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RESUMO

BARATIERI, Larissa. Avaliação Do Uso Do Filtro De Kalman Como Suporte À
Classificação De Eletrocardiograma Com Base Em Sinais Sintéticos. 2021. 61 f. Dissertação
(Mestrado em Mestrado em Engenharia Elétrica) – Universidade Tecnológica Federal do Paraná.
Cornélio Procópio, 2021.

As doenças cardiovasculares estão entre as doenças que mais matam no mundo. Para evitar
esse cenário, é necessário a realização de exames cardíacos periodicamente com a finalidade de
realizar de tratamento preventivo caso haja alguma doença. Seguindo essa motivação, o objetivo
deste trabalho é avaliar se o KF pode ser usado como um classificador de cardiopatias, ou seja,
estudar uma nova possível função para esse filtro, uma vez que ele é um estimador de estados
de equações diferenciais lineares. Então, a metodologia aplicada nesse trabalho consiste em:
primeiro, desenvolver o filtro capaz de estimar ECGs saudáveis, entretanto um sinal de ECG
possui um comportamento não-linear, sendo assim, será utilizado uma atualização do KF, o
EKF. Para o desenvolvimento desse filtro é necessário que o ECG seja descrito por equações
diferenciais, com isso o algoritmo do EKF será baseado em equações diferenciais ordinárias
que formulam um sinal de ECG sintético de ritmo sinusal normal. A ideia de construir o filtro
baseado apenas em um sinal sintético de ECG saudável é de que o filtro “aprenda” somente a
estimar um sinal saudável de ECG, assim quando o ECG mudasse para uma cardiopatia o EFK
detectaria algum erro ou anomalia, e isso indicaria uma doença. Para a validação do objetivo,
o EKF deverá estimar um sinal construído com amostras saudáveis e amostras doentes de um
ECG real. Dentre as doenças existentes foram escolhidas o fluter ventricular e a taquicardia
supraventricular, por causa dos seus comportamentos. E por fim, serão utilizados dois critérios
de avaliação para que o objetivo se conclua: o primeiro critério é uma análise qualitativa do
sinal do erro do estado a ser estimado (sinal criado a partir das amostras de ECG reais) com o
sinal estimado (saída do EKF); e o segundo critério é baseado numa análise quantitativa, em
que as amostras desse sinal serão divididas em janelas (doentes e saudáveis) e será calculado a
energia do erro de cada janela. Uma vez definido se o KF pode atuar como um classificador de
cardiopatias, serão sugeridas melhorias para essa nova funcionalidade da ferramenta.

Palavras-chave: filtro de Kalman. eletrocardiograma sintéticos. classificador. cardiopaticas.



ABSTRACT

BARATIERI, Larissa. Assessment of the use of the Kalman Filter as Support for an
Electrocardiogram Classifier Based on Synthetic Signals. 2021. 61 p. Dissertation (Master’s
Degree in Master of Electrical Engeneering) – Universidade Tecnológica Federal do Paraná.
Cornélio Procópio, 2021.

Cardiovascular diseases are among the diseases that kill the most in the world. To avoid this
scenario, it is necessary to carry out periodic cardiac exams in order to carry out preventive
treatment if there is any disease. Following this motivation, the objective of this work is to
evaluate whether KF can be used as a classifier of heart diseases, that is, to study a new possible
function for this filter, since it is an estimator of states of linear differential equations. So, the
methodology applied in this work consists of: first, developing a filter capable of estimating
healthy ECGs, however an ECG signal has a non-linear behavior, thus, an update of the KF, the
EKF, will be used. For the development of this filter it is necessary that the ECG is described by
differential equations, thus the EKF algorithm will be based on ordinary differential equations
that formulate a synthetic ECG signal of normal sinus rhythm. The idea of building the filter
based only on a synthetic healthy ECG signal is that the filter “learn” only to estimate a healthy
ECG signal, so when the ECG changed to a heart disease the EFK would detect some error or
anomaly, and that would indicate an illness. For goal validation, the EKF should estimate a signal
constructed from healthy and diseased samples from a real ECG. Among the existing diseases,
ventricular flutter and supraventricular tachycardia were chosen because of their behavior. And
finally, two evaluation criteria will be used to complete the objective: the first criterion is a
qualitative analysis of the error signal of the state to be estimated (signal created from real ECG
samples) with the estimated signal (output of the EKF); and the second criterion is based on a
quantitative analysis, in which the samples of that signal will be divided into windows (sick and
healthy) and the error energy of each window will be calculated. Once defined whether KF can
act as a heart disease classifier, improvements will be suggested for this new functionality of the
tool.

Keywords: Kalman filter. synthetic electrocardiogram. classifier. cardiopathies.
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1 INTRODUCTION

The electrocardiogram (ECG) began as an object of study in the mid-’60s, mainly in

the sense of detecting and preventing heart diseases (Blackburn et al., 1960). Along with, in

2016 a survey by the World Health Organization was developed indicating that heart diseases

are the number one cause of death globally: more people die annually from cardiovascular

diseases (CVDs) than from any other causes, an estimate of 31% of the world’s death (WHO,

2017). Since that, the researches in this field have only increased, not only in filtering noise

for better comprehension and manipulation, but mainly in the use of artificial intelligence for

the classification of cardiopathies in order to assist the health professional to have a correct

diagnosis.

As previously stated, the CVDs are among the diseases that kill the most in the world,

and to prevent this it is necessary to perform cardiac exams periodically to find out if there is any

disease and the need for treatment for preventive purposes. Following this idea, there are works

that aim to use computer tools to classify heart diseases in order to help the health professional

not to make mistakes. For example, the work done by Cardenas et al. (2019), wherein was

proposed a method for classifying cardiac arrythimias by using a Fuzzy Cognitive Maps. Another

work that can be mentioned, by Gutierrez-Gnecchi et al. (2017), they developed an algorithm

based on quadratic wavelets to identify individual ECG waves and obtain a fiducial marker array

in order to classify some arrythmias using a Probabilistic Neural Network.

In the case of filtering ECG noise, there are works that explore some tools in order to

remove noises from the ECG signal, when it collected, to do a better comprehension from the

signal. It is possible to cite some recent works like Almalchy et al. (2019), wherein the authors

tested several models of Finite Impulse Response (FIR) filters of low-pass and high-pass to

determine the best band-pass filtering model to reproduce a ECG signal that closely resembles

the actual heart function of a patient. In Tayel et al. (2018), a new multi-stage combined adaptive

filtering design based on Kernel Recursive Least Squares Tracker and Kernel Recursive Least

Squares with Approximate Linear Dependency algorithms was proposed for removing artifacts

and noise sources, while preserving the low frequency components and the tiny features of the

ECG signal.

So, motivated by the researches involving ECGs, databases were created to provide data

for study. A well known database is the PhysionBank Massachusetts Institute of Technology
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(MIT) database (Moody; Mark, 2001), composed of ECG signals collected in several situations

and grouped into categories. However, some obstacles arise when considering data acquired

from patients, such as the difficulty to infer how the performance may vary in different clinical

contexts with a range of noise levels and sampling frequencies. Also, if the research requires

different classes of ECG signals not available in the database, it would be necessary to collect

the ECG from human patients, which can pose several problems. So, in this context, there are

works to create synthetic ECGs.

The first work that started with this possibility was McSharry et al. (2003). This work

presents a dynamical model based on three coupled ordinary differential equations which are

capable of generating realistic synthetic ECG signals with realistic morphology and prescribed

heart rate dynamics. This model aims to provide a standard realistic ECG signal with known

characteristics, which can be generated with a specific desired statistic such as the mean and

standard deviation of the heart rate and frequency-domain characteristics of the heart rate

variability. This synthetic ECG can be generated with different sampling frequencies and different

noise levels to analyze the performance of a given technique. Besides, this work received some

updates such as Clifford e McSharry (2004), which demonstrates how the same model can

be used to generate blood pressure and respiration signals with realistic inter-signal coupling

between the respiration, blood pressure and ECG time series. In Clifford et al. (2005), a technique

is described to simultaneously filter, compact and classify the real ECG, based on the synthetic

ECG and quadratic minimum adjustments. And finally, in Sameni et al. (2007), the model is

adapted to maternal and fetal ECGs.

After that, in the last decade, other studies that explore different methods for generating

synthetic ECGs have emerged. The method developed by Kovács (2012) uses different kinds of

base functions such as polynomials or rational functions to model ECG curves. More precisely,

the author uses piecewise polynomial approximation based on 15 control points. The piecewise

approximation approach has the following benefits: the geometrical parameters of the curve can

be piecewise adjusted; the ability to set diagnostical parameters of the ECG irrespectively of its

geometrical parameters; and the ability to use error measures based on different ECG features

like diagnostical intervals and amplitudes. Even if it proves to be an efficient method, this work

is restricted to studying only the main points of a normal ECG, these being the P, Q, R, S, and T

segments (the heart beat morphology and its segmentes will be better explained in Chapter 2).

Furthermore, the author concludes that perhaps this model does not serve to generate pathologies
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and is not able to assist in the filtering of ECG noise.

In Kubicek et al. (2014), the authors propose the creation of a synthetic ECG by dividing

the signal into various parts, which are substituted by elementary functions. The individual ECG

segments are approximated by continuous curves, and the subsequent development of these

periodic functions was solved by Fourier series.

One of the most recent article of generation of synthetic ECGs is Dolinský et al. (2018),

where a mathematical model is proposed to generate an artificial synthetic ECG signal based on

the geometric characteristics of a real ECG signal. Each specific wave, corresponding to P, Q, R,

S, and, T, is modeled using an elementary trigonometric function or a Gaussian monopulse, this

method allows the generation of some cardiopathies. Even showing to be an efficient algorithm,

the method studied presents small flaws in the generation of Q and S waves that do not present

the desired performance.

