
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

ELIS CASSIANA NAKONETCHNEI DOS SANTOS

HOTFILL: UM ALGORITMO PARA PLANEJAMENTO DE PREENCHIMENTO
POR RASTER COM RESTRIÇÃO DE TEMPO DE RESFRIAMENTO PARA

IMPRESSÃO 3D POR EXTRUSÃO

CURITIBA

2022

ELIS CASSIANA NAKONETCHNEI DOS SANTOS

HOTFILL: UM ALGORITMO PARA PLANEJAMENTO DE PREENCHIMENTO

POR RASTER COM RESTRIÇÃO DE TEMPO DE RESFRIAMENTO PARA

IMPRESSÃO 3D POR EXTRUSÃO

HotFill: A Cooling Time Constrained Raster-Fill Planning Algorithm for

Extrusion 3D Printing

Dissertação apresentada como requisito para
obtenção do título de Mestre em Ciências do
Programa de Pós-Graduação em Engenharia
Elétrica e Informática Industrial da Universidade
Tecnológica Federal do Paraná.

Orientador: Prof. Dr. Rodrigo Minetto

Coorientador: Prof. Dr. Neri Volpato

CURITIBA

2022

Esta licença permite compartilhamento, remixe, adaptação e criação a partir do trabalho,
mesmo para fins comerciais, desde que sejam atribuídos créditos ao(s) autor(es). Conteúdos
elaborados por terceiros, citados e referenciados nesta obra não são cobertos pela licença.

4.0 Internacional

https://creativecommons.org/licenses/by/4.0/deed.pt_BR

Para minha família, amigos e professores, que
sempre me apoiaram e encorajaram a seguir

em frente.

ACKNOWLEDGEMENTS

Primeiramente, agradeço à minha família e meus amigos, em especial minha mãe, por

estarem ao meu lado durante essa etapa tão importante da minha vida, sempre me oferecendo

suporte através de palavras cheias de motivação e sempre sendo compreensivos quando pre-

cisei estar ausente.

Ao meu orientador, Prof. Dr. Rodrigo Minetto, meu coorientador, Prof. Dr. Neri Volpato,

e aos Prof. Dr Jorge Stolfi e Prof. Dr. Ricardo Dutra, que me acompanharam nessa incrível

jornada, me apoiando e me ensinando valiosas lições para a vida.

À UTFPR, professores, coordenação, administação e manutanção, que me proveram um

ambiente apropriado para continuar aprendendo coisas novas todos os dias.

Gostaria também de agradecer todos que tiveram participado, direta ou indiretamente

desse trajeto, pois cada pequeno gesto foi essencial para que esse trabalho fosse finalizado.

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de

Pessoal de Nível Superior - Brasil (CAPES) - Código de Financiamento 001.

Let’s think the unthinkable, let’s do the
undoable. Let us prepare to grapple with the

ineffable itself, and see if we may not eff it after
all. (ADAMS, Douglas; Dirk Gently’s Holistic

Detective Agency, 1987).

RESUMO

A flexibilidade oferecida pela manufatura aditiva durante a fabricação de peças complexas,

comparada aos métodos tradicionais, a torna uma ferramenta atrativa para diversas aplicações.

Porém, as decisões tomadas na etapa de planejamento de processo influenciam nas pro-

priedades e custo da peça final. No caso de tecnologias baseadas na técnica de extrusão

de material termoplásticos, a definição da rota a ser seguida durante a construção de uma

camada tem impacto direto na qualidade da peça, pois influencia na adesão entre os filamentos

adjacentes de uma mesma camada, um dos fatores responsáveis pela resistência mecânica de

objetos fabricados por impressoras 3D. Por sua vez, essa adesão depende da temperatura do

material previamente depositado, que é diretamente afetada pelo tempo entre a deposição dos

filamentos adjacentes. Este trabalho descreve HotFill, um algoritmo que busca um trajeto para

preenchimentos tipo zigue-zague que mantenha o tempo de resfriamento entre as deposições

de filamentos adjacentes abaixo dos limites especificados pelo usuário. O algoritmo, baseado

na técnica de programação dinâmica, foi implementado em Python e testado em várias

camadas representativas de modelos 3D. Os resultados mostram que o HotFill é rápido, produz

trajetos que respeitam os limites de resfriamento impostos com tempo de fabricação compatível

com estas restrições.

Palavras-chave: extrusão com restrição de tempo; planejamento de trajeto; impressão 3d;

preenchimento tipo raster; programação dinâmica.

ABSTRACT

The flexibility offered by additive manufacturing when fabricating complex parts, compared to

traditional methods, makes it an attractive tool for many applications. However, the decisions

made in the process planning stage influence the properties and cost of the final part. In the

case of additive manufacturing technologies based on thermoplastic extrusion, the definition of

the route to be followed during the construction of a layer has a direct impact on the quality of

the part. The route created directly influences the adhesion between adjacent filaments of the

same layer, one of the factors responsible for the mechanical strength of objects manufactured

by thermoplastic extrusion 3D printers. This, in turn, depends on the time lapsed between their

deposition. In this work we describe HotFill, an algorithm that finds a tool-path for solid raster

infill that keeps the cooling time intervals between depositions below user-specified limits. The

algorithm, based on the dynamic programming technique, was implemented in Python and

tested on several representative slices of 3D models. The results show that HotFill is fast and

produces tool-paths that have low fabrication time while respecting the cooling time constraints.

Keywords: time constrained extrusion; tool-path planning; 3d printing; raster filling; dynamic

programming.

LIST OF ALGORITHMS

Algorithm 1 – HotFill . 36

Algorithm 2 – MinFullPath . 38

LIST OF FIGURES

Figure 1 – Additive Manufacturing Process . 18

Figure 2 – Additive Manufacturing Process . 19

Figure 3 – Thermoplastic Polymer Material Extrusion Process Working Principle 19

Figure 4 – A possible tool-path A–B for the solid filling of a slice of a hypothetical part,

whose extruded contour is shown in gray. Each color identifies a separate con-

tinuous extrusion section of the path. The black dashed lines denote nozzle

movements without extrusion. The part measures 39𝑚𝑚 × 20𝑚𝑚, and the

raster lines are 1𝑚𝑚 apart and 1𝑚𝑚 wide 20

Figure 5 – Graphical representation of a trace (left) and a jump (right), showing the effect

of reversal on the attributes 𝑝INI and 𝑝FIN. The dark thin line in the trace is the

nozzle’s trajectory. The light gray area is the approximate extent of the ma-

terial deposited by the nozzle. The green “thick segment” is the conventional

representation of the trace used in this work 24

Figure 6 – A path 𝑃 with three traces and a jump (left) and its reversal (right). 25

Figure 7 – Graphical representation of two contacts 𝑐1 and 𝑐2 (red dashed lines) between

traces 𝑚′
1, 𝑚

′′
1 and 𝑚′

2, 𝑚
′′
2, of two paths, 𝑃 (green) and 𝑄 (blue). 26

Figure 8 – A possible input data set for the RF-HTPP problem, suitable for planning the

solid raster filling of the slice shown in Figure 4. There are 56 raster elements

(green thick segments) on 18 scan-lines. The total fab-time for those rasters,

not counting the time to move between them, is 10.10 seconds. The red lines

are the relevant contacts 𝒞. The blue-gray lines are the contour of the slice

(shown for reference only, not part of the input data). 28

Figure 9 – A possible collection of link paths for the input elements of Figure 8. 29

Figure 10 – A non-alternating scan-line-order tool-path for the solid raster fill data of Fig-

ures 8 and 9. Its fab-time is 23.71 s, including 10.10 s of extrusion and 13.61 s

of air time. The red dashed line is the contact with the largest cooling time,

1.67 s. 30

Figure 11 – An alternating scan-line-order tool-path for the solid raster fill data of Figures 8

and 9. Its fab-time is 17.95 s, including 11.02 s of extrusion, and 6.93 s of air

time. The red dashed line at upper right is the contact with largest cooling

time, 2.25 s. 31

Figure 12 – A monotonic instance of the RF-HTPP for which the maximum contact cooling

time of the SCN solution at left (0.42 s) is higher than that of the SCA solution

at right (0.40 s). 32

Figure 13 – A monotonic instance of the RF-HTPP for which the fabrication time of the

SCA solution at left (2.38 s) is significantly higher than that of the tool-path at

right (2.03 s), which does not follow the scan-line order. The maximum contact

cooling times are 0.40 s and 0.73 s, respectively. 33

Figure 14 – Illustration of the partial state at some point during the execution of the

HotFill procedure (Algorithm 1) for the rasters and links of Figure 8 and 9.

The colored paths comprise an (8,11)-fullpath, specifically 𝐹0[8,11], consist-

ing of a (7,8)-fullpath 𝐹1[7,8] = A–B (green and purple) and an (8,11)-

bandpath 𝐵0[8,11] = C–D (cyan). The fullpath 𝐹1[7,8] consists of band-

paths 𝐵0[0,3], 𝐵1[3,6], 𝐵0[6,7], and 𝐵1[7,8] (light and dark green) and three

links between them (purple). The red dashed lines are the contacts between

𝐹1[7,8] and 𝐵0[8,11] that must be checked when concatenating them to ob-

tain an 𝐹0[8,11]. The horizontal dotted blue lines are the cut-lines that delimit

those bandpaths. 35

Figure 15 – Typical status of the array 𝐹0 upon entry to MinFullPath with parameters 𝜇 =

5, row index 𝑖 = 8, and column index 𝑗 = 11, with the input data of Figures 8

and 9. For the color codes, see the text. 39

Figure 16 – The HotFill solution with 𝜇 = 5 and all cooling time limits set to 3.5 s. The

largest contact cooling time (red dashed line) is 3.36 s. The total fab-time is

15.26 s including 11.97 s of extrusion and 3.29 s of air time. 41

Figure 17 – The HotFill solution with 𝜇 = 5 and all cooling time limits set to 2.3 s. The

largest contact cooling time (red dashed line) is 2.25 s. The total fab-time is

17.68 s including 11.17 s of extrusion and 6.51 s of air time. 41

Figure 18 – The HotFill solution with 𝜇 = 5 and all cooling time limits set to 1.7 s. The

largest contact cooling time (red dashed line) is 1.69 s. The total fab-time is

22.24 s including 10.66 s of extrusion and 11.58 s of air time. 42

Figure 19 – The HotFill solution with 𝜇 = 50 and all cooling time limits set to 50 s. The

largest contact cooling time (red dashed line) is 9.60 s. The total fab-time is

13.59 s including 12.55 s of extrusion and 1.04 s of air time. 42

Figure 20 – The HotFill solution with 𝜇 = 5 and all cooling time limits set to 50 s. The

largest contact cooling time (red dashed line) is 6.50 s. The total fab-time is

14.06 s including 12.44 s of extrusion and 1.62 s of air time. 43

Figure 21 – The STL models and slice outlines used in the tests (not to the same scale). 47

Figure 22 – Relative connection time 𝑅HF
CONN as a function of the cooling time limit ∆,

for different values of the maximum band width 𝜇. Each curve is a different

dataset. The numbers refer to Table 1. 52

Figure 23 – Computing time 𝑇CPU as a function of the maximum band width 𝜇, for ∆ =

64.0 s and the datasets listed in Table 4. Each graph is a different dataset,

with colors assigned arbitrarily. The broad tan lines are the plots of 𝐴𝜇3 for

𝐴 = 0.00370 and 𝐴 = 0.000481. 53

LIST OF TABLES

Table 1 – Datasets used for tests. The columns are the slice index (1 = bottom); the raster

direction 𝜃 (0 or 90) in degrees, relative to the 𝑋-axis; the overall width 𝑋 and

height 𝑌 of the slice; the number 𝑛 = #ℛ of raster lines; the number 𝑠 = #𝒮

of scan-lines; and the maximum 𝐿MAX, average 𝐿AVG, and total 𝐿TOT length of

the raster lines. All dimensions are in millimeters. 48

Table 2 – Maximum contact cooling times 𝑇MAX
COOL(𝐻,𝒞) of the tool-path 𝐻 computed by

Slic3r, RP3, SCN, and by HotFill for various cooling time limits ∆, with 𝜇 = 20.

All times are in seconds. 49

Table 3 – Fabrication times 𝑇FAB(𝐻) of the tool-path 𝐻 computed by RP3, SLic3r, SCN,

SCA, and by HotFill with various cooling time limits ∆, as well as percentage in-

creases in manufacturing time over the shortest time between RP3 and Slic3r.

The total extrusion time 𝑇RAST for the rasters alone (excluding jumps and links)

is also given for reference. All tests used 𝜇 = 20. All times are in seconds. . . 50

Table 4 – Computation times 𝑇CPU of the HotFill algorithm for ∆ = 8.0 s and various val-

ues of the maximum band width 𝜇. All times are in seconds. Columns n and m

represent the number of raster lines and the number of scan-lines, respectively. 53

LIST OF SYMBOLS

Notations

𝑚 move
←−𝑚 reversal of a move
𝑝INI initial position of a move or a tool-path
𝑝FIN final position of a move or a tool-path
𝑃 a tool-path
←−
𝑃 reversal of a tool-path
#𝑃 number of moves in a tool-path
⟨⟩ a empty tool-path
Λ a invalid tool-path
𝜎 thickness of the slice
𝜆 average cross-section area divided by 𝜎
𝜆FILL trace width
𝑇INI time when the nozzle will start the move
𝑇FIN time when the nozzle will finish the move
𝑇FAB manufacturing or fabrication time
𝑇COV cover time
𝑇COOL cooling time
𝑇MAX

COOL maximum cooling time
𝑇 PRED

COOL precompute the value
𝑇RAST total extrusion time
𝑅COOL cooling time ratio
𝑅MAX

COOL relative cooling time
𝜏 cooling time limit
∆ cooling time limits
sides pair of traces that surround the contact
𝒞 set of contacts
contacts elements of 𝒞 that have at least one side that is a trace 𝑃 or its

reversal
𝑟 raster line element
ℛ set of raster elements
ℒ set of raster link
𝜇 lines limit in a bandpath
P potential tool-paths
ℓ cut-lines
𝐹 fullpath

𝐵 bandpath
𝑇CONN connection time
𝑇 HF

CONN HotFill connection time
𝑇 REF

CONN reference connection time
𝑇 HF

FAB HotFill fabrication time
𝑇 REF

FAB reference fabrication time
𝑅HF

CONN connection time ratio

CONTENTS

1 INTRODUCTION . 18

1.1 Contributions . 22

1.2 Structure of the Document . 23

2 THE RASTER-FILLING HOT TOOL-PATH PROBLEM 24

2.1 Tool-Path Model . 24

2.2 Cooling Time Constraints . 26

2.3 Statement of the Problem . 28

2.3.1 Input . 28

2.3.2 Output . 29

2.4 Special Solutions . 30

2.4.1 Greedy Solution . 30

2.4.2 Scan-line Solutions . 30

2.5 General considerations . 31

2.5.1 Non-Connected Infills . 31

2.5.2 Monotonic Infill Regions . 32

2.5.3 Problem Decomposition at Monotonic Sections 33

2.5.4 Exhaustive Enumeration . 33

3 HOTFILL: FINDING A VALID TOOL-PATH 35

3.1 Dynamic programming . 36

3.2 The MinFullPath procedure . 37

3.3 Choosing the Bandpaths . 38

3.4 Sample Solutions . 40

3.5 Improvements and Computing Cost . 42

3.5.1 Algorithm Improvements . 42

3.5.2 Programming Improvements . 44

3.5.3 Computing Time Analysis . 45

4 EXPERIMENTS AND RESULTS . 46

4.1 Dataset . 46

4.2 Achieving the cooling constraints . 49

4.3 Impact on fabrication time . 50

4.4 Analysis of the computation times . 53

5 CONCLUSIONS AND FUTURE WORK . 55

5.0.1 Future Work . 55

BIBLIOGRAPHY . 56

APPENDIX A MOVE TIMING FUNCTIONS 62

18

1 INTRODUCTION

Additive manufacturing, also known as 3D printing, is a process that allows transforming

three-dimensional computer models into physical objects by laying down successive layers of

materials, as illustrated in Figure 1. 3D printers are similar to traditional laser or inkjet printers

(BERMAN, 2012), however, instead of create just one layer, a 3D printer creates successive

layers that will eventually make up the physical object.

Figure 1 – Additive Manufacturing Process

Source: (VOLPATO, 2017).

The variety of adding principles and technologies, and its flexibility, make it possible

to manufacture parts in a relatively economical way, in addition to allowing the construction

of complex models that could hardly be obtained with other forms of manufacture (BIKAS;

STAVROPOULOS; CHRYSSOLOURIS, 2016; NGO et al., 2018). This characteristic has led

additive manufacturing to be adopted in different industries (GUO; LEU, 2013), such as

biomedicine (SINGH; RAMAKRISHNA, 2017), automotive (LEAL et al., 2017), aerospace

(Schiller, 2015) and construction (LIM et al., 2012).

After modeling the desired object and before sending to 3D printer, the geometric model

must undergo to the process planning, which means a sequence of tasks that includes: orienting

and positioning the object in the printer’s workspace, adding support structures (if required),

cutting the geometric model into layers, and finally planning the printer’s tool-path (MINETTO et

al., 2017), as shown in Figure 2. In the end of the path planning step, it is generated the final

file containing machine-specific instructions, which can be written in a proprietary, or in a more

generic, format, such as the G-code.

Material extrusion additive manufacturing technologies based on thermoplastic polymer,

the most common used in 3D printers (KULKARNI; MARSAN; DUTTA, 2000; GIBSON; ROSEN;

STUCKER, 2015; MINETTO et al., 2017), builds the target object one layer (slice) at a time,

19

Figure 2 – Additive Manufacturing Process

Source: (VOLPATO, 2017).

using a heated nozzle to deposit a thin filament of molten material following a suitable tool-path,

as illustrated in Figure 3.

Figure 3 – Thermoplastic Polymer Material Extrusion Process Working Principle

Source: (VOLPATO et al., 2007).

Typically, the tool-path consists of a contour, a set of poly-lines following the perimeter

of the slice; a filling or infill of its interior; and, if necessary, some temporary support struc-

tures to hold up overhanging parts during fabrication. The filling may use many different strate-

gies (Hodgson; Ranellucci; Moe, 2021), such as concentric poly-lines, honeycomb patterns, or

Hilbert curves. A common strategy for solid infill (100% density, air gap 0) uses a set of paral-

lel closely spaced raster lines (GIBSON; ROSEN; STUCKER, 2015; Volpato et al., 2019), also

known as zig-zag and rectilinear.

Figure 4 shows a possible tool-path for the solid filling of a slice of a hypothetical part, as

might be produced by process planning programs like Slic3r (Hodgson; Ranellucci; Moe, 2021)

20

or RP3 (Volpato, 2021). Depending on the shape of the region to be filled, the tool-path may

have to be split into two or more continuous extrusion sections (CES), shown by different colors

in Figure 4; in which case the nozzle will have to jump between these sections without extruding

any material (AGARWALA et al., 1996).

Figure 4 – A possible tool-path A–B for the solid filling of a slice of a hypothetical part, whose extruded
contour is shown in gray. Each color identifies a separate continuous extrusion section of the
path. The black dashed lines denote nozzle movements without extrusion. The part measures
39𝑚𝑚× 20𝑚𝑚, and the raster lines are 1𝑚𝑚 apart and 1𝑚𝑚 wide

Source: (NAKONETCHNEI et al., 2022).

Algorithms for tool-path generation typically try to minimize the total fabrication time for

each slice (Jin et al., 2014; Volpato et al., 2019; WAH et al., 2002; YANG, 2009), which consists

of the extrusion time plus the non-productive air time spent during the jumps (Volpato et al.,

2019; LIU et al., 2020). Minimizing the number of jumps may be desirable also to improve the

quality of the part’s surface, by reducing the occurrence of “strings” (spurious thin filaments of

molten material that leak out of the nozzle during jumps). Energy efficiency in computer numeri-

cal control machines is another issue that is affected by idle movements (LI; LI; HE, 2018). There

is still no algorithm that will find the absolutely best tool-path in a practical amount of computer

time; therefore, path-planning programs generally use heuristics: algorithms that produce “good

enough” tool-paths, but not necessarily optimal ones.

There are several specialized heuristics that try to exploit the specific features of the

tool-path optimization problem. For example, in (GANGANATH et al., 2016) and (Fok et al.,

2016) observed that it is similar to the much-studied traveling salesman problem (TSP), and

adapted some heuristics previously developed for the latter to the former. The main heuristics

they compared were: nearest neighbor selection (NN), Christofides’s algorithm, and the 𝑘-opt al-

gorithm (CROES, 1958; FLOOD, 1956; LIN; KERNIGHAN, 1973; ROSENKRANTZ; STEARNS;

LEWIS II, 1977). In (Volpato et al., 2019) compared the NN heuristic to the nearest insertion

heuristic (NI).

There is an enormous literature on generic heuristics, general-purpose methods for ap-

proximate optimization of arbitrary goal functions. These include branch-and-bound (MORRI-

SON et al., 2016), simulated annealing (MIAO; TIAN, 2013), tabu search (LI; ALIDAEE, 2016),

21

randomized greedy search (RESENDE; RIBEIRO, 2010), and many more (PEARL, 1984; ROTH-

LAUF, 2011). These methods basically probe the search space (the set of all potential solutions)

with different strategies, hoping to exploit some weak continuity or non-randomness that is usu-

ally present in such functions, or some extra information such as quickly-computable domain

bounds. There is even a vast array of meta-heuristics, which are strategies to search for effec-

tive combinations of problem-specific heuristics treated as black boxes. These include genetic

algorithms (GA), which was applied to the tool-path optimization problem by (YANG, 2009), ant

colony optimization (ACO), considered by (Fok et al., 2019), and many more (CHEN et al., 2020;

LI et al., 2021; LIANG; HE; ZENG, 2020; LIANG et al., 2022). Unfortunately, the large size of the

search space and the irregular nature of the goal function, which has many widely separated

local minima, conspire to make generic heuristics and meta-heuristics too slow for practical use

in this application.

However, fabrication time is not the only criterion that matters when planning the tool-

path. Several authors have studied how the orientations of extruded lines influence the tensile

and flexural strength of an infill layer. For instance, it was observed that fractal-like fillings, with

extruded lines in multiple orientations, generally improve these mechanical properties (Yang et

al., 2003; ZHAO; GUO, 2020); and that the orientation of filling rasters affects the quality of raster

corners (Jin et al., 2014; KOCH; Van Hulle; RUDOLPH, 2017; XIA; LIN; MA, 2020).

The order of extrusion also affects the strength of the infill because the bonding be-

tween two adjacent raster lines is stronger if the second one is deposited while the first is still

hot (AGARWALA et al., 1996; SUN et al., 2008; GURRALA; REGALLA, 2014; FAES; FERRARIS;

MOENS, 2016; VOLPATO; ZANOTTO, 2019). This effect was noted by several authors, starting

with (SUN et al., 2008; COSTA; DUARTE; COVAS, 2017; AKHOUNDI; BEHRAVESH, 2018;

FERRARIS; ZHANG; Van Hooreweder, 2019). Studies of this effect using numerical models and

experimental methods were published by (AKHOUNDI; BEHRAVESH, 2018) and by (VOLPATO;

ZANOTTO, 2019), respectively.

In the example of Figure 4, the red and brown horizontal dashed lines indicate contacts

between adjacent raster lines with significant cooling times. The contact highlighted in red has

the largest time, 7.26 seconds. For context, the predicted fabrication time for the solid fill alone

is 13.51 s including 12.59 s of extrusion and 0.91 s of air time. (The times in this and following

examples assume the printer parameters specified in Chapter 4.) Even if one followed the com-

mon practice of rotating the direction of the filling rasters by 90 degrees between successive

layers (GIBSON; ROSEN; STUCKER, 2015), the part may be much weaker at those bonds than

elsewhere.

Adhesion between adjacent filaments can be generally improved by fabricating the part

inside a heated chamber. However this facility is not available in many desktop printers. Anyway,

the chamber temperature that would be needed to ensure really good adhesion, even between

beads deposited a minute or more apart, is likely to be so high that the deposited filament will

not properly solidify and the part may deform under its own weight (Lepoivre et al., 2020).

22

In (VOLPATO; ZANOTTO, 2019), the authors performed experiments to verify the impact

of the time interval between the deposition of neighboring raster lines. In one of their tests, all

90∘ angled layers had a pause of 17 or 65 seconds in the middle of their build, while 0∘ angled

layers were built normally. When performing some tension tests, it was possible to observe that

all the specimens broke in the middle, where the programmed pause occurred, as shown in the

image on the right. At the end, the authors suggested that a tool-path optimization algorithm

should take into account specified limits on the elapsed time between the deposition of adjacent

filaments. We call this the raster-filling hot tool-path problem (RF-HTPP).

To the best of our knowledge, there is no published algorithm that attempts to solve the

RF-HTPP. The problem is similar to the traveling salesman problem with time windows (TSP-

TW), in which each node must be visited in a specific time interval (DUMAS et al., 1995). The

TSP-TW problem was proved to be NP-complete by (SAVELSBERGH, 1985); a property that

is believed to imply that there is no practical algorithm to solve it exactly. Approximate solutions

for the TSP-TW were described by (Cheng; Mao, 2007), using an ant colony meta-heuristic;

by (LóPEZ-IBáñEZ; BLUM, 2010), using a combination of ant colony and beam search; and by

(MLADENOVIĆ; TODOSIJEVIĆ; UROŠEVIĆ, 2013), using a two-stage variable neighborhood

search. However, none of these TSP-TW solutions were applied to the RF-HTPP. More impor-

tantly, the constraints of the latter are different from those of standard TSP-TW, since we wish to

impose a maximum difference between the times of arrival at certain node pairs, rather than a

specified time interval for reaching each node.

In this context, this work has the goal to answer the following research question (work

hypothesis): is it possible to develop an algorithm, of practical use, for the hot tool-path problem

for solid raster filling?

To answer this question, we define the following objectives: define an algorithm that finds

a solution to the RF-HTPP problem within an acceptable time; implement the algorithm using

Python; perform tests and compare their results to solutions found without applying an optimiza-

tion.

1.1 Contributions

In this work, as our main contribution, we describe HotFill, an algorithm that uses dynamic

programming to tackle the hot tool-path problem for the common case of a solid raster filling (RF-

HTPP) . As another contribution, we formalize the general RF-HTPP problem, including a precise

definition of the tool-path model, of the cooling time constraints, the nominal cooling time and

fabrication time formulas, and the expected input and output of the problem.

We observe that solving the RF-HTPP by brute-force enumeration of tool-paths is imprac-

tical, except for very small instances. The HotFill algorithm gets around this problem by limiting

the search to a proper subset of possible tool-paths, that is expected to include valid tool-paths

with low enough fabrication times. We show that HotFill is a generalization of two straightforward

23

scan-line heuristics to solve the RF-HTPP problem. The algorithm was implemented in Python

and is available as open source (Nakonetchnei, 2021).

Through computer simulations, we also compare the tool-paths produced by HotFill with

those created by path planning programs like Slic3r and RP3 and by the scan-line heuristics

above. We conclude that HotFill is fast enough for practical use, yet produces tool-paths that

have low fabrication time while satisfying the specified cooling time constraints. We note that

these constraints often force the tool-path to have many more jumps than the paths that are

produced by standard process planning programs, independently of the algorithm used to build

it.

1.2 Structure of the Document

The remainder of the document is organized as follows. In Chapter 2 we formally define

the hot tool-path problem for raster filling, we also define some basic concepts and the notation

used in the rest of this document, as well as, some general considerations about this problem.

Chapter 3 describes the HotFill algorithm and discusses some algorithm improvements and

programming techniques. In Chapter 4 we report tests of the algorithm on some typical object

slices. Our conclusions are in Chapter 5. In the appendix (Chapter A), we detail the assumed

printer dynamics model.

24

2 THE RASTER-FILLING HOT TOOL-PATH PROBLEM

In this chapter, we formalize the raster-filling hot tool-path problem (RF-HTPP). We begin

by describing the tool-path model and the basic notation used throughout this work. Then, we

define the cooling time constraints, and the input and output of this problem. We conclude by

showing some basic solutions and other general considerations about the RF-HTPP.

2.1 Tool-Path Model

Moves: In this work, we assume that the printer builds each layer of the target object

by executing a series of moves, each move being a straight-line motion of the printer’s nozzle.

The initial and final position of the nozzle as it executes a move 𝑚 will be denoted by 𝑝INI(𝑚)

and 𝑝FIN(𝑚). The reversal of a move 𝑚 is a move ←−𝑚 such that 𝑝INI(
←−𝑚) = 𝑝FIN(𝑚) and

𝑝FIN(
←−𝑚) = 𝑝INI(𝑚). A move and its reversal are said to differ in their orientation.

Traces and Jumps: A move may be either a trace or a jump, depending on whether

material is to be extruded or not during the motion.

In the first case, we assume that deposited material has a constant cross-section area

through most of the trace’s length, except at the very ends. We define the (nominal) width 𝜆(𝑚)

of a trace 𝑚 as being its average cross-section area divided by the thickness 𝜎 of the slice. Then

a solid fill of some region can be obtained by depositing a set of parallel raster traces, with the

mid-lines spaced 𝜆FILL apart and with same width 𝜆(𝑚) = 𝜆FILL.

For path-planning purposes we further assume that the projected area occupied by the

material deposited during each trace is a thick segment, a rectangle of width 𝜆(𝑚) with round

caps centered at each endpoint of the move. In illustrations, we will reduce the width of this thick

segment for clarity. See Figure 5.

(a)

(b)
Figure 5 – Graphical representation of a trace (left) and a jump (right), showing the effect of reversal on the

attributes 𝑝INI and 𝑝FIN. The dark thin line in the trace is the nozzle’s trajectory. The light gray area
is the approximate extent of the material deposited by the nozzle. The green “thick segment” is
the conventional representation of the trace used in this work

Source: Own Authorship.

25

Tool-Paths: For this work, we define a tool-path, or path for short, as a sequence 𝑃 of

moves that are meant to be executed consecutively, in a specific order. We will denote the moves

as 𝑃 [𝑘] for 𝑘 = 0,1, . . . ,𝑛−1; where 𝑛 is the number of moves, denoted by #𝑃 . Therefore, each

move must begin where the previous one ends; that is, 𝑝INI(𝑃 [𝑘]) = 𝑝FIN(𝑃 [𝑘 − 1]) whenever

the two indices are valid. The initial and final points of the path are then 𝑝INI(𝑃) = 𝑝INI(𝑃 [0]) and

𝑝FIN(𝑃) = 𝑝FIN(𝑃 [𝑛− 1]). See Figure 6 (left).

Figure 6 – A path 𝑃 with three traces and a jump (left) and its reversal (right).

Source: Own Authorship.

The reversal of a path 𝑃 is the path
←−
𝑃 with the same moves, reversed and in the reverse

order; that is, such that
←−
𝑃 [𝑘] =

←−−
𝑃 [𝑘′] for 𝑘 = 0,1, . . . ,𝑛 − 1, where 𝑘′ = 𝑛 − 1 − 𝑘 and

𝑛 = #𝑃 = #(
←−
𝑃). See Figure 6 (right).

Trivial Paths and Zero-Length Moves: It is convenient in the algorithms to allow trivial

paths, with zero moves. By convention, for such a path #𝑃 = 0, and 𝑝INI(𝑃) = 𝑝FIN(𝑃) is some

arbitrary point. A move 𝑚 too may have zero length (that is, its midline may be a single point

𝑝INI(𝑚) = 𝑝FIN(𝑚). However, a zero-length jump in a path makes no sense, and a zero-length

trace in a path makes sense only if it is not preceded or followed by another trace, so that

execution produces an isolated roundish drop of extruded material.

Manufacturing Time: We assume that there is a function 𝑇FAB(𝑚), the manufacturing

or fabrication time, or fab-time for short, that gives the estimated time it will take for the printer

to execute a move 𝑚. If 𝑚 is a trace, 𝑇FAB(𝑚) includes the time needed to extrude the material.

For a jump, it includes the time needed to displace the nozzle from point 𝑝INI(𝑚) to point 𝑝FIN(𝑚)

without extruding; and also the time needed to raise and lower the nozzle, and/or to suck back

and re-feed the filament, if required by the printer. In both cases, 𝑇FAB(𝑚) in our model should

include the time needed to accelerate and decelerate the carriage, assuming that the nozzle is

stationary or has to change direction at each end. The formulas we use for 𝑇FAB are detailed in

Appendix A.

For simplicity, we assume that the total fabrication time 𝑇FAB(𝑃) needed to perform

all traces and jumps of a tool-path 𝑃 is just the sum of the individual move times; that is,∑︀𝑛−1
𝑘=0 𝑇FAB(𝑃 [𝑘]) where 𝑛 = #𝑃 .

With this assumption, we ignore the possibility that, on some printers, the carriage may

not need to fully decelerate and accelerate between traces that are consecutive in 𝑃 . This dis-

crepancy should not have a significant effect on the relative fabrication times of different tool-

paths. Therefore, a path that has optimum 𝑇FAB is likely to be close to optimal in practice too.

26

With this assumption, the initial time 𝑇INI(𝑃,𝑘) and the final time 𝑇FIN(𝑃,𝑘) when the

nozzle will start or finish the move 𝑃 [𝑘], relative to the starting time of 𝑃 , are given by Equations

(1) and (2).

𝑇INI(𝑃,𝑘) =
𝑘−1∑︁
𝑖=0

𝑇FAB(𝑃 [𝑖]) (1)

𝑇FIN(𝑃,𝑘) =
𝑘∑︁

𝑖=0

𝑇FAB(𝑃 [𝑖]) = 𝑇INI(𝑃,𝑘) + 𝑇FAB(𝑃 [𝑘]) (2)

It is convenient also to define 𝑇INI(𝑃,𝑛) = 𝑇FAB(𝑃) and 𝑇FIN(𝑃, − 1) = 0; then

𝑇FIN(𝑃,𝑘 − 1) = 𝑇INI(𝑃,𝑘) for every move 𝑃 [𝑘].

Empty and Invalid Path: In some operations it is also useful to have the empty path ⟨⟩,
a special object that, when concatenated with any path 𝑃 , results in 𝑃 itself. In this aspect, ⟨⟩
differs from a trivial path 𝑇 , whose concatenation with 𝑃 would require a jump from 𝑝FIN(𝑇) to

𝑝INI(𝑃) if the points do not coincide.

It is also sometimes convenient to have an invalid path Λ, a special code that signifies

the absence of a path. The concatenation of Λ with any path is undefined, and may be assumed

to be Λ.

The endpoint functions 𝑝INI and 𝑝FIN are not defined for either ⟨⟩ or Λ. It is convenient to

define 𝑇FAB(⟨⟩) = 0 and 𝑇FAB(Λ) = +∞.

2.2 Cooling Time Constraints

Contacts: We define a contact as a straight line segment between two adjacent traces

that should be welded together. See Figure 7. For example, when completely filling an area

with horizontal traces, there will usually be a contact between any two traces whenever the 𝑌

coordinates of their mid-lines differ by the common trace width 𝜆FILL, and their 𝑋 ranges overlap.

Figure 7 – Graphical representation of two contacts 𝑐1 and 𝑐2 (red dashed lines) between traces 𝑚′
1, 𝑚′′

1

and 𝑚′
2, 𝑚′′

2 , of two paths, 𝑃 (green) and 𝑄 (blue).

Source: Own Authorship.

27

We will denote by sides(𝑐) the pair of traces that surround the contact 𝑐. In Figure 7,

sides(𝑐1) would be the pair of traces {𝑚′
1,𝑚

′′
1}. For any path 𝑃 and any set 𝒞 of contacts, we

will denote by contacts(𝑃,𝒞) the elements of 𝒞 that have at least one side that is a trace 𝑃 or

its reversal.

Cover Times: We define 𝑇COV(𝑚,𝑢) as a function that gives the time interval between

the start of the extrusion of a trace 𝑚 and the moment when the nozzle is at the point 𝑢′ on the

trace’s mid-line that is closest to a given point 𝑢 of the plane. See Appendix A for how this time

can be estimated.

Moreover, if 𝑚 is one of the side traces of a contact 𝑐, and 𝑃 is a path such that 𝑃 [𝑘] is

𝑚 or←−𝑚, we define the cover time 𝑇COV(𝑃,𝑐,𝑚) of that side by 𝑃 as 𝑇INI(𝑃,𝑘) + 𝑇COV(𝑃 [𝑘],𝑢),

where 𝑢 is the midpoint of 𝑐. Note that the second term takes into account the orientation of 𝑚

in 𝑃 . In Figure 7, 𝑇COV(𝑃,𝑐1,𝑚
′
1) is the fab-time of the path 𝑃 from A to B, while 𝑇COV(

←−
𝑃 ,𝑐1,𝑚

′
1)

is the fab-time of
←−
𝑃 from E to B.

Contact Cooling Time: If a path 𝑃 contains both sides 𝑚′ and 𝑚′′ of a contact 𝑐, we

define the cooling time 𝑇COOL(𝑃,𝑐) of 𝑐 in P as the absolute difference between the two cover

times, namely |𝑇COV(𝑃,𝑐,𝑚′)− 𝑇COV(𝑃,𝑐,𝑚′′)|. In Figure 7, 𝑇COOL(𝑃,𝑐2) is the fab-time of 𝑃

from C to D. It is an estimate of the interval of time elapsed between the deposition of material

on the two sides of the contact; which is assumed to determine the strength of the corresponding

physical weld.

Strictly speaking, if two traces are extruded in opposite directions, or if the speed

of the nozzle is not uniform while covering the contact, the actual cooling time will vary

from point to point along the contact. Thus the value computed for the midpoint is only an es-

timate of the contact’s average cooling time; but it should be good enough for practical purposes.

Cooling Time Limit: We assume that each contact 𝑐 also has a cooling time limit

𝜏(𝑐), a user-specified maximum allowed value for 𝑇COOL(𝑃,𝑐) in the final tool-path 𝑃 . See Sec-

tion 2.3. The cooling time ratio 𝑅COOL(𝑃,𝑐) of 𝑐 in any path 𝑃 that closes it is the quotient

𝑇COOL(𝑃,𝑐)/ 𝜏(𝑐); it is greater than 1 if and only if that limit would be violated if 𝑃 were to be

chosen as the tool-path. If there is no constraint on the cooling time limit, we may let 𝜏(𝑐) be

+∞ (so that 𝑅COOL(𝑃,𝑐) will always be zero).

The maximum cooling ratio 𝑅MAX
COOL(𝑃,𝒞) of a tool-path 𝑃 and a set 𝒞 of contacts is the

maximum value of 𝑅COOL(𝑃,𝑐) among all contacts 𝑐 in 𝒞 which have both sides in 𝑃 .

28

2.3 Statement of the Problem

2.3.1 Input

Formally, the input for the RF-HTPP consists of a set of 𝑛 raster elements ℛ, a set 𝒞 of

relevant contacts between those elements.

Each raster element is a single trace. For simplicity of exposition, we assume that every

trace is horizontal and oriented from left to right. The rasters are supposed to lie on a set of

𝑠 horizontal scan-lines with uniform spacing 𝜆FILL, equal to the width 𝜆 of all raster traces. For

example, in Figure 8 there are 18 scan-lines. A relevant contact is a contact between distinct

rasters that has a finite cooling time limit.

Figure 8 – A possible input data set for the RF-HTPP problem, suitable for planning the solid raster filling
of the slice shown in Figure 4. There are 56 raster elements (green thick segments) on 18 scan-
lines. The total fab-time for those rasters, not counting the time to move between them, is 10.10
seconds. The red lines are the relevant contacts 𝒞. The blue-gray lines are the contour of the
slice (shown for reference only, not part of the input data).

Source: Own Authorship.

Each raster element 𝑟 in ℛ also has a set ℒ(𝑟) of associated links. A link is a short

path that is to be included in the tool-path, in place of a jump, to connect other rasters (or their

reversals) to 𝑟. Thus 𝑝FIN(𝑆) = 𝑝INI(𝑆) for every link 𝑆 in ℒ(𝑟). There is a separate set ℒ(←−𝑟) of

links that can be used to connect other rasters to←−𝑟 . For every such link 𝑆, 𝑝FIN(𝑆) = 𝑝INI(
←−𝑟) =

𝑝FIN(𝑟). See Figure 9. Normally ℒ(𝑟) and ℒ(←−𝑟) may have 0, 1, or 2 paths each. (The provision

of multiple link choices as part of the input data, that can be selected and combined as needed

to assemble the tool-path, seems to be an original feature of our approach. It decouples the

geometric processing of the outline from the path planning phase, and plays an important role in

our algorithm.)

More generally, if 𝑃 is any path that begins with a raster line 𝑟, in the given or reversed

orientation, we define ℒ(𝑃) to be the same as ℒ(𝑟). Similarly, if 𝑃 ends with a raster 𝑟, we

define ℒ(
←−
𝑃) to be the same as ℒ(←−𝑟).

29

Figure 9 – A possible collection of link paths for the input elements of Figure 8.

Source: Own Authorship.

There must not be two links in the input data with the same pair of endpoints. Typically,

each link path will run parallel to the boundary of the slice, between the endpoints of adjacent

raster elements.

The contour paths in Figure 8 are shown only to indicate the shape of the slice, but are

not part of the input data set; we assume that they will be fabricated before or after the whole

raster filling. We also assume that the contacts between the filling and the contour have no

cooling time constraints, and therefore are omitted from 𝒞.

2.3.2 Output

The desired output of the RF-HTPP problem is a tool-path 𝐻 that uses every raster ofℛ
exactly once, in any of its two orientations; and is valid, meaning that it satisfies the cooling time

constraint 𝑅MAX
COOL(𝐻,𝒞) ≤ 1.

Any two raster elements that are consecutive in 𝐻 must be connected by a link if avail-

able, or by a jump if there is no such link. If the rasters are 𝑟′ and 𝑟′′ (in their original or reversed

orientations), the link, if it exists, will be the only one that connects 𝑝FIN(𝑟′) to 𝑝INI(𝑟′′); that is, the

only 𝑠 such that←−𝑠 ∈ ℒ(
←−
𝑟′) and 𝑠 ∈ ℒ(𝑟′′).

There may be no valid tool-path for the given input data. In this case, by convention,

the output should be the invalid path Λ. This outcome means that it is impossible to fabricate

the slice, using the given set of rasters and links, without the cooling time at some contact 𝑐

exceeding its cooling time limit 𝜏(𝑐).

Ideally, among all the valid tool-paths, the solution should be the best one, meaning the

one with smallest fabrication time. However, no efficient algorithm is known that will find this path

in any case. Therefore, one can only expect the resulting path to be “good enough” for fabrication.

We assume that the time 𝑇RAST spent depositing the rasters is the same in any tool-path built

from them (see Appendix A); thus minimizing the total fab-time means minimizing the connection

time 𝑇CONN(𝐻), the time spent extruding links and executing jumps.

30

Using links instead of jumps will normally reduce the path’s fabrication time, and may

also improve the adhesion between the filling and the contour by filling some gaps between the

two that would not be filled by the raster elements alone.

2.4 Special Solutions

There are three simple heuristics that can be applied to the RF-HTPP problem, which

may be sufficient in practice and are important for the presentation and testing of our algorithm.

They are the greedy heuristics, and two scan-line-order heuristics.

2.4.1 Greedy Solution

A simple way to construct a tool-path 𝐻 from the given raster elements is to use a greedy

heuristic. Namely, starting with an empty path 𝐻 , one repeatedly selects one raster 𝑟 from ℛ,

and appends either 𝑟 or←−𝑟 to 𝐻 , filling any gap with a link or jump, as appropriate; where 𝑟 is

chosen so as to minimize the fab-time of that link or jump. If the set ℛ has only one raster per

scan-line, this process may yield a tool-path that has optimal or near-optimal fabrication time. On

the other hand, if some scan-lines have two or more raster elements, this greedy tool-path may

end up with very large contact cooling times, such as that of Figure 4.

2.4.2 Scan-line Solutions

Another simple possible solution to the RF-HTPP is a non-alternating scan-line-order

(SCN) tool-path, which fabricates the scan-lines in order of increasing 𝑌 coordinate, with the

rasters each scan-line extruded in the same order and direction (all left-to-right, or all right-to-

left). See Figure 10.

Figure 10 – A non-alternating scan-line-order tool-path for the solid raster fill data of Figures 8 and 9. Its
fab-time is 23.71 s, including 10.10 s of extrusion and 13.61 s of air time. The red dashed line is
the contact with the largest cooling time, 1.67 s.

Source: Own Authorship.

31

Such a tool-path is likely to be optimal or near-optimal with regards to contact cooling, in

the sense of having the minimum possible 𝑅MAX
COOL. However, its fabrication time may be much

larger than that of the optimum valid path.

Alternating scan-line solution: A slightly less trivial possible solution for the RF-HTPP

is an alternating scan-line-order (SCA) path, which also processes the scan-lines in order of

increasing 𝑌 coordinate, but reverses the order of rasters and the direction of extrusion from

one scan-line to the next. See Figure 11.

Figure 11 – An alternating scan-line-order tool-path for the solid raster fill data of Figures 8 and 9. Its fab-
time is 17.95 s, including 11.02 s of extrusion, and 6.93 s of air time. The red dashed line at upper
right is the contact with largest cooling time, 2.25 s.

Source: Own Authorship.

An alternating scan-line solution usually has much smaller fab-time than the non-

alternating version, because the jumps between scan-lines are replaced by shorter jumps or

by links. However, it is more likely to violate cooling constraints, if some cooling time limits are

comparable to time required to extrude one scan-line. Note that, from Figure 10 to Figure 11, the

maximum contact cooling time increased from 1.67 to 2.25 s.

2.5 General considerations

2.5.1 Non-Connected Infills

If the input raster setℛ can be partitioned into two or more subsetsℛ1,ℛ2, . . . , with no

contacts between different subsets, it may be sufficient to run the algorithm separately on each

of those subsets, and then concatenate the resulting tool-paths 𝐻1, 𝐻2, . . . , with intervening

jumps or links, into a single path 𝐻 . Splitting the problem this way will not affect the existence of

a valid path.

The fabrication time of the concatenated path 𝐻 will depend on the order of the compo-

nents 𝐻𝑖 and on their orientations. (Note that, in our model, if 𝐻𝑖 is valid, then
←−
𝐻𝑖 is also valid, and

32

has the same fab-time.) Finding the best order and orientation for the 𝐻𝑖 would be a separate

problem, that could be addressed by the heuristics mentioned in Chapter 1.

2.5.2 Monotonic Infill Regions

The RF-HTPP is usually trivial if the input set ℛ has a single raster line on each scan-

line. We call such a raster set monotonic, because it arises, in particular, if the infill region 𝐷 is

𝑌 -monotonic in the geometric sense — meaning that every horizontal line intersects it in at most

one line segment (PREPARATA; SHAMOS, 1985).

Therefore, if the raster setℛ is monotonic, it is almost never necessary to use the HotFill

algorithm described in Chapter 3. In that case, one can try an SCA (alternating scan-line) tool-

path first, which will probably have fab-time close to the minimum, and it will be valid as long as

the cooling time limits 𝜏(𝑐) are not too small (say, not less than twice the fab-time of the longest

scan-lines). If the SCA tool-path turns out to exceed some cooling limits, then one can try an

SCN (non-alternating) tool-path; which, as observed above, is generally likely to be optimal with

respect to cooling. If the SCN path also fails, then it is likely that the problem has no solution with

the specified limits.

To be precise, there are instances of the RF-HTPP, even with only one raster per scan-

line, for which the SCN tool-path is not optimal in the sense of cooling. That is the case of the

instance shown in Figure 12: if the cooling time limits 𝜏(𝑐) of all contacts were set to 0.41 s, the

SCN solution (at left) would not be valid, but the SCA solution (at right) would be.

Figure 12 – A monotonic instance of the RF-HTPP for which the maximum contact cooling time of the SCN
solution at left (0.42 s) is higher than that of the SCA solution at right (0.40 s).

Source: Own Authorship.

There are also monotonic instances of the RF-HTPP such that the valid solution with

minimum fab-time is much better than the SCA tool-path, and may even use the rasters out of

scan-line order. That is the case of the instance shown in Figure 13.

However, these anomalous situations generally arise only when the infill region 𝐷 has

substantially irregular borders, leading to large offsets between adjacent rasters. In practice,

those situations are probably too rare to worry about. Thus, for monotonic datasets, a scan-line

tool-path will probably be adequate.

33

Figure 13 – A monotonic instance of the RF-HTPP for which the fabrication time of the SCA solution at left
(2.38 s) is significantly higher than that of the tool-path at right (2.03 s), which does not follow
the scan-line order. The maximum contact cooling times are 0.40 s and 0.73 s, respectively.

Source: Own Authorship.

2.5.3 Problem Decomposition at Monotonic Sections

More generally, it is possible to split the RF-HTPP into smaller independent sub-problems

if the input raster set contains monotonic sections. Specifically, suppose that there are one or

more consecutive scan-lines that have a single raster each. Let 𝑟′ and 𝑟′′ be the lowest and

highest of those rasters, respectively. Then the problem can be split into three independent

problems, with raster sets ℛ′, ℛ*, and ℛ′′; where ℛ′ consists of 𝑟′ and all rasters below it, ℛ′′

is 𝑟′′ and all the rasters above it, andℛ* is all the rasters between 𝑟′ and 𝑟′′, including both. Let

𝑃 ′ and 𝑃 ′′ be RF-HTPP solutions for ℛ′ and ℛ′′, respectively, and 𝑃 * be the greedy solution

forℛ* starting at 𝑟′. If these partial solutions exist, a solution for the original input setℛ may be

obtained by concatenating 𝑃 ′, 𝑃 *, and 𝑃 ′′, or their reversals, removing the duplicate rasters 𝑟′

and 𝑟′′.

This decomposition assumes that the path 𝑃 ′ ends with raster 𝑟′, and that 𝑃 ′′ will start

with 𝑟′′. This will always be the case if the paths are computed with the algorithm of Chapter 3

(procedure HotFill). It also assumes that the greedy solution 𝑃 * starts with 𝑟′ and ends with

𝑟′′; which will be the case if the bi-directional greedy algorithm used in that section (procedure

BandPath) is used to build it.

2.5.4 Exhaustive Enumeration

In theory, the RF-HTPP could be solved by “brute force”, that is, exhaustive enumeration

of all possible tool-paths. However, that solution would not be practical.

Let’s define a potential path for an instance of the RF-HTPP as being a tool-path that

includes exactly one orientation of each raster of ℛ; with any gap filled by the appropriate link if

it exists, or by a jump otherwise. We denote by P(ℛ) the set of all those potential tool-paths.

The RF-HTPP then can be redefined as to find a tool-path 𝐻 in the set P(ℛ) that is valid,

that is, whose maximum relative cooling time 𝑅MAX
COOL(𝐻,𝒞) does not exceed 1. We will denote

the set of valid candidate paths by V(ℛ,𝒞).

34

A potential path is completely determined by an ordering and orientation of the raster

elements in it. Therefore, #P(ℛ) = 2𝑛𝑛!, where 𝑛 = #ℛ is the number of raster elements.

Clearly, the brute-force enumeration of all the paths in P(ℛ) is practically impossible, except for

very small instances (with a couple dozen rasters at most).

35

3 HOTFILL: FINDING A VALID TOOL-PATH

In this chapter we present the HotFill, an algorithm specialized to find a valid tool-path

for solid raster filling. As observed in Section 2.4, the set P of potential tool-paths is usually too

large to be enumerated exhaustively. The HotFill algorithm gets around that problem by limiting

the search to a proper subset of P, that is expected to include tool-paths that are valid and have

low enough fabrication times, using the cut-line and bands concepts.

We define a cut-line as a horizontal line that runs between successive scan-lines. If the

rasters ofℛ lie on 𝑠 successive scan-lines, there are 𝑠+1 relevant cut-lines, from ℓ0 (just below

the lowest raster) to ℓ𝑚 (just above the highest one). (See the blue dotted lines in Figure 14.) For

any 𝑖,𝑗 with 0 ≤ 𝑖 < 𝑗 ≤ 𝑠, we define the (𝑖,𝑗)-band ℛ𝑖,𝑗 as the set of rasters between cut-lines

ℓ𝑖 and ℓ𝑗 .

Figure 14 – Illustration of the partial state at some point during the execution of the HotFill procedure
(Algorithm 1) for the rasters and links of Figure 8 and 9. The colored paths comprise an (8,11)-
fullpath, specifically 𝐹0[8,11], consisting of a (7,8)-fullpath 𝐹1[7,8] = A–B (green and purple)
and an (8,11)-bandpath 𝐵0[8,11] = C–D (cyan). The fullpath 𝐹1[7,8] consists of bandpaths
𝐵0[0,3], 𝐵1[3,6], 𝐵0[6,7], and 𝐵1[7,8] (light and dark green) and three links between them (pur-
ple). The red dashed lines are the contacts between 𝐹1[7,8] and 𝐵0[8,11] that must be checked
when concatenating them to obtain an 𝐹0[8,11]. The horizontal dotted blue lines are the cut-
lines that delimit those bandpaths.

Source: Own Authorship.

The HotFill algorithm builds its solution by concatenating (𝑖,𝑗)-bandpaths. These paths

will be specified later. For now, it suffices to know that an (𝑖,𝑗)-bandpath includes all the raster

elements in the band ℛ𝑖,𝑗 – exactly once each, in either orientation – plus any applicable links;

and satisfies the cooling constraints of all contacts that are internal to the band.

The result of HotFill is built incrementally by concatenating one or more of those band-

paths, starting with some (0,𝑗)-bandpath; where the top of each bandpath is the same cut-line as

the bottom of the next bandpath. We define an (𝑖,𝑗)-fullpath as being such a concatenation that

ends with a (𝑖,𝑗)-bandpath. See Figure 14. A fullpath is valid if and only if all its bandpaths are

valid, and it satisfies the cooling time constraints of all contacts between its successive bands.

The solution returned by HotFill can be viewed as an elaboration of the scan-line so-

lutions, using bandpaths instead of individual scan-lines, in order to reduce the air time where

36

possible. Indeed, a scan-line solution (alternating or non-alternating) is a fullpath composed from

bandpaths that span a single scan-line each.

3.1 Dynamic programming

The HotFill algorithm considers at most two valid bandpaths for each (𝑖,𝑗)-band, which

are stored in the array elements 𝐵0[𝑖,𝑗] and 𝐵1[𝑖,𝑗]. Either or both of these elements may be set

to Λ to signify that the bandpath was not created for some reason. It also constructs at most two

fullpaths 𝐹0[𝑖,𝑗] and 𝐹1[𝑖,𝑗] for each (𝑖,𝑗)-band; where 𝐹0[𝑖,𝑗] is the best valid (𝑖,𝑗)-fullpath that

ends with 𝐵0[𝑖,𝑗], 𝐹1[𝑖,𝑗] is the best valid (𝑖,𝑗)-fullpath that ends with 𝐵1[𝑖,𝑗], and “best” means

“with minimum fab-time”. Either element is Λ if there is no such valid fullpath. For this algorithm,

it is convenient to let 𝑇FAB(⟨⟩) be zero and 𝑇FAB(Λ) be +∞.

The HotFill heuristic (Algorithm 1) uses the dynamic programming approach (BELLMAN,

1957) to find these optimal fullpaths. It enumerates all the (𝑖,𝑗)-bands from bottom to top, de-

termining the optimal (𝑖,𝑗)-fullpaths 𝐹0[𝑖,𝑗] and 𝐹1[𝑖,𝑗] for each one. At the end, the desired

solution will be one of the fullpaths 𝐹0[𝑖,𝑠] or 𝐹1[𝑖,𝑠], for all 𝑖 in {0,1, . . . ,𝑠− 1} — whichever

has the least fab-time.

For efficiency reasons, the algorithm only considers bandpaths that span at most a spec-

ified number 𝜇 of scan-lines. That is, it ensures and assumes that 𝐵𝑧[𝑖,𝑗] is Λ if 𝑗 − 𝑖 > 𝜇.

Therefore, each execution of the loops on 𝑖 (in Algorithm 1) and 𝑘 (in Algorithm 2) will perform at

most 𝜇 iterations, instead of 𝑠.

Algorithm 1 – HotFill

Input: A setℛ of horizontal rasters on 𝑠 distinct scan-lines, with the associated links; a set 𝒞 of relevant
contacts between them; and a band height limit 𝜇.
Output: A valid fullpath 𝐻 that uses all the rastersℛ and any applicable links; or Λ if it cannot find such
a path.

1: for 𝑗 in 1, 2, . . . , 𝑠 do
2: for 𝑖 in 0, 1, . . . , 𝑗 − 1 with 𝑗 − 𝑖 ≤ 𝜇 do
3: for 𝑧 in {0, 1} do
4: 𝐵𝑧[𝑖,𝑗]← BandPath(ℛ,𝒞,𝑖,𝑗,𝑧)
5: 𝐹𝑧[𝑖,𝑗]← MinFullPath(ℛ,𝒞,𝜇,𝑖,𝑗,𝐹0,𝐹1,𝐵𝑧[𝑖,𝑗])
6: end for
7: end for
8: end for
9: 𝐻 ← Λ

10: for 𝑖 in 0,1, . . . ,𝑠− 1 with 𝑠− 𝑖 ≤ 𝜇 do
11: for 𝑧 in {0, 1} do
12: if 𝑇FAB(𝐹𝑧[𝑖,𝑠]) < 𝑇FAB(𝐻) then
13: 𝐻 ← 𝐹𝑧[𝑖,𝑠]
14: end if
15: end for
16: end for
17: return 𝐻

Source: Own Authorship.

37

The key observations that make the dynamic programming approach possible are:

1. if 𝑖 = 0, the only (𝑖,𝑗)-fullpaths are the (0,𝑗)-bandpaths 𝐵0[0,𝑗] and/or 𝐵1[0,𝑗], if they

exist.

2. if 𝑖 > 0, an (𝑖,𝑗)-fullpath 𝑃 is a (𝑘,𝑖)-fullpath 𝑃 ′ concatenated with an (𝑖,𝑗)-bandpath

𝐵, either 𝐵0[𝑖,𝑗] or 𝐵1[𝑖,𝑗].

3. the path 𝑃 above, if it exists, is valid if and only if 𝑃 ′ and 𝐵 are valid, and the contacts

between them (on the cut-line 𝑖) have their cooling constraints satisfied.

4. the cooling times of these contacts depend only on the final (𝑘,𝑖)-bandpath 𝐵 of 𝐹 ′
0

(either 𝐵0[𝑘,𝑖] or 𝐵1[𝑘,𝑖]) and the (𝑖,𝑗)-bandpath 𝐵.

It follows that the (𝑖,𝑗)-fullpath with minimum fab-time that ends with 𝐵0[𝑖,𝑗], if it exists,

must be a (𝑘,𝑖)-fullpath 𝑆 with minimum fab-time, either 𝐹0[𝑘,𝑖] or 𝐹1[𝑘,𝑖], concatenated with

the (𝑖,𝑗)-bandpath 𝐵0[𝑖,𝑗], for some 𝑘 in 0,1, . . . ,𝑖 − 1; provided that the cooling constraints of

the contacts between 𝑆 and 𝐵0[𝑖,𝑗] are satisfied by the concatenation of those two paths. The

analogous conclusion holds for the minimum (𝑖,𝑗)-fullpath that ends with 𝐵1[𝑖,𝑗].

3.2 The MinFullPath procedure

The inner loop of the dynamic programming logic is implemented in the auxiliary pro-

cedure MinFullPath (Algorithm 2). The procedure is called when the entries 𝐹0[𝑘,𝑖] and 𝐹1[𝑘,𝑖]

have been defined for all 𝑘 in 0,1, . . . ,𝑖 − 1, and is given an (𝑖,𝑗)-bandpath 𝐵 (either 𝐵0[𝑖,𝑗] or

𝐵1[𝑖,𝑗]). It then computes the (𝑖,𝑗)-fullpath 𝐹 (possibly Λ) that has minimum fab-time among all

such valid fullpaths that end with 𝐵. In this computation, it assumes that 𝐹𝑢[𝑘,𝑖] is Λ whenever

𝑖− 𝑘 exceeds 𝜇. The path 𝐹 is then stored by HotFill into 𝐹0[𝑖,𝑗] or 𝐹1[𝑖,𝑗], depending on which

bandpath was given as 𝐵.

The number of non-Λ entries in each of the tables 𝐹0 and 𝐹1 is at most 𝜇[(𝑠−𝜇)+ (𝜇+

1)/2], which is less than 𝑠𝜇. Figure 15 shows the typical situation of the array 𝐹0 before a call to

MinFullPath with 𝜇 = 5, 𝑖 = 8, and 𝑗 = 11, for the input data of Figures 8 and 9. Light gray is

used for entries 𝐹0[𝑖
′,𝑗′] that will never be set nor used because 𝑖′ ≥ 𝑗′ or 𝑗′ − 𝑖′ > 𝜇. Entries

in red were set to Λ because all potential (𝑖′,𝑗′)-fullpaths ending with the bandpath 𝐵1[𝑖
′,𝑗′]

were found to violate internal cooling constraints. Entries in black have yet to be computed. The

remaining green entries 𝐹0[𝑖
′,𝑗′] hold already computed valid (𝑖′,𝑗′)-fullpaths. The array 𝐹1 has

a similar appearance.

The entry 𝐹0[𝑖,𝑗] to be computed by MinFullPath is marked with a blue-green dot. The

white dots indicate all the entries 𝐹0[𝑘,𝑖] (and 𝐹1[𝑘,𝑖]) that need to be examined to compute

𝐹0[𝑖,𝑗]. At the end of HotFill, the result will be one of the black entries in column 18.

38

Algorithm 2 – MinFullPath

Input: A setℛ of horizontal rasters on 𝑠 distinct scan-lines, with the associated link paths; a set 𝒞 of
relevant contacts between them; a maximum band height 𝜇; a pair of cut-line indices 𝑖,𝑗 with
0 ≤ 𝑖 < 𝑗 ≤ 𝑠; two (𝑠+ 1)× (𝑠+ 1) arrays 𝐹0,𝐹1 whose elements are fullpaths or Λ; and an
(𝑖,𝑗)-bandpath 𝐵 or Λ.
Output: A (valid) (𝑖,𝑗)-fullpath 𝐹 that uses all the rastersℛ up to cut-line ℓ𝑗 , ends with the bandpath 𝐵,
and has minimum fab-time among such fullpaths; or Λ if there is no such valid fullpath.

1: 𝐹* ← Λ
2: if 𝐵 ̸= Λ then
3: if 𝑖 = 0 then
4: 𝐹 ← 𝐵
5: else
6: for 𝑘 in 0,1, . . . ,𝑖− 1 with 𝑖− 𝑘 ≤ 𝜇 do
7: for 𝑧 in {0,1} do
8: if 𝐹𝑧[𝑘,𝑖] ̸= Λ then
9: 𝑇 ← Concat(𝐹𝑧[𝑘,𝑖],𝐵)

10: if ValidPath(𝑇,𝒞) then
11: if 𝑇FAB(𝑇) < 𝑇FAB(𝐹*) then
12: 𝐹* ← 𝑇
13: end if
14: end if
15: end if
16: end for
17: end for
18: end if
19: end if
20: return 𝐹*

Source: Own Authorship.

The MinFullPath algorithm also uses the sub-routine ValidPath(𝑃,𝒞) that checks whether

the cooling constraints of the contacts 𝒞 that are closed by the tentative fullpath 𝑃 are satisfied.

The function Concat(𝑃 ′,𝑃 ′′) is supposed to construct the concatenation of two given

paths 𝑃 ′ and 𝑃 ′′. If either 𝑃 ′ or 𝑃 ′′ is the empty path ⟨⟩, it should return the other path. If either

is the invalid path Λ, it should return Λ. If 𝑝FIN(𝑃 ′) ̸= 𝑝INI(𝑃 ′′), the gap should be bridged with a

link path with those two endpoints, or with a jump if there is no such link path. The link, if it exists,

will be the only element 𝑆 such that
←−
𝑆 ∈ ℒ(

←−
𝑃 ′) and 𝑆 ∈ ℒ(𝑃 ′′).

3.3 Choosing the Bandpaths

Each of the two (𝑖,𝑗)-bandpaths used by HotFill, 𝐵𝑧[𝑖,𝑗] for 𝑧 = 0 and 𝑧 = 1, is defined

by sub-routine BandPath(ℛ,𝒞,𝑖,𝑗,𝑧). Its goal is to assemble the band rasters ℛ𝑖,𝑗 into a tool-

path that satisfies the cooling constraints of the contacts between those rasters, and has small

enough fab-time.

Finding the absolutely best (𝑖,𝑗)-bandpath is too hard; in fact, computing the best possi-

ble valid (0,𝑠)-bandpath is the same as computing the best valid tool-path for the input rasters,

which, as we have noted, is still a difficult problem to solve. Therefore, BandPath must be some

39

Figure 15 – Typical status of the array 𝐹0 upon entry to MinFullPath with parameters 𝜇 = 5, row index
𝑖 = 8, and column index 𝑗 = 11, with the input data of Figures 8 and 9. For the color codes, see
the text.

Source: Own Authorship.

heuristic that considers only some small subset of all possible paths that can be built from the

rasters ℛ𝑖,𝑗 . The path it returns must satisfy the cooling constraints of all internal contacts (be-

tween rasters ofℛ𝑖,𝑗). The procedure may return Λ if it cannot find such a path among the paths

it considers. However, if the band has a single scan-line, the procedure must return the path

consisting of all the rasters in that scan-line, sorted and oriented from left to right (if 𝑧 = 0) or

right to left (if 𝑧 = 1). This ensures that, if the scan-line order paths SCN and/or SCA are valid,

HotFill will consider them among all the possible fullpaths; and therefore it will never return a

solution that has greater fab-time than those two.

Apart from the two requirements above, the BandPath procedure can be quite variable.

Ideally it should return a path that is likely to have a good fab-time, hopefully much smaller than

the fab-times of the scan-line solutions. Moreover, the path should begin and end in such a

way that it can be concatenated with the bandpaths below and above it, respectively, without

excessively long jumps.

The bidirectional greedy bandpath: For this work, we have chosen the following heuris-

tic for the BandPath procedure. When 𝑧 = 0, the result of BandPath (that will become 𝐵0[𝑖,𝑗])

starts with the leftmost raster on scan-line 𝑖 (at the bottom of the band), and ends with the right-

40

most raster on scan-line 𝑗 − 1, both oriented from left to right. When 𝑧 = 1, the result (that will

be 𝐵1[𝑖,𝑗]) starts with the rightmost raster on scan-line 𝑖, and ends with the leftmost raster on

scan-line 𝑗 − 1, both oriented from right to left.

In either case, BandPath builds the path incrementally, by the greedy method, starting at

both ends and “meeting in the middle”. Namely, it creates two paths 𝑃 ′ and 𝑃 ′′, initialized with the

first and last rasters, respectively, chosen as above. At each iteration it selects a rasters 𝑟′ among

the still unused rasters in ℛ𝑖,𝑗 or their reversals, so that 𝑝INI(𝑟′) is closest to 𝑝FIN(𝑃 ′). It then

selects a raster 𝑟′′, distinct from 𝑟′, such that 𝑝FIN(𝑟′′) is closest to 𝑝INI(𝑃 ′′). Here “closest” means

that the fab-time of the connector (link path or jump) between the two elements is minimized.

Then 𝑟′ is appended to 𝑃 ′, and 𝑟′′ is prefixed to 𝑃 ′′.

If there is only one left-over raster 𝑟, either it or its reversal is appended to 𝑃 ′, depending

on which one will give the smallest total connection time. In any case, the final bandpath is the

concatenation of 𝑃 ′ and 𝑃 ′′, with an intervening link path or jump, as appropriate.

If the band has two or more scan-lines, the result of this BandPath heuristic will typically

consist of one or more continuous extrusion sections, each moving up or down, with rasters in

alternating directions; and these sections will be ordered from left to right (when 𝑧 = 0) or from

right to left (when 𝑧 = 1). These paths will typically be better than the scan-line tool-paths for

the rasters ℛ𝑖,𝑗 , because many of the jumps will be replaced by link paths or shorter jumps.

Often, each CES will span the whole width of the band, and all internal contacts will be between

successive rasters of the same CES. In these cases, the internal cooling constraints are almost

certain to be satisfied, if the input data admits a valid solution at all.

In particular, when the band has a single scan-line (𝑗 − 𝑖 = 1), the bandpath 𝐵0[𝑖,𝑗] will

be the rasters on that scan-line oriented and concatenated from left to right; and 𝐵1[𝑖,𝑗] will be

the reverse of that path.

3.4 Sample Solutions

For illustration purposes, we show below the outputs of HotFill for the input data of Fig-

ure 8 and 9, with the cooling time limits set to different values. More realistic examples are given

in Section 4. Figures 16, 17, and 18 show the HotFill tool-paths with the cooling time limits 𝜏(𝑐) of

every contact 𝑐 set to 3.5 s, 2.3 s, and 1.7 s, respectively. The red dashed lines show the contacts

with maximum cooling time and the blue horizontal dotted lines are the cut-lines that separate

the bandpaths that comprise the solution.

41

Figure 16 – The HotFill solution with 𝜇 = 5 and all cooling time limits set to 3.5 s. The largest contact
cooling time (red dashed line) is 3.36 s. The total fab-time is 15.26 s including 11.97 s of extrusion
and 3.29 s of air time.

Source: Own Authorship.

Figure 17 – The HotFill solution with 𝜇 = 5 and all cooling time limits set to 2.3 s. The largest contact
cooling time (red dashed line) is 2.25 s. The total fab-time is 17.68 s including 11.17 s of extrusion
and 6.51 s of air time.

Source: Own Authorship.

The last two solutions should be compared to those of the scan-line solutions, alternating

(Figure 11) and non-alternating (Figure 10). The HotFill solutions have the same maximum cool-

ing times, but slightly lower fab-times (17.68 s vs. 17.95 s and 22.24 s vs. 23.71 s, respectively).

Figure 19 shows the HotFill output when 𝜇 is set to 50 (which is the same as not having

any limit on band height) and all cooling time limits are set to 50 s (which, being more than the

total fab-time of the slice, is the same as not having any cooling constraints at all). Note that the

selected fullpath is still formed by two bandpaths: (0,17) and (17,18). This result was found to

be equal or better than the fullpath consisting of a single (0,18)-bandpath. This solution should

be compared to the typical result of path-planing software, Figure 4, which has slightly better

fab-time (13.51 s vs. 13.59 s).

For comparison, Figure 20 shows the HotFill output with the same cooling limits but with

𝜇 set to 5. Note that the bandpaths have been limited to 5 scan-lines, and thus the result consists

of five bandpaths: (0,3), (3,8), (8,13), (13,17) and (17,18). The fab-time (14.06 s) is not much

worse than the one obtained with 𝜇 = 50 (13.59 s) and that of the path of Figure 4 (13.51 s).

42

Figure 18 – The HotFill solution with 𝜇 = 5 and all cooling time limits set to 1.7 s. The largest contact
cooling time (red dashed line) is 1.69 s. The total fab-time is 22.24 s including 10.66 s of extrusion
and 11.58 s of air time.

Source: Own Authorship.

Figure 19 – The HotFill solution with 𝜇 = 50 and all cooling time limits set to 50 s. The largest contact
cooling time (red dashed line) is 9.60 s. The total fab-time is 13.59 s including 12.55 s of extrusion
and 1.04 s of air time.

Source: Own Authorship.

3.5 Improvements and Computing Cost

3.5.1 Algorithm Improvements

A straightforward implementation of Algorithm 1, as described in Chapter 3, would be

too slow for production use. The following optimizations were needed to make it practical.

Virtual Fullpaths: Most of HotFill’s running time, as described, would go into building the

fullpaths 𝐹0[𝑖,𝑗] and 𝐹1[𝑖,𝑗]. Concatenation of two paths, if implemented in the most straightfor-

ward way, takes time proportional to the number of moves in the resulting path. This item alone

would contribute a factor of 𝑛 = #ℛ to the total computing time.

That cost is substantially reduced by replacing the path tables 𝐹0 and 𝐹1 by four arrays

𝑇0, 𝑇1, 𝐾0, and 𝐾1, with the same size (𝑠 + 1) × (𝑠 + 1). Each entry 𝑇𝑧[𝑖,𝑗] is set to +∞ if

the computed 𝐹𝑧[𝑖,𝑗] would be Λ, otherwise it is set to what would be 𝑇FAB(𝐹𝑧[𝑖,𝑗]). Each entry

43

Figure 20 – The HotFill solution with 𝜇 = 5 and all cooling time limits set to 50 s. The largest contact
cooling time (red dashed line) is 6.50 s. The total fab-time is 14.06 s including 12.44 s of extrusion
and 1.62 s of air time.

Source: Own Authorship.

𝐾𝑧[𝑖,𝑗] is a pair (𝑘,𝑧′) of an integer and a bit. It is set to (−1,0) if 𝐹𝑠[𝑖,𝑗] would be Λ or 𝑖 = 0,

otherwise it is such that 𝐹𝑧[𝑖,𝑗] would be formed by concatenating 𝐹𝑧′ [𝑘,𝑖] with 𝐵0[𝑖,𝑗].

With these tables, it is not necessary to build and store the paths 𝐹0[𝑖,𝑗] and 𝐹1[𝑖,𝑗]. The

tables 𝑇0, 𝑇1, 𝐾0, and 𝐾1 are filled instead by slight modifications of Algorithms 1 and 2. The

final tool-path 𝐻 is then reconstructed, at the end of HotFill, by following the pointers 𝐾𝑧[𝑖,𝑗]

back to (−1,0) and concatenating the bandpaths 𝐵𝑧[𝑖,𝑗] identified by them.

Fast Fullpath Validity Check: The ValidPath procedure needs only check the cooling

times of the contacts on cut-line 𝑖 by the paths 𝐹𝑧[𝑖,𝑗], which it can compute from the cover

times of those contacts by the bandpaths 𝐵𝑧′ [𝑘,𝑖], and 𝐵𝑧[𝑖,𝑗]. To avoid repeated computations

inside ValidPath, these cover times can be pre-computed, only once, when the bandpaths are

created.

Specifically, after building a tentative bandpath 𝐵𝑧[𝑖,𝑗], we consider each contact 𝑐 on

cut-line 𝑖, and compute the value 𝑇 PRED
COOL (𝐵*,𝑐) as 𝑇FAB(𝐵*), if 𝐵* does not cover 𝑐, or 𝑇COV(𝐵*,𝑐),

if it does. Symmetrically, for each contact 𝑐 on cut-line 𝑗, we compute 𝑇 PRED
COOL (𝐵*,𝑐) as 0, if 𝐵*

does not cover 𝑐, or 𝑇COV(
←−
𝐵*,𝑐), if it does. These two lists of cover times are saved by HotFill,

associated with the the path 𝐵𝑧[𝑖,𝑗], and used by ValidPath.

Moreover, before returning from the BandPath procedure, we check whether any of those

cover times, by itself, already exceeds the cooling time limit 𝜏(𝑐) of the corresponding contact.

If that happens, that cooling constraint will be violated, no matter what other bandpath gets

concatenated with 𝐵𝑧[𝑖,𝑗]. In that case, BandPath discards the candidate and returns Λ. Then

the following call to MinFullPath immediately return Λ (Step 2), skipping the loop on 𝑘 and 𝑧

and all calls to ValidPath. As the width 𝑗 − 𝑖 of the band increases, this optimization will be

increasingly effective.

44

3.5.2 Programming Improvements

Even with the algorithmic improvements above, a straightforward implementation of

HotFill would waste a considerable amount of time computing functions such as 𝑇COV(𝑃,𝑐,𝑟),

𝑇COOL(𝑃,𝑐), 𝑅MAX
COOL(𝑃,𝒞) and so on. For example, computing 𝑇COV(𝑃,𝑐,𝑟) in the obvious way

would require scanning the moves of the path 𝑃 to locate the trace 𝑟, while computing and

adding the fabtime of all moves of 𝑃 up to that one; which would make the cost of 𝑇COV pro-

portional to the number #𝑃 of moves in the path, and the cost of 𝑅MAX
COOL(𝑃,𝒞) proportional to

#𝑃 ×#𝒞. These costs in turn could make the cost of the innermost loop of HotFill proportional

to size 𝑛 of the input data, or even to 𝑛2.

Our implementation uses several standard programming techniques to speed up those

operations, often reducing the costs of those operations to a constant or to a multiple of log 𝑛.

Here are some of them.

Orientation Bits: A move 𝑟 is represented as a pair (𝑟, 𝑏) where 𝑟 is a pointer to an

object of a class Move, that describes the move in some arbitrary native orientation; and 𝑏 is a bit

that tells whether 𝑟 is 𝑟 (𝑏 = 0) or←−𝑟 (𝑏 = 1). Thus reversing a move requires only complementing

the bit 𝑏, without creating another object. The endpoints of the move are fields 𝑟.end [0] and

𝑟.end [1] in the order of the native orientation; so 𝑝INI(𝑟) = 𝑟.end [𝑏], 𝑝FIN(𝑟) = 𝑟.end [1 − 𝑏],

and so on. This representation also makes it trivial to check whether a move is the reversal of

another move.

This techniques is used for paths too. A path 𝑃 is represented as a pair (𝑃 ,𝑏) where

𝑃 is an object of class Path that represents the path in some arbitrary native orientation, and

the bit 𝑏 tells whether 𝑃 is 𝑃 or its reversal. Then, for example, 𝑃 [𝑘] is 𝑃 .mv [𝑘] if 𝑏 = 0, and
←−−−−−−
𝑃 .mv [𝑘′] if 𝑏 = 1; where 𝑛 is the number of elements of 𝑃 .mv , and 𝑘′ = 𝑛− 1− 𝑘.

Pre-computed Timing Functions: The fabrication time 𝑇FAB(𝑟) of a move 𝑟 is computed

only once, when the Move object 𝑟 is created, and stored as a field 𝑟.fabtime.

Likewise, when a path object 𝑃 is created, the values of 𝑇FIN(𝑃 ,𝑘) for all 𝑘 are stored

in a table in the object record, namely 𝑃 .tfin[𝑘]. Then the functions 𝑇FAB(𝑃), 𝑇INI(𝑃,𝑘), and

𝑇FIN(𝑃,𝑘), for 𝑃 = 𝑃 or 𝑃 =
←−
𝑃 , can be computed from that list — in constant computing time,

irrespective of the length of the path.

Contacts: Each contact 𝑐 is represented by an object 𝑐 of class Contact, that contains

the two endpoints 𝑐.end [0] and 𝑐.end [1] and pointers 𝑐.side[0] and 𝑐.side[1] to the incident Move

objects. The order of both pairs is irrelevant. The object 𝑐 would have fields 𝑐.tcov [𝑖] holding the

pre-computed value of the cover time of the contact by the trace that is side 𝑖, in its native

orientation; that is, 𝑇FAB((𝑐.side[𝑖],0),𝑠) where 𝑠 is the contact’s midpoint.

45

Locating Contacts and Rasters: Another potential waste of computing time is scanning

the list 𝒞 to find the contacts that are closed or covered by a path, such as 𝐵0[𝑖,𝑗] or 𝐵1[𝑖,𝑗].

This time is reduced by splitting the list 𝒞 into 𝑠 separate lists 𝐶[0], 𝐶[1], . . . , 𝐶[𝑠], where 𝐶[𝑖]

has all the contacts on cut-line 𝑖. Similarly, when locating the rasters in an (𝑖,𝑗)-band, we save

time by splitting the raster setℛ into 𝑠− 1 lists 𝑅[0], 𝑅[1], . . . , 𝑅[𝑠− 1], one per scan-line.

Locating Links: The lists ℒ(𝑃) and ℒ(
←−
𝑃) of link paths that connect to the endpoints

of any partial tool-path 𝑃 handled by HotFill — specifically each of the initial rasters, and each

bandpath or fullpath 𝑃 (including) — are stored as attributes of the relevant path object 𝑃 . Then

the Concat function can quickly locate the bridging link by looking for a matching entry in the lists

ℒ(
←−
𝑃 ′) and ℒ(𝑃 ′′), stored in the objects 𝑃 ′ and 𝑃 ′′. Note that these lists typically will have two

entries or less, so this search will be very fast.

3.5.3 Computing Time Analysis

We now derive a formula for the asymptotic worst-case computing time (Knuth, 1998) of

the HotFill algorithm, that tells how that time is expected to grow as the input size parameters

𝑛 and 𝑠 increase. We assume all the above optimizations have been implemented, and that the

maximum band width 𝜇 is at most equal to the number of scan-lines 𝑠 in the input.

The procedures BandPath and MinFullPath will be called 2(𝑠−𝜇)𝜇+𝜇(𝜇+1) times each,

which less than 2𝑠𝜇. The asymptotic worst-case computing cost for each call to MinFullPath will

be Θ(𝜇), arising from the loop on 𝑘. Each call to BandPath is expected to cost Θ((𝑛𝑖,𝑗)
2) for

the construction of the bandpaths 𝐵0[𝑖,𝑗] and 𝐵1[𝑖,𝑗]; where 𝑛𝑖,𝑗 = #ℛ𝑖,𝑗 is the number of

rasters in the band. If we assume that there is an 𝑂(1) upper bound on the number of rasters

per scan-line, then 𝑛𝑖𝑗 will be Θ(𝜇), and the computing cost of BandPath will be Θ(𝜇2).

Therefore, the cost of HotFill will be dominated by the calls of BandPath, namely Θ(𝑠𝜇3)

or Θ(𝑛𝜇3) in the worst case, where 𝑛 = #ℛ is the number of input rasters. This worst case will

be achieved when the cooling time limits are large enough for all potential fullpaths 𝐹0[𝑖,𝑗] and

𝐹1[𝑖,𝑗] with 0 ≤ 𝑖 < 𝑗 ≤ 𝑠 to be valid.

However, as 𝜇 approaches or exceeds the number of scan-lines 𝑠, the number of calls

to BandPath and MinFullPath tends to the limit 𝑠(𝑠+ 1), which does not depend on 𝜇. Thus the

computation time will flatten out at 𝑂(𝑠3) at those large values of 𝜇.

46

4 EXPERIMENTS AND RESULTS

In this chapter we report some computational experiments that aim to demonstrate and

quantify certain aspects of the HotFill algorithm. We used a Python 3 implementation of the

algorithm (Nakonetchnei, 2021) that incorporates the optimizations described in Section 3.5.

The first set of tests aims to show that HotFill does achieve its goal, namely find a tool-

path 𝐻 that satisfies the specified cooling time constraints, if they can be achieved at all. See

Section 4.2.

The second batch of tests aims to demonstrate that the imposition of reasonable cooling

time constraints, which should improve the mechanical resistance of the part, generally has a

small impact on the fabrication time 𝑇FAB of the tool-path. See Section 4.3.

The third batch of tests aims to analyze the relationship between the input parameters –

especially the maximum band width 𝜇 – and the computation time of HotFill. See Section 4.4.

To simplify the analysis and discussion of the results, in all tests the cooling time limit

𝜏(𝑐) of every contact 𝑐 was set to the same value ∆. Thus the maximum relative cooling time

𝑅MAX
COOL(𝐻,𝒞) is simply 𝑇MAX

COOL(𝐻,𝒞)/∆. For comparison, in each set of tests we show also the

attributes of the tool-paths produced by two traditional tool-path planning programs, RP3 (Vol-

pato, 2021) and Slic3r (Hodgson; Ranellucci; Moe, 2021) (which produce tool-paths according

to their own criteria, without taking the cooling constraints into account), as well as the simple

scan-line-order tool-paths, alternating (SCA) and non-alternating (SCN).

4.1 Dataset

To perform tests and compare the results obtained with the proposed algorithm, we ob-

tained STL models for several objects where low mechanical strength could be an issue, such

as human prostheses, mechanical parts, and coat hangers. Some models were created by our-

selves, some were obtained from a public repository (MAKERBOT, 2021). From each object we

selected a slice that was representative of the majority of the cross-sections.

We tried to choose objects and slices such that the polygon 𝐷 (the region to be filled)

was substantially non-monotonic in either the 𝑋 or 𝑌 direction (that is, where most scan-lines

would have two or more raster lines); since, as observed in Section 2.5.2, there is no point in

using the HotFill if 𝐷 is monotonic. For this reason, we did not bother to apply the decomposition

into sub-problems described in that section. These objects and the outlines of the selected slices

are shown in Figure 21.

For all models the length unit of the STL file was assumed to be millimeters, except for

runleg which was assumed to be in inches (and thus was scaled by 25.4).

For each test slice, we performed two preliminary tests of the HotFill algorithm, with the

slice rotated by 𝜃 = 0 and 𝜃 = 90 degrees. The rasters and link paths for input to HotFill were

obtained by modifying the RP3 program so as to write out that information to a text file.

47

(a) (Matearoa, 2021) (b) (ffleurey, 2013)

(c) (nillasarie, 2016) (d) (jephil08, 2020)

(e) (joraasen, 2016) (f) (Matearoa, 2021)

(g) (M600, 2014) (h) (ecassiana, 2021c)

(i) (ecassiana, 2021b) (j) (ecassiana, 2021d)

(k) (Alpha__Wolf, 2018) (l) (ecassiana, 2021a)
Figure 21 – The STL models and slice outlines used in the tests (not to the same scale).

48

In each case, the RP3 software was asked to produce an infill-only tool-path (with zero

contour layers) with assumed slice thickness 𝜎 = 0.25mm, scan-line spacing (nominal raster

width) 𝜆FILL = 0.400mm, and the specified raster orientation. The polygonal outline 𝐷 of the

area to be filled was therefore result of applying an inwards offset of 𝜆FILL/2 to the slice’s outline,

to account for the actual extent of the material. Each link path produced by RP3 was the piece

of the boundary of the polygon 𝐷 between the relevant raster endpoints.

In order to make the fab-time comparisons with Slic3r meaningful, the parameters of the

latter had to be adjusted so that the infill domain 𝐷 was the same. We observed that Slic3r

slightly adjusts the specified raster spacing depending on the slice geometry, so we had to spec-

ify the spacing as 𝜆FILL = 0.453mm in order to get approximately the same number and total

length of the raster lines as we got with RP3, when averaged over all datasets.

In the interest of brevity, we generally show the results for only one of the two datasets

(𝜃 = 0 or 𝜃 = 90 degrees) created from each STL model, namely the one which turned out to be

the most challenging for HotFill (in the sense of Section 4.3). However we retained both datasets

for the slice runleg, to show the impact of raster orientation on the attributes of the resulting

tool-paths.

The parameters of the selected datasets are presented in Table 1. The total area to be

filled, in mm2, is approximately the total raster length 𝐿TOT times the scanline spacing 𝜆FILL.

Table 1 – Datasets used for tests. The columns are the slice index (1 = bottom); the raster direction 𝜃 (0 or
90) in degrees, relative to the 𝑋-axis; the overall width 𝑋 and height 𝑌 of the slice; the number
𝑛 = #ℛ of raster lines; the number 𝑠 = #𝒮 of scan-lines; and the maximum 𝐿MAX, average 𝐿AVG,
and total 𝐿TOT length of the raster lines. All dimensions are in millimeters.

Dataset Slice 𝜃 𝑋 𝑌 𝑛 𝑠
Raster length (mm)

𝐿MAX 𝐿AVG 𝐿TOT
1 dstop2:90 1 90 51.9 25.6 134 65 51.9 6.5 869.9
2 adfoot:0 5 0 44.7 34.4 165 87 44.7 19.9 3276.6
3 runleg:0 17 0 54.3 231.2 851 579 34.8 6.8 5787.4
4 bkwren:0 1 0 74.7 83.2 355 209 44.3 14.0 4977.7
5 tkwren:90 1 90 32.7 58.0 281 146 22.1 6.1 1717.9
6 dstop1:0 1 0 52.7 51.6 208 130 22.6 7.4 1538.1
7 unwren:90 1 90 70.4 19.2 138 49 27.8 6.8 936.0
8 hlatch:90 1 90 106.4 52.0 252 131 62.5 23.4 5895.4
9 grille:0 1 0 32.0 13.6 160 35 32.0 4.5 714.4

10 nkhang:90 1 90 75.7 98.8 554 248 41.1 8.4 4660.3
11 cthang:90 1 90 123.7 63.6 398 160 123.7 10.8 4301.2
12 flange:0 1 0 109.7 58.0 335 146 44.4 18.3 6143.9
13 runleg:90 17 90 231.7 53.6 443 135 106.0 13.0 5766.2

Source: Own Authorship.

49

4.2 Achieving the cooling constraints

The tests in this section aim to show that HotFill does achieve its goal; namely, find a

viable tool-path 𝐻 that satisfies the specified cooling time constraints (which in this case are

𝑇COOL(𝐻,𝑐) ≤ ∆ for all 𝑐 ∈ 𝒞). The results are shown in Table 2. The entries marked “—” in the

table are cases where HotFill failed to find a viable tool-path.

Table 2 – Maximum contact cooling times 𝑇MAX
COOL(𝐻,𝒞) of the tool-path 𝐻 computed by Slic3r, RP3, SCN,

and by HotFill for various cooling time limits ∆, with 𝜇 = 20. All times are in seconds.

HotFill with various values of ∆
Dataset Slic3r RP3 SCN SCA 1.4 2.0 2.8 4.0 5.7 8.0 11.3 16.0 22.6 32.0 45.3 64.0

1 dstop2:90 8.7 9.3 1.9 1.9 — 2.0 2.8 3.9 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2
2 adfoot:0 78.2 27.5 1.9 2.6 — 1.9 2.8 3.8 5.7 7.8 11.3 15.1 16.1 16.1 16.1 16.1
3 runleg:0 115.9 64.8 1.3 1.4 1.4 2.0 2.8 4.0 5.7 7.7 9.0 9.0 9.0 9.0 9.0 9.0
4 bkwren:0 96.0 50.0 1.9 2.1 — 2.0 2.8 4.0 5.7 7.9 11.2 15.3 16.4 16.4 16.4 16.4
5 tkwren:90 49.2 26.3 1.0 1.1 1.4 2.0 2.8 4.0 5.7 7.2 8.2 8.2 8.2 8.2 8.2 8.2
6 dstop1:0 40.6 31.9 1.7 2.2 — 2.0 2.8 3.9 5.6 8.0 9.7 15.3 17.6 17.6 17.6 17.6
7 unwren:90 29.2 16.4 1.9 2.3 — 1.9 2.8 4.0 5.6 7.9 11.0 14.0 14.0 14.0 14.0 14.0
8 hlatch:90 115.8 96.2 3.3 4.7 — — — 4.0 5.7 7.9 10.8 15.9 22.4 31.9 41.5 41.5
9 grille:0 16.3 14.6 1.7 2.5 — 1.7 2.7 4.0 5.6 7.4 11.1 14.5 14.5 14.5 14.5 14.5

10 nkhang:90 107.4 119.6 2.2 2.9 — — 2.8 4.0 5.7 8.0 11.3 15.9 20.9 20.9 20.9 20.9
11 cthang:90 83.2 58.3 4.2 5.2 — — — 4.0 5.7 8.0 11.2 15.8 22.1 31.5 35.2 35.2
12 flange:0 134.9 113.9 3.2 4.2 — — — 4.0 5.7 8.0 11.2 16.0 22.1 31.5 36.8 36.8
13 runleg:90 127.4 91.8 6.0 8.5 — — — — — 8.0 11.2 15.9 22.4 30.0 45.0 60.4

Source: Own Authorship.

As discussed in Section 2.4.2, the non-alternating scan-line solution (SCN) usually min-

imizes the maximum contact cooling time 𝑇MAX
COOL. It follows that the 𝑇MAX

COOL of the SCN path is

usually the minimum value of the cooling time limit ∆ for which a solution exists. That observa-

tion is confirmed by Table 2. Indeed, in those tests, the HotFill procedure always found a solution

whenever the specified ∆ was higher than the SCN 𝑇MAX
COOL. For example, the SCN path for the

dataset bkwren:0 has 𝑇MAX
COOL = 1.9 s, and the procedure succeeded once ∆ was above that

value (2.0 s). However, for the cthang:90 dataset, HotFill managed to find a solution even for

∆ = 4.0, which was lower than then 𝑇MAX
COOL of the SCN path.

Several factors determine the maximum cooling time of the SCN solution, which (as

noted above) is usually the lowest cooling time limit ∆ that allows a solution. The fabrication time

of a scan-line depends on the number of rasters on it, and on the length of those rasters and

of the gaps between them. This fab-time usually affects the cooling times of the contacts that

involve those rasters. It can be seen that the datasets that have largest SCN cooling times, near

the bottom of Table 2, also tend to have the longest raster lines (𝐿MAX on Table 1) and higher

numbers of rasters per scan-line (𝑛/𝑠).

As expected, the reference programs Slic3r and RP3 often grossly exceed the limit ∆,

since they mostly try to minimize the total fab-time with no regard for cooling times.

For every dataset there is a maximum value of ∆ beyond which every bandpath and

fullpath considered by HotFill will be valid, as if there was no cooling constraint (that is, as if ∆

50

was +∞). Beyond that point, HotFill will return always the same tool-path, the one with minimum

fab-time. Typically this path will still have better cooling time that the Slic3r and RP3 tool-paths,

and its fab-time will not be much worse (see Section 4.3).

4.3 Impact on fabrication time

The tests in this section aim to show the impact of the cooling time constraints on the

fabrication time 𝑇FAB(𝐻) of the computed tool-path. The results are shown in Table 3. For each

dataset, besides the absolute fab-time 𝑇FAB in seconds of each reference algorithm (Slic3r, RP3,

SCN, SCA), we also give the absolute fab-time 𝑇 HF
FAB of HotFill for each limit ∆, and the percent

increase 𝐷HF
FAB of that fab-time relative to 𝑇 REF

FAB , the smallest between the Slic3r and RP3 fab-

times. The total extrusion time 𝑇RAST for the input rasters, which is the ideal lower bound for

𝑇FAB(𝐻), is also shown for reference. Each test was performed with 𝜇 = 20.

Table 3 – Fabrication times 𝑇FAB(𝐻) of the tool-path 𝐻 computed by RP3, SLic3r, SCN, SCA, and by HotFill
with various cooling time limits ∆, as well as percentage increases in manufacturing time over
the shortest time between RP3 and Slic3r. The total extrusion time 𝑇RAST for the rasters alone
(excluding jumps and links) is also given for reference. All tests used 𝜇 = 20. All times are in
seconds.

HotFill for various values of ∆
Dataset 𝑇RAST Slic3r RP3 SCN SCA 1.4 2.0 2.8 4.0 5.7 8.0 11.3 16.0 32.0 64.0

1 dstop2:90
23.5 28.8 28.4 61.1 41.6

—
31.0 29.8 29.1 28.8 28.8 28.8 28.8 28.8 28.8

+115% +46% +9% +5% +2% +1% +1% +1% +1% +1% +1%

2 adfoot:0
84.1 89.7 90.0 141.0 101.8

—
112.9 98.8 96.9 93.1 91.6 90.9 89.8 89.7 89.7

+57% +13% +26% +10% +8% +4% +2% +1% +0% +0% +0%

3 runleg:0
156.0 178.3 181.9 402.4 249.7 225.0 199.8 190.6 186.1 183.5 183.0 183.0 183.0 183.0 183.0

+126% +40% +26% +12% +7% +4% +3% +3% +3% +3% +3% +3%

4 bkwren:0
129.2 137.8 139.5 314.4 203.9

—
221.0 171.9 155.2 148.7 145.3 143.2 142.5 142.4 142.4

+128% +48% +60% +25% +13% +8% +5% +4% +3% +3% +3%

5 tkwren:90
46.7 53.5 55.4 124.8 82.6 70.2 63.4 59.9 57.9 57.0 56.5 56.4 56.4 56.4 56.4

+133% +54% +31% +19% +12% +8% +7% +6% +5% +5% +5% +5%

6 dstop1:0
41.2 47.4 48.2 101.4 65.6

—
72.0 60.3 54.4 51.5 50.5 49.4 48.9 48.8 48.8

+114% +38% +52% +27% +15% +9% +7% +4% +3% +3% +3%

7 unwren:90
25.2 32.9 33.5 76.5 52.5

—
71.7 47.7 39.9 37.0 35.2 34.6 34.3 34.3 34.3

+133% +60% +118% +45% +21% +12% +7% +5% +4% +4% +4%

8 hlatch:90
150.7 158.5 160.1 262.1 188.1

— — —
206.8 179.8 170.3 166.5 163.9 161.8 161.0

+65% +19% +30% +13% +7% +5% +3% +2% +2%

9 grille:0
20.0 24.8 24.7 54.0 41.5

—
51.0 37.4 31.3 28.0 26.6 25.6 25.2 25.2 25.2

+119% +68% +106% +51% +27% +13% +8% +4% +2% +2% +2%

10 nkhang:90
123.9 138.3 141.2 331.0 220.3

— —
210.3 172.0 158.1 151.3 147.3 145.1 144.1 144.1

+139% +59% +52% +24% +14% +9% +7% +5% +4% +4%

11 cthang:90
112.8 126.1 125.5 275.6 188.5

— — —
176.7 148.6 138.7 133.1 130.7 128.4 128.3

+120% +50% +41% +18% +11% +6% +4% +2% +2%

12 flange:0
158.1 168.4 171.8 329.2 228.8

— — —
230.6 200.5 187.7 181.2 177.1 173.6 172.9

+95% +36% +37% +19% +11% +8% +5% +3% +3%

13 runleg:90
150.1 165.8 170.2 446.7 295.9

— — — — —
266.9 214.9 195.5 179.5 175.7

+169% +78% +61% +30% +18% +8% +6%
Source: Own Authorship.

51

The fabrication and cooling times of all tool-paths produced by HotFill, RP3, and Slic3r

were computed by the same Python program from the data extracted from the resulting g-code

files, according to the formulas in Appendix A with the following parameters: acceleration and

deceleration, 3000mm/s2; maximum nozzle speed during extrusion, 40mm/s; maximum noz-

zle travel speed during jumps, 130mm/s; Jump start/end penalty, 0.05 s. These parameter val-

ues were inferred from the actual fab-times of other tool-paths on the 3D Cloner model DH+

printer (3DCLONER, 2021).

The dependency of 𝑇FAB(𝐻) on the cooling limit ∆, for each of the test parts, is

plotted on Figure 22. In order to magnify the variations and to make the plots of different

datasets more comparable, the vertical axis is the percent increase in the connection time

𝑇CONN = 𝑇FAB−𝑇RAST, the air time plus fab-time of links, compared to that of the reference

tool-path: namely, 𝑅HF
CONN = 𝑇 HF

CONN / 𝑇
REF
CONN, where 𝑇 HF

CONN is the connection time of the HotFill

path, and 𝑇 REF
CONN is the same value for the reference tool-path (by RP3 or Slic3r, as in Table 3).

Thus a value of 100% means that the Hotfill path is as efficient as the reference path, while a

value of 200% means that it spends twice as much time with links and jumps.

It must be noted that the relative total fab-time 𝑇 HF
FAB / 𝑇

REF
FAB are usually much smaller than

𝑅HF
CONN. For example, according to Table 3, for ∆ = 8 s and 𝜇 = 20, the HotFill tool-path of that

dataset has 𝑇 HF
CONN = 266.9 − 150.1 = 116.1 s, which is about 7 times the connection time of

the reference tool-path 𝑇 REF
CONN = 𝑇 SLIC3R

CONN = 165.8 − 150.1 = 15.7 s; that is, 𝑅HF
CONN ≈ 700%.

However, the ratio of the total fab-times is only 266.9/165.8 = 161% (+61% in Table 3).

Figure 22 also shows the dependency of fab-time on the maximum band width 𝜇. The

lower left plot of that figure is for 𝜇 = 20, the value used in Table 3.

In Table 3, as in Table 2, we observe that HotFill produces a solution whenever the spec-

ified cooling time limit ∆ is higher than the max cooling time 𝑇MAX
COOL of the SCN path (given in

Table 2).

For small values of ∆, just above the minimum value, the fab-times are much higher than

those of RP3 and Slic3R, but generally smaller than those of SCN. Likewise, as soon as ∆ is

greater than the 𝑇MAX
COOL of the alternating scan-line path (SCA), HotFill finds a path that has better

fab-time than that of that path.

When the cooling constraints are not too restrictive (say, ∆ ≥ 8 s in these tests), the paths

generated by HotFill, which satisfy these constraints, generally have fab-times that are less than

15% greater than those produced by RP3 or Slic3r (which often grossly violate the constraints).

This trend is easier to see in Figure 22. In these tests, the only exception for ∆ = 8 s was the

runleg:90 dataset (number 13, purple in the figure) for which the HotFill path had 61% higher

fab-time (266.9 s) than Slic3r (165.8 s). For ∆ = 16 s, this difference dropped to 18%, while it

was 5% or less for all the other datasets.

As seen in Figure 22, increasing the maximum band width 𝜇 yields only very small im-

provements in fab-time, and only for the larger values of ∆. For 𝜇 = 80 (bottom right graph)

and ∆ ≥ 128 s, the HotFill paths had less than 30% higher connection time than the reference

52

Figure 22 – Relative connection time 𝑅HF
CONN as a function of the cooling time limit ∆, for different values of

the maximum band width 𝜇. Each curve is a different dataset. The numbers refer to Table 1.
(a) 𝜇 = 15 (b) 𝜇 = 25

(c) 𝜇 = 20 (d) 𝜇 = 80

Source: Own Authorship.

path. However, the running time of HotFill increased steeply as 𝜇 increased beyond 10. See

Section 4.4. On the other hand, tests with smaller values of 𝜇 yielded paths with significantly

larger fab-times, with not much gain in computing time. We concluded that the value 𝜇 = 20 was

a convenient compromise for these input files.

53

4.4 Analysis of the computation times

The tests in this section aim to determine the relation between the total computation time

𝑇CPU of HotFill and the three most obvious parameters: the number of rasters #ℛ, the maximum

band width 𝜇, and the cooling time limit ∆. The results are shown in Table 4 and Figure 23.

Table 4 – Computation times 𝑇CPU of the HotFill algorithm for ∆ = 8.0 s and various values of the max-
imum band width 𝜇. All times are in seconds. Columns n and m represent the number of raster
lines and the number of scan-lines, respectively.

𝜇
Dataset 𝑛 𝑠 10 20 30 40 50 60 70 80

1 dstop2:90 134 65 1 6 14 24 33 39 40 41
2 adfoot:0 165 87 2 7 15 27 42 59 74 85
3 runleg:0 851 579 9 40 99 190 327 515 744 1031
4 bkwren:0 355 209 4 16 38 75 131 200 293 399
5 tkwren:90 281 146 3 13 34 65 107 161 226 297
6 dstop1:0 208 130 2 9 23 44 73 119 159 203
7 unwren:90 138 49 2 7 14 22 25 25 25 25
8 hlatch:90 252 131 3 11 28 56 94 144 205 271
9 grille:0 160 35 2 10 19 21 20 20 20 20

10 nkhang:90 554 248 6 28 72 148 260 423 627 887
11 cthang:90 398 160 5 22 59 122 206 316 454 603
12 flange:0 335 146 4 18 47 97 168 258 373 503
13 runleg:90 443 135 6 29 81 168 305 458 673 896

Source: Own Authorship.

Figure 23 – Computing time 𝑇CPU as a function of the maximum band width 𝜇, for ∆ = 64.0 s and the
datasets listed in Table 4. Each graph is a different dataset, with colors assigned arbitrarily. The
broad tan lines are the plots of 𝐴𝜇3 for 𝐴 = 0.00370 and 𝐴 = 0.000481.

Source: Own Authorship.

The algorithms were implemented in Python3 (Nakonetchnei, 2021). The times were

measured on an Intel® Core™ i7-10700 PC with a 2.9GHz clock, 256 kiB:2MiB:16MiB

54

L1:L2:L3 cache, 128GiB of RAM, under the Linux (Ubuntu 20.04.2 LTS) operating system. The

program was run in single-thread mode, without any GPU acceleration.

As observed in Section 3.5.3, the running time of HotFill should be dominated by a term

that grows proportionally to 𝑠𝜇3 or 𝑛𝜇3 — as long as ∆ is large enough, there is a small limit

to the number of rasters per scan-line, and 𝜇 ≪ 𝑠; where 𝑠 is the number of scan-lines, and

𝑛 = #ℛ is the number of raster elements.

As shown in Figure 23, the measured computing times in Table 4 generally grow in pro-

portion to 𝜇3 for 𝜇 between 30 and 40. For values of 𝜇 below 30, growth is slower because the

terms of lower order are still significant. At the other end of the range, growth slows down again

when 𝜇 approaches or exceeds 𝑠, as predicted by the analysis. This effect is evident for datasets

that have fewer than 80 scan-lines, like unwren:90 (graph 7, 𝑠 = 49) and grille:0 (graph

9, 𝑠 = 35).

Figure 23 also indicates that, for any fixed 𝜇, the computation time increases with in-

creasing 𝑛 and 𝑠, as expected. The largest times are seen for runleg:0 (graph 3, 𝑛 = 851,

𝑠 = 579), runleg:90 (graph 13, 𝑛 = 443, 𝑠 = 135), and cthang:90 (graph 10, 𝑛 = 398,

𝑠 = 160).

55

5 CONCLUSIONS AND FUTURE WORK

We described HotFill, an algorithm to plan a tool-path for solid (airgap 0) raster infill

for thermoplastic material extrusion 3D printers. Unlike the paths produced by commonly used

path planning programs like Slic3r and RP3, the HotFill solution satisfies prescribed limits on

the cooling time between deposition of adjacent raster lines. These cooling time constraints are

expected to improve the mechanical strength of the object, as verified experimentally by previous

research (SUN et al., 2008; COSTA; DUARTE; COVAS, 2017; AKHOUNDI; BEHRAVESH, 2018;

FERRARIS; ZHANG; Van Hooreweder, 2019; VOLPATO; ZANOTTO, 2019). Notwithstanding,

experimental tests will be important to confirm and analyze any practical issues that might arise

from the generated tool path.

The tool-paths considered by HotFill include the plain scan-line-order path (SCN), which

generally has the minimum contact cooling times among all paths with a prescribed set of raster

lines. Therefore, HotFill will generally find a valid solution, if one exists for the specified cooling

constraints. However, even for the most stringent constraints, the path selected by HotFill usually

has smaller fabrication time than the scan-line solution. Tests with a dozen non-trivial slices

showed that, for reasonable cooling limits, the fab-time of the tool-path produced by HotFill is

not much higher than that of the paths computed by Slic3r, RP3, and similar programs. As the

cooling constraints are relaxed, the fab-time of the HotFill solution usually drops to only a few

percent more than that of Slic3r.

The computation time of HotFill depends on the size (number of rasters and scan-lines) of

the problem. A full search for the minimum fab-time can be expensive; however, the algorithm has

a parameter 𝜇 that lets the user control the depth of the search, thus reducing the computation

time for a modest increase in fabrication time. Anyway, the implementation can be improved in

many ways (e. g., by replacing Python3 by a more efficient programming language) that should

considerably reduce the computation time to a few seconds, even for large instances.

5.0.1 Future Work

There are still several parts of the algorithm that could be improved to reduce the com-

putation time and/or the fabrication time of the resulting tool-paths, such as developing a more

efficient and/or effective BandPath procedure. Also, one may consider using a more flexible

partition of the rasters into bands, by using “topological” cut-lines instead of straight horizontal

ones (EDELSBRUNNER; GUIBAS, 1989).

The bidirectional greedy BandPath heuristic that we used (see Section 3.3) has cost

proportional to the square of the number 𝑛𝑖,𝑗 of rasters in the band. One can surely find other

heuristics that are much faster, but still likely to yield valid bandpaths with low enough fab-time.

56

BIBLIOGRAPHY

3DCLONER. 3DCloner DH Plus. 2021. Code repository at http:
//3dcloner.ind.br/upload/20200724170856r7ginb.pdf. Accessed on 2021-12-13.

AGARWALA, M. K. et al. Structural quality of parts processed by fused deposition. Rapid
Prototyping Journal, v. 2, n. 4, p. 4–19, 1996.

AKHOUNDI, B.; BEHRAVESH, A. H. Effect of filling pattern on the tensile and flexural
mechanical properties of FDM 3D printed products. Experimental Mechanics, v. 59, p.
883–897, 1 2018.

BELLMAN, R. E. Dynamic Programming. Mineola, N.Y: Courier Dover Publications, 1957.
ISBN 0486428095.

BERMAN, B. 3-D Printing: The New Industrial Revolution. Business Horizons, v. 55, n. 2,
p. 155 – 162, 2012. ISSN 0007-6813. Disponível em: http://www.sciencedirect.com/science/
article/pii/S0007681311001790.

BIKAS, H.; STAVROPOULOS, P.; CHRYSSOLOURIS, G. Additive Manufacturing Methods
and Modelling Approaches: A Critical Review. The International Journal of Advanced
Manufacturing Technology, v. 83, n. 1, p. 389–405, 2016. ISSN 1433-3015. Disponível em:
https://doi.org/10.1007/s00170-015-7576-2.

CHEN, Y. et al. A full migration BBO algorithm with enhanced population quality bounds for
multimodal biomedical image registration. Applied Soft Computing, v. 93, p. 106335, 2020.
ISSN 1568-4946.

Cheng, C.-B.; Mao, C.-P. A modified ant colony system for solving the travelling salesman
problem with time windows. Mathematical and Computer Modelling, v. 46, n. 9, p. 1225–1235,
2007.

COSTA, S. F.; DUARTE, F. M.; COVAS, J. A. Estimation of filament temperature and adhesion
development in fused deposition techniques. Journal of Materials Processing Technology,
Elsevier, v. 245, p. 167–179, 2017.

CROES, A. A method for solving traveling salesman problems. Operations Research, v. 5, p.
791–812, 1958.

DUMAS, Y. et al. An optimal algorithm for the traveling salesman problem with time windows.
Operations research, v. 43, n. 2, p. 367–371, 1995.

EDELSBRUNNER, H.; GUIBAS, L. J. Topologically sweeping an arrangement. Journal of
Computer and System Sciences, v. 38, n. 1, p. 165–194, 1989.

FAES, M.; FERRARIS, E.; MOENS, D. Influence of inter-layer cooling time on the quasi-static
properties of ABS components produced via fused deposition modelling. Journal Procedia
CIRP, Elsevier, v. 42, p. 748–753, 2016.

FERRARIS, E.; ZHANG, J.; Van Hooreweder, B. Thermography based in-process monitoring of
fused filament fabrication of polymeric parts. CIRP Annals, CIRP, v. 68, n. 1, p. 213–216, 2019.

FLOOD, M. M. The traveling-salesman problem. Operations Research, v. 4, n. 1, p. 61–75,
1956.

http://3dcloner.ind.br/upload/20200724170856r7ginb.pdf
http://3dcloner.ind.br/upload/20200724170856r7ginb.pdf
http://www.sciencedirect.com/science/article/pii/S0007681311001790
http://www.sciencedirect.com/science/article/pii/S0007681311001790
https://doi.org/10.1007/s00170-015-7576-2

57

Fok, K. et al. An ACO-based tool-path optimizer for 3-D printing applications. IEEE Transactions
on Industrial Informatics, v. 15, n. 4, p. 2277–2287, 2019.

Fok, K. et al. A 3D printing path optimizer based on Christofides algorithm. In: 2016 IEEE
International Conference on Consumer Electronics-Taiwan (ICCE). [S.l.: s.n.], 2016. p. 1–2.

GANGANATH, N. et al. Trajectory planning for 3D printing: A revisit to traveling salesman
problem. In: 2016 (2nd) International Conference on Control, Automation and Robotics
(ICCAR). [S.l.: s.n.], 2016. p. 287–290.

GIBSON, I.; ROSEN, D.; STUCKER, B. Additive manufacturing technologies - 3D printing, rapid
prototyping, and direct digital manufacturing. In: Rapid Manufacturing Association. Second.
[S.l.]: Springer, 2015. p. 510. ISBN 9781493921126.

GUO, N.; LEU, M. C. Additive Manufacturing: Technology, Applications and Research Needs.
Frontiers of Mechanical Engineering, v. 8, n. 3, p. 215–243, 2013. ISSN 2095-0241.
Disponível em: https://doi.org/10.1007/s11465-013-0248-8.

GURRALA, P. K.; REGALLA, S. P. Part strength evolution with bonding between filaments in
fused deposition modelling. Virtual and Physical Prototyping, v. 9, n. 3, p. 141–149, 2014.

Hodgson, G.; Ranellucci, A.; Moe, J. Slic3r Manual. 2021. Online document at https:
//manual.slic3r.org/. Acessed on 2021-07-24.

Jin, Y.-A. et al. Optimization of tool-path generation for material extrusion-based additive
manufacturing technology. Additive Manufacturing, v. 1-4, p. 32–47, 2014.

Knuth, D. E. The Art of Computer Programming. 3. ed. Boston: Addison-Wesley, 1998. v. 1.
780 p. ISBN 978-0201896831.

KOCH, C.; Van Hulle, L.; RUDOLPH, N. Investigation of mechanical anisotropy of the fused
filament fabrication process via customized tool path generation. Additive Manufacturing,
v. 16, p. 138–145, 2017. ISSN 2214-8604.

Komineas, G. et al. Build time estimation models in thermal extrusion additive manufacturing
processes. Procedia Manufacturing Journal, v. 21, p. 647 – 654, 2018.

KULKARNI, P.; MARSAN, A.; DUTTA, D. Review of process planning techniques in layered
manufacturing. Rapid Prototyping Journal, v. 6, n. 1, p. 18–35, 2000.

LEAL, R. et al. Additive Manufacturing Tooling for the Automotive Industry. The International
Journal of Advanced Manufacturing Technology, v. 92, n. 5, p. 1671–1676, 2017. ISSN
1433-3015. Disponível em: https://doi.org/10.1007/s00170-017-0239-8.

Lepoivre, A. et al. Heat transfer and adhesion study for the FFF additive manufacturing process.
Procedia Manufacturing, v. 47, p. 948–955, 2020. ISSN 2351-9789. 23rd International
Conference on Material Forming.

LI, H.; ALIDAEE, B. Tabu search for solving the black-and-white travelling salesman problem.
Journal of the Operational Research Society, Springer, v. 67, n. 8, p. 1061–1079, 2016.

LI, H. et al. MLFS-CCDE: multi-objective large-scale feature selection by cooperative
coevolutionary differential evolution. Memetic Computing, v. 13, p. 1–18, 2021. ISSN
1865-9292.

LI, X.; LI, W.; HE, F. A multi-granularity nc program optimization approach for energy efficient
machining. Advances in Engineering Software, v. 115, p. 75–86, 2018. ISSN 0965-9978.

https://doi.org/10.1007/s11465-013-0248-8
https://manual.slic3r.org/
https://manual.slic3r.org/
https://doi.org/10.1007/s00170-017-0239-8

58

LIANG, Y.; HE, F.; ZENG, X. 3D mesh simplification with feature preservation based on whale
optimization algorithm and differential evolution. Integrated Computer-Aided Engineering,
v. 27, p. 417–435, 2020. ISSN 1875-8835.

LIANG, Y. et al. An improved loop subdivision to coordinate the smoothness and the number
of faces via multi-objective optimization. Integrated Computer-Aided Engineering, v. 29, p.
23–41, 2022. ISSN 1875-8835.

LIM, S. et al. Developments in Construction-Scale Additive Manufacturing Processes.
Automation in Construction, v. 21, p. 262 – 268, 2012. ISSN 0926-5805. Disponível em:
http://www.sciencedirect.com/science/article/pii/S0926580511001221.

LIN, S.; KERNIGHAN, B. W. An effective heuristic algorithm for the traveling-salesman problem.
Operations Research, v. 21, n. 2, p. 498–516, abr. 1973.

LIU, W. et al. Toolpath planning for additive manufacturing using sliced model decomposition
and metaheuristic algorithms. Advances in Engineering Software, v. 149, p. 102906, 2020.
ISSN 0965-9978.

LóPEZ-IBáñEZ, M.; BLUM, C. Beam-ACO for the travelling salesman problem with time
windows. Computers & Operations Research, v. 37, n. 9, p. 1570 – 1583, 2010. ISSN
0305-0548.

MAKERBOT. Thingiverse - Digital Designs for Physical Objects. 2021. 3D model repository
at www.thingiverse.com/. Accessed on 2021-07-24.

MIAO, H.; TIAN, Y.-C. Dynamic robot path planning using an enhanced simulated annealing
approach. Applied Mathematics and Computation, Elsevier, v. 222, p. 420–437, 2013.

MINETTO, R. et al. An optimal algorithm for 3D triangle mesh slicing. Computer-Aided Design,
v. 92, p. 1–10, nov. 2017.

MLADENOVIĆ, N.; TODOSIJEVIĆ, R.; UROŠEVIĆ, D. An efficient general variable
neighborhood search for large travelling salesman problem with time windows. Yugoslav
Journal of Operations Research, University of Belgrade, v. 23, n. 1, p. 19–30, 2013.

MORRISON, D. R. et al. Branch-and-bound algorithms: A survey of recent advances in
searching, branching, and pruning. Discrete Optimization, v. 19, p. 79–102, 2016. ISSN
1572-5286.

Nakonetchnei, E. C. Hotfill. 2021. Code repository at https://github.com/ecassiana/hotfill.
Accessed on 2021-07-28.

NAKONETCHNEI, E. C. et al. Hotfill: A Cooling Time Constrained Raster-Fill Planning Algorithm
for Extrusion 3D Printing. Advances in Engineering Software, Elsevier. Under revision,
2022.

NGO, T. D. et al. Additive Manufacturing (3D Printing): A Review of Materials, Methods,
Applications and Challenges. Composites Part B: Engineering, v. 143, p. 172 – 196,
2018. ISSN 1359-8368. Disponível em: http://www.sciencedirect.com/science/article/pii/
S1359836817342944.

PEARL, J. Heuristics: Intelligent Search Strategies for Computer Problem Solving. USA:
Addison-Wesley Longman Publishing Co., Inc., 1984. ISBN 0201055945.

PREPARATA, F. P.; SHAMOS, M. I. Computational Geometry – An Introduction. New York,
NY: Springer, 1985. ISBN 0-387-96131-3.

http://www.sciencedirect.com/science/article/pii/S0926580511001221
www.thingiverse.com/
https://github.com/ecassiana/hotfill
http://www.sciencedirect.com/science/article/pii/S1359836817342944
http://www.sciencedirect.com/science/article/pii/S1359836817342944

59

RESENDE, M. G.; RIBEIRO, C. C. Greedy randomized adaptive search procedures: Advances,
hybridizations, and applications. In: Handbook of metaheuristics. [S.l.]: Springer, 2010. p.
283–319.

ROSENKRANTZ, D. J.; STEARNS, R. E.; LEWIS II, P. M. An analysis of several heuristics for
the traveling salesman problem. SIAM Journal on Computing, v. 6, n. 3, p. 563–581, 1977.

ROTHLAUF, F. Design of modern heuristics: principles and application. [S.l.]: Springer,
2011. v. 8.

SAVELSBERGH, M. Local search in routing problems with time windows. Annals of
Operations research, Springer, v. 4, p. 285–305, 1985.

Schiller, G. J. Additive Manufacturing for Aerospace. In: 2015 IEEE Aerospace Conference.
[S.l.: s.n.], 2015. p. 1–8. ISSN 1095-323X.

SINGH, S.; RAMAKRISHNA, S. Biomedical Applications of Additive Manufacturing: Present
and Future. Current Opinion in Biomedical Engineering, v. 2, p. 105 – 115, 2017. ISSN
2468-4511. Additive Manufacturing. Disponível em: http://www.sciencedirect.com/science/
article/pii/S2468451117300296.

SUN, Q. et al. Effect of processing conditions on the bonding quality of FDM polymer filaments.
Rapid Prototyping Journal, v. 14, n. 2, p. 72–80, 2008.

Alpha__Wolf, E. Farkas. 4-Hook Coat Hanger. 2018. 3D model at www.thingiverse.com/thing:
3315713. Accessed on 2021-07-24.

ecassiana, E. Cassiana. Flange. 2021. 3D model at https://www.thingiverse.com/thing:4916943.
Accessed on 2021-07-28.

ecassiana, E. Cassiana. Grille. 2021. 3D model at https://www.thingiverse.com/thing:5161470.
Accessed on 2021-12-11.

ecassiana, E. Cassiana. Hook Latch. 2021. 3D model at https://www.thingiverse.com/thing:
4919047. Accessed on 2021-07-28.

ecassiana, E. Cassiana. Necktie hanger. 2021. 3D model at https://www.thingiverse.com/thing:
4916952. Accessed on 2021-07-28.

ffleurey Frank. Adjustable Foot for Tables and Furnitures. 2013. 3D model at
www.thingiverse.com/thing:148764. Accessed on 2021-07-24.

jephil08, J. Phillips. 1-Inch Bulkhead Hand Wrench. 2020. 3D model at www.thingiverse.com/
thing:4356560. Accessed on 2021-07-24.

joraasen, A. Jøraasen. 22mm Wrench. 2016. 3D model at www.thingiverse.com/thing:1909039.
Accessed on 2021-07-25.

M600 Anthony L. GoPro Tool with Universal Wrench. 2014. 3D model at www.thingiverse.
com/thing:601212. Accessed on 2021-07-25.

Matearoa, M. Charpentier. Door stop. 2021. 3D model at www.thingiverse.com/thing:4889702.
Accessed on 2021-07-24.

nillasarie, N. Illasarie. Runners MK2 prosthetic leg. 2016. 3D model at www.thingiverse.com/
thing:1960573. Accessed on 2021-07.

VOLPATO, N. Manufatura Aditiva: Tecnologias e Aplicações da Impressão 3D. [S.l.]: Editora
Blucher, 2017.

http://www.sciencedirect.com/science/article/pii/S2468451117300296
http://www.sciencedirect.com/science/article/pii/S2468451117300296
www.thingiverse.com/thing:3315713
www.thingiverse.com/thing:3315713
https://www.thingiverse.com/thing:4916943
https://www.thingiverse.com/thing:5161470
https://www.thingiverse.com/thing:4919047
https://www.thingiverse.com/thing:4919047
https://www.thingiverse.com/thing:4916952
https://www.thingiverse.com/thing:4916952
www.thingiverse.com/thing:148764
www.thingiverse.com/thing:4356560
www.thingiverse.com/thing:4356560
www.thingiverse.com/thing:1909039
www.thingiverse.com/thing:601212
www.thingiverse.com/thing:601212
www.thingiverse.com/thing:4889702
www.thingiverse.com/thing:1960573
www.thingiverse.com/thing:1960573

60

Volpato, N. RP3 Basic User Guide (v2021). [S.l.], 2021.

VOLPATO, N. et al. Uma otimização da estratégia de preenchimento do processo fdm. In:
ABCM RIO DE JANEIRO. 4º Congresso Brasileiro de Engenharia de Fabricação—COBEF.
Águas de São Pedro. [S.l.], 2007.

Volpato, N. et al. Combining heuristics for tool-path optimisation in material extrusion additive
manufacturing. Journal of the Operational Research Society, v. 0, n. 0, p. 1–11, 2019.

VOLPATO, N.; ZANOTTO, T. T. Analysis of deposition sequence in tool-path optimization
for low-cost material extrusion additive manufacturing. International Journal of Advanced
Manufacturing Technology, v. 101, n. 5-8, p. 1855–1863, abr. 2019.

WAH, P. K. et al. Tool path optimization in layered manufacturing. IIE Transactions, Institute of
Industrial Engineers, v. 34, n. 4, p. 335–347, 2002.

XIA, L.; LIN, S.; MA, G. Stress-based tool-path planning methodology for fused filament
fabrication. Additive Manufacturing, v. 32, p. 101020, 2020. ISSN 2214-8604.

Yang, J. et al. Fractal scanning path generation and control system for selective laser sintering
(SLS). International Journal of Machine Tools and Manufacture, v. 43, n. 3, p. 293–300,
2003.

YANG, W. Optimal path planning in rapid prototyping based on genetic algorithm. In: Chinese
Control and Decision Conference. [S.l.]: Institute of Electrical and Electronics Engineers
(IEEE), 2009. p. 5068–5072.

ZHAO, D.; GUO, W. Shape and performance controlled advanced design for additive
manufacturing: A review of slicing and path planning. Journal of Manufacturing Science and
Engineering, v. 142, p. 1–87, 01 2020.

61

APPENDIX A – Move timing functions

62

The move fabrication time functions 𝑇FAB(𝑚) and 𝑇COV(𝑚,𝑢) defined in Section A can

be estimated as described by (Komineas et al., 2018). The key parameters are the acceleration

𝑎 at the start of the move (which is also the deceleration at the end), and the maximum cruise

speed 𝑣. These parameters depend on the printer and on whether 𝑚 is a move or a trace.

Let 𝑑 be the distance to be covered, namely 𝑑 = |𝑞 − 𝑝| where 𝑝 = 𝑝INI(𝑚) and 𝑞 =

𝑝FIN(𝑚). We assume that the nozzle is stationary at the beginning of every move, and comes

to a full stops at the end of it. Therefore, if 𝑑 is large enough, the nozzle will accelerate for a

time 𝑡a = 𝑣/𝑎, while covering a distance 𝑑a = 𝑎𝑡2a/2 = 𝑣𝑡a/2 = 𝑣2/(2𝑎). At the end, it will

decelerate for the same distance and time. In between, it will cruise at constant speed 𝑣 for a

distance 𝑑c = 𝑑− 2𝑑a, which will take time 𝑡c = 𝑑c/𝑣.

However, if 𝑑 is less than 𝑣2/𝑎, the nozzle will have to start decelerating before reaching

the cruise speed 𝑣. Acceleration and deceleration will each last for a distance 𝑑a = 𝑑/2 and take

time 𝑡a =
√︀

𝑑/𝑎. The distance and time spent at cruise speed will be 𝑑c = 𝑡c = 0.

Either way, the total execution time 𝑇FAB(𝑚) will be 2𝑡a + 𝑡c.

Depending on the printer and on operator choices, it may be required to raise the nozzle

and/or retract a couple mm of the filament at the begging of a jump, and to lower the nozzle

and/or reposition the filament at the end. In that case, if 𝑚 is a jump, the time 𝑡z needed to

perform these operations at each end of jump must be added to 𝑡a.

For the passage time 𝑇COV(𝑚,𝑞), let 𝑑u be the distance from 𝑝 to the point on the mid-

line of 𝑚 that is closest to the point 𝑢; namely 𝑑u = max {0,min {𝑑, (𝑢− 𝑝) · (𝑞 − 𝑝)/𝑑}}. We

have three cases, depending on the part of the move where the passage occurs (accelerating,

decelerating or cruising):

𝑇𝐶𝑂𝑉 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√︀

𝑑u/𝑎, if 𝑑u ≤ 𝑑a

2𝑡a + 𝑡c −
√︀
(𝑑− 𝑑u)/𝑎, if 𝑑u ≥ 𝑑− 𝑑a

𝑡a + (𝑑u − 𝑑a),/𝑣 otherwise

	Dedication
	Acknowledgements
	Epigraph
	Resumo
	Abstract
	List of Algorithms
	List of Figures
	List of Tables
	List of symbols
	Contents
	1 Introduction
	1.1 Contributions
	1.2 Structure of the Document

	2 The raster-filling hot tool-path problem
	2.1 Tool-Path Model
	2.2 Cooling Time Constraints
	2.3 Statement of the Problem
	2.3.1 Input
	2.3.2 Output

	2.4 Special Solutions
	2.4.1 Greedy Solution
	2.4.2 Scan-line Solutions

	2.5 General considerations
	2.5.1 Non-Connected Infills
	2.5.2 Monotonic Infill Regions
	2.5.3 Problem Decomposition at Monotonic Sections
	2.5.4 Exhaustive Enumeration

	3 HotFill: Finding a Valid Tool-Path
	3.1 Dynamic programming
	3.2 The MinFullPath procedure
	3.3 Choosing the Bandpaths
	3.4 Sample Solutions
	3.5 Improvements and Computing Cost
	3.5.1 Algorithm Improvements
	3.5.2 Programming Improvements
	3.5.3 Computing Time Analysis

	4 Experiments and Results
	4.1 Dataset
	4.2 Achieving the cooling constraints
	4.3 Impact on fabrication time
	4.4 Analysis of the computation times

	5 Conclusions and Future Work
	5.0.1 Future Work

	Bibliography
	A Move timing functions

