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RESUMO

PAVELSKI, Lucas. Configuração de Algoritmos baseada em Instância: do
Meta-aprendizado à Decomposição Multiobjetivo. 2021. 131 f. Tese (Doutorado em
Engenharia Elétrica e Informática Industrial) – Universidade Tecnológica Federal do Paraná.
Curitiba, 2021.

A busca pelo melhor algoritmo e sua configuração é uma tarefa difícil na maioria dos cenários
de otimização, especialmente em problemas NP-difíceis, uma vez que existem diferentes meta-
heurísticas propostas, e testar muitos parâmetros demanda um alto custo computacional. Além
disso, o entendimento de tais parâmetros e sua relação com as instâncias do problema é de
suma importância para a área de configuração de algoritmos. A literatura sobre Configuração
Automática de Algoritmos (AAC do inglês Automatic Algorithm Configuration) propõe várias
estratégias para encontrar a melhor configuração, embora o foco geralmente seja menos na expli-
cabilidade e mais no desempenho dessas diferentes configurações. Com base em experiências
anteriores obtidas a partir de dados, a área de Configuração Automática Baseada em Instância
(PIAC, do inglês Per Instance Algorithm Configuration) foca no mapeamento construído para
recomendar as melhores configurações. Este trabalho tem como objetivo propor e analisar duas
abordagens PIAC. A primeira, chamada de MetaL PIAC, é uma extensão do problema de seleção
de algoritmo e usa meta-aprendizado para recomendar meta-heurísticas e seus parâmetros de
configuração. A segunda abordagem, chamada de MOAAC/D, é baseada em uma nova for-
mulação multiobjetivo do problema AAC, que decompõe o espaço do problema e usa uma
plataforma baseada em decomposição para fornecer configurações generalistas e especialistas
ao mesmo tempo. Para cada objetivo, existe um conjunto de problemas relacionados a ele, e
um algoritmo multiobjetivo baseado em decomposição é proposto para encontrar configurações
com bons balanceamentos. Como estudo de caso principal, o trabalho considera problemas
Flowshop. Experimentos extensivos realizados em mais de 6000 instâncias, consideram o MetaL
PIAC para ajustar os parâmetros de diferentes meta-heurísticas, e o MOAAC/D para ajustar
configurações da busca local iterativa e busca gulosa iterativa. Os resultados mostram que ambas
as estratégias superam a solução generalista fornecida pelo irace – uma das abordagens de AAC
mais conhecidas na área – com uma ligeira vantagem do MOAAC/D sobre o MetaL PIAC.

Palavras-chave: configuração automática de algoritmos. meta-aprendizado. otimização multiob-
jetivo. decomposição do espaço do problema. problemas flowshop.



ABSTRACT

PAVELSKI, Lucas. Per-Instance Algorithm Configuration: from Meta-learning to
Multi-objective Decomposition. 2021. 131 p. Thesis (Doctorate in Electrical and Computer
Engineering) – Universidade Tecnológica Federal do Paraná. Curitiba, 2021.

The search for the best algorithm and its configuration is a difficult task on most optimization
scenarios, especially on NP-hard problems, since different proposed metaheuristics exist, and
testing many parameters demands high computational costs. Moreover, the understanding of such
parameters and their relation to problem instances is of great importance in the field of algorithm
configuration. The literature on Automatic Algorithm Configuration (AAC) proposes several
strategies to find out the best configuration, although the focus is usually less on explainability and
more on the performance of the different configurations. Based on past experience obtained from
data, Per-Instance Algorithm Configuration (PIAC) focuses on the mapping built to recommend
the best configurations. This work aims at proposing and analyzing two PIAC approaches.
The first, namely MetaL PIAC, is an extension of the algorithm selection problem and uses
meta-learning to recommend metaheuristics and their configuration parameters. The other,
namely MOAAC/D is based on a brand new multi-objective formulation of the AAC problem,
that decomposes the problem space and uses a decomposition-based framework to provide
generalist and specialist configurations at the same time. For each objective, there is a set of
problems related to it, and a decomposition based multi-objective algorithm is proposed to find
good trade-off configurations. As the main study case, the work addresses flowshop problems.
Extensive experiments performed on more than 6000 instances, consider MetaL PIAC to tune the
parameters of different metaheuristics, and MOAAC/D to tune iterated local search and iterated
greedy configurations. The results show that both strategies outperform the generalist solution
provided by irace – one of the best well-known AAC – with a slight advantage of MOAAC/D
over MetaL PIAC.