Among the models aforementioned about synthetic ECG generation, the model develo-

ped by McSharry et al. (2003) proves to be more advantageous in terms of ease of replication,

the quantity and duration of the signal, and the possible application on other projects, mainly in

the study of filtering noise from ECG signals.

Joining the concept of synthetic ECGs and filtering, one method that has stood out

in recent years is the use of the Kalman Filter (KF) to eliminate noise from ECG signals

(Mneimneh et al., 2006; Ting; Salleh, 2010; Vullings et al., 2011). Actually, the KF is an

estimator whose purpose is to use measurements obtained over time (contaminated with noise

and other uncertainties) and generate results that tend to approximate the real values of the

measured quantities and associated values (Kay, 1993). Other works involving both Kalman filter

and synthetic ECG are Sameni et al. (2005) and Sameni et al. (2007), which use the theoretical

basis of the generation of synthetic ECG from McSharry et al. (2003) to create a modified KF

suitable for the estimation of noisy ECG signals.

So, based on some of the references presented, the objective of this work is to evaluate

the possibility of using KF as a classifier of heart disease, thus, this research is a study of a

possible new functionality of KF, since it is used as estimator of optimal states.

To achieve this goal, a KF algorithm capable of estimating real ECG signals will be

developed. As will be seen throughout this dissertation, the KF algorithm is mainly based on

linear differential functions, however an ECG signal does not have linear characteristics, it is

necessary to use an update of the FK, the Extended Kalman Filter (EKF) which has the same
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characteristics as the KF, however is specific to nonlinear equations.

However, to develop the EKF algorithm, it is necessary to transform the human ECG

into differential equations, so in this case the work developed by McSharry et al. (2003), in

which the authors managed to create a mathematical model based on three differential equations

capable of replicating an ECG, will be used as a basis. of normal sinus rhythm, that is, a healthy

ECG, in a very realistic way. From the differential equations that create a synthetic ECG and

from the EKF theory, it is possible to develop an algorithm that estimates a real ECG.

For the validation of the EKF as a possible classifier of heart diseases, the following

technique will be applied: the EKF must estimate a signal built with healthy samples and sick

samples from a real ECG.

As there are several heart diseases, the criteria created to choose the diseases was as

follows: when observing heart diseases, it is clear that they can be divided into two large classes,

the first class being composed of those heart diseases that modify the structure pattern of points

P, Q, R, S, and, T that a healthy ECG has (which will be further explained in Chapter 2), with

ventricular flutter being chosen to represent this class; and the second class of heart diseases is

composed of those diseases that have P, Q, R, S, and T points well defined as well as a healthy

ECG, but the heart rate is changed, speeding up or slowing down the heartbeat, being chosen

supraventricular tachycardia to represent this class.

In order for the EKF to estimate only healthy samples, its algorithm must be based

entirely on a healthy synthetic ECG, as the expectation is that the filter will only “learn” how to

estimate a healthy ECG signal, just as when the ECG changes to heart disease the EFK would

detect some error or anomaly, and that would indicate an illness.

With the form of filter validation defined, two evaluation criteria will be used if the

objective can be concluded. The first criterion is a qualitative analysis of the error signal from

the state to be estimated (signal created from the actual ECG samples) with the estimated signal

(EKF output). And the second criterion is based on a quantitative analysis, in which the samples

of this signal will be divided into windows (sick and healthy) and the error energy of each

window will be calculated.

It should be emphasized that the objective of this work is an evaluation of a new function

for the KF, that is, as a cardiopathy classifier. Once it has been proven whether or not it can be

used like this, improvements to this technique will be suggested in order to fix some flaws and

complications that appeared during the research.
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This dissertation is due as follows: Chapter 2 explains the basics of how a heartbeat

works and how the differential equations developed by McSharry et al. (2003) generate a

synthetic electrocardiogram signal; Chapter 3 explains the KF and the EKF methodology and

algorithm. Chapter 4 explains the methodology applied in the work, mainly how the EKF was

developed from ordinary synthetic ECG equations, this section is based on the works developed

by Sameni et al. (2005) and Sameni et al. (2007). Chapter 5 presents the results found. And

finally, Chapter 6 presents the conclusion and proposals for future work.
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2 SYNTHETIC ELECTROCARDIOGRAM SIGNALS

This chapter details the results from McSharry et al. (2003), in which the authors develop

a dynamical model with three differential equations that generate synthetic electrocardiograms

signals that are similar to a realistic ECG signal.

Before explaining how these equations were developed, it is important to understand

some features from the realistic ECG signal. Section 2.1 explains the ECG morphology. Section

2.2 then explains, according to McSharry et al. (2003), the dynamical model developed.

2.1 THE ELECTROCARDIOGRAM MORPHOLOGY

The electrocardiogram is a special graph that represents the electrical activity of the

heart. Thus, the ECG provides a time-voltage chart of the heartbeat. For many patients, this test is

a key component of clinical diagnosis and management in both inpatient and outpatient settings.

To record the cardiac electrical currents, conductive electrodes are selectively positioned on the

surface of the body. For the standard ECG recording, electrodes are placed on the arms, legs, and

chest wall (precordium) (Goldberger et al., 2013; Dubin, 2000).

A single sinus (normal) cycle of the ECG, corresponding to one heartbeat, is traditionally

labeled with the letters P, Q, R, S and T on each of its turning points, see Figure 1.

The ECG may be divided into the following sections (Goldberger et al., 2013):

• P-wave: represents atrial depolarization, it is a small positive (or negative) deflection before

the QRS complex.

• PQ-interval: the time between the beginning of atrial depolarization and the beginning of

ventricular depolarization.

• QRS-complex: the largest-amplitude portion of the ECG, caused by currents generated

when the ventricles depolarize prior to their contraction. Although atrial repolarization

occurs before ventricular depolarization, the latter waveform, i.e. the QRS-complex, is of

much greater amplitude and atrial repolarization is therefore not seen on the ECG.

• QT-interval: the time between the onset of ventricular depolarization and the end of the

ventricular repolarization.
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• ST-segment: the time between the end of S-wave and the beginning of T-wave. Significantly

elevated or depressed amplitudes away from the baseline are often associated with cardiac

illness.

• T-wave: ventricular repolarization, whereby the cardiac muscle is prepared for the next

cycle of the ECG.

Figure 1 – Morphology of one PQRST-complex of the ECG.
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Figure 2 is an example taken from Goldberger et al. (2013), which shows the heart beat

morpghology mentioned before. While Figure 1 represents a real eletrocardiogram.

Figure 2 – Morphology of one PQRST-complex of the ECG.

Source: (Goldberger et al., 2013).
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2.2 A DYNAMICAL MODEL FOR GENERATING SYNTHETIC ELECTROCARDIO-

GRAM SIGNALS

The model generates a trajectory in a three-dimensional (3-D) state-space with coor-

dinates (𝑥,𝑦,𝑧), as illustrated in Figure 3. The quasi-periodicity of the ECG is reflected by the

movement of the trajectory around an attracting limit cycle of unit radius in the (𝑥,𝑦) plane.

Each revolution on this circle corresponds to one RR-interval or heart-beat. Interbeat variation in

the ECG is reproduced using the motion of the trajectory in the 𝑧-direction. Distinctive points

on the ECG, such as P, Q, R, S and T are described by events corresponding to negative and

positive attractors/repellor in the 𝑧-direction. These events are placed at fixed angles along the

unit circle given by 𝜃𝑃 , 𝜃𝑄, 𝜃𝑅, 𝜃𝑆 and 𝜃𝑇 , represented by the dots as in Figure 3. When the

trajectory approaches one of these events, it is pushed upwards or downwards away from the

limit cycle, and then as is moves away it is pulled back toward the limit cycle.

Figure 3 – Typical trajectory by the dynamical model in the 3-D space given by (𝑥,𝑦,𝑧).
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Source: Based on (McSharry et al., 2003)

The dynamical equations of motion are given by a set of three ordinary differential

equations

�̇� = 𝜌𝑥− 𝜔𝑦,

�̇� = 𝜌𝑦 + 𝜔𝑥,

�̇� = −
∑︁

𝑖∈{𝑃,𝑄,𝑅,𝑆,𝑇}

𝑎𝑖∆𝜃𝑖 exp

(︂
−∆𝜃2𝑖

2𝑏2𝑖

)︂
− (𝑧 − 𝑧0).

(1)
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The 𝑎𝑖 ∈ R, 𝑏𝑖 ∈ R and 𝜃𝑖 ∈ R terms correspond to the amplitude, width and center parameters

of the Gaussian terms of this equation, respectively. And 𝜌 = 1 −
√︀

𝑥2 + 𝑦2, ∆𝜃𝑖 = (𝜃 − 𝜃𝑖)

mod 2𝜋, 𝜃 = atan2(𝑦,𝑥), the four quadrant arctangent of the real parts of the elements of 𝑥 and

𝑦, with −𝜋 ≤ atan2(𝑦,𝑥) ≤ 𝜋 (see Figure 4), and 𝜔 is the angular velocity of the trajectory

as it moves around the limit cycle. As seen in Equation (1), each of P, Q, R, S and T-waves of

the ECG waveform are modeled with a Gaussian function located at specific angular positions

𝜃𝑖. Baseline wander was introduced by coupling the baseline value 𝑧0 in (1) to the respiratory

frequency 𝑓2 using the following function

𝑧0(𝑡) = 𝐴 sin(2𝜋𝑓2𝑡) (2)

in which 𝐴 = 0.15 mV.

Figure 4 – atan2(𝑦, 𝑥) returns the angle 𝜃 between length 𝑟 and the positive x axis, confined to [−𝜋, 𝜋].

Source: Made by the author.

The formula that gives rise to a Gaussian distribution (also known as a normal distribu-

tion) is given by

𝑓(𝑛) =
1√

2𝜋𝜎2
exp−1

2

(︂
𝑛− 𝜇

𝜎2

)︂
, (3)

where 𝑛 is randon variable, 𝜇 is the expected value and 𝜎2 is the variance. Comparing Equation

(1) with the third equation of system represented in Equation (1), it is possible to verify that this

equation is a sum of Gaussian.

These equations of motion given by system in Equation (1) were integrated numerically

using a fourth-order Runge-Kutta method (Press et al., 1992) with a fixed time step ∆𝑡 =
1

𝑓𝑠
where 𝑓𝑠 is the sampling frequency.

Table 1 specifies the appropriate values for the parameters 𝑎𝑖, 𝑏𝑖 e 𝜃𝑖 for the P, Q, R, S,

and, T points (McSharry et al., 2003).
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Table 1 – Parameters of the ECG model given by (1).
Index (i) P Q R S T

Time (sec) -0.2 -0.05 0 0.05 0.3
𝜃𝑖 (radians) − 1

3𝜋 − 1
12𝜋 0 1

12𝜋
1
3𝜋

𝑎𝑖 1.2 -5.0 30.0 -7.5 0.75
𝑏𝑖 0.25 0.1 0.1 0.1 0.4

Source: McSharry et al. (2003)

A trajectory generated by Equation (1) in three dimensions corresponding to (𝑥,𝑦,𝑧)

is illustrated in Figure 3. This illustrates how the positions of the events P, Q, R, S, T act on

the trajectory in the 𝑧-direction as it processes around the unit circle in the (𝑥,𝑦) plane. The

𝑧 variable from the 3-D system of equation 1 yields a synthetic ECG with realistic PQRST

morphology, illustrated in Figure 5. The similarity between the synthetic ECG and the real ECG

may be seen by comparing Figure 5 with Figure 1.

Figure 5 – Morphology of one PQRST-complex of the synthetic ECG.
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2.3 SYNTHETIC CARDIOPATHIES

Besides of generating a healthy synthetic signal, the ordinary equations demonstrated by

equation 1 can generate synthetic signals of heart diseases. For this to be possible, its necessary

just change the values of Gaussian terms 𝑎𝑖, 𝑏𝑖 and 𝜃𝑖 in Table 1 to valid values that are capable of

shaping some cardiopathies. Table 2 represents the values of 𝑎𝑖, 𝑏𝑖 and 𝜃𝑖 that form the following

diseases: sinus bradycardia, sinus tachyardia, ventricular flutter, atrial fibrillation and ventricular

tachycardia.
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Table 2 – Parameters of the ECG model adapted from (Sayadi et al., 2010).
Gaussian
kernels

Sinus
bradycardia

Sinus
tachycardia

Ventricular
flutter

Atrial
fibrillation

Ventricular
tachycardia

P (0.75, 0.15, −3𝜋
8 ) (0.75, 0.15, −𝜋

6 ) (0, 0.1, −2𝜋
3 ) (0.7, 0.12,−5𝜋

7 ) (1, 0.2, −10𝜋
13 )

Q (-1, 0.1, −𝜋
13 ) (-7, 0.1, −𝜋

13 ) (0, 0.1, −𝜋
12 ) (0.6, 0.9, −𝑝𝑖

4 ) (-12, 0.1, −𝜋
3 )

R (20, 0.1, 0) (20, 0.1, 0) (20, 0.6, −𝜋
2 ) (18, 0.1, 0) (1, 0.3, 0)

S (-9.5, 0.1, 𝜋
15 ) (-9.5, 0.1, 𝜋

17 ) (-20, 0.6, 𝜋
2 ) (-0.1, 0.05, 𝜋

30 ) (3, 0.4, 2𝜋
11 )

T (0.21, 0.475, 2𝜋
5 ) (0.21, 0.475, 𝜋

2 ) (0, 0.1, 5𝜋
8 ) (0.55, 0.17, 7𝜋

11 ) (5, 0.5, 𝜋
2 )

2.3.1 Ventricular Flutter

Ventricular flutter, also named ventricular fibrillation, is a completely disorganized ven-

tricular rhythm resulting in immediate cessation of cardiac output and cardiac arrest (Goldberger

et al., 2013).

Figures 6 and 7 illustrate a comparison of the synthetic signal and the real signal of

sinus bradycardia, respectively.

Figure 6 – Synthetic Ventricular Flutter with 300 bpm.
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Figure 7 – ventricular flutter.

Source: (Goldberger et al., 2013).
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2.3.2 Ventricular Tachycardia

Ventricular tachycardia is another cardiopathy that acellerates the hear rate, caused by

abnormal electrical signals in the heart ventricles (Goldberger et al., 2013).

Figures 8 and 9 illustrate a comparison of the synthetic signal and the real signal of

sinus bradycardia, respectively.

Figure 8 – Synthetic Ventricular Tachycardia with 100 bpm.
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Figure 9 – Ventricular Tachycardia.

Source: Made by the author.

2.3.3 Sinus Bradycardia

Sinus bradycardia is a heart disease that slows down the heart rate. Typically, the

heartbeat ranges from 60 to 100 bpm, if the hear rate is less than 60 bpm it is called sinus

bradycardia (Goldberger et al., 2013).

Figures 10 and 11 show a comparison of the synthetic signal and the real signal of sinus

bradycardia, respectively.
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Figure 10 – Synthetic Sinus Bradycardia with 40 bpm.
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Figure 11 – Sinus Bradycardia.

Source: (Goldberger et al., 2013).

2.3.4 Sinus Tachycardia

Sinus tachycardia is sinus rythm with a heart rate exceeding 100 beats/minute (Goldber-

ger et al., 2013).

Figures 12 and 13 show a comparison of the synthetic signal and the real signal of sinus

bradycardia, respectively.

2.3.5 Atrial Fibrillation

Atrial fibrillation is the most common type of cardiac arrhythmia. This cardiopathy

accelerates the heart rate in a skyrocketing way (Goldberger et al., 2013).

Figures 14 and 15 show a comparison of the synthetic signal and the real signal of sinus

bradycardia, respectively.
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Figure 12 – Synthetic Sinus Tachycardia 140 bpm.
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Figure 13 – Sinus Tachycardia.

Source: (Goldberger et al., 2013).

Figure 14 – Synthetic Atrial Fibrillation with 60 bpm.
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Figure 15 – Atrial Fibrillation.

Source: (Goldberger et al., 2013).

2.4 CHAPTER 2 SYMBOL LIST

𝑎𝑖 Gaussian amplitude

𝑏𝑖 Gaussian width

𝜃𝑖 Gaussian center

𝑓2 respiratory frequency

𝑧0 baseline

𝑓(𝑛) Gaussian distribution

𝑛 randon variable

𝜇 expected value

𝜎2 variance

∆𝑡 fixed time step

𝑓𝑠 sampling frequency
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3 KALMAN FILTER

Modern filter theory began with Wiener’s work in the 1940s (Wiener, 1949). His work

describes a filter used to produce an estimate of a desired or target random process by linear

time-invariant (LTI) filtering of a noisy observation (assuming known stationary signal and noise

spectra and additive noise). This filter is known as Wiener filter, that minimizes the mean square

error (MSE) between the estimated random process and the desired process (Kailath et al., 2000).

However, this filter was seldom used in practice (Sayed, 2008).

In 1960 Rudolf Emil Kalman introduced KF (Kalman, 1960), who published this paper

to present solutions for some limitations of the Wiener filter. Basically, the KF is a stochastic

filter and a generalization of the Wiener filter (Kay, 1993) .

Considering the same problem that Wiener had dealt with earlier, Kalman considered

the noisy measurement to be a discrete time sequence in contrast to a continuous-time signal.

He also posed the problem in a state-space setting that accommodated the time-variable MIMO

scenario nicely. Engineers, especially in the field of navigation, were quick to see the Kalman

technique as a practical solution to some applied filtering problems that were intractable using

Wiener methods. Also, the rapid advance in computer technology that occurred in the 1960s

certainly contributed to popularizing Kalman filtering as a practical means of separating signal

from random noise (Brown; Hwang, 1983).

3.1 THE DISCRETE KALMAN FILTER

This section describes the KF in its original formulation Kalman (1960), and also it is

based on the notes of Welch e Bishop (2001).

3.1.1 The Process to be Estimated

The Kalman filter addresses the general problem of trying to estimate the state x ∈ R𝑛

of a discrete-time controlled process that is governed by the linear stochastic difference equation

x𝑘 = 𝐴x𝑘−1 + 𝐵u𝑘 + w𝑘−1, (5)
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with a measurement z ∈ R𝑚 given by

z𝑘 = 𝐻x𝑘 + v𝑘. (6)

The 𝑛 × 𝑛 dynamics matrix 𝐴 in the difference Equation (5) relates the state at the

previous time step 𝑘 − 1 to the state at the current step 𝑘, in the absence of either a driving

function or process noise. The 𝑛 × 𝑙 matrix 𝐵 relates the optional control input u𝑘 ∈ R𝑙 to

the state x𝑘. The 𝑚 × 𝑛 matrix 𝐻 in the measurement Equation (6) relates the state to the

measurement z𝑘.

The random processes w𝑘 and v𝑘 represent the process and measurement noise, respec-

tively. They are assumed to be independent of each other, white, and with normal probability

distributions, which the correlation equations can be written as follows:

𝑄𝑘 = E [w𝑘w
ᵀ
𝑘] , (7)

𝑅𝑘 = E [v𝑘v
ᵀ
𝑘] , (8)

where 𝑄𝑘 is the process noise covariance matrix and 𝑅𝑘 is the measurement noise covariance

matrix. In practice, the process noise covariance 𝑄𝑘 and measurement noise covariance 𝑅𝑘

matrices might change with each time step or measurement, however here they are assumed as

constant, so they will be represented without the subindex 𝑘.

3.1.2 The Computational Origins of the KF

Define x̂−
𝑘 ∈ R𝑛 to be the a priori state estimate at step 𝑘 given knowledge of the process

at step 𝑘 − 1, and x̂𝑘 ∈ R𝑛 to be the a posteriori state estimate at step 𝑘 given measurement z𝑘.

Then the a priori and a posteriori estimate errors can be defined as

e−𝑘 = x𝑘 − x̂−
𝑘 ,

e𝑘 = x𝑘 − x̂𝑘.
(9)

The a priori estimate error covariance matrix is then

𝑃−
𝑘 = E

[︀
e−𝑘 e

−
𝑘
ᵀ]︀
, (10)
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and the a posteriori estimate error covariance matrix is

𝑃𝑘 = E [e𝑘e𝑘
ᵀ] . (11)

In deriving the equations for the KF, in order to find an equation that computes an a

posteriori state estimate x̂𝑘 as a linear combination of the a priori estimate x̂−
𝑘 and a weighted

difference between an actual measurement z𝑘 and a measurement prediction 𝐻x̂−
𝑘 as shown in

Equation (12)

x̂ = x̂−
𝑘 + 𝐾𝑘

(︀
z𝑘 −𝐻x̂−

𝑘

)︀
. (12)

The difference
(︀
z𝑘 −𝐻x̂−

𝑘

)︀
in Equation (12) is called the measurement innovation.

The innovation reflects the discrepancy between the predicted measurement 𝐻�̂�−
𝑘 and the actual

measurement 𝑧𝑘. A residual of zero means the two are in complete agreement.

The 𝑛 × 𝑚 matrix 𝐾𝑘 in Equation (12) is chosen to be the gain or blending factor

or, even, Kalman gain that minimizes the a posteriori error covariance equation (11). This

minimization can be accomplished by first substituting Equation (12) into the above definition

for 𝑒𝑘, substituting that into Equation (11), performing the indicated expectations, taking the

derivate of the result with respect to 𝐾𝑘, setting that result equal to zero, and then solving for

𝐾𝑘. One form of the resulting 𝐾𝑘 that minimizes Equation (11) is given by

𝐾𝑘 = 𝑃−
𝑘 𝐻𝑇

(︀
𝐻𝑃−

𝑘 𝐻𝑇 + 𝑅
)︀−1

. (13)

Looking at Equation (13), it can be seen that as the measurement error covariance 𝑅

approaches zero, the gain 𝐾 weights the residual more heavily. Specifically,

lim
𝑅𝑘→0

𝐾𝑘 = 𝐻−1. (14)

On the other hand, as the a priori estimate error covariance 𝑃−
𝑘 approaches zero, the gain 𝐾

weights the residual less heavily. Noting that this limit presented only can be done if the matrix

𝐻 is quadratic. Specifically

lim
𝑃−
𝑘 →0

𝐾𝑘 = 0. (15)

Another way of thinking about the weighting by 𝐾𝑘 is that as the measurement error

covariance 𝑅 approaches zero, the actual measurement z𝑘 is more reliable, while the predicted
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measurement 𝐻x̂−
𝑘 is less reliable. On the other hand, as the a priori estimate error covariance

𝑃−
𝑘 approaches zero the actual measurement z𝑘 is less reliable, while the predicted measurement

𝐻x̂−
𝑘 is more reliable.

3.1.3 The Probalistic Origins of the KF

The justification for Equation (12) is based on the probability of the a priori estimate

x̂−
𝑘 conditioned on all prior measurement z𝑘 (Bayes’ rule). The Kalman filter maintains the first

two moments of the state distribution,

E[x𝑘] = x̂𝑘,

E[(x𝑘 − x̂𝑘)(x𝑘 − x̂𝑘)ᵀ] = 𝑃𝑘.
(16)

The a posteriori state estimate Equation (12) reflects the mean (the first moment) of the state

distribution - it is normally distributed if the conditions of Equation (7) and Equation (8) are

met. The a posteriori estimate error covariance Equation (11) reflects the variance of the state

distribution (the second non-central moment). In other words,

𝑝 (x𝑘|z𝑘) ∼ 𝒩 (𝐸[x𝑘],𝐸 [(x𝑘 − x̂𝑘)(x𝑘 − x̂𝑘)ᵀ])

= 𝒩 (x̂𝑘,𝑃𝑘) .
(17)

For more information about the probabilistic origins of the Kalman filter, see (Brown; Hwang,

1983).

3.1.4 The Discrete KF Algorithm

The KF estimates a process by using a form of feedback control: the filter estimates the

process state at some time and then obtains feedback in the form of noisy measurements (Figure

16). As such, the equations for the KF can be seperated in two steps: time update equations and

measurement update equations. The time update equations are responsible for projecting forward,

in time, the current state and error covariance estimates to obtain the a priori estimates for the

next time step. The measurement update equations are responsible for the feedback - i.e. for

incorporating a new measurement into the a priori estimate to obtain an improved a posteriori

estimate.

The time update equations can also be thought of as predictor equations, while the mea-
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Figure 16 – KF feedback control.

KF

Source: Made by the author.

surement update equations can be thought of as corrector equations. Indeed the final estimation

algorithm resembles that of a predictor-corrector algorithm for solving numerical problems as

shown in Figure 17.

Figure 17 – The simplified discrete Kalman filter cycle. The time update projects the current state estimate
ahead in time. The measurement update adjusts the projected estimate by an actual measurement
at that time.

Time Update 
(“Predict”) 

Measurement 
Update 

(“Correct”) 

Source: Based on (Welch; Bishop, 2001).

The specific equations for the time updates are given by Equations (18) and (19).

x̂−
𝑘 = 𝐴x̂−

𝑘−1 + 𝐵u𝑘, (18)

𝑃−
𝑘 = 𝐴𝑃𝑘−1𝐴

𝑇 + 𝑄, (19)

and the equations for the measurement updates are given by (20)-(22).

𝐾𝑘 = 𝑃−
𝑘 𝐻𝑇

(︀
𝐻𝑃−

𝑘 𝐻𝑇 + 𝑅
)︀−1

, (20)

x̂𝑘 = x̂−
𝑘 + 𝐾𝑘 (z𝑘 −𝐻x̂𝑘) , (21)

𝑃𝑘 = (𝐼 −𝐾𝑘𝐻)𝑃−
𝑘 . (22)

Note how the time update Equations (18) and (19) project the state and covariance

estimates forward from time step 𝑘 − 1 to step 𝑘. 𝐴 and 𝐵 are from Equation (5), while 𝑄 is

given by Equation (7).
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The first task during the measurement update is to compute the Kalman gain, 𝐾𝑘. Note

that Equation (20) is equal to Equation (13). The next step is to actually measure the process to

obtain 𝑧𝑘, and then to generate an a posteriori state estimate by incorporating the measurement

as in Equation (21). Again Equation (21) is simply Equation (12) repeated here for completeness.

The final step is to obtain an a posteriori error covariance estimate via Equation (22).

After each time and measurement update pair, the process is repeated with the previous

a posteriori estimates used to project or predict the new a priori estimates. This recursive nature

is one of the very appealing features of the Kalman filter. It makes practical implementations

much more feasible than, e.g., an implementation of a Wiener filter (Brown; Hwang, 1983) which

is designed to operate on all of the data directly for each estimate. The Kalman filter instead

recursively conditions the current estimate on all of the past measurements. Figure 18 offers a

complete picture of the operation of the filter, combining the high-level diagram of Figure 17

with the equations from equations (18)-(22).

Figure 18 – A complete picture of the operation of the Kalman filter, combining the high-level diagram of
Figure 17 with the equations from Equations (18)-(22).
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3.2 THE EXTENDED KALMAN FILTER

As described in Section 3.1, the Kalman filter addresses the general problem of esti-

mating the state x𝑘 ∈ R𝑛 from a discrete-time controlled process that is governed by a linear

stochastic equation. However, in this work, the problem presented has is a non-linear model. So

it is important to consider one of the most successful applications of the Kalman filtering, named

the EKF, which linearizes the non-linear system around the current mean and covariance (Welch;

Bishop, 2001).

3.2.1 The Process to be Estimated

Similarly to a Taylor series, the process around the current estimate can be linearized

using partial derivatives of the process and the measurement functions, yielding estimates even

in the face of non-linear relationships. Assume that the process has a state vector x𝑘 ∈ R𝑛, and

is governed by the non-linear stochastic difference equation

x𝑘 = 𝑓𝑘 (x𝑘−1,u𝑘,w𝑘−1) , (23)

with measurement z𝑘 ∈ R𝑚 given by

z𝑘 = ℎ𝑘 (x𝑘,v𝑘) , (24)

where the random variables w𝑘 and v𝑘 represent the process and measurement noise as in

Equations (7) and (8), respectively. In this case the non-linear function 𝑓𝑘 in the difference

Equation (23) relates the state at the previous time step 𝑘 − 1 to the state at the current time

step 𝑘, including as parameters any input function 𝑢𝑘 and the zero-mean process noise w𝑘. The

non-linear function ℎ𝑘 in the measurement Equation (24) relates the state x𝑘 to the measurement

z𝑘.

There are cases that the functions 𝑓𝑘 and ℎ𝑘 varies according to the time 𝑘, but in this

cases these functions do not varies, so they will be represented as 𝑓 and ℎ.

The state and measurement vectors can be approximated as

x̃𝑘 = 𝑓 (x̂𝑘−1,u𝑘,0) , (25)
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and

z̃𝑘 = ℎ (x̂𝑘,0) , (26)

where x̂𝑘 is some a posteriori estimate of the state from a previous time step 𝑘.

It is important to note that a fundamental drawback of the EKF is that the distributions

of the random processes, are no longer normal after undergoing their respective nonlinear

transformations. The EKF is simply an ad hoc state estimator that only approximates the

optimality of Bayes’ theorem by linearization.

3.2.2 The Computational Origins of the EKF

In order to estimate a process with a non-linear difference and measurement relationships

consider the linearized dynamics

x𝑘 ≈ x̃𝑘 + 𝐴 (x𝑘−1 − x̂𝑘−1) + 𝑊w𝑘−1, (27)

z𝑘 ≈ z̃𝑘 + 𝐻 (x𝑘 − x̃𝑘) + 𝑉 v𝑘, (28)

where

• x𝑘 and z𝑘 are the actual state and measurement vectors;

• x̃𝑘 and z̃𝑘 are the approximated state and approximated measurement vectors from Equati-

ons (25) and (26);

• x̂𝑘 is an a posteriori estimate of the state at step 𝑘;

• the random variables w𝑘 and v𝑘 represent the process and measurement noise as in

Equations (7) and (8), respectively;

• �̇� is the Jacobian matrix of the partial derivates of 𝑓 with respect to x, that is

�̇�[𝑖,𝑗] =
𝜕𝑓[𝑖]
𝜕x[𝑗]

(�̂�𝑘−1,𝑢𝑘,0) , (29)

where �̇�[𝑖,𝑗] refers to the (𝑖,𝑗) element of matrix 𝐴;

• �̇� is the Jacobian matrix of partial derivates of 𝑓 with respect to w,

�̇�[𝑖,𝑗] =
𝜕𝑓[𝑖]
𝜕w[𝑗]

(�̂�𝑘−1,𝑢𝑘,0) ; (30)
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• �̇� is the Jacobian matrix of partial derivatives of ℎ with respect to x,

�̇�[𝑖,𝑗] =
𝜕ℎ[𝑖]

𝜕x[𝑗]

(�̃�𝑘,0) ; (31)

• �̇� is the Jacobian matrix of partial derivatives of ℎ with respect to v,

�̇�[𝑖,𝑗] =
𝜕ℎ[𝑖]

𝜕v[𝑗]

(�̃�𝑘,0) . (32)

For simplicity in the notation, it is not used the time step subscript 𝑘 with the Jacobians

�̇�, �̇� , �̇� and �̇� , even though they are different at each time step.

Now, it is defined as a new notation for the prediction error,

ẽx𝑘
= x𝑘 − x̃𝑘, (33)

and the measurement prediction error,

ẽz𝑘 = z𝑘 − z̃𝑘. (34)

In practice one does not have access to x𝑘 in Equation (33), which is the actual state

vector, it is the quantity one is trying to estimate. On the other hand, one does have access to

z𝑘 in Equation (34), which is the actual measurement that one is using to estimate 𝑥𝑘. Using

Equations (33) and (34), it is possible to write the governing equations for an error process as

ẽx𝑘
≈ x̃𝑘 + 𝐴 (x𝑘−1 − x̂𝑘−1) + 𝑊w𝑘−1 − x̃𝑘,

ẽx𝑘
≈ 𝐴 (x𝑘−1 − x̂𝑘−1) + 𝜀𝑘,

(35)

ẽz𝑘 ≈ z̃𝑘 + 𝐻 (x𝑘 − x̃𝑘) + 𝑉 v𝑘 − z̃𝑘,

ẽz𝑘 ≈ 𝐻 ẽx𝑘
+ 𝜂𝑘,

(36)

where 𝜀𝑘 and 𝜂𝑘 represent new independent random variables having zero mean and covariance

matrices 𝑊𝑄𝑊 𝑇 and 𝑉 𝑅𝑉 𝑇 , with 𝑄 and 𝑅 as in Equations (7) and (8), respectively, these new

variables are replacing the terms 𝑊wk−1 and 𝑉 v𝑘, respectively.

Notice that the Equations (35) and (36) are linear and that they closely resemble the

difference and measurement Equations (5) and (6) from the discrete Kalman filter. This motivates

the use of the actual measurement residual 𝑒𝑧𝑘 in the Equation (34) and a second (hypothetical)

Kalman filter to estimate the prediction error 𝑒𝑥𝑘
given by (35). This estimate, call it 𝑒𝑘, could

then be used along with Equation (33) to obtain the a posteriori state estimates for the original

non-linear process as

x̂𝑘 = x̃𝑘 + ê𝑘. (37)
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The random variables of Equation (35) and Equation (36) have approximately the

following probability distributions (represented by the letter 𝑝):

𝑝(ẽx𝑘
) ∼ 𝒩 (0,𝐸[ẽx𝑘

ẽᵀx𝑘
]),

𝑝(𝜀𝑘) ∼ 𝒩 (0,𝑊𝑄𝑘𝑊
ᵀ),

𝑝(𝜂𝑘) ∼ 𝒩 (0,𝑉 𝑅𝑘𝑉
ᵀ).

Given these approximations, the Kalman filter equation used to estimate ê𝑘 could be

represented by

ê𝑘 = 𝐾𝑘ẽz𝑘 . (38)

and substituting Equation (38) back into Equation (37) and making use of Equation (34), it can

be seen that:
x̂𝑘 = x̃𝑘 + 𝐾𝑘ẽz𝑘

= x̃𝑘 + 𝐾𝑘(z𝑘 − z̃𝑘).
(39)

Now Equation (39) can be used for the measurement update in the extended Kalman

filter, with x̃𝑘 and z̃𝑘 coming from Equation (25) and Equation (26), and the Kalman gain 𝐾𝑘

coming from Equation (20) with appropriate substitution for the measurement error covariance.

Equations (40)-(44) represent the complete set of EKF equations. Note that x̂−
𝑘 was

substituted for x̃𝑘 to remain consistent with the earlier “super minus” a priori notation, and that

now can be attached the subscript 𝑘 to the Jacobians �̇�, �̇� , �̇� and �̇� , to reinforce the notation

that they are different at each time step.

x̂−
𝑘 = 𝑓 (x̂𝑘−1,𝑢𝑘,0) , (40)

𝑃−
𝑘 = 𝐴𝑘𝑃𝑘−1𝐴

𝑇
𝑘 + 𝑊𝑘𝑄𝑘−1𝑊

ᵀ
𝑘 . (41)

As with the basic discrete Kalman filter, the time update Equations (40) and (41) project

the state and covariance estimates from the previous time step 𝑘 − 1 to the current time step 𝑘.

As with the basic discrete Kalman filter, the measurement update Equations (42)-(44)

correct the state and covariance estimates with the measurement z𝑘.

𝐾𝑘 = 𝑃−
𝑘 𝐻𝑇

𝑘

(︀
𝐻𝑘𝑃

−
𝑘 𝐻ᵀ

𝑘 + 𝑉𝑘𝑅𝑘𝑉
ᵀ
𝑘

)︀−1
, (42)
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x̂𝑘 = �̂�−
𝑘 + 𝐾𝑘

(︀
𝑧𝑘 − ℎ(�̂�−

𝑘 ,0)
)︀
, (43)

𝑃𝑘 = (𝐼 −𝐾𝑘𝐻𝑘)𝑃−
𝑘 . (44)

Figure 19 offers a complete picture of the operation of the EKF, combining the high-level

diagram of Figure 17 with the equations from Equations (40)-(44).

Figure 19 – A complete picture of the operation of the extended Kalman filter, combining the high-level
diagram of Figure 17 with the Equations (40)-(44).
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3.3 CHAPTER 3 SYMBOL LIST

x𝑘 variable state

z𝑘 measurement state

u𝑘 control input

w𝑘 process noise

v𝑘 measurement noise

𝑘 time step

𝐴 dynamic matrix

𝐵 matrix relates the control input

𝐻 mtrix relates the state to the mesurement

𝑄𝑘 process noise covariance matrix

𝑅𝑘 measurement noise covariance matrix

x̂−
𝑘 a priori state estimate

x̂𝑘 a posteriori state estimate

e−𝑘 a priori estimate error

e𝑘 a posteriori estimate error

𝑃−
𝑘 a priori error covariance matrix

𝑃𝑘 a posteriori error covariance matrix

𝐾𝑘 Kalman gain

𝑓𝑘 non-linear function

ℎ𝑘 non-linear function

x̃𝑘 approximated state vector

z̃𝑘 aproximated measurement vector

�̇� Jacobian matrix of the partial derivatives of 𝑓 respect to x

�̇� Jacobian matrix of the partial derivatives of 𝑓 respect to w

�̇� Jacobisn matrix of partial derivatives of ℎ respect to x
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�̇� Jacobian matrix of partial derivatives of ℎ with respect to v

x̃𝑥𝑘
prediction error

ẽ𝑧𝑘 measurement prediction error

𝜀𝑘 independent random variable

𝜂𝑘 independent random variable
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4 METHODOLOGY

This chapter presents the methodology used to implement the EKF. The EKF was

chosen because the ECG signal is non-linear. Some previous results of the EKF implementation

are also presented. Part of this methodology was based on Sameni et al. (2005), Sameni et al.

(2007).

4.1 EXTENDED KALMAN FILTER IMPLEMENTATION

With this general overview of KF theory and the previously developed dynamical ECG

model explained in Chapters 3 and 2, respectively, it is possible to use the synthetic dynamical

ECG model within a KF framework. To do so, the dynamic equations in Equation (1) need to be

modified. As presented in (Sameni et al., 2005), these equations can be transferred into polar

coordinates. Moreover, assuming the 𝑧𝑘 state variable in Equation (1) to be in millivolts, 𝑏𝑖’s and

𝜃𝑖’s in radians, and time in seconds, it is clear that the 𝑎𝑖’s are in mV/(rads × s). To simplify

the dimensions and later relate the model parameters with real ECG recordings, the 𝑎𝑖 term in

system (1) will be replaced with:

𝑎𝑖 =
𝛼𝑖𝜔

𝑏2𝑖
𝑖 ∈ {𝑃,𝑄,𝑅,𝑆,𝑇}, (45)

where the 𝛼𝑖 are the peak amplitudes of the Gaussian functions used for modeling each of

the ECG components, in millivolts. This definition may be verified from (1), by neglecting the

baseline wander term (𝑧−𝑧0) and integrating the �̇� equation with respect to 𝑡. With these changes,

the new form of the dynamic equations in cylindrical coordinates is

�̇� = 𝑟(1 − 𝑟),

𝜃 = 𝜔,

�̇� = −
∑︁

𝑖∈ 𝑃,𝑄,𝑅,𝑆,𝑇

𝛼𝑖𝜔

𝑏2𝑖
∆𝑖 exp

(︂
−∆𝜃2𝑖

2𝑏2𝑖

)︂
− (𝑧 − 𝑧0),

(46)

where 𝑟 and 𝜃 are, respectively, the radial and angular state variables in polar coordinates. This

new sets of equations have some benefits compared to the original equations in (McSharry et

al., 2003). First of all, the polar form is much simpler and its interpretation is straightforward.

Accordingly, the first equation will reach the limit cycle 𝑟 = 1 with any initial value of 𝑟, but

as it further seen the second and third equations of (46) are independent from 𝑟. This means
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that the first differential equation may be excluded as it does not affect the synthetic ECG (the 𝑧

state variable). Another benefit of this representation is that the phase parameter 𝜃 is an explicit

state-variable, noting that this parameter indicates the angular location of the P, Q, R, S and T

waves in Table 1. This point is further used in the implementation of the EKF (Sameni et al.,

2005). In this case, the simplified dynamic model of the equation (46) in its discrete form, with

the assumption of a small sampling period of 𝛿 is as follows:

𝜃𝑘+1 = (𝜃𝑘 + 𝜔𝜃) mod 2𝜋,

𝑧𝑘+1 = −
∑︁
𝑖

𝛿
𝛼𝑖𝜔

𝑏2𝑖
∆𝜃𝑖 exp

(︂
−∆𝜃2𝑖

2𝑏2𝑖

)︂
+ 𝑧𝑘 + 𝜂,

(47)

where ∆𝜃𝑖 = (𝜃𝑘 − 𝜃𝑖) mod 2𝜋, 𝜂 is a random additive noise that models the inaccuracies of

the dynamic model (including the baseline wander), and the summation over 𝑖 is taken over the

number of Gaussian functions (or turning points) used for modeling the shape of the desired

ECG. In fact, due to the flexibility of Gaussian mixtures, it is believed that, by using a sufficient

number of Gaussian functions, they can be fitted to signals recorded from different ECG leads.

However, to illustrate the general filtering framework, it is used only five Gaussians to model the

ECG channels containing the P, Q, R, S and T waves.

Henceforth, 𝜃𝑘 and 𝑧𝑘 are assumed to be the state variables, and 𝜔, 𝛼𝑖, 𝜃𝑖, 𝑏𝑖 and 𝜂 are

assumed as independent and identically distributed Gaussian random variables considered to

be process noises. Following the notation of equation (25), the system state and process noise

vectors are defined as follows:

x𝑘 = [𝜃𝑘,𝑧𝑘]ᵀ,

w𝑘 = [𝛼𝑃 ,...,𝛼𝑇 ,𝑏𝑃 ,...,𝑏𝑇 ,𝜃𝑃 ,...,𝜃𝑇 ,𝜔,𝜂]ᵀ,
(48)

and the process noise covariance matrix is given as 𝑄𝑘 = 𝐸[𝑤𝑘𝑤
𝑇
𝑘 ].

To set up an EKF model based on the nonlinear synthetic model of equation (47), it is

necessary to have a linearized version of the model. Consequently, the state-equation of equation

(47) requires linearization using the Jacobian matrix of the partial derives shown in equations

(25), (26), (29), (30), (31) and (32). By defining

𝜃𝑘+1 = 𝑓1(𝜃𝑘,𝜔,𝑘),

𝑧𝑘+1 = 𝑓2(𝜃𝑘,𝑧𝑘,𝜔,𝛼𝑖,𝜃𝑖,𝑏𝑖,𝜂,𝑘),
(49)
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following equations represent the linearized model with respect to the state variables 𝜃𝑘 and 𝑧𝑘:

𝜕𝑓1
𝜕𝑧𝑘

= 0,

𝜕𝑓1
𝜕𝜃𝑘

=
𝜕𝑓2
𝜕𝑧𝑘

= 1,

𝜕𝑓2
𝜕𝜃𝑘

= −
∑︁

𝑖∈𝑃,𝑄,𝑅,𝑆,𝑇

𝛿
𝛼𝑖𝜔

𝑏2𝑖

[︂
1 − ∆𝜃2𝑖

𝑏2𝑖

]︂
exp

(︂
−∆𝜃2𝑖

2𝑏2𝑖

)︂
.

(50)

Similarly, the linearization of Equation (49) with respect to the process noise components yields

in 𝑖 ∈ {𝑃,𝑄,𝑅,𝑆,𝑇}

𝜕𝑓1
𝜕𝜔

= 𝛿,

𝜕𝑓2
𝜕𝜂

= 1,

𝜕𝑓1
𝜕𝛼𝑖

=
𝜕𝑓1
𝜕𝑏𝑖

=
𝜕𝐹1

𝜕𝜃𝑖
=

𝜕𝐹1

𝜕𝜂
= 0,

𝜕𝑓2
𝜕𝛼𝑖

= −𝛿
𝜔∆𝜃𝑖
𝑏2𝑖

exp

(︂
−∆𝜃2𝑖

2𝑏2𝑖

)︂
,

𝜕𝑓2
𝜕𝑏𝑖

= 2𝛿
𝛼𝑖𝜔∆𝜃𝑖

𝑏3𝑖

[︂
1 − ∆𝜃2𝑖

2𝑏2𝑖

]︂
exp

(︂
−∆𝜃2𝑖

2𝑏2𝑖

)︂
,

𝜕𝑓2
𝜕𝜃𝑖

= 𝛿
𝛼𝑖𝜔

𝑏2𝑖

[︂
1 − ∆𝜃2𝑖

𝑏2𝑖

]︂
exp

(︂
−∆𝜃2𝑖

2𝑏2𝑖

)︂
,

𝜕𝑓2
𝜕𝜔

= −
∑︁
𝑖

𝛿
𝛼𝑖∆𝜃𝑖
𝑏2𝑖

exp

(︂
−∆𝜃2𝑖

2𝑏2𝑖

)︂
.

(51)

The noisy ECG recordings are assumed to be observations for the EKF. The relationship

between the states and observations of the EKF depends on the location of the electrodes and

the origin of the measurement noise. For example, motion artifacts, environmental noise, or

bioelectrical artifacts such as electromyography or electrogastric noise, may be assumed as the

measurement noises. While the measurement noise can generally contaminate the ECG in a

non-linear and non-Gaussian form, the results are based on the assumption of additive Gaussian

noise.

In addition to the noisy ECG observations, the phase 𝜃 may also be added as a second

observation. In fact, by studying the values of Table 1, it is noticed that the R-peak is always

assumed to be located at 𝜃 = 0 and the ECG contents lying between two consecutive R-peaks are

assumed to have a phase between 0 and 2𝜋 (or −𝜋 and 𝜋). So by simply detecting the R-peaks

an additional observation is achieved.

Hence the phase observations (𝜑𝑘) and noisy ECG measurements (𝑠𝑘) may be related to
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the state vector as follows ⎡⎣𝜑𝑘

𝑠𝑘

⎤⎦ =

⎡⎣1 0

0 1

⎤⎦⎡⎣𝜃𝑘
𝑧𝑘

⎤⎦ +

⎡⎣𝑢𝑘

𝑣𝑘

⎤⎦ , (52)

where 𝑅𝑘 = 𝐸 [[𝑢𝑘,𝑣𝑘]ᵀ[𝑢𝑘,𝑣𝑘]] is the observation noise covariance matrix.

In the context of estimation theory, the variance of the observation noise in equation

(52) represents the degree of reliability of a single observation. In other words, when a rather

precise measurement of the system states is valid the value of 𝑅𝑘 is low, and the Kalman filter

gain is adapted such as to rely on the specific measurement. On the other hand, for the epochs

with noise where there are no measurements available, the value of 𝑅𝑘 is high and the Kalman

filter tends to follow its internal dynamics rather than tracking the observations. This point may

be used to include additional measurements for the angle 𝜃. In fact, 𝜃𝑘 has a periodic value that

starts from 𝜃 = 0 at the R-peak and ends at 𝜃 = 2𝜋 with the next R-peak. Although the only

valid phase observation is obtained from the R-peak locations, it is possible to linearly assign

a phase value between 0 and 2𝜋 to the intermediate samples. This means that even for angles

other than 𝜃 = 0, it is possible to assign a phase measurement between 0 and 2𝜋 to each angle,

as illustrated in Figure 20.

Figure 20 – Illustration of the phase assignment approach.
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Before the implementation of the EKF model, it is necessary to have an estimate of the

values of the process and measurement noise covariance matrices. Generally, for the 17 noise

parameters of equation (49) a 17 × 17 process noise covariance matrix 𝑄𝑘 should be found, but
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if the noises are uncorrelated with each other, the matrix is simplified to a diagonal matrix. The

measurement noise covariance matrix 𝑅𝑘 has a similar case.

To built the process noise covariance matrix 𝑄𝑘 it will be used the exact values to

simulate the normal ECG from Table 1, since the EKF entries are real, the simulated ECG signal

is an estimative of the ECG should seem.

The angular frequency 𝜔 may be set to 𝜔 = 2𝜋/𝑇 , where 𝑇 is the RR-interval period

in each ECG cycle. A simpler approximation is to use a global 𝜔 using the average RR-interval

of the whole signal.

The variance of the process noise 𝜂 should also be estimated. Remembering that 𝜂 is a

parameter that represents the imprecision of the dynamic model, and after some tests it will be

considered a value approximate from zero.

From equation (52) it can be observed that 𝑢𝑘 is the phase measurement noise. As

mentioned before, the phase for each beat is determined from the R-peaks of the signal. A

possible noise source for 𝑢𝑘 is the sampling error that occurs when the actual R-peak is located

between two sample times. By considering that each ECG cycle is equivalent to 2𝜋 in the

phase domain, 𝑢𝑘 would be uniformly distributed in the range of ±𝜔𝛿/2, where 𝜔 is the angular

frequency and 𝛿 is the sampling period. With this assumption:

𝐸
[︀
𝑢2
𝑘

]︀
= (𝜔𝛿)2/12. (53)

The method used to estimate the variance of the measurement noise 𝑣𝑘 is to estimate

the noise power from the deviations of the whole signal around the ECG signal, but after some

tests it was observated that this value was approximately zero.
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4.2 CHAPTER 4 SYMBOL LIST

𝛼𝑖 peak amplitude of the Gaussian

𝑎𝑖 Gaussian amplitude

𝑏𝑖 Gaussian width

𝜃𝑖 Gaussian center

𝑧0 baseline

𝑟 radial state variable

𝜃 angular state variable

𝑧𝑘 state variable

𝜔 angular frequency

𝜂 random additive noise

x𝑘 system state vector

w𝑘 process noise vector

𝜑𝑘 phase observation

𝑠𝑘 noisy ECG measurement

𝑢𝑘 measurement phase noise

𝑣𝑘 measurement noise

𝑅𝑘 measurement noise covariance matrix

𝑄𝑘 process noise covariance matrix

𝑇 RR-interval period in each ECG cycle

𝛿 small sampling period
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5 RESULTS

From the methodology of the work, it should be borne in mind that the construction of

the EKF is entirely based on a synthetic healthy ECG signal, with healthy meaning a normal

sinus rhythm ECG, based on the data presented in Chapter 2.

The idea of building an EKF based entirely on a synthetic healthy signal would be

for the filter to “learn” just how a healthy ECG should behave, because as soon as something

different from that healthy or normal ECG appears, the filter would detect an anomaly or error,

or be a disease. Thus, important parameters for the EKF such as the error covariance matrix (𝑃𝑘),

the process noise (𝑤𝑘), the variance matrix of the process noise (𝑄𝑘), the measuremente noise

([𝑢𝑘,𝑣𝑘]) and the variance matrix of the measurement noise (𝑅𝑘) are defined based on a synthetic

normal sinus ECG which were created with 80 bpm and a sampling frequency of 128 Hz, as

shown in Figure 21. And the specific values of these parameters are:

𝑃𝑘 =

⎛⎝4𝜋2 0

0 (10 |x𝑘|)2

⎞⎠ ,

w𝑘 =
(︁
𝑎𝑖 𝑏𝑖 𝜃𝑖 𝜔 0

)︁
,

𝑄𝑘 = diag
(︁

(0.1 · 𝑎𝑖)2 (0.5 · 𝑏𝑖)2 (0.05 · 𝜃𝑖)2 𝜔2
𝑠𝑡𝑑 0

)︁
,

[𝑢𝑘,𝑣𝑘] =
(︁

0 0
)︁
,

𝑅𝑘 =

⎛⎝0.3584 · 10−3 0

0 1 · 10−6

⎞⎠ ,

(54)

where 𝑎𝑖, 𝑏𝑖, 𝜃𝑖 are values taken from Table 1, 𝜔 is the angular frequency with the value of 8.3939,

𝜔𝑠𝑡𝑑 is the heart-rate standard deviation (𝜔𝑠𝑡𝑑 = 0.0667), and finally diag means that the matrix

𝑄𝑘 is a diagonal matrix.

Once set up all the EKF parameters, the next step is to define the EKF states, which in

this case are the real signals of healthy ECG with some traces of disease. And so, the EKF will

try to estimate the signal.

To validate the work, a signal that contains healthy and diseased samples from a real

ECG, i.e., an ECG obtained from a human being, must be estimated as a state. To build this

signal, real ECG samples from the MIT database were used.

As there are many heart diseases, it was necessary to create a criterion to choose which

diseases would be used to test the effectiveness of EKF. Therefore, observing the existing heart
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Figure 21 – Synthetic normal ECG signal with 80 bpm and 𝑓𝑠 = 128 Hz.
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diseases, it was noticed that there are two ways to modify the behavior of a healthy ECG (normal

sinus rhythm). Thus, this work divided heart disease into two major classes. The first class is

composed of those heart diseases that modify the patterning of points P, Q, R, S, and T that a

healthy ECG has. Examples of this disease are ventricular flutter and ventricular tachycardia,

shown in Figures such and such , respectively. The second class comprises those diseases that

have P, Q, R, S, and T points well defined as well as a healthy ECG, but the heart rate is altered,

with examples being bradycardia, shown in Figure 11, which slows the heart rate and sinus

tachycardia that accelerates the heartbeat, shown in the Figure 13.

Based on this observation and the division of heart diseases into two classes, ventricular

flutter was chosen to represent the class of heart diseases that modify the structure of the ECG,

and supraventricular tachycardia was chosen to represent the class of heart diseases that modify

the rhythm cardiac. Thus, two signals will be created, a first signal containing healthy ECG and

ventricular flutter samples, and a second signal containing healthy ECG and supraventricular

tachycardia samples.

Once defined which diseases will be used for the functioning of the EKF, it must be

defined how the validation of the proposal will be carried out, that is, if the EKF serves as a

classifier of heart diseases. Therefore, two analyzes will be carried out: the first analysis consists

of a qualitative analysis of the error signal of the state to be estimated with the estimated signal,

and the second analysis, already a quantitative analysis, will calculate the energy of the windows.
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For the calculation of energy used the Equation (55):

𝐸𝑔 =
sig2

𝑤𝑛𝑑
, (55)

where sig represents the sign of the error that consists of the difference between the estimated

signal and the signal to be estimated, and 𝑤𝑛𝑑 represents the window size, that is, the number of

samples in that window.

5.1 FIRST ANALYSIS: WHEN THE MORPHOLOGY CHANGES

First, it will be analyzed the behavior of the EKF in relation to changing the ECG

structure. So, the Figure 22 shows the signal created and the output of the EKF. The dashed red

line represents the signal created with healthy ECG samples and ventricular flutter heart disease,

which is the state to be estimated by the EKF, the solid black line is the output (response) of the

EKF, the estimated state.

Also, in relation to Figure 23, the blue dashed vertical lines are the separations of the

created windows, these windows were created for the analysis of the signal energy. The windows

were created according to the healthy and sick samples.

In a visual and comparative analysis, it can be seen that apparently the filter was able

to estimate both the behavior of the healthy signal and the behavior of the ventricular flutter. In

a closer look, shown in Figure 23, it can be seen that the filter made a very small mistake in

estimating the ventricular flutter, so, in other words, the filter was able to estimate the morphology

change in a satisfactory way.

However, the chosen classification criteria will be based on the sign of the error, not the

state estimated by the EKF itself. As mentioned before, a qualitative analysis of the error signal

will be done first, and then a quantitative analysis will be done.

So, Figure 23 shows the error between the sign to be estimated and the EKF output. As

can be seen, the windows that indicate the ventricular flutter samples have a greater error when

compared to the error presented by the windows that indicate the healthy ECG samples. This

error indicates that there is an anomaly in the signal, and this anomaly can be translated as a

disease, which in this case is a disease that has totally changed the structure of the ECG.

Now, performing a quantitative analysis, the energy of the windows will be calculated

accordind to Equation (55). Figure 23 brings the energy values of each window, and Table 3
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Figure 22 – EKF Output: ventricular flutter.
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Figure 23 – Error signal of the input in relation to the EKF output: ventricular flutter.
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better illustrates these values.
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Table 3 – The value of the ventricular flutter energy windows.
Window Sample Energy

1 Normal sinusal rythm 1 4.10347 · 10−5

2 Ventricular flutter 1 7.35513 · 10−3

3 Normal sinusal rythm 2 1.21051 · 10−5

4 Ventricular flutter 2 9.91072 · 10−3

5 Normal sinusal rythm 3 3.33918 · 10−5

6 Ventricular flutter 3 1.03094 · 10−2

5.2 SECOND ANALYSIS: WHEN THE HEART RYTHM CHANGES

The second analysis to be done will be in relation to diseases that alter heart rate. Then,

a signal was created with ECG samples of normal sinus rhythm and supraventricular tachycardia.

And just as the first case presented was analyzed, this will be analyzed equally.

So, Figure 24 shows the signal created and the output of the EKF. The dashed red line

represents the signal created with healthy ECG and supraventricular tachycardia cardiopathy

samples, which is the status to be estimated by the EKF, while the continuous black line is the

output (response) of the EKF, the estimated status.

And just like in the first case presented, the blue dashed vertical lines are the separations

of the created windows, these windows were created for the analysis of the signal energy. The

windows were created according to healthy and sick samples.

Figure 24 – EKF Output: ventricular flutter.
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As can be seen in Figure 24, the EKF was able to better estimate the supraventricular
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tachycardia than the ventricular flutter, however the classification analyzes will be based on the

error sign corresponding to Figure 25.

Figure 25 – Error signal of the input in relation to the EKF output: supraventricular tachycardia.
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As in the case of ventricular flutter, the qualitative analysis of the error signal of

supraventricular tachycardia cardiopathy indicates a greater error in disease samples when

compared to errors in healthy samples.

Regarding the quantitative analysis, the energy of the windows will be calculated

according to Equation (55). Figure 25 brings the energy values of each window, and Table 4

better illustrates these values.

Table 4 – The value of the supraventricular tachycardia energy windows.
Window Sample Energy

1 Normal sinusal rythm 1 4.10348 · 10−5

2 Supraventricular tachycardia 1 9.84101 · 10−4

3 Normal sinusal rythm 2 3.45605 · 10−5

4 Supraventricular tachycardia 2 1.75402 · 10−3

5 Normal sinusal rythm 3 7.49997 · 10−5

6 Supraventricular tachycardia 3 8.4432 · 10−4

7 Normal sinusal rythm 4 2.68306 · 10−5
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5.3 COMPARING THE ENERGIES

In order to compare the energies and verify that KF can be used as a classifier, a third

disease was used in the filter, this being ventricular trigeminy. This disease consists of two

healthy heartbeats before one sick heartbeat (Goldberger et al., 2013), the red dashed line in the

Figure 26 better illustrates this disease, just as the continuous black line illustrates the output of

the EKF.

Figure 26 – EKF output: ventricular trigeminy.

100 200 300 400 500 600 700 800 900 1000

-1

-0.5

0

0.5

1

1.5

Source: Made by the author.

Figure 27 shows the error between the sign to be estimated and the EKF output. As done

with the other deseases, windowns were created to calculate the sample energies, the separation

of the windows are shown by the dashed blue lines.

Table 5 express better the energies values.

Table 5 – The value of the ventricular trygeminy energy windows.
Window Sample Energy

1 Normal sinusal rythim 1 4.82359 · 10−5

2 Ventricular trigeminy 1 3.41465 · 10−4

3 Normal sinusal rythim 2 3.20557 · 10−5

4 Ventricular trigeminy 2 2.25208 · 10−4

5 Normal sinusal rythim 3 7.62638 · 10−5

6 Ventricular trigeminy 3 2.60397 · 10−4

7 Normal sinusal rythim 4 8.37457 · 10−5

8 Ventricular trigeminy 4 1.49192 · 10−4
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Figure 27 – Error signal of the input in relation to the EKF output: ventricular trigeminy.
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However, this test was done to build an energy comparison and show the filter’s effecti-

veness. Thus, Figure 28 shows a visual way of comparing the energy of these diseases, axis 𝑥

brings the values of the energies of each sample, and the energies presented are divided by 10−3,

and axis 𝑦 matches the samples, with 0 being set for normal sinus rhythm samples, 1 for supra-

ventricular tachycardia samples, 2 for ventricular trigeminy samples, and 3 for ventricular flutter

samples. The vertical black lines just indicate where the energies begin, in order to demonstrate

that they are diferent, although the sinus normal rythm and the ventricular trigeminy seem to

have the same energy, but the black line proves they do not have the same energy.

Through this comparison, it is possible to see the difference in energies, and the

possibility of using them as a classification criterion. But the focus is to see through the energies

that it is possible to use the EKF as a heart disease classifier.
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Figure 28 – Comparing the energies.
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Source: Made by the author.
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5.4 CHAPTER 5 SYMBOL LIST

𝑃𝑘 error covariance matrix

w𝑘 process noise

𝑎𝑖 Gaussian amplitude

𝑏𝑖 Gaussian width

𝜃𝑖 Gaussian center

𝜔 angular frequency

x𝑘 estimate state-ECG signal

𝑢𝑘 measurement phase noise

𝑣𝑘 measurement noise

𝑅𝑘 measurement noise covariance matrix

𝑄𝑘 process noise covariance matrix

𝜔𝑠𝑡𝑑 heart-rate standard deviation

𝑓𝑠 frequency sampling

diag diagonal matrix

𝐸𝑔 energy

sig sign of the error

𝑤𝑛𝑑 window size
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6 CONCLUSION

The objective proposed in this study was to evaluate whether FK can be used as a

classifier of heart disease or if it can somehow help in these classifications. As the objective is a

study of a new and different technique from the use of KF, the results presented were observed

in a way that allows concluding whether the filter can be used as a classifier or not, and from this

answer, ways of improvement will be suggested technique that should be performed in future

works.

From this objective, the work was developed as follows: first, the concept of synthetic

ECG and what is a KF and its algorithms were presented.

With the definitions of the KF equations and algorithm, it was noticed that this filter is a

state estimator that finds the best solution or answer for a given state that you want to obtain an

indirect measure or obstructed by noise, in the case of this work, the state to be estimated is a

human’s ECG. Throughout the theoretical development of the FK, it was seen that this filter is

an optimal estimator for linear differential equations, and the human ECG does not have a linear

behavior, so it was necessary to use an update of the FK, this being the EKF that is specific for

nonlinear systems and equations. The EKF has the same equations and algorithm as the normal

FK, however, the only difference is that the nonlinear equations are linear by some method, in

the case of this work it was used as a Jacobian linearization form, before starting to execute the

algorithm.

After defining the EKF, the next step would be to define the differential equations

that would represent the human ECG, so Chapter 2 of this dissertation summarized the work

presented by (McSharry et al., 2003), in which in this work the authors developed a system with

three differential equations capable of simulating a Synthetic ECG in a realistic way of a human

being. From these equations it was possible to develop an algorithm for the EKF and validate the

objective of this research.

For the validation of the objective, that is, to obtain results, the following technique was

chosen: The EKF should estimate, as a state, a signal constructed with healthy samples and sick

samples from a real ECG, that is, an ECG obtained from being human. As there are several heart

diseases, a criterion was created to choose which diseases would be used to test the effectiveness

of the EKF, thus, heart diseases were divided into two large classes: the first class is composed of

those heart diseases that modify the standardization of points P, Q, R, S, e, T that a healthy ECG
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has, the ventricular flutter being chosen to represent this class, and the second class is composed

of those diseases that have points P, Q, R, S, e, T well defined as well as a healthy ECG, but the

cardiac rhythm is altered, being chosen the supraventricular tachycardia to represent this class.

The developed EKF was based entirely on a healthy synthetic ECG, that is, normal

sinus rhythm, as the expectation was that the filter would only “learn” to estimate a healthy ECG

signal, so when the ECG changed to a heart disease the EFK would detect some error or anomaly,

and that would indicate an illness.

Two techniques were chosen to assess whether EKF can be used as a classifier. The first

technique was based on a qualitative analysis of the error signal of the state to be estimated with

the estimated signal, and the second technique was based on a quantitative analysis, the energy

of the windows will be calculated.

Through the qualitative analysis it was observed that comparing the two obtained errors,

the morphology error and the heart rate error, it can be seen that the morphology error is much

greater (when considering the amplitude module) than the heart rate error, in this case this means

that the ventricular flutter could be a health issue more serious than the supraventricular tachycar-

dia, but this affirmation only can be done by the health professional. A possible explanation for

the result presented earlier is that the EKF was built from a healthy signal structure. Arrhythmia

disease (represented by supraventricular tachycardia) has the same morphology as a normal sinus

ECG, while the flutter "destroys"the standardized morphology of the ECG signal. Perhaps this is

why the ventricular flutter error was greater when compared to the supraventricular tachycardia

error.

Through the quantitative analysis of the energies of the error windows, presented by

Tables 3 and 4, it was noticed that the energies of the ventricular flutter samples are much higher

than the energies of the healthy samples, and the healthy samples are considered to be practically

zero. The energies of the supraventricular tachycardia samples are not as significant as the

energies of the ventricular flutter, but they are different energies from the healthy samples and

also quite different from the ventricular flutter samples, indicating the possibility of classification

through the energy of the signal window of the error.

Finally, the research developed is the first step towards a new technique to use KF, in

this case, to recognize it as a heart disease classifier. From the results obtained, it is possible to

use it as a classifier or complement a classification technique. Now the next step is to improve

KF to implement this proposed technique.
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As a suggestion for improvements and future work, for example, the EKF showed to

be a better option because it estimates non-linear signal, and the ECG is non-linear, however

along the work, this filter demonstrated to be very sensible when small modifications are made

to the developed algorithm, like changes to sampling frequency. Maybe this occurred because of

the jacobian matrices. A possible solution for this is to use the Unscented Kalman filter (UKF),

which instead of using the first-order linearization of the nonlinear system in its formulation

(as the EKF does), the UKF uses a deterministic sampling approach, by using the unscented

transformation (UT), that is a method for calculating the statistics of a random variable which

undergoes a nonlinear transformation (Haykin, 2001).

Another ideia is to improve the classification method like using the synthetic diseases

presented before as a classifier criterion. For example, following the logic of Figure 29, first,

there is an ECG signal that will pass over a Kalman filter that contains information about the

behavior of a healthy synthetic ECG (as shown in the methodology of this work). If that first

filter does not detect any anomalies or modifications, the signal is expected to be entirely healthy.

If something different is detected, that same signal will be used in other Kalman filters that will

be built from the information of diseased synthetic signals presented in Table 2. That filter that

shows the smallest error for heart disease, will indicate which disease it would be.

But, as mentioned before, this work is an assessment of the possibility of using Kalman

filter as a classifier. These suggestions will be used as future works to improve the method

preseted in this work.

So, summarizing, the main ideas for futures works are:

• Using the Unscented Kalman filter;

• Using the synthetic diseases as classifier criterion;
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Figure 29 – Classifier example using the synthetic diseases as criterion.
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