finally, it is important to 

state that after defining (between 4 to 10) the items that make up a final product, the quantity 

is also randomly defined, between 1 to 3 units of each item. 

The total capacity of the machines was considered as 115% of the need for the 

production of items in each instance to avoid infeasibilities. The capacity is equally divided 

by machine and period. The criterion to define the number of objects in each subgroup is that 

the first object makes up the first subgroup, and then each object has 50% chance of being in 

the same subgroup, as the previous object, and 50% chance of forming a new subgroup. 

 

3.4.2.2 Results of Random Instances 

Table 7 below, illustrates the average gap for the 10 random instances in each of the 

18 groups. It is clear that instances with the smallest items generate large gaps. This occurs 

because small items generate more diversities of cutting patterns. As only a part of these 

cutting patterns (columns) are generated, it becomes more difficult to find solutions very close 

to the optimal solution, compared to instances with fewer possible cutting patterns. In 
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addition, lower gaps are achieved by smaller instances. Therefore, in a practical application 

with a high concentration of small items, the results from the proposed approach must be 

analyzed and possibly improved. 

Table 7 – Percentage gap for the model with random instances. 

Gap 

Size of the Instances 

Mean 

35 Item Types ; 15 Object Types ; 

5 Final Products Types 

70 Item Types ; 30 Object Types ; 

10 Final Products Types 

Item Inventory Costs 

0-5% 10-15% 20-25% Mean 0-5% 10-15% 20-25% Mean 

Length 

of Items 

(mm) 

500-1,000 1.03% 1.26% 1.50% 1.26% 2.63% 2.36% 2.05% 2.47% 1.81% 

1,000-1,500 0.50% 0.66% 0.69% 0.62% 0.62% 0.68% 0.83% 0.71% 0.66% 

1,500-2,000 0.45% 0.56% 0.58% 0.53% 0.49% 0.58% 0.67% 0.58% 0.55% 

Mean 0.66% 0.83% 0.92% 0.80% 1.25% 1.21% 1.19% 1.21% 1.01% 

 

Table 8 shows the mean percentage loss for each group of instances. Since smaller 

items allow better combinations in the cutting patterns, instances with the smallest items 

generate smaller losses. Additionally, for low inventory costs, lower are the losses. With low 

inventory costs, stock levels may be higher, which allows better matching of items, reducing 

losses. Finally, note that large instances tend to have slightly large losses. Therefore, in a 

practical application, if possible, it is interesting to mix items of different sizes allowing better 

combinations and reduced losses. This is a relevant managerial insight that can be used by the 

production planning sector. 

Table 8 – Percentage losses of the model with random instances. 

Loss 

Size of the Instances 

Mean 

35 Item Types ; 15 Object Types ; 

5 Final Products Types 

70 Item Types ; 30 Object Types ; 

10 Final Products Types 

Item Inventory Costs 

0-5% 10-15% 20-25% Mean 0-5% 10-15% 20-25% Mean 

Length 

of Items 

(mm) 

500-1,000 0.76% 1.17% 1.52% 1.15% 1.00% 1.31% 1.56% 1.29% 1.22% 

1,000-1,500 2.55% 4.57% 4.10% 3.74% 3.08% 3.86% 4.90% 3.95% 3.84% 

1,500-2,000 6.76% 7.49% 7.31% 7.18% 6.85% 8.02% 9.12% 8.00% 7.59% 

Mean 3.36% 4.41% 4.31% 4.02% 3.64% 4.40% 5.19% 4.41% 4.22% 
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Regarding the item stock usage index, shown in Table 9, as expected, instances with 

low inventory cost generated an increase in stock use. The size of instances and items does 

not show a clear trend in inventory levels. The values of the item stock cost index are, in 

general, slightly lower, with the total mean being 7.9%. 

The same trend presented in Table 9 occur for the final products, both for stock usage 

index and stock cost index, for which the average values are 2.3% and 2.1%, respectively. For 

both items and final products, the cost index is lower than the usage index. This shows that 

the model was able, for random instances in general, to prioritize the formation of stocks of 

low-cost units. 

Table 9 – Item Stock Usage index of the model with random instances. 

Item Stock Usage 

Size of the Instances 

Mean 

35 Item Types ; 15 Object Types ; 

5 Final Products Types 

70 Item Types ; 30 Object Types ; 

10 Final Products Types 

Item Inventory Costs 

0-5% 10-15% 20-25% Mean 0-5% 10-15% 20-25% Mean 

Length 

of Items 

(mm) 

500-1,000 14.6% 4.7% 4.4% 7.9% 14.5% 5.5% 4.0% 8.0% 8.0% 

1,000-1,500 19.5% 8.3% 5.5% 11.1% 20.1% 8.4% 5.3% 11.2% 11.2% 

1,500-2,000 11.8% 7.2% 8.4% 9.1% 15.9% 5.9% 6.1% 9.3% 9.2% 

Mean 15.3% 6.7% 6.1% 9.4% 16.8% 6.6% 5.1% 9.5% 9.4% 

 

The average use of the production capacity was 76.9%. In the first period, more 

capacity is used (84.9%), and the lowest use of capacity occurs in the last period (70.2%). In 

general, the use of the production capacity varies little with the variation of the parameters, 

therefore, only the total mean is presented, without the details for each group of instances. A 

slight trend that can be observed is that the higher the inventory costs, the less capacity was 

used. It is a natural result since, if inventory costs are high, inventory build-up is avoided, so 

fewer items are produced, and less production capacity is used. It is also observed that large 

instances tend to use a little more production capacity. 

Table 10 shows the total computational time required, on average, for each instance 

group. The limit for processing the integer master problem in this case is 1,200 seconds. As 

expected, this is directly related to the size of the instance. Instances with smaller items 

generate greater possibilities for cutting patterns, so these instances require more iterations to 

optimize and, thus, require more computing time. 
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Table 10 – Processing time (in seconds) of the model with random instances. 

Computational Time 

(s) 

Size of the Instances 

Mean 

35 Item Types ; 15 Object Types ; 

5 Final Products Types 

70 Item Types ; 30 Object Types ; 

10 Final Products Types 

Item Inventory Costs 

0-5% 10-15% 20-25% Mean 0-5% 10-15% 20-25% Mean 

Length 

of Items 

(mm) 

500-1,000 1345 1334 1334 1338 1732 1762 1780 1758 1548 

1,000-1,500 1296 932 960 1063 1505 1411 1453 1456 1259 

1,500-2,000 317 323 484 375 713 363 622 566 470 

Mean 986 863 926 925 1317 1179 1285 1260 1093 

 

On average, 8.3 iterations were performed, and 335 columns were added. Of course, 

the groups of instances that require more iterations are those that generate the largest number 

of columns and take the longest computational times. All 60 instances with small items have 

reached the 20 minutes limit to solve the integer master problem, on the other hand, for the 60 

instances with large items this has occurred only a 15 times. Instances with medium sized 

items reached the limit in 53 out of 60 instances. 

For these random instances, most of the processing time of the column generation was 

required to solve the subproblems (average time of 114.4 seconds). The average time needed 

to solve the relaxed master problem is 95.6 seconds. This difference is much greater analyzing 

only small instances. Therefore, regarding the column generation, it is possible to note that 

increasing the size of the instance has a greater impact on the processing time of the relaxed 

master problem. Accordingly, in Section 3.4.1, for the real data instance, 82.6% of the column 

generation time was demanded by the relaxed master problem. 

According to the results, in general, the best results occur for smaller instances, and/or 

with large items. Instances with small items become more complex to be solved, so they 

generate worse results, except for the loss. Among the measures analyzed, the loss was the 

one that best showed the influence of changing each parameter. The utilization of production 

capacity, however, varies very little among different groups of instances. 

 

3.5 Conclusions 

In this chapter, an automotive spring factory was studied in order to propose a 

mathematical model and use a solution method to obtain a solution that reduces inventory 

costs and losses in the steel bar cutting process. A mathematical model that captured practical 
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issues of the company was developed to represent this problem. To analyze the performance 

of the model, tests with both real and random data were made. Results show that the proposed 

model worked well since, applied to real instances, it found significantly superior solutions to 

those achieved in practice. Also, the model was successfully validated by solving 180 

instances with random data. 

For its practical application, solutions were achieved in acceptable computational 

times, saving time and money for the company, while respecting all the specific operational 

restrictions and guaranteeing the applicability of the solution. In addition, losses were reduced 

in 49.7% using the proposed solution, generating great savings in raw materials, about 3.3 ton 

of steel per week. 

Solving random instances was important to better understand specific aspects of the 

problem, enabling managers to make better decisions. It also demonstrates the robustness of 

the model by solving 18 different types of instances, explaining, for several factors, the 

influence of parameter changes. The loss was the measure that best showed the influence of 

the variation of each parameter. In general, in terms of solution quality (gap), better results 

were found with smaller instances and/or with large items. It gives a managerial insight in the 

sense that, in practical cases, if one considers a subset of relatively larger items, the approach 

proposed in this chapter will reach solutions of improved quality. 

Analyzing the limitations of the approach proposed in this chapter, it can be stated that 

the non-consideration of setups makes it difficult to apply the model in companies that use 

cutting machines with relevant setup costs, such as milling cutter, punching machines and 

other machines that require large tool changes from one object to another. In the same way, 

companies with high inventory costs would require adjustments for a satisfactory operation of 

this model. This may be the case for companies that have expensive processes downstream of 

the cutting process, or that produce items with high added value. In this case, the cost of loss 

of raw material is not as significant as the cost of a high stock of final products. Finally, 

modifications would be required to implement this model in environments where the cost of 

using productive capacity is more relevant, such as when using or providing outsourced 

services. In this case, the cost of material waste competes with the cost of using capacity. 
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The contribution of this chapter to the literature is the proposal of a mixed integer 

mathematical model depicting a practical problem through an integrated approach. Following 

the future research agenda proposed in Andrade et al. (2021), the model is built focused on 

the company’s medium-term issues (total period of eight months), taken into account multiple 

periods of time, machine capacities, the demand for bars, springs, and spring bundles, as well 

as costs, and inventory limits. The acquisition of all kinds of bars is a decision variable in the 

model. The assembly of spring bundles is analyzed along with the process of cutting springs. 

According to literature reviews to be analyzed in Section 4.1, this approach is very unusual. 

Moreover, considering as many elements as this study, no article was found by the authors. 

The linear relaxation of the proposed model was solved using the Simplex Method 

with column generation (Gilmore and Gomory, 1961). Then, a computational package is used 

to obtain an integer solution. This solution method is straightforward, justified because this 

chapter’s focus is its application rather than methodology. 

Apply a scientific approach to a company belonging to one of Brazil’s most relevant 

industries, with extensive computational testing, strengthens available literature, and current 

practices. The validation of this approach occurs through the solution of instances with both 

real and random data. The spring manufacturer’s case shows the model’s quality and the 

study’s importance once it allowed for a relevant decrease in losses, which added up to 30%. 

By solving random instances, one can evaluate how different parameters influence results, 

attaining a deeper comprehension of the problem, and managerial insights that may further 

help with practical outcomes. 

This chapter is organized as follows. In Section 4.1, a literature review of related 

papers is presented. Section 4.2 contains the proposed mathematical model, and Section 4.3, 

the solution method. In Section 4.4, the computational results are presented, and finally, 

Section 4.5 contains the conclusion. 

 

4.1 Literature Review 

According to the literature review carried out by Melega et al. (2018), of the 34 papers 

approaching the ILSCSP, conducted along 32 years (1985 to 2017), only three are categorized 

as (L1/L2/L3/M), making the complete 3-level approach in the same way as this chapter 

(Arbib and Marinelli, 2005; Ouhimmou et al. 2008; Melega et al. 2016). The authors have 

found no papers published in the following years (2018 to 2020) applying this particular 

approach. 
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In Arbib and Marinelli (2005), a gear belts company is studied to propose an 

integrated approach between the purchase planning of objects and the production of items and 

final products. The purchase of objects is modeled as a LSP considering costs of transport and 

storage objects, as well as production costs. In the production of gear belts, there is a one-

dimensional multiperiod CSP. Since there is no demand for items, all items are kept in 

intermediate stock after the cutting process until the sewing process, which turns them into 

final products. Computational tests are performed on instances based on real data. Compared 

to company practice, the integrated approach reduces, on average, 43% of total costs. 

The wood supply chain in a Canadian furniture company is addressed broadly in 

Ouhimmou et al. (2008). The objective is to define the procurement, inventory, transport, 

production, and outsourcing policy at the minimum total cost. The cutting process takes place 

at sawmills, and a drying process transforms items into final products. Setups and production 

capacities are considered in both cases. The demand occurs only for final products and is 

variable every period. If there is no production capacity to meet demand, final products can be 

purchased on the market. In addition to solving the mathematical model using CPLEX, a 

heuristic was developed. Computational tests are performed in fictitious instances to compare 

the performance of the methods based on solution quality and computational time. For the 

solution of the real instance, the processing time of the CPLEX became impracticable, so only 

the heuristic was applied. 

In Melega et al. (2016), a theoretical study aims to propose mathematical models that 

deal with the ILSCSP and compare them with models in the literature. The authors also 

analyzed two solution methods and used different data sets to compare the results for each 

model. In the model that considers multiperiod and the three levels of production, the 

production of the various types of objects is a parameter, so the freedom of the model over the 

level of the objects in stock occurs through the production plan of items and final products. 

Production capacities and setups are considered in the production of final products. It is 

important to highlight that, as the model does not consider stock or demand for items, after 

being cut, every item must, in the same period, be processed to become a final product. 

This complete 3-level approach is less performed, and studies often present greater 

simplifications (Melega et al. 2018). Accordingly, it is noteworthy that none of these 3 

articles addressed, in the same way as the present study, a real case simultaneously 

considering demands and stock for objects, items, and final products. So, in this literature 

review, it is argued that although other works with similar approaches are found, this study 
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has novelties in terms of mathematical modeling, mainly because it considers object 

purchases as one of the decision variables. 

Analyzing the differences between these three papers and the present study in more 

detail, it is noted that in Arbib and Marinelli (2005), only one type of object is considered, and 

there is no limit on the purchase of the objects. Also, neither demand for items nor inventories 

of final products are considered. In Melega et al. (2016), the object production is not a 

decision variable, production capacity or inventory for items are not considered, and no real 

case is addressed. A complete approach is found in Ouhimmou et al. (2008), once a real case 

is treated, and there are setups and capacity limits at all levels of production. However, there 

is a demand only for final products. Objects and items are necessarily processed (cut or 

drying) until they become final products and then sold. In addition, unlike the present study, 

the authors could not solve the real instance using a computational optimization package. 

 

4.2 Mathematical Model 

The mathematical model presented considers the acquisition of steel bars (objects), 

which are cut into springs (items) and ultimately assembled into spring bundles (final 

products). All three productions levels admit different demands, inventory costs, and limits. 

For each period, it has been set a purchase limit for the bars and a production limit for the 

springs. Given the company's reality, no limit for spring bundles production was set. Each 

term used in the mathematical model is defined as follows: 

Sets: 

I: set of spring types {i = 1, ... , |I|} (index i); 

K: set of bar types {k = 1, ... , |K|} (index k); 

J: set of cutting patterns {j = 1, ... , |𝑁 |} (index j). Where 𝑁  is the number of 

cutting patterns of bar type k; 

P: set of spring bundle types {p = 1, ... , |P|} (index p); 

T: set of periods {t = 1, ... , |T|} (index t). 

Parameters: 

𝑑𝑟 : demand of spring type i in period t; 

𝑑𝑠 : demand of bar type k in period t; 

𝑑𝑝 : demand of spring bundle type p in period t; 

𝛼 : quantity of spring type i produced by cutting pattern j from bar type k; 

𝑧 : quantity of spring type i in one unit of spring bundle type p; 
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𝑒𝑚𝑎𝑥 : purchase limit of bars in period t; 

𝑐𝑎𝑝 : production capacity (in number of springs) of the cutting machines in period 

t; 

𝑐 : cost of cutting (in mm of bar) a bar type k according to the cutting pattern j in 

period t; 

𝑐𝑟 : storage cost (in mm of bar) of spring type i in stock at the end of period t; 

𝑐𝑠 : storage cost (in mm of bar) of bar type k in stock at the end of period t; 

𝑐𝑝 : storage cost (in mm of bar) of spring bundle type p in stock at the end of 

period t; 

𝑟𝑚𝑖𝑛 : minimum stock of spring type i; 

𝑟𝑚𝑎𝑥 : maximum stock of spring type i; 

𝑠𝑚𝑖𝑛 : minimum stock of bar type k; 

𝑠𝑚𝑎𝑥 : maximum stock of bar type k; 

𝑢𝑚𝑖𝑛 : minimum stock of spring bundle type p; 

𝑢𝑚𝑎𝑥 : maximum stock of spring bundle type p; 

𝐿 : length of bar type k; 

𝑙 : length of spring type i. 

Decision Variables: 

𝑥 : number of bars type k cut according to cutting pattern j in period t; 

𝑦 : number of spring bundles type p produced in period t; 

𝑟 : number of springs type i in stock at the end of period t; 

𝑠 : number of bars type k in stock at the end of period t; 

𝑢 : number of spring bundles type p in stock at the end of period t; 

𝑒 : quantity of bar type k purchased in period t. 

The mathematical model is as follows: 

min ( 𝑐𝑠 𝑠

|𝐾|

+ 𝑐 𝑥

| ||𝐾|

+ 𝑐𝑟 𝑟

|𝐼|

+ 𝑐𝑝 𝑢

|𝑃|

)

|𝑇|

  (14) 

s. t. 𝑠 =  𝑠 , −  𝑑𝑠 +  𝑒 −  𝑥

| |

 , ∀ 𝑘 𝐾, 𝑡 𝑇, (15) 

 𝑒

|𝐾|

≤  𝑒𝑚𝑎𝑥  , ∀ 𝑡 𝑇, (16) 

 𝑠𝑚𝑖𝑛  ≤  𝑠  ≤  𝑠𝑚𝑎𝑥  , ∀ 𝑘 𝐾, 𝑡 𝑇, (17) 
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 𝑟 =  𝑟 , − 𝑑𝑟  +  𝛼 𝑥

| ||𝐾|

−  𝑧 𝑦

|𝑃|

 , ∀ 𝑖 𝐼, 𝑡 𝑇, (18) 

 𝛼  𝑥

| ||𝐾||𝐼|

≤  𝑐𝑎𝑝  , ∀ 𝑡 𝑇, (19) 

 𝑟𝑚𝑖𝑛  ≤  𝑟  ≤  𝑟𝑚𝑎𝑥  , ∀ 𝑖 𝐼, 𝑡 𝑇, (20) 

 𝑢 =  𝑢 , − 𝑑𝑝  +  𝑦  , ∀ 𝑝 𝑃, 𝑡 𝑇, (21) 

 𝑢𝑚𝑖𝑛  ≤  𝑢  ≤  𝑢𝑚𝑎𝑥  , ∀ 𝑝 𝑃, 𝑡 𝑇, (22) 

 𝑥 ∈ ℤ , ∀ 𝑗 𝐽, 𝑘 𝐾, 𝑡𝑇,, (23) 

 𝑦  ∈  ℤ ,  𝑢  ∈  ℝ  ∀ 𝑝 𝑃, 𝑡 𝑇, (24) 

 𝑠  , 𝑒 ∈ ℝ  ∀ 𝑘 𝐾, 𝑡 𝑇, (25) 

 𝑟 ∈  ℝ  ∀ 𝑖 𝐼, 𝑡 𝑇, (26) 

 

The parameter 𝑐  stands for the cost of cutting a bar type k following the cutting 

pattern j in the period t, and it corresponds to how many material, in millimeters, is lost by the 

application of this cutting pattern, that is: 

 𝑐 =  𝐿  – 𝛼 𝑙

|𝐼|

 ∀ 𝑘 𝐾, 𝑗 𝐽, 𝑡 𝑇. (27) 

 

The mathematical model (14)-(26) is all organized around the production levels. 

Constraints (15)-(17) refer to level 1 (purchase of bars), level 2 (cut of springs) is addressed in 

constraints (18)-(20), and constraints (21) and (22) relate to level 3 (assembly of spring 

bundles). In the OF (14), the first term refers to level 1, minimizing the cost of stocking bars. 

The following two terms deal with level 2, minimizing material losses in the cutting process, 

and springs inventory costs, respectively. The last term deals with level 3, minimizing 

inventory costs for spring bundles. Constraints (15) ensure that bars demand is met and that 

inventory relations are maintained between periods. Constraints (16) guarantee that the 

purchase limit is respected for each period. Constraints (17) determine the minimum and 

maximum stock limits for bars. In (18), for all springs types in all periods, the inventory 

relations are established, ensuring that the demand for springs is met. The assurance that 

machines have their production capacities observed throughout the periods is given by the 

Constraints (19). Constraints (20) establish minimum and maximum stock limits for springs. 

In (21), the demand for all types of spring bundles must be met in all periods, and the 

inventory relations must be respected. In (22), the stock limits for spring bundles are defined. 
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The parameters 𝑠 , 𝑟  and 𝑢  refer to the initial stock and vary by instance, accepting any 

given value that sits within the established limits. Lastly, the domain of all decision variables 

is delineated in (23)-(26). 

Importantly, the model decides the quantity in stock of a determined bar k in period t 

(see constraints (15)). This decision is based on the quantity of each bar to be purchased in 

each period, represented in the model by the variable 𝑒 . The model has more flexibility to 

accumulate or use bar inventory between periods and, thereby, minimize loss of material 

together with the storage costs. Considering 𝑒  as a variable, not as a parameter, considerably 

improves the results in relation to the minimization of losses (Poldi and De Araujo, 2016). 

 

4.3 Solution Method 

In line with Gilmore and Gomory (1961), Simplex method with column generation 

was the chosen method applied in solving the linear relaxation of the model in Section 4.2. 

Following, integer solutions were obtained using a computational package. In Vanzela et al. 

(2017), Melega et al. (2020), and others, a similar approach was adopted. The column 

generation procedure has been already defined in Chapter 3, so that in this chapter only 

specific information is presented. 

The amount of subproblems solved at each iteration equals the product of the number 

of bar types (K) and periods (T). Also, a distinct cutting pattern (j) results from each 

subproblem, therefore, indexes k, j and t are fixed in each subproblem. The terms 𝐿 , 𝜋  and 

𝜋  presented below are consequently regarded as constants. For the variable 𝛼 , index i 

varies while j and k are fixed indexes. Added to the ones shown before, the terms applied to 

the mathematical model of the subproblems are as follows: 

Sets: 

𝐺 : Set of springs that can be produced from bar type k. 

Parameters: 

𝜋 : the dual variable of Constraint (15), referring to bar type k in period t; 

𝜋 : the dual variable of Constraint (18), referring to spring type i in period t; 

𝜋 : the dual variable of Constraint (19), referring to period t. 

Decision Variables: 

𝛼 : quantity of spring type i produced by cutting pattern j from bar type k. 

Below is the mathematical model of the subproblems (for each 𝑘 𝐾, and 𝑡 𝑇): 
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min 𝐿  – 𝛼 (𝑙 + 𝜋 + 𝜋 )

∈

 − 𝜋   (28) 

s. t. 𝛼 𝑙

∈

≤ 𝐿 ,  (29) 

 𝛼  𝑍 , ∀ 𝑖 𝐺  (30) 

 

In (28)-(30), the OF (28) minimizes the relative cost of the generated columns. Also, it 

is assured by Constraints (29) that the length of the bar type k shall not be exceeded by the 

sum of the lengths of the springs in the cutting pattern. In (30), the domain of variables is 

defined. 

Similar to Chapter 3, a strategy was developed aiming at decreasing computational 

time for the master problem whilst maintaining the quality of the final solution. Only the 

columns with the lowest relative costs are included in the master problem at each iteration. 

Columns with relative costs less than or equal to the average value (among negative relative 

costs) multiplied by 0.1 are chosen. The number 0.1 was reached through early testing. The 

lower this number, the more columns are included once that action is based on negative 

values. 

In short, the method goes as follows: the relaxed master problem is solved at each 

iteration. The OF of the subproblems is solved with the duals obtained. Columns that 

originated are added following formerly described criteria, leading to a new solution of the 

relaxed master problem. In the last iteration, the linear relaxation of the master problem is 

optimized. Next, an integer solution is reached solving the master problem with integrality 

constraints and all included columns. 

Although it is a straightforward procedure, good gaps could be obtained in reasonable 

computational time through computational experiments. Other papers using column 

generation methods consider this approach when the final gap is tight enough for industry 

applicability (Lemos et al. 2021). Finally, to analyze the quality of the integer solution, the 

gap between the value of the OF reached in the integer problem, and that of the relaxed 

optimal solution is calculated. 

 

4.4 Computational Results and Discussion 

This section presents the results obtained by applying the model (14)-(26). Results 

using real data from the spring manufacturer are shown in Section 4.4.1, while those related to 

randomly generated data are shown in Section 4.4.2. Detailed data may be found online in 
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GitHub.com, at the following link (https://github.com/prochavetz/A-3-level-ILSCSP-Applied-

to-a-Factory).  

The mathematical model has been built using the Optimization Programming 

Language (OPL) and solved using the CPLEX solver (version 12.10). The manufacturer’s 

data was managed in Visual Basic for Applications (VBA), which was the tool that generated 

the file later processed by the OPL and used to analyze results. The instances have been 

solved in a computer with an Intel Core i7, 64-bit processor and 16GB RAM. In the column 

generation, there was no processing time limit set for these solutions. For solving the integer 

problem, the one-hour limit was established for real data and a twenty-minute limit was 

established for random data. 

 

4.4.1 Real Data 

The real data instance considers an eight-month production period (four two-month 

periods), allowing bar-related issues to be considered. In this case, there are 95 bar types used 

to produce of 269 spring types. Also 17 spring bundle types were demanded, and the number 

of considered subgroups are 54 (each subgroup contains compatible springs and bars). It is 

known that a medium-term approach implies uncertainties about the feasibility of practical 

application of the solution. Therefore, although the company's production capacity over a 

two-month period is approximately 167,040 springs, in this instance, a capacity of 160,000 

springs per period, i.e. 4.2% less, was used. 

Of the 95 types of bars, only 29 were sold and were considered for bar demand. The 

total demand for springs was 349,826 and for bars 16,699. Regarding the spring bundles, 

12,699 units were demanded, which needs 72,138 springs to be produced. The total 

production capacity over 4 periods was 640,000 springs, and the total bar purchase limit was 

200,000. 

Most springs have low inventory costs for the manufacturer. However, these costs 

avoid an excessive increase in stock levels. The inventory cost per period was set, with 

assistance from the production manager, at 0.5% of its length for high demand springs, 1% for 

low demand springs, and 50% for considerably low demand springs. For all bars, inventory 

costs were set at 1% of its length. Inventory costs for spring bundles were defined as the sum 

of inventory costs for all springs that comprise it. The company regarded the percentages set 

for springs and bars and the inventory costs calculation for spring bundles as adequate. 
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The variation between maximum and minimum stocks ranges from 28 to 1,520, with 

an average of 162.7 for all spring types. The average number of spring types per subgroup is 

5.0, varying between 2 to 17. The amount of bar varieties in every subgroup stands between 

one and four, averaging at 1.8. The relevant data in this instance is shown in Table 11, 

containing minimum, maximum and average values in addition to standard deviations. 

Table 11 – Spring factory data. 

Parameter Minimum Maximum Mean Standard Deviation 

Spring Length 390 2,220 1,345 342.3 

Bar Length 4,560 7,275 5,908 621.6 

Spring Demand 15 1,129 325.1 222.2 

Bar Demand 77 277 144.0 37.0 

Bundle Demand 22 395 186.8 106.3 

Spring by Subgroup 2 17 5.0 2.5 

Bar by Subgroup 1 4 1.8 0.66 

Spring Stock Range 28 1,520 162.7 140.6 

Bar Stock Range 99 1,842 875.2 295.2 

Bundle Stock Range 30 52 37.6 5.9 

Spring Stock Cost 0.5%  ;  1%  ;  50% 2.5% 9.8% 

Bar Stock Cost 1% 1.0% 0.0% 

Production Capacity 152% of the need for springs 

Bar Purchase Limit 47% of the need for springs 
 

The solution’s quality is presented in Table 12, which indicates de value of the OF and 

the difference in percentage from the optimal solution of the linear relaxation (Gap). It also 

indicates the number of bars used (Bars Used), the total length (in millimeters) both of bars 

cut (Total Cut) and losses (Total Loss), as well as the percentage of losses (Loss %). Last, 

Table 12 shows the inventory usage index (Usage %), the inventory costs (Stock Cost), and 

inventory cost index (Cost %) for springs, bars, and spring bundles.  

The following explains, as an example, how to calculate the springs inventory usage 

index. First, the inventory range must be calculated (𝑟𝑎𝑛𝑔𝑒  = 𝑟𝑚𝑎𝑥  - 𝑟𝑚𝑖𝑛 ) for all types of 

springs. Then, it is calculated the average stock occupation for every spring type (𝑟𝑜𝑐𝑝  = 

𝑟𝑚𝑒𝑎𝑛  - 𝑟𝑚𝑖𝑛 ), in which (𝑟𝑚𝑒𝑎𝑛  = 
∑

). Finally, the springs inventory usage index 

(
∑

∑
 x 100) can be calculated. The same expression is applied for bars and spring 

bundles. Furthermore, the same criterion is applied to calculate the inventory cost index, not 

referring to the number of units in stock, but to the cost of those units in stock. 
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Table 12 – Solution of the model with real data. 

Factor Model Factory 

Solution 
OF (mm) 30,464,855 - 

Gap 0.12% - 

Loss 

Bars Used 102,796 107,382 

Total Cut (mm) 603,724,400 621,470,800 

Total Loss (mm) 20,134,255 29,653,730 

Loss % 3.34% 4.77% 

Springs 
Stock 

Usage % 8.68% 25.1% 

Stock Cost (mm) 3,035,211 - 

Cost % 5.02% 34.9% 

Bars 
Stock 

Usage % 0.00% 27.9% 

Stock Cost (mm) 6,834,112 - 

Cost % 0.00% 27.9% 

Bundles 
Stock 

Usage % 1.48% 16.5% 

Stock Cost (mm) 461, 277 - 

Cost % 0.23% 21.7% 
 

This is a result of great quality, considering the proximity of the optimal solution, 

represented by the low value of the gap. The gap is the percentage difference between the 

integer solution, obtained at the end of processing, and the optimal solution of the linear 

relaxation. Analyzing the influences on the gap, in section 4.4.2.2, it is noted that low 

inventory costs generate low gaps, as well as the presence of large springs, two characteristics 

of this real instance. Even so, considering the size of this instance, a considerably larger gap 

could be expected. 

The values for the inventory usage (8.7%) and cost (5.0%) indexes of springs are all 

acceptable, taking into account the size of this instance. The inventory usage index (1.5%), 

and inventory cost index (0.2%) for the spring bundles are low, according to the company's 

intention. In both cases, the inventory cost index is lower than the inventory usage index, 

demonstrating that the model was able to accumulate stocks, preferably from low-cost units. 

Note that the inventory cost and usage of bars were equal to the minimum level in all periods. 

The inventory usage levels practiced by the company in the analyzed periods were 

high, considering that this is a company policy. The percentage was 25.1% for springs, 16.5% 

for spring bundles, and 27.9% for bars. Regarding the inventory cost index, it is important to 

state that, when this solution was praticed, the company did not measure inventory costs and 
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did not make decisions based on it. For comparative purposes only, the inventory cost index 

of the practiced solution was calculated. The value was 34.9% for springs, 21.7% for spring 

bundles, and 27.9% for bars. Considering that the stock cost of bars is fixed at 1% of the 

length for all varieties, it is natural that there is no variation between the two indexes related 

to the bars. Although they are high, inventories of spring bundles are at the lowest levels, 

according to the company's intention. 

The studied company measures the loss in steel kg, which means that the loss of 

smaller width and thickness bars is less significant than the loss of larger bars. During these 8 

months, 107,382 bars were cut in the practiced solution, weighing a total of 7,950,389 kg, of 

which 372,552 kg were lost, or 4.69%. The loss of the proposed solution, both for the real 

instance and for the random instances, is measured in bar millimeters. However, to allow the 

comparison, only in this case, it was calculated the loss in kg of steel. Thus, 102,796 bars are 

cut in the proposed solution, whose total weight is 9,769,582 kg, with 366,205 kg of steel 

being lost, or 3.75%. 

Although the proposed solution presents a small reduction in the lost weight (6,347 

kg), it cuts 1,819,193 kg more and uses 4,586 bars less. As can be seen below, the proposed 

solution also produces 28,464 springs more than the practice of the company. Analyzing the 

percentage of loss in each solution, a reduction of 20% is noted (from 4.69% to 3.75%), 

which represents, in the solution practiced by the company, a saving of more than 74,500 kg 

of steel in 8 months. 

Analyzing the loss in millimeters, as will be done in all other instances of the chapter, 

the loss of the proposed solution was 3.34%, as 20,134,255 mm of bar were lost, in a total 

length cut of 603,724,400 mm. Even though the company does not measure the loss in this 

way, analyzing the solution practiced in millimeters, 621,470,800 mm of bar were cut, losing 

29,653,730 mm, or 4.77%.In this case, the loss was reduced by 30%. 

The computational performance of the model applied to the company’s data is 

presented in Table 13. The first and second lines consist of the number of subgroups and 

iterations necessary to reach the optimal solution, respectively. Next is the number of 

columns, both initial columns generated from homogenous patterns (Homogenous), and 

columns originated from iterations (Added). Next are shown, in seconds, the total time and 

time per iteration that took to solve the relaxed master problem and subproblems (By Iteration 

and Total). The last two lines consist of the total time required to solve the master problem 

with integer constraints at the end of the run (Integer Master Time), and the sum of 

computational time for all stages of processing (Total Time). 
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Table 13 – Computational performance of the model with real data. 

Factor Value 

Number of Subgroups 54 

Number of Iterations 20 

Columns 
Homogeneous 269 

Added 409 

Relaxed Master 
Time (s) 

By Iteration 43.7 

Total 874.5 

Subproblem 
Time (s) 

By Iteration 22.4 

Total 448.9 

Integer Master Time (s) 3,691.8 

Total Time (s) 5,015.2 
 

As shown in Table 13, the majority of the total processing time, which equals to 1 

hour and 24 minutes, was consumed in solving the integer master problem. This processing 

time had been limited to one hour, being that the remaining 91.8 seconds were spent in data 

loading. The relaxed master problem took the largest amount of processing time of the 

column generation. The company makes the bars purchase decision and the elaboration of 

cutting patterns manually. The time taken for the purchasing decision is not recorded, but the 

estimated time to generate the cutting patterns in an 8 months period, is about 350 hours. 

Taking that into account, a practical gain can be seen when reaching a solution is an automatic 

process that demands a few minutes to enter the data and export the solution. 

Regarding the use of production capacity, the proposed solution uses 67.6% of the 

total capacity, producing 432,821springs over the four periods. The production in the last 

period is the largest (70.7%). The use of the bar purchase limit was 59.7%, buying 119,495 

bars. Similarly, the last period is the one with the large quantity of bars purchased (61.7%).In 

the solution practiced by the company, 404,357 springs were produced in the 4 periods, using 

63.15% of the total production capacity. Moreover, 67.8% of the bars purchase limit was used 

in the purchase of 135,685 bars. 

With bars purchases being a model decision, a strategic component is added to this 

process. Unlike the company's practice, it buys not only bars whose stock level is low but 

allows for larger purchases of bars that enable good combinations with high demand springs. 

This approach provides valuable practical gains because, in addition to reducing the stock of 

bars, it helps to reduce losses and the total bars purchased. 

 

4.4.2 Random Data 
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Section 4.4.2.1 presents the criteria used in generating random data instances, which 

allow assessing the quality of the model (14)-(26) when tested under different conditions. 

Such tests also allow managerial insights from a better understanding of the problem and the 

model. Results are described in Section 4.4.2.2. 

 

4.4.2.1 Criteria for generation of the Random Data Instances 

Random data instances were split among 18 groups varying in the number of spring, 

bar, and spring bundle types, inventory costs, and lengths of springs. Table 14 presents each 

group’s characteristics: 

Table 14 – Groups of instances with random data. 

Random Problems 

Size of the Instances 
35Spring Types | 15Bar Types    

|5Bundle Types 
70 Spring Types | 30 Bar Types     

|10Bundle Types 

Spring Inventory Costs 

0-5% 10-15% 20-25% 0-5% 10-15% 20-25% 
Length 

of 
Springs 
(mm) 

500-1,000 G 1 G 4 G 7 G 10 G 13 G 16 

1,000-1,500 G 2 G 5 G 8 G 11 G 14 G 17 

1,500-2,000 G 3 G 6 G 9 G 12 G 15 G 18 
 

Each one of these groups had 10 instances generated with random data within the 

limits described in Table 14, there being a total of 180 instances. For each instance, four 

production periods were considered. Based on the real data’s mean and standard deviation, the 

remaining information needed was randomly determined. Table 15 shows the parameters 

considered and their ranges. 

The demand for springs varies randomly between 50 and 400 units per period. Lower 

and upper limits for inventories of each spring were determined based on the demand for 

them; therefore, high demand springs have a higher stock limit. The initial stock for springs, 

𝑟 , equals the minimum stock 𝑟𝑚𝑖𝑛 , and the same applies for spring bundles with initial 

stocks 𝑢  equivalent to 𝑢𝑚𝑖𝑛 . The initial stock of a bar (𝑠 ), in all instances, is equal to 

10% of the sum of the demand for all the springs it can produce, divided equally among all 

the bar types in the same subgroup. The cost of stocking bars is 1% of the length. 
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Table 15 – Range of variation of the parameters of the random instances. 

Parameter Minimum Maximum 

Spring Demand 50 400 

Bar Demand 0 50% Initial Stock 

Bundle Demand 10 190 

Bar Length 5,200 6,800 

Bar Stock Range Equal Initial Stock 130% Initial Stock 

Spring Stock Range 0 ; 20 ; 45 ; 80 30 ; 55 ; 90 ; 140 

Bundle Stock Range 0 – 10 15 – 20 

Spring by Bundle 4 10 

Spring by Subgroup 1 7 

Bar by Subgroup 50% current subgroup, 50% next subgroup 

Production Capacity 115% of the need for springs 

Bar Purchase Limit  40% of the need for springs 

Bar Initial Stock 10% of the demand of all possible springs to produce 
 

Analogous to the real data instance, inventory costs of spring bundles correspond to 

the sum of inventory costs for each spring it is comprised of. It must be mentioned that after 

the definition of the four to ten types of springs that will compose a bundle, it is also 

randomly established how much of every spring will be used, a number varying from one to 

three units.  

The total need for spring’s production is calculated, considering the use to produce of 

spring bundles, and to meet the demand for springs. To avoid infactibility, the limit on the 

purchase of bars was defined as 40% of this value, and the total production capacity, 115%. 

The number of bars pertaining to each subgroup is determined by the following parameter: the 

first bar is assigned to the first subgroup and each bar that follows has a 50% probability of 

being in the same subgroup and another 50% probability of being assigned to a new subgroup. 

 

4.4.2.2 Results of Random Instances 

Table 16 illustrates the average gap for the 10 random instances in each of the 18 

groups. The result, in general, is good as the total average is 0.76%. Note that instances with 

small springs generate larger gaps, especially when combined with high inventory costs. This 

is because smaller springs generate more possible cutting patterns, and hence, the lower 

bound obtained from the linear solution relaxing the integrality constraint can potentially be 

less tight compared to integer solutions generated by the solution method. Also, lower gaps 

are achieved by smaller instances and smaller inventory costs. For that reason, in a practical 



68 
 

case with a large concentration of small springs, especially if inventory costs are high, results 

originated by this approach should be evaluated and perhaps improved. 

Table 16 – Percentage gap for the model with random instances. 

Gap 

Size of the Instances 

Total 
Mean 

35 Spring Types ; 15 Bar Types ; 
5 Bundle Types 

70 Spring Types ; 30 Bar Types ; 
10 Bundle Types 

Spring Inventory Costs 

0-5% 10-15% 20-25% Mean 0-5% 10-15% 20-25% Mean 
Length 

of 
Springs 
(mm) 

500-1,000 0.83% 1.20% 2.50% 1.51% 1.04% 1.76% 2.72% 1.84% 1.68% 

1,000-1,500 0.15% 0.35% 0.54% 0.34% 0.29% 0.55% 0.58% 0.47% 0.41% 

1,500-2,000 0.09% 0.20% 0.30% 0.20% 0.09% 0.23% 0.34% 0.22% 0.21% 

Mean 0.36% 0.59% 1.11% 0.68% 0.48% 0.85% 1.21% 0.85% 0.76% 
 

The average loss percentage for each group of instances is presented in Table 17. 

Smaller losses derive from the instances with the smallest springs, once using smaller springs 

provides better combinations for the cutting patterns. It can be seen that the lower the 

inventory costs, the lower the losses, since stock levels may be higher for low inventory costs, 

favoring a better match for springs and reducing losses. Finally, within the variation proposed 

in this study, the size of the instance does not seem to affect the loss significantly. 

Consequently, springs of different sizes should be considered whenever possible in practical 

applications, providing better combinations and reduced losses. The production planning 

sector may adequately apply this managerial insight. 

Table 17 – Percentage losses of the model with random instances. 

Loss 

Size of the Instances 

Mean 
35 Spring Types ; 15 Bar Types ; 

5 Bundle Types 
70 Spring Types ; 30 Bar Types ; 

10 Bundle Types 
Spring Inventory Costs 

0-5% 10-15% 20-25% Mean 0-5% 10-15% 20-25% Mean 
Length 

of 
Springs 
(mm) 

500-1,000 0.39% 0.73% 0.93% 0.68% 0.37% 0.54% 0.65% 0.52% 0.60% 

1,000-1,500 2.28% 2.32% 2.59% 2.40% 2.04% 2.50% 2.74% 2.43% 2.41% 

1,500-2,000 6.04% 6.12% 6.79% 6.32% 6.68% 6.84% 6.73% 6.75% 6.53% 

Mean 2.90% 3.05% 3.44% 3.13% 3.03% 3.29% 3.37% 3.23% 3.18% 
 

Predictably, in relation to the spring stock usage index, instances with low inventory 

costs provoked an increase in stock usage, as seen in Table 18. No clear trend in inventory 

levels can be connected to the size of instances and springs. The spring stock cost index 

generally has somewhat lower values, with a total average of 3.8%. This variation between 
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the usage and the cost indexes indicates the model’s capability to prioritize stocking units at a 

lower cost.  

For the stock usage and stock cost indexes, it was possible to notice the same trend 

seen in Table 18 regarding spring bundles. For one as for the other, the total average amounts 

to 3.1%. The bars stock usage is 0% for all instances, what shows that the decision on the 

purchase of bars was effective in reducing the inventory of bars, also in random instances. 

Table 18 – Spring Stock Usage index of the model with random instances. 

Spring Stock Usage 

Size of the Instances 

Mean 
35 Spring Types ; 15 Bar Types ; 

5 Bundles Types 
70 Spring Types ; 30 Bar Types ; 

10 Bundles Types 
Spring Inventory Costs 

0-5% 10-15% 20-25% Mean 0-5% 10-15% 20-25% Mean 
Length 

of 
Springs 
(mm) 

500-1,000 5.3% 4.5% 2.1% 4.0% 6.2% 2.8% 2.1% 3.7% 3.8% 

1,000-1,500 10.9% 3.6% 2.0% 5.5% 10.2% 3.1% 2.0% 5.1% 5.3% 

1,500-2,000 7.6% 4.1% 2.1% 4.6% 8.8% 3.2% 3.0% 5.0% 4.8% 

Mean 7.9% 4.1% 2.0% 4.7% 8.4% 3.0% 2.4% 4.6% 4.6% 
 

The use of production capacity was, on average, 84.2%, the results, in this case, being 

quite stable. A slight increase in the use of production capacity is noticed when inventory 

costs are low. The total average of use of the bar purchase limit was 62.2%. Instances with 

larger springs require more bars, so it is natural that the purchase need is greater for these 

instances. In addition, the increase in the size of the instances generates a little increase in the 

bar purchase. 

In Table 19, it is possible to observe the total computational time demanded, on 

average, by each instance group. As anticipated, it directly corresponds to the size of the 

instance. Simultaneously, the smaller the springs in an instance, the more iterations are 

needed for optimization and, consequently, the computational time is higher. 

Table 19 – Processing time (in seconds) of the model with random instances. 

Computational Time 
(s) 

Size of the Instances 

Mean 
35 Spring Types ; 15 Bar Types ; 

5 Bundles Types 
70 Spring Types ; 30 Bar Types ; 

10 Bundles Types 
Spring Inventory Costs 

0-5% 10-15% 20-25% Mean 0-5% 10-15% 20-25% Mean 
Length 

of 
Springs 
(mm) 

500-1,000 1260 1242 1252 1251 1331 1328 1308 1322 1287 

1,000-1,500 644 1227 1120 997 1286 1281 1284 1284 1141 

1,500-2,000 30 170 136 112 62 310 468 280 196 

Mean 645 880 836 787 893 973 1020 962 875 
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The number of performed iterations is on average 11.8, while added columns average 

at 124. Undoubtedly, more computational time are required for the groups of instances that 

generate more columns and demand more iterations. Instances with small springs have, in 

their totality (60 instances), achieved the limit of 20 minutes to solve the integer master 

problem. In instances with larger springs, this event has taken place in only 5 of the 60 

instances. Finally, the processing time limit was reached in 54 instances with medium springs. 

For these random instances, solving the subproblems took an average of 52.3 seconds, 

or most of the processing time of the column generation, whereas solving the relaxed master 

problem took an average of 7.5 seconds. When only small instances are considered, this 

difference is substantially greater. Hence, it may be observed that, regarding column 

generation, increasing the instance’s size imposes a higher impact on the processing time for 

the relaxed master problem. Thus, Section 4.4.1 shows that 66.1% of column generation time 

for the real data instance was used in solving the relaxed master problem. 

Best results derive overall from either smaller instances and/or instances with larger 

springs. Instances with smaller springs have more complex resolutions and generate worse 

results, apart from the loss. Among the considered measures, the one that most demonstrated 

the influence of each parameter was the gap, as opposed to the utilization of production 

capacity, which varied little within different groups of instances. 

 

4.5 Conclusions 

This chapter presented the study of a truck suspension manufacturer with the objective 

of reducing its inventory costs and losses in the process of cutting steel bars. An integrated 3-

level approach is proposed considering the company’s reality in a medium-term horizon. The 

performance of the model was evaluated through tests conducted with real and randomly 

generated data. The objective of this chapter has been effectively achieved, as shown by the 

model’s results. When applied to real data, solutions were better than those carried out in 

practice. Solving 180 random instances has also demonstrated the model’s performance under 

several conditions. 

The integrated and complete approach that was carried out in this study enabled an 

excellent quality of the global result. The main measures were significantly reduced in 

comparison to the solution practiced by the company: losses, stocks levels of bars, springs, 

and spring bundles, as well as the number of bars purchased and used. These results have 

managed to save the manufacturer a great amount of time and money. The required 

computational time is acceptable while observing all operational restrictions imposed and 
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assuring the applicability of the solution. Furthermore, the proposed solution reduces losses 

(30%) and raw material waste (about 75 tons of steel in eight months). Along with economic 

aspects, there is also a positive ecological repercussion derived from this considerable 

decrease. 

Applying the model to random instances enabled a better comprehension of specific 

elements of the problem, allowing for improved managerial decision-making. Besides, the 

performance of the model could be demonstrated through its resolution with 18 distinct 

groups of instances and the interpretation, for several factors, of how changes in parameters 

influence results. The measure which best indicated the effect of a change in each parameter 

was the gap. Overall, regarding the gap (quality of solution), the best results occurred within 

instances that were smaller and/or had large springs. This factor provides to the managers the 

understanding that when a subset of larger springs is contemplated in practical situations, the 

approach hereby presented should promote greater quality solutions. 

The consideration of bar purchases (𝑒 ) as a variable has shown importance in the 

good result obtained, especially in the practical case. This allows purchases to be made not 

only considering the stock levels of each bar, but strategically, preferring the purchase of bars 

that enable better combinations, reducing losses, bars inventory, and the number of bars 

purchased. 
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55..   MMAATTHHEEMMAATTIICCAALL  MMOODDEELLIINNGG  TTOO  

OOPPTTIIMMIIZZEE  TTHHEE  HHAARRDDEENNIINNGG  PPRROOCCEESSSS  

IINN  AANN  AAUUTTOOMMOOTTIIVVEE  SSPPRRIINNGG  FFAACCTTOORRYY  

The goal of this chapter is to present the proposal of a mathematical model to optimize 

the hardening process in an automotive spring factory, maximizing the assignment of springs 

in the hardening furnace. This is an approach little considered in the literature, both for its 

application to a hardening furnace and for the proposed methodology. 

The items (springs) that make up each type of spring bundle require hardening, among 

other heat treatments, for the steel to acquires the required properties. Due to the high 

temperature, hardening furnaces consume a lot of energy during operation. Furthermore, the 

decision of which items, among the various types, to insert in the furnace at each assignment 

is complex. This decision impacts directly on the productivity of the furnace and the time 

required for operation, i.e. energy expenditure. Details of this problem are explained in 

Section 2.3. 

Aiming at saving resources, the approach proposed in this study looks to optimize the 

occupation of the hardening furnace at each assignment. The problem is treated as a one-

dimensional CSP. To consider the specific aspects of the problem in practice, explained in 

Section 2.3, the problem is modeled based on an arc flow formulation. This is an innovative 

study because no similar approaches have been found in the literature. 

The main contribution of this chapter lies in the proposed mathematical model, based 

on the arc flow model to solve a real-life problem. This modeling allows the location of items 

in the cutting pattern, which is important for the problem studied here because the items need 

to be supported on beams inside the furnace. The practical application of this study is 

unprecedented because it treats the item assignment in a hardening furnace as a CSP. The 

approach is validated by solving an instance with real data and 180 instances with random 

data. This allows the analysis of the influence of different parameters on the result. Finally, 

the resolution of the instance provided by the spring company produced a significant increase 
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in the daily production of the furnace, demonstrating the quality of the model and the 

relevance of the work. 

This chapter is divided into four sections. Section 5.1 contains the literature review, 

presenting studies on related topics. Then, Section 5.2, on presenting the mathematical model, 

shows the adaptations made to handle the assignment of items to the furnace as a one-

dimensional CSP using the arc flow model. The computational results obtained with real and 

random data are presented in Section 5.3 and finally, Section 5.4 contains the conclusions. 

 
5.1 Literature Review 

Although CSP is a classic combinatorial optimization problem, widely used in several 

approaches, no CSP applications were found in the automotive industry to optimize the use of 

tempering furnaces. 

Among studies of spring manufacture, diverse applications are found, including the 

comparison of the performance between springs of different materials (Al-Qureshi, 2001; 

Kaiser et al. 2011), studies to predict the generation of heat in springs (Luo et al. 2005), 

optimization of steel bar cutting for spring production (Andrade et al. 2021), mathematical 

models for fatigue prediction in steel springs (Aggarwal et al. 2006) and data management 

systems for designing springs (Peng and Trappey, 1996). 

Studies aimed at optimizing furnaces, including hardening, generally deal with the 

adjustment of furnace parameters and the influence on product quality. Applications are found 

in the food industry (Banooni et al. 2009; Kong et al. 2010; Omolola et al. 2018; Özden and 

Kiliç, 2020), furnaces for the curing process (Ashrafizadeh et al. 2012; Glick and Shareef, 

2019), hardening furnaces (Cruz et al. 2005; Penha et al. 2011; Pimenta et al. 2015; Pimenta 

et al. 2016), furnaces for power generation (Han et al. 2019) and other industrial applications 

(Yang et al. 2014; Pask et al. 2014; Lei et al. 2017). 

Among these studies, some stand out. Cruz et al. (2005) evaluated several control 

variables of a hardening furnace in a steel plant, seeking to improve the quality of two types 

of steel. Penha et al. (2011) analyzed thermal residual stresses, comparing the results of oil 

and vacuum hardening furnaces. Lei et al. (2017), used an Analytic Hierarchy Process (AHP) 

and fuzzy logic in an integrated way to optimize and evaluate the combustion performance of 

industrial furnaces, through the adjustment of furnace parameters. Özden and Klic (2020) 

compared the performance of Artificial Bee Colony, Gravitational Search, Symbiotic 

Organisms Search and Neural Network techniques to adjust the parameters of an oven drying 

eggplants. 
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Pimenta et al. (2015) and Pimenta et al. (2016) are similar approaches to this study, as 

they deal with hardening furnaces for the manufacture of springs in the automobile industry. 

However, the objective of the studies diverges from the proposal of this chapter, since the 

authors used the simplex method and statistical methods to adjust parameters of the hardening 

furnace in order to improve the mechanical properties of the items (coil springs for 

automobiles). 

Note that there are papers aimed at controlling furnaces using optimization techniques. 

In addition, studies set in the automobile spring industry were found, aiming at improving the 

hardening furnace. However, the approaches are quite different from that which is proposed in 

this chapter. Among the furnace studies, none addresses the assignment of the items to 

optimize the use of the furnace space. Furthermore, no approach found addresses a CSP or 

uses arc flow modeling. 

 

5.2 Mathematical Model 

In this section, the proposed mathematical model to represent the problem is 

presented. The problem of assignment of items to the hardening furnace is treated as a one-

dimensional CSP and modeled based on an arc flow formulation. 

In a CSP, a cutting pattern corresponds to a particular way of cutting an object to 

produce smaller items. In this study, a cutting pattern represents a particular way of placing 

items in the furnace. The object size is equivalent to the width of the furnace. After inserting 

the items in the furnace following a given cutting pattern, the beams move these items along 

the furnace length, freeing space for a new assignment (cutting pattern) to be started. In this 

way, throughout production, the entire length of the furnace is occupied by items and, as one 

assignment finishes processing, new items can be assigned. Wolsey (1977) and Valério de 

Carvalho (2002), among others, used the arc flow model to represent the one-dimensional 

CSP. 

To describe the problem using an arc flow model, a set of identical objects is 

considered (each representing an assignment in the furnace that is performed between two 

consecutive steps) with several types of items to be inserted in each object. Each item entered 

provides a certain margin of gain. The goal is to maximize the gain achieved by the 

assignment of all items. In this way, the furnace width (object size) is approximated by a 

number of equidistant nodes, b = 1, …, L , where L is the total furnace width. The nodes 

represent parts of the same size across the width of the furnace, the only differentiation being 

those nodes that represent where the beams are located. The greater the number of nodes 
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𝑑 : demand for item type i; 

𝑏 : availability of item type i; 

𝑚 : margin of gain of item type i; 

𝑛𝑃: limit of parabolic bent items in an assignment; 

𝑛𝐶: limit of conventional bent items in an assignment; 

𝐿: furnace width; 

𝑙 : length of item type i; 

𝑝𝑡 :  production time of an assignment in formula t;  

𝑠𝑡 : time lost in the setup for the formula t; 

𝑇𝑇: total time available for production in one day. 

Sets and subsets of arcs: 

A: viable arcs, which represent items to be assigned to nodes in the furnace. An arc 

(d, e) is equivalent to an item where 𝑙 = 𝑒 − 𝑑; 
𝐴 ∈ 𝐴: viable arcs in formula t. Such that A ∪ A ∪ … ∪ A = A; 

𝑃 ∈ 𝐴: arcs representing parabolic bent items; 

𝐶 ∈ 𝐴: arcs representing conventional bent items; 

𝑁 ∈ 𝐴: arcs representing unbent (straight) items. As each item only has one type of 

bend: 𝑃 ∩ 𝐶 = {∅}, 𝑃 ∩ 𝑁 = {∅}, 𝑁 ∩ 𝐶 = {∅}; 

𝑈 ∈ 𝐴: arcs of size 𝑙 = 1, which represent an empty space in the furnace. 𝐿 unit 

arcs are created, one for each node of the furnace. 
Variables: 

𝑋 : 1 if the arc (d, e) is used in assignment k, in formula t; 0 otherwise; 

𝑍 : 1 if assignment k is used in formula t; 0 otherwise; 

𝑊 : 1 if formula t is used; 0 otherwise. 

The mathematical model proposed to represent the problem is presented below: 

 

Max 𝑚

|𝐼|

𝑋 ,

( , )∈

|𝐾||𝑇|

 (31) 

s.t. 𝑍 ≤ 𝑊  𝑡 = 1, … , 𝑇, 𝑘 = 1, … , 𝐾 (32) 

 𝑋 ,

( , )∈

|𝐾||𝑇|

≥ 𝑑  𝑖 = 1, … , 𝐼 (33) 

 𝑋 ,

( , )∈

|𝐾||𝑇|

≤ 𝑏  𝑖 = 1, … , 𝐼 (34) 
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 𝑝𝑡 𝑍

|𝐾||𝑇|

+ 𝑠𝑡 𝑊

|𝑇|

≤ 𝑇𝑇  (35) 

 𝑋

( , )∈

≤ 𝑛𝑃 𝑡 = 1, … , 𝑇, 𝑘 = 1, … , 𝐾 (36) 

 𝑋

( , )∈

≤ 𝑛𝐶 𝑡 = 1, … , 𝑇, 𝑘 = 1, … , 𝐾 (37) 

 
 
 

− 𝑋

( , )∈

+ 𝑋

( , )∈

=
𝑍

−𝑍
0

𝑖𝑓 𝑒 = 0
𝑖𝑓𝑒 = 𝐿

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝑡 = 1, … , 𝑇, 𝑘 = 1, … , 𝐾 (38) 

    

 𝑋 ∈ {0, 1} 𝑡 = 1, … , 𝑇, 𝑘 = 1, … , 𝐾, ∀(𝑑, 𝑒) ∈ 𝐴 (39) 

 𝑍 ∈ {0, 1} 𝑡 = 1, … , 𝑇, 𝑘 = 1, … , 𝐾 (40) 

 𝑊 ∈ {0, 1} 𝑡 = 1, … , 𝑇 (41) 

 

In model (31) – (41), the OF (31) maximizes the sum of the margin of gain obtained 

from the production of all items. The constraints in (32) ensure that there is only production 

of a formula if a setup for that formula has been made. In constraints (33), the production of a 

type of item, in all assignments, in all formulas, is at least equal to its demand. (34) 

guarantees that the assignments of all item types do not exceed their availability (intermediate 

stock). The constraints in (35) limit the time used to the total time available in a day: the first 

term represents the time spent on production, and the second term, the time spent on setups. 

In this way, the processing time of the items in each assignment and their consumption of 

available resources are weighted. Constraints (36) and (37) ensure that the capacity limit of 

the benders (parabolic and conventional, respectively) is respected at each assignment. The 

constraints in (38) present the set of constraints related to the arc flow approach. If an 

assignment k is made in formula t (𝑍  = 1), then the sum of all arcs leaving and arriving at 

each node is zero for all intermediate nodes, this sum being one for the initial node (one arc 

leaves and no arc arrives), and “-1” for the end node (an arc arrives and no arc leaves). On the 

other hand, if formula t is not used in an assignment k (𝑍  = 0), no item is assigned, so the 

sum in all cases is 0. Finally, (39) - (41) define the domains of the variables. 

Besides other aspects previously cited, the consideration of the variable 𝑋  as binary 

is also an innovation compared to other studies that address the one-dimensional CSP using 

arc flow models. In this application, as only one item can be assigned to a furnace location, 

and each assignment has it specific constraints, due to formula differences, bender limits, this 

variable cannot be considered as an integer. Consider 𝑋  as binary increases, above all, the 

complexity for solving the problem. 
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5.3 Computational Results and Discussion 

In this section, the results of using the model (31) - (41) are presented. The instances 

include actual company data in Section 5.3.1 and randomly generated data in Section 5.3.2. 

The detailed data are available online on the GitHub platform, through the following link. 

https://github.com/prochavetz/Mathematical-modeling-to-optimize-the-hardening-

process-in-a-factory 

The Optimization Programming Language (OPL) modeling language was used to 

generate the mathematical models. The solver used in the solution of the instances was the 

CPLEX 12.10 software. The Visual Basic for Applications (VBA) language was used to 

process the company data, generate the file to be read by the CPLEX and to analyze the 

results. The computer used in the processing has an Intel Core i7, 64-bit processor, with 16 

GB of RAM. For the solution of the model with real data, due to its high complexity, the 

processing time limit is set at 8h. With the definition of this broad limit, the objective is to 

leave the model freer to obtain a quality solution, since the company has this time available to 

solve their instance. For instances with random data, the limit is set at 4 h. 

The instance to be processed by CPLEX is a “.dat” type file, generated in previous 

processing developed in VBA. This file contains a set with the viable arcs of each instance, 

that is, arcs that can be used in practice, as they meet the operational restrictions of the 

company. 

To create the set of viable arcs of an instance, first some information about the furnace 

and the nodes are stored: furnace size; how many nodes will be used (accuracy); which nodes 

represent sections where movable beams are located; and which nodes represent empty spaces 

in the oven. Then, unitary arcs are created, which represent space losses in an assignment. A 

unitary arc is created for each node.  

To create the arcs that represent the assignment of items in the furnace, two tests are 

performed: the initial node of the arc, added to the length of the item, cannot exceed the width 

of the furnace; along the length of the arc, at least two nodes representing movable beams 

must be covered. If these two criteria are met, the arc is created, recording the following 

information: starting node; ending node; represented item; length of this item; its type of 

bending (parabolic, conventional or straight). This information about each arc enables the 

structuring of the model based on an arc flow formulation, considering the specific 

restrictions of the case being studied. After generating the ".dat" file, processing the instance 

using CPLEX occurs independently. 
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5.3.1 Real Data 

This section deals with actual data obtained from the automotive spring company. 

Section 5.3.1.1 presents their data and the criteria used. The solution practiced by the 

company and the solution obtained by the mathematical model are explained in Section 

5.3.1.2. In Section 5.3.1.3, the results are analyzed and compared. 

 

5.3.1.1 Data and Criteria 

The real data from the company considers one day of production, where 44 types of 

items are processed in the furnace, made up of 8 parabolic, 15 conventional and 21 straight 

types of items. The average demand is 51.5 units per item type, totaling 2,266 hardened items 

in one day. Availability measured at the beginning of the day is 4,071 items, with an average 

availability per day of 92.5 per item type. The average length of the items is 1,102 mm, and 

the number of formulas defined by the company is 11. The specifications of speed, thickness 

limits and temperature of each formula are given in Table 20. The “Time” column represents 

the time, in minutes, for an item to travel the entire length of the furnace in any given formula. 

The “Thickness” column shows the range of thickness of the items, in millimeters, included in 

each formula. Two temperatures (𝑇1  and 𝑇2 ) are presented for each formula since, seeking 

greater precision, the factory defined two measurement points, specifying, for each formula, 

the temperature to be used at each point. 
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Table 20 – Formula information (actual data). 

Id 
Time 

(min) 

Thickness 

(mm) 

𝑻𝟏𝒕 

(°C) 

𝑻𝟐𝒕 

(°C) 

1 22 4.8 to 7  880 860 

2 20 4.8 to 7  900 860 

3 22 6.4 to 9  920 900 

4 22 9 to 13  960 920 

5 23.5 10 to 13  960 920 

6 25 12 to 16  960 930 

7 27 15 to 21  960 930 

8 30 20 to 28  980 930 

9 35 27 to 35  980 940 

10 38 34 to 41  980 940 

11 41 41 or more 980 940 

 

Due to differences in the shift times of employees in this process, the furnace can be in 

production for up to 9 hours a day without the need for overtime. Therefore, the time 

available for production is 540 minutes. As per the limitation of the number of benders after 

the furnace, each assignment can contain a maximum of 1 parabolic bent item and 3 

conventional bent items. As the movable beams take 100 steps to transport an assignment 

from the beginning to the end of the furnace, it was considered that the furnace holds 100 

simultaneous assignments, and that the time for each formula to cross the furnace (shown in 

Table 20) is the time that the formula takes to produce 100 assignments. It was considered 

that the setup for any formula consumes 50 assignments, that is, the setup time is half of the 

traversal time of each formula. 

To create an instance with this real data, the value of the margin of each item (mi) was 

defined in discussion with the production manager, based on information about production 

costs and sales price of items, to give a value between 1.0 and 2.5. The average margin for 

this instance is 1.71 per item type. Furthermore, it was considered that each node of the 

furnace corresponds to 6 cm, that is, the measurements of each section of the furnace (see 

Figure 14) was approximated by nodes. The total width of the furnace, presented in 

centimeters in Figure 14 (187 cm) was approximated by 31 nodes. Similarly, the length of the 

items has also been adapted and the average length is 18.5 nodes. 



81 
 

 

5.3.1.2 Solution practiced by the company vs. the solution via mathematical model 

In its solution, the company uses 1,785 assignments to harden the 2,266 items required 

in 9h of production. Analyzing this solution with the OF criteria set out in the mathematical 

model, as for all instances in this study, the value obtained is of 3,845, equal to the sum of the 

margin obtained with the production of all items. Table 21 shows the OF value of the solution 

practiced by the company and of the solution obtained by the mathematical model. 

Table 21 – OF Value. Company Practice vs Mathematical Model. 

OF Comparison Objective Function  

Company Practice 3,845.0  

Mathematical Model 6,009.5 

 

The company does not measure the percentage lost in the furnace each day. However, 

regarding their practiced solution, the total length of all assignments (55,335 nodes), there are 

1,785 assignments with a length of 31 nodes each. It is also known the total length of 

produced items (41,911 nodes), obtained by multiplying the length of each item type and the 

quantity produced. With this, the loss can be calculated, being 24.26% in this case. As shown 

in Table 22, this calculation is also done for the proposed mathematical solution, which used 

1,965 assignments to produce 3,426 items. 

Table 22 – Solution losses. Company Practice vs Mathematical Model. 

Loss Comparison  
Available Length 

(nodes) 

Used Length 

(nodes) 
Loss 

Company Practice 55,335 41,911  24.26% 

Mathematical Model 60,915 56,708  6.91% 

 
In the practiced solution, 8 formulas were used of the 11 available. Formula 11 was 

not used because not one type of item processed on this day had the correct thickness for it. 

Formulas 1 and 10 were avoided through the arrangement of items. Therefore, as shown in 

Table 23, 102.25 minutes were spent on setups representing 18.9% of the total time (540 

minutes). In the mathematical model solution, 6 setups were needed, consuming 75.5 minutes, 

or 13.98% of the total available time. 
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Table 23 – Setup time. Company Practice vs Mathematical Model. 

Time Comparison Total Time 

(min) 

Production Time 

(min) 

Setup time 

(min) 
% Setup 

Company Practice 540 437.75  102.25 18.94% 

Mathematical Model 540 464.5  75.5 13.98% 

 
The total processing time needed to obtain the solution by the mathematical model 

was 26,804 seconds or 7 hours, 26 minutes and 44 seconds. The CPLEX solver took 21,632 

seconds (6 hours and 32 seconds), and the rest of the time (5,172 seconds) was taken to load 

the data and to create and close CPLEX internal structures. Currently, the company has four 

employees working in functions related to the hardening furnace. A worker performs 

assignments by entering items in the furnace, two workers put hardened items in the benders 

or an oil tank, and one employee is responsible for operating the furnace, setting parameters 

for the initial heating at the start the day, for the setups and throughout the production, as well 

as planning all assignments to be made. It is estimated that, out of his 8 hours of daily work, 

this employee spends 5 hours planning assignments and 3 hours adjusting furnace parameters 

and performing setups. 

 

5.3.1.3 Additional Analyzes 

In this instance, the total availability is 4,071 items, and the production of the solution 

from the mathematical model is 3,426 items. This means that a good part of the intermediate 

stock available at the start of the day is used for production over and above the quantity 

needed (2,266 items). With the implementation of the model, the furnace productivity is 

increased and there is a tendency for the intermediate stock available at the start of hardening 

to be consumed. 

To deal with this increase in furnace productivity, the company can reduce the time 

available for the furnace each day, reducing energy expenditure and adjusting the daily 

production expectation. Another option is to invest in increasing the capacity of previous 

processes, so that they will continue to be able to maintain a high intermediate stock before 

the furnace. This option would eventually generate an increase in the total productive capacity 

of the truck spring sector. The decision between these options is up to company management, 

based on market data, investment capacity, among other things. 

Although the time to obtain the solution is high, this is an expected result, since the 

real instance is the largest solved in this study, and the instance size has a great impact on 
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computational time. In addition, the waiting time does not prevent the company from running 

the model daily. At the end of a day, after updating the data relating to demand, inventories 

and production, the model can be executed. So, at the beginning of the next day, the solution 

is already available to be put into practice. 

To compare the solution practiced by the company and the proposed solution, some 

factors are analyzed. The overall effect of the factors mentioned below may explain the 

significant increase in production obtained in the proposed solution (51.2%). 

The spring factory produced 2,266 items in 1,785 assignments, which represents 1.27 

items per assignment. In the case of the proposed solution, 1.74 items were processed per 

assignment, producing 3,426 items in 1,965 assignments. This difference is the main reason 

for the increase in production in the proposed solution and is due to the ability of model to 

reduce wasted space in the furnace through good combinations of items. This is evident when 

analyzing the big reduction in wasted space obtained by the proposed solution (71.5%), from 

24.26% to 6.91%. 

The number of setups performed is also an important factor when comparing the 

number of items produced in each solution. The practiced solution used 8 setups and the 

proposed model solution 6 setups. The time spent on setups in the proposed solution was 

26.75 minutes less, which represents a reduction of 26.2%. This allows the furnace to spend 

more time in production and, consequently, allows an increase in the total number of 

assignments in the proposed solution. 

In addition, the use of faster formulas allows more assignments to be made in the same 

available time. In the solution used, the 1,785 assignments occurred during 437.75 minutes of 

production, that is, 4.08 assignments were performed per minute. In the proposed solution, 

there were 1,965 assignments in 464.5 minutes of production, which results in 4.23 

assignments per minute. This is a less significant factor but it also helps to explain the 

increase in the total number of assignments in the proposed solution. 

 

5.3.2 Random Data 

In this section, random instances are covered. In Section 5.3.2.1, the criteria are 

explained, based on the real instance to generate random instances. The results are presented 

in Section 5.3.2.2. 

 

5.3.2.1 Data Generation 
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36 groups of instances were defined, which differ through the variation of four 

parameters: precision; length of items; instance size; and formulas per item. In each group, 5 

instances are generated with random data, totaling 180 instances. 

Dealing with the precision to be used, two levels of variation were defined. The 

objective was to simulate the difference between using the precision of one node every 5 cm, 

and one node every 4 cm, in a 145 cm furnace. Thus, the furnace measures considered in the 

random instances are presented are in Table 24. 

Table 24 – Furnace Information (Random Data). 

Section Support Length (cm) 
Number of 

nodes (5 cm) 

Number of 

nodes (4 cm) 
1 No 21 4 5 

2 Yes  9 2 2 

3 No 27 5 7 

4 Yes  9 2 2 

5 No 28 6 7 

6 Yes  9 2 2 

7 No 12 2 3 

8 Yes  9 2 2 

9 No 21 4 5 

Total  145 29 35 

 
To define the length of the items, three possibilities were established. In instances with 

small items, the length randomly varies between 350 mm and 600 mm. Medium items range 

from 500 mm to 750 mm, and for large items the range is from 650 mm to 900 mm. Then, the 

generated values are converted to nodes according to the precision established for each 

instance. 

Three levels were defined to differentiate the size of the instances. Small instances 

have 7 item types and 4 formulas, medium instances have 14 item types and 6 formulas, and 

for large instances there are 21 item types and 8 formulas. Finally, the last parameter is the 

number of possible formulas for each type of item. The two established limits are shown in 

Table 25. 
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Table 25 – Formula levels by item type for each instance size. 

 Formulas by Item Type 

Size of 

Instance 

Small 

7 types of items | 4 formulas 
2 3 

Medium 

14 types of items | 6 formulas 
2 4 

Large 

21 types of items | 8 formulas 
2 4 

 
For the definition of the values presented in Table 25, the objective is to avoid that the 

number of formulas per item is 1 and, in the same way, to avoid that the items can be assigned 

in all the formulas of the instance. As verified in initial tests, in these two cases, the instance 

is less complex and the analysis is compromised. Therefore, as can be seen in Table 25, two 

levels of variation were defined for the number of formulas per type of item in each instance. 

At the lowest level, each type of item can be processed in two formulas. At the highest level, 

each type of item has four possible formulas, except for small instances, whose number of 

formulas per item is 3, since 4 is the total number of formulas for these instances. Just as 

occurs in the real case, the possible formulas for each item in random instances are sequential, 

i.e. if an item has two possible formulas, and the random choice sets the formulas at 3 for this 

item, necessarily formula 4 will also be defined. 

The other important information for defining the instances was all defined based on 

real data. The demand for each type of item was randomly defined between 20 and 70. To 

ensure that there will be availability of items to meet all demand, the minimum value for the 

availability of an item is the demand for that item multiplied by 1.5. The maximum value that 

availability can assume is 150. As with the real instance, the margin for each item is randomly 

set between 1.0 and 2.5. To define the type of item, the same percentage verified in the real 

instance was kept, 48% straight, 34% conventional and 18% parabolic. 

The bender limit was maintained in the random instances, i.e. one parabolic bent item 

and three conventional bent items per assignment. Items without bends are not limited in this 

case. The length of the furnace, supporting 100 simultaneous assignments, was also 

unchanged. The setup time of each formula, in lost assignments, is randomly set between 40 

and 60 assignments. The time for a formula to traverse the entire length of the furnace is a 

random setting between 20 and 35 minutes. 
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To define the time available for each instance, the minimum time was calculated, if all 

items are produced in the fastest formula among their possibilities. Furthermore, setup time 

was defined as 80% of the maximum setup time needed if all formulas are used. Therefore, 

the time available for each instance was defined as 120% of the minimum production time, 

plus the time to perform the setups. The purpose of these definitions is to avoid infeasibility 

due to lack of production time. 

To define the number of available assignments in each instance (K), the objective is 

that the number of available assignments is the smallest that makes it impossible for the 

model to fully utilize since, in the real case, the limitation is in the production time and not in 

the number of assignments. Therefore, the setup time and the speed of all formulas of the 

instance are analyzed. Considering the use of only one formula during the entire production 

period, the formula that allows the greatest number of assignments is chosen. In practice, it is 

impossible to obtain a solution that uses a larger number of assignments and, therefore, this is 

the value to be defined for the K parameter. 

 

5.3.2.2 Analysis of Results 

Considering everything explained in Section 5.3.2.1, the 180 random instances were 

executed respecting the processing time limit of 4 hours for each instance. The results are 

shown in Tables 26 to 31 below. Table 26 shows the percentage loss obtained on average 

between the 5 instances in each group, and Table 27 shows the mean values considering the 

levels of variation of each parameter. 
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Table 26 – Average loss for each group of instances.  

Loss 

Instance Size 

7 types of items 

4 formulas 

14 types of items 

6 formulas 

21 types of items 

8 formulas 

Formulas per Item 

2 3 2 4 2 4 

Item 

Length 

(mm) 

350 – 

600 

Accuracy 

(cm) 

5 35.5% 25.5% 34.7% 31.2% 34.2% 37.4% 

4 36.1% 37.5% 40.2% 32.2% 31.2% 37.9% 

500 -

750 

5 28.6% 40.2% 35.4% 27.4% 32.7% 22.5% 

4 36.0% 32.4% 43.0% 32.6% 40.3% 33.8% 

650 -

900 

5 43.0% 40.0% 41.4% 43.8% 36.0% 41.6% 

4 40.6% 43.8% 43.7% 42.9% 43.9% 41.6% 

 
Note that the loss obtained in the random instances is high, in general. This is justified 

by the reduction in the size of the furnace in random instances, which makes it difficult to 

design good assignments. In addition, the natural restriction of this problem, with the need for 

the items to be supported by the beams, also favors an increase in losses. Note that values are 

naturally higher in instances with large items, as large items make it difficult to generate 

assignments with low loss. Furthermore, it can also be seen that the definition of more 

formulas per item reduces the loss, since it increases the possibilities of items to compose the 

assignments in each formula. The size of the instances does not seem to interfere with the 

loss. 
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Table 27 – Average loss of variation for each parameter. 

Instance Size 

7 types of items 

4 formulas 

14 types of items 

6 formulas 

21 types of items 

8 formulas 

36.6% 37.4% 36.1% 

Item Length (mm) 

350 – 600 500 – 750 650 – 900 

34.5% 33.7% 41.9% 

Accuracy (cm) 

5 4 

35.1% 38.3% 

Formulas per Item 

2 3 or 4 

37.6% 35.8% 

 
The value of the gap is zero for 178 of the 180 instances, which shows that the quality 

of the solution is good considering the characteristics of the model and the data of these 

instances. In the case where the gap is non-zero, it is 0.01% and 0.19% for two instances that 

have small items, a precision of 1 node every 5 cm and two formulas per item. 

Table 28 shows the average computational times for each group of instances and Table 

29 shows the average time considering the variation of the parameters. 

Table 28 – Average computational time, in seconds, for each group of instances. 

Computational Time (s) 

Instance Size 

7 types of items 

4 formulas 

14 types of items 

6 formulas 

21 types of items 

8 formulas 

Formulas per Item 

2 3 2 4 2 4 

Item 

Length 

(mm) 

350 – 

600 

Accuracy 

(cm) 

5 580 41 3,228 1,338 2,544 5,779 

4 28 44 653 1,011 3,727 4,053 

500 -

750 

5 31 56 625 1,473 2,874 11,480 

4 36 48 469 839 4,006 7,269 

650 -

900 

5 27 54 218 328 1,856 4,090 

4 28 14 202 398 832 2,136 
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Naturally, the larger the instance, the more the computational time required. In the 

analysis of this factor, the results of some specific instances significantly altered the average 

values, although they did not significantly affect the observed trends. Just 2 of the 180 

instances reached the 4h of the processing time limit. Instances with larger items use less 

processing time since the preparation of the assignments becomes less complex in these cases.  

Also, defining multiple formulas per item tends to increase the complexity of the instance 

because it increases the possibilities that items compose assignments for each formula. 

Table 29 – Average computational time, in seconds, of the variation of each parameter. 

Instance Size 

7 types of items 

4 formulas 

14 types of items 

6 formulas 

21 types of items 

8 formulas 
82 899 4,221 

Item Length (mm) 

350 – 600 500 – 750 650 – 900 

1,919 2,434 849 

Accuracy (cm) 

5 4 

2,035 1,433 

Formulas per Item 

2 3 or 4 

1,220 2,247 

 

Table 30 shows the average percentage of time spent with the completion of setups in 

each group of instances, and Table 31 shows this same information considering the varying 

levels of each parameter. 
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Table 30 – Percentage of time spent on setup in each instance group. 

Setup 

Instance Size 

7 types of items 

4 formulas 

14 types of items 

6 formulas 

21 types of items 

8 formulas 

Formulas per Item 

2 3 2 4 2 4 

Item 

Length 

(mm) 

350 – 

600 

Accuracy 

(cm) 

5 23.3% 26.7% 19.6% 15.9% 18.9% 15.0% 

4 22.8% 22.1% 18.3% 13.8% 18.8% 11.4% 

500 -

750 

5 22.0% 15.6% 16.7% 15.6% 14.5% 15.3% 

4 19.1% 18.4% 14.4% 11.8% 13.8% 11.1% 

650 -

900 

5 17.2% 14.2% 12.6% 11.6% 13.8% 11.3% 

4 13.5% 11.8% 12.3% 12.1% 12.5% 12.0% 

 

The smaller instances spend proportionately more time on setup. This is because these 

instances have less flexibility to group items into fewer formulas. This is the same reason why 

the percentage is higher in instances with two formulas per item. It should be noted, finally, 

that the instances with large items have the best results in relation to time spent on setup, just 

as occurs with instances with greater accuracy. 

Table 31 – Percentage of time spent in setup with the variation of each parameter. 

Instance Size 

7 types of items 

4 formulas 

14 types of items 

6 formulas 

21 types of items 

8 formulas 

18.9% 14.5% 14.0% 

Item Length (mm) 

350 – 600 500 – 750 650 – 900 

18.9% 15.7% 12.9% 
Accuracy (cm) 

5 4 

16.7% 15.0% 
Formulas per Item 

2 3 ou 4 

16.9% 14.8% 
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Randomly defining the characteristics of each formula further diversified the quality 

of the formulas, as the number of assignments lost through setups was not constant. In the real 

case, the slower formulas will be avoided by the model, since this is the only factor that 

differentiates between them. In random instances, depending on the data generated, some 

formulas can be attractive because they are fast but, if the setup time is high, the model can 

avoid their use as far as possible. 

Analyzing the results of the parameters of formulas by item, the tests showed that 

when the items can be used in several formulas, the computational time increases, since the 

complexity to reach the optimal solution is also greater. On the other hand, with more 

flexibility to use items in several formulas, the model can make better assignments, occupying 

more of the furnace and reducing wasted space. In addition, the model can group items in 

fewer formulas reducing the need for setups. 

It is worth noting that the result obtained with the loss of space in assignments in the 

real instance is considerably better than the values obtained in the random instances. This is 

due to the greater diversity of types of items to be assigned in each formula, in both the length 

of these items and the number of types of items. This diversity provided by the characteristics 

of the real instance allows the model to make good assignments and so obtain a low loss of 

space. On the other hand, this same factor is a complicating factor for instance optimization 

by increasing computational time. Interestingly, the computational time of the real instance 

was also much higher, even compared to longer random instances. 

Analyzing in more detail the processing time in each random instance, it was possible 

to see that most of the computational time was consumed to reach a feasible solution. In most 

instances, after reaching a feasible solution, convergence to the optimal solution occurred 

quickly. This demonstrates the complexity of this problem, in addition to indicating that 

specific characteristics of random instances accelerate the convergence towards the optimal 

solution. 

 

5.4 Conclusions 

In this study, a problem present in an automotive spring company was studied, seeking 

to maximize the production of the furnace in the hardening process of truck springs. The 

problem was approached as an one-dimensional CSP and, considering company specificities, 

the proposed mathematical model was based on an arc flow formulation. 

Tests with real and random data were performed to analyze the performance of the 

proposed model. In the case of real data, the results showed that the model obtained a better 
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solution than that practiced by the company, with an output of springs 51% higher. The main 

reason for this was the 71.5% reduction in wasted space in the furnace, reducing empty spaces 

and assigning more items in the furnace. The reduction in the number of setups performed 

also contributed to the good result, allowing more time for the furnace to be in production. 

The tests with random data allowed the analysis of the effect of varying different 

parameters, improving knowledge of this still little explored problem, and allowing managers 

to make better decisions. The computational time is the criterion most sensitive to the 

variation of parameters in general, mainly to the variation of the instance size, but also the 

formulas per item and the length of the items. The length of the items is the parameter that 

most influences the results, strongly affecting the wasted space and the percentage of time 

spent in setup. Finally, it is important to point out that the solution obtained for random 

instances is optimal in practically all cases, since, for 178 of the 180 instances, the gap is zero. 
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66..   CCOONNCCLLUUSSIIOONNSS  AANNDD  FFUUTTUURREE  

PPRROOPPOOSSAALLSS  

In this thesis, the production process of an automotive spring factory was studied, 

aiming at saving resources and increasing productivity. Two studies were performed 

analyzing the bar cutting process of the company. The focus of the first study was on short 

term issues, solving an Integrated Lot Sizing and Cutting Stock Problem (ILSCSP) of the type 

(-/L2/L3/M) (according to Melega et al. (2018)) with parallel machines. The second study 

dealt with medium term in an ILSCSP of the type (L1/L2/L3/M), in which the purchase of 

objects is a decision variable. A third study was conducted analyzing the assignment of items 

to a hardening furnace. This chapter carried out a not so common approach, regarding this 

problem as a CSP of the type (-/L2/-/S) and using a mathematical model based on an arc flow 

formulation. 

Results showed that the models satisfactorily achieved their objective since the 

solution of instances with real data potentially generated, for the three approaches, a large 

saving of time and money for the company. In Chapter 3, losses were reduced by 49.7%, 

saving about 3.3 ton of steel per week. The approach referring to medium term (Chapter 4) 

reduced losses by 30%, which represents about 75 tons of steel saved in eight months. 

Furthermore, the proposed solution achieved significant reductions in stock levels of bars, 

springs and spring bundles, as well as the number of bars purchased and used. In the study 

from Chapter 5, the model was capable of increasing production of the hardening furnace by 

51%, mainly through the reduction (71.5%) of wasted space in the furnace. It is important to 

state that all solutions were achieved in acceptable computational times, respecting all the 

specific operational restrictions. 

For the performance analysis, the three models were tested in the solving of instances 

with random data. In total, 540 fictitious instances were solved, demonstrating the influence 

of several parameters of each problem, and enabling managers to make better decisions. In 

Chapters 3 and 4, better results, in terms of gap and computational time were found with 

smaller instances and/or with large items. Instances with small items are more complex and 

generate worse results, apart from the loss. Additionally, the study in Chapter 4 demonstrates 
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the advantages of considering objects purchases (𝑒 ) as a decision variable. In Chapter 5, 

similar conclusions were reached about the type of instances that generate better results in 

relation to computational time and loss. Since the gap value is zero in 178 out of 180 

instances, it was not possible to analyze the influence of parameters in this matter. This result 

demonstrates, above all, the quality of the model in obtaining the optimal solution of these 

many instances. 

Therefore, it is possible to conclude that the objective of this thesis was reached since 

it demonstrated different uses for the CSP, presenting and analyzing the problem in several 

contexts in the spring industry, aiding the company in improving decision making and saving 

of resources. Moreover, contribution has been made to the literature in the study of yet 

underexplored approaches, along with the proposition of unprecedented methodology in this 

context. The relation between the CSP and other classic problems was also studied, since an 

approach integrated with LSP was applied on Chapters 3 and 4 and the mathematical model of 

the article in Chapter 5 is based on an arc flow formulation. 

As future research related to Chapter 3, improvement on the solution approaches 

might be interesting, such as stabilization techniques, reformulations and heuristic procedures 

to find an integer solution. It is also possible to analyze the performance of the approach used 

in other companies, whose production process is similar. Regarding the application in some 

other contexts, for a satisfactory result, it might be necessary to include in the model the setup 

times of the cutting machines. In addition, the production capacity of the cutting process can 

be considered as a parameter, enabling an in-depth analysis of possible advantages of 

increasing or reducing capacity, since more capacity would lead to more idleness, but more 

freedom to cut on the preferred date. 

Considering Chapter 4, with the objective of bringing this work closer to practical 

issues, different elements related to the bar purchase variable 𝑒  should be considered: for 

example, the cost of ordering, delivery time, different unit costs depending on the purchase 

quantity, prices of different suppliers, among others. For the spring bundles, a production 

limit was not considered, as this does not make sense in the studied company. However, it 

could be easily inserted in the model with a capacity restriction to limit the value of the 

variable 𝑦  in each period t. 

As proposals for future studies related to Chapter 5, the author suggests that 

computational time should be further analyzed, since it is sensitive to the increase in instance 

size, in addition to having a specific behavior, taking a long time to find a feasible solution 

but then converging quickly to the optimal solution. Changes in the mathematical model 
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reducing the number of nodes and edges of the network, seeking a simplified solution without 

loss of quality can be assessed. Alternatively, heuristic methods can be developed to reach 

good solutions in a shorter time and also to avoid the purchase of commercial software by the 

company. 

Although the optimal solution was obtained in almost all random instances of Chapter 

5, the absolute value of the space loss was generally high. Therefore, it is suggested that a 

more detailed study be carried out, in search of the main characteristics of the instances, 

which account for the increase in loss of space in the furnace. Finally, an interesting line of 

study is the analysis of this problem considering multiple periods. The solution of a one-

dimensional multiperiod CSP, already studied in different contexts, can produce better results 

than approaches looking at an isolated period (Poldi and De Araujo, 2016). However, it is 

important to carefully assess the impact of the likely increase in computational time. One 

possible result for the case studied here could be the decision that, in one day of production, 

the company produced only items of small thickness, keeping the furnace cooler and making 

fewer setups. The next day, the furnace could start hotter, focusing on the production of 

thicker items. This might produce better results than those analyzing each day separately. 
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