Keywords: automatic algorithm configuration. meta-learning. multi-objective optimization.
problem space decomposition. flowshop problems.
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1 INTRODUCTION

The algorithm selection problem (RICE, 1976) consists in recommending or choosing,

among all the available algorithms, the best one to solve a given problem (namely base problem),

as an attempt to mitigate the considerable effort of trying different possibilities for each previously

unseen problem. The goal of algorithm selection is to automatically find algorithm configurations

without the need of expert knowledge or rules of thumb (BIRATTARI, 2009). Moreover, the

recommendation model can be used to gain insights into the base problem, combine different

algorithms, or even develop new heuristics aiming to achieve better performance (XU et al.,

2008).

The problem of algorithm recommendation is related to many other problems, like

instance-based algorithm selection, static and dynamic algorithm schedules, parallel algorithm

portfolios, automatic algorithm configuration, and others. According to (HUTTER et al., 2014),

in Automatic Algorithm Configuration (AAC), specialized methods optimize parameter values

to find the best configuration of an algorithm for a given base problem, which can be anyone

solved by an algorithm with more than one possible configuration, e.g., optimization of machine

learning problems.

One of the most powerful generalizations of those recommendation tasks is Per-Instance

Algorithm Configuration (PIAC). For that, based on past experiences, a proper configuration is

recommended considering the instance’s meta-features. Ideally, Per-Instance Algorithm Con-

figuration (PIAC) strategies produce close to ideal performance with low cost and without the

burden of testing different configurations. In this sense, PIAC is a generalization of the Automatic

Algorithm Configuration (AAC) problem. Despite that, there are not many proposed strategies in

the literature and PIAC remains as an open problem due to the complexity of the recommendation

space (KERSCHKE et al., 2019).

The main field dedicated to study learning of algorithms design based on past experi-

ences is called meta-learning, and it has been proved to be very helpful to deal with the algorithm

selection problem (SMITH-MILES, 2009). At the base problem level, given a set of instances

and algorithms, a performance dataset is built through the experience of solving the base problem

by each of the available algorithms. In the meta-level, useful problem features like instance’s size

and statistics and information about the problem space are extracted, forming the meta-features

dataset. Finally, using this meta-data, the system can build a meta-model to help with base
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problem decision-making like building algorithm recommendation, algorithm ensembles, and

transfer of problem-solving knowledge to other domains.

Recently there is a growing interest in the application of meta-learning and AAC to

optimization problems (PAPPA et al., 2014; HUTTER et al., 2014; BISCHL et al., 2016).

Optimization is an essential tool for decision making and analysis of physical systems in

many branches of science. A quantitative objective function measures the system’s quality or

cost, like product’s performance or energy consumption. The system’s characteristics can be

modeled as variables (namely, decision variables). The general goal is to find decision variables’

values that optimize the objective function. This goal can be approached from a variety of

methods, depending on the objective function formulation, domain of the decision variables and

optimization hardness (GOLDBERG, 1989; NOCEDAL; WRIGHT, 2006; FLETCHER, 2013).

When the problem has multiple conflicting objective functions to be optimized simultaneously,

multi-objective optimization algorithms can be used to search for, not only one, but a set

encompassing specialists and compromise solutions called Pareto set (DEB, 2011).

The present work proposes two general PIAC approaches for optimization problems:

• The first proposal is based on meta-learning and can be considered as an extension to the

algorithm selection problem, where irace is used to generate the performance dataset and

multi-label machine learning models are trained to recommend Metaheuristics (MHs) and

configurations for unseen test problems;

• The second proposal is based on a new multi-objective formulation of AAC. This formula-

tion considers that each objective is associated with different sets of problem instances,

where specialist configurations would optimize single objectives on the extremes of the

Pareto-front approximation and generalist configurations would be part of the trade-off.

Additionally, we propose a hybridization of Multiobjective Evolutionary Algorithm Based

on Decomposition (MOEA/D) with irace as an efficient method for exploring compromises

between configurations.

The first proposal can be considered mono-objective in the sense that it performs

an instance-wise search for the best configuration. The second is considered multi-objective

since it uses a multiple instances during the configurations search. The proposals combine

efforts of fitness landscape analysis and existing AAC strategies in a novel way. We also focus

on interpretable recommendations, as we use tree-based machine learning models in the first
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proposal and gain insights into the base problem by analyzing the Pareto set approximation in

the second one.

Although we have obtained preliminary results for two additional domain problems

(binary, and continuous optimization), the main case study relies on the flowshop problem, that

is an example of a combinatorial optimization problem (BAKER; TRIETSCH, 2009). It models

a sequential production line in which every machine has to perform a set of operations aiming to

complete a set of jobs. Scheduling the jobs in order to minimize objectives like total production

time and job delays is the goal of flowshop. Since its conception by Johnson (1954), there are

several approaches to solve flowshop problems and their variants. The general flowshop problem

is known to be NP-hard (GAREY et al., 1976). Therefore there is no known efficient method

to solve arbitrarily large instances optimally. In the present work, the experiments include an

extensive analysis of the proposals, using more than 6,000 permutation flowshop problems, with

different features such as size, objective, processing time distributions and budgets.

Many heuristics and MHs are proposed to approximate flowshop optimal solu-

tions (HOOS; STÜTZLE, 2004; RUIZ; MAROTO, 2005). Heuristics like the Nawaz-Enscore-

Ham (NEH) (NAWAZ et al., 1983) are low-cost algorithms (compared to exact-solvers) that try

to construct and improve a solution using problem information. MHs like the Iterated Greedy

(IG) (RUIZ; MAROTO, 2005) are problem-independent general heuristics that usually try to

improve a solution iteratively. In the experiments we considered metaheuristics based on hill-

climbing, simulated annealing, tabu-search, ant-colony optimization, iterated local search and

IG. These metaheuristics include several parameters like local search type, neighborhood size,

cooling schedules, and perturbation type.

1.1 OBJECTIVES

This work aims to propose and analyze on the context of flowshop problems, two

approaches for the per-instance algorithm configuration problem: one based on meta-learning

and other based on multi-objective problem space decomposition.

The specific objectives include:

1. To formulate the PIAC problem under the Rice’s framework perspective. This formulation

is general and can be applied to any base problem;

2. To propose a meta-learning-based approach, namely MetaL PIAC, to solve the formulated
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PIAC problem;

3. To propose a new formulation for AAC, namely Multi-objective Automatic Algorithm

Configuration based on problem space Decomposition (MOAAC/D), as a multi-objective

framework for decomposing the base problem space and to further extend it to the general

PIAC problem;

4. To study flowshop instances, including different objective functions and processing time

distributions;

5. To provide a representative set of MHs used to solve flowshop instances, ranging from

classic to state-of-the-art variants including their highly configurable parameter space;

6. To test different parameter tuning techniques, aiming to find the best configuration for a

set of similar instances and build the performance dataset;

7. To implement different fitness landscape analysis metrics, analyze the generated problems

dataset and build the meta-features dataset;

8. To experiment MetaL PIAC with different machine learning models and strategies that use

meta-data for MH and parameter recommendation, focusing on interpretable models;

9. To propose a local search for MOEA/D, to solve MOAAC/D formulation, efficiently

finding specialists and compromise configurations on the decomposed base problem space;

10. To compare the recommendations provided by MetaL PIAC and MOAAC/D with other

recommendation strategies.

Overall, considering the objectives and the two proposals, the research hypothesis

can be summarized as: per-instance strategies can generate configurations with good quality,

even for unseen problem instances, using either mono-objective based on meta-learning or

multi-objective based on problem space decomposition.

1.2 SCOPE AND MOTIVATIONS

As the case for several optimization problems, practitioners have a huge variety of

possibilities to solve them. This usually implies in a deep dive into the state-of-the-art by

comparing performance of different algorithms. Hopefully, the performance can be drawn on
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problems similar to the one at hand. However, more often than not, knowing relevant problem

features and comparing instances is altogether another deep dive.

The difficulties are not only a problem for the practitioner, but also reflect on the paths

taken by optimization research. In (HOOKER, 1994; HOOKER, 1995), the author criticizes

the benchmark-driven algorithm evaluation methodology, pointing that the results report merely

which algorithm is better instead of why it is better for the testbed. Also, the MH field is criticized

for propagating proposals with different names for algorithms with equal or very similar inner

workings to existing ones or over-tuning on specific benchmarks only to claim novelty and better

results. Theses aspects can obfuscate important analysis on truly innovative approaches that

contribute to the state-of-the-art (SÖRENSEN, 2015).

Another important consideration is the No Free Lunch theorems presented by Wolpert

and Macready (1997). The theorems state that no single algorithm is capable of performing

well on all problems. This implies that in a broad problem space, algorithms should be diverse:

different algorithms specialized for different problems. Another implication is that averaging

performance values over a set of different instances is not too informative and is often not suitable

for comparing algorithms (SMITH-MILES et al., 2014).

Currently, there are important developments in areas dedicated to analyze and propose

strategies that overcome the issues of metaheuristic developments, such as:

• Algorithm selection: defined by Rice (1976), the algorithm selection problem consists

in finding the map between problem features and algorithm performance. There are

several proposals of algorithm recommendation for different optimization problems, even

improving results of hand-crafted strategies (KERSCHKE et al., 2019);

• Automatic Algorithm Configuration: the idea of AAC is to turn the algorithm parameter

setting as a high level optimization problem. One of the first instances of AAC was

proposed by Grefenstette (1986), where a meta-genetic algorithm is used to tune itself

on a base problem. AAC and algorithm selection are closely related. They overcome the

burden of hand picking different strategies and can produce better and more reproducible

results (MONTERO et al., 2014; KERSCHKE et al., 2019);

• Hyper-heuristics: aim at finding a self-adaptive parameter setting. Online hyper-heuristics

are proposed to generate or select the best strategy (or parameter value) during the search.

These strategies often use learning mechanisms that receive feedback from their choices
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during the search process. These methods aim to solve a wide variety of problems without

calibration (BURKE et al., 2019).

• Fitness Landscape Analysis (FLA): takes inspiration from theoretical biology where the

goal is to analyze and visualize the relationships between genotypes, phenotypes and

fitness (PITZER; AFFENZELLER, 2012; RICHTER; ENGELBRECHT, 2014; OCHOA;

MALAN, 2019). Many studies in this area propose metrics for measuring problem hardness

by investigating the searched landscape: neighbor solutions (connected by perturbation or

local search operators) having its fitness as the height. FLA main uses are understanding

the effects of problem features (REEVES, 1999; CZOGALLA; FINK, 2012; OCHOA;

MALAN, 2019), analyzing local search and perturbation operators behavior (OCHOA et

al., 2008), performance prediction (WATSON et al., 2005), and algorithm recommenda-

tion (BISCHL et al., 2012).

• Instance Space Analysis (ISA): studies the instance space to identify strengths and weak-

nesses of an algorithm. It does so by modeling structural properties of an instance and the

performance of a set of algorithms. The main motivations are automatically defining parti-

tions of the problem space where a given algorithm performs well, as well as determining

whether the (benchmark) instance set covers the problem space (SMITH-MILES; LOPES,

2012; SMITH-MILES et al., 2014).

• White-box metaheuristic research: promotes component-based metaheuristic development,

making it better for sharing operators and results for reproducibility, integrating problem-

specific knowledge, and also automatic search on metaheuristic design spaces (HUMEAU

et al., 2013; SWAN et al., 2021). Several applications of white-box frameworks show

good results on several problem domains (MARMION et al., 2013; Alfaro-Fernández et

al., 2020);

• Multi-objective approaches for automatic algorithm configuration: this is an under-explored

area. The few existing works consider (i) the addition of other objectives than the traditional

base problem fitness (ZHANG et al., 2015; BLOT et al., 2016), and (ii) optimizing more

than one budget at once (DRÉO, 2009; DYMOND et al., 2017).

There are also proposals of unifying these fields to share common knowledge, even

related disciplines from machine learning (SMITH-MILES, 2009). As such, the scope and
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motivations followed by the present work span from different approaches with a common

objective: use data-driven learning techniques and multi-objective optimization to explore, predict

and solve optimization problems. The approaches we use and propose are problem agnostic but

we decide to apply them mainly to flowshop problems. Moreover, the multi-objective approach

being proposed can be considered a generalization of the few existing works, since the base

problem fitness or budget is one among all the possible features being optimized.

1.3 CONTRIBUTIONS

This work applies concepts from several works in the literature of flowshop problems

(PINEDO, 2016), MHs (HOOS; STÜTZLE, 2004; RUIZ; STÜTZLE, 2007), fitness landscape

analysis (PITZER; AFFENZELLER, 2012) and automatic algorithm configuration (López-

Ibáñez et al., 2016). It also has several related works from meta-learning literature, mainly on

combinatorial problems (KANDA et al., 2016; DANTAS; POZO, 2018), scheduling problems

(SMITH-MILES et al., 2009) and PIAC meta-learning for optimization proposals (KADIOGLU

et al., 2010). Nonetheless, we can summarize our novel contributions as:

• The proposal and analysis of two PIAC strategies using parameter tuner and fitness

landscape analysis meta-data;

• A brand new formulation of AAC based on problem space decomposition;

• The comparison between several multi-label models for the task of algorithm recommen-

dation.

• A broad study and analysis on solving over 6,000 flowshop problems with different MHs,

from classic to state-of-the-art algorithms;

• An in-depth fitness landscape analysis on different flowshop variants;

The present work is also based on seven (one in an international journal) works published

by the authors:

1. PAVELSKI, Lucas Marcondes; DELGADO, Myriam; KESSACI, Marie-Éléonore. Meta-

Learning for Optimization: A Case Study on the Flowshop Problem Using Decision Trees.

In: 2018 IEEE Congress on Evolutionary Computation (CEC). [S.l.: s.n.], 2018. p. 1–8.
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In this work, decision trees are used for MH and parameters recommendation for three

flowshop variants, using the data from irace parameter tuner on single instances and simple

flowshop instance features;

2. PAVELSKI, Lucas Marcondes; KESSACI, Marie-Éléonore; DELGADO, Myriam. Rec-

ommending Meta-Heuristics and Configurations for the Flowshop Problem via Meta-

Learning: Analysis and Design. In: 2018 7th Brazilian Conference on Intelligent Sys-

tems (BRACIS). [S.l.: s.n.], 2018. p. 163–168.

In this paper, we perform a more in-depth meta-data analysis and extreme boosting

machines are used for MH and parameter recommendation, using fitness landscape analysis

as meta-features;

3. PAVELSKI, Lucas Marcondes; DELGADO, Myriam; KESSACI, Marie-Éléonore. Meta-

learning on Flowshop Using Fitness Landscape Analysis. In: Proceedings of the Ge-

netic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2019.

(GECCO ’19), p. 925–933. ISBN 978-1-4503-6111-8.

In this work, neural network models perform MH recommendation, pairwise ranking,

parameter recommendation, and parameter distribution estimation.

4. PAVELSKI, Lucas Marcondes; DELGADO, Myriam; KESSACI, Marie-Éléonore; FRE-

ITAS, Alex A. Stochastic local search and parameters recommendation: A case study on

flowshop problems. International Transactions in Operational Research, p. itor.12922,

Dec. 2020. ISSN 0969-6016, 1475-3995.

This paper describes the main contributions of the multi-label models for the task of

algorithm recommendation and tree-based learning models for PIAC task.

5. PAVELSKI, Lucas Marcondes; KESSACI, Marie-Éléonore; DELGADO, Myriam. Local

Optima Network Sampling for Permutation Flowshop. In: 2021 IEEE Congress on

Evolutionary Computation (CEC). Kraków, Poland: IEEE, 2021. p. 1131–1138. ISBN

978-1-72818-393-0.

In this work, we present a fitness landscape analysis of medium to large-scale flowshop

problems, using local optima networks and state-of-the-art algorithms like IG.

6. PAVELSKI, Lucas Marcondes; KESSACI, Marie-Éléonore; DELGADO, Myriam. Flow-

shop NEH-Based Heuristic Recommendation. In: ZARGES, Christine; VEREL, Sébastien
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(Ed.). Evolutionary Computation in Combinatorial Optimization. Cham: Springer

International Publishing, 2021. v. 12692, p. 136–151. ISBN 978-3-030-72903-5 978-3-

030-72904-2.

This paper results show that the PIAC meta-learning approach can be used to automatically

tune the parameters of a flowshop NEH-based heuristic and provide interpretable models.

7. PAVELSKI, Lucas Marcondes; KESSACI, Marie-Éléonore; DELGADO, Myriam. Dy-

namic Learning in Hyper-Heuristics to Solve Flowshop Problems (to appear). In: 2021

7th Brazilian Conference on Intelligent Systems (BRACIS). [S.l.: s.n.], 2021. p. 1–15.

As an extension to the proposals of the present work, this paper presents a novel hyper-

heuristic based IG algorithm with adaptive online configuration.

Detailed results achieved by the multi-objective algorithm configuration proposal and

its generalization to perform PIAC task are in preparation to be submitted to a conference and

high-quality journal paper.

1.4 STRUCTURE

The work is organized as follows. After this introduction, Chapter 2 provides a review

and background on essential topics like PIAC, meta-learning, fitness landscape analysis, multi-

objective optimization, flowshop problem and also works related with the main subjects addressed

in the present work. Chapter 3 describes the proposed meta-learning based model as well

as the multi-objective formulation for AAC and PIAC problems. Chapter 4 is dedicated to

contextualize the proposals on the application domain - flowshop problems - and it also describes

the experiments performed to evaluate the proposals on the flowshop context. Chapter 5 presents

some results achieved by both proposals, as well as a comparison that highlights their pros and

cons of each one. Finally, Chapter 6 concludes this work and presents future works.
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2 BACKGROUND

This chapter presents topics necessary to understand the proposals like recommendation

of algorithms/parameters and meta-learning, fitness landscape analysis, mono and multi-objective

optimization, and flowshop problem. The chapter also discusses works whose content is directly

related to the thesis subject.

2.1 ALGORITHM/PARAMETER RECOMMENDATION

The algorithm recommendation (selection) problem introduced by Rice (1976) is a

classic problem in computer science. It consists in finding the mapping between problem features

and the algorithm with the maximum performance on the problem. Usually this mapping is

built using the past information on solving similar problems and algorithms. As we can see,

the problem tacked by the algorithm selection/recommendation operates a level above the base

problem (the one it tries to infer the best algorithm for) (LEMKE et al., 2015). Therefore it is

also called meta-learning, since it uses past information (learning) from the performance data

from the base problem (meta).

According to Brazdil et al. (2008), in the machine learning context, it is essential to

distinguish between base-learning and meta-learning. Learning at the base level focuses on

accumulating experience on a specific learning task, whereas learning at the meta-level concerns

with accumulating experience on the performance of multiple applications of a learning system.

Therefore, applying a base-learner (e.g., decision tree, neural network, or support vector machine)

on some data produces a predictive function that depends on the fixed assumptions embedded in

the learner. Working at the base level exhibits two significant limitations. First, data patterns are

usually not placed aside for interpretation and analysis, but instead embedded in the predictive

function itself. Second, the experience or knowledge gained when applying a learning algorithm

using one dataset is generally not readily available as we move to another dataset.

In optimization problems, the primary use of meta-learning is algorithm recommenda-

tion, where the goal is to predict the best algorithm for a new instance (SMITH-MILES, 2009).

As previously discussed, even though in an optimization context the prefix “meta-” might not be

appropriate since the learning and knowledge in the base level may be absent, the literature on

meta-learning for optimization has maintained the nomenclature. Therefore, in this work, build-
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ing heuristic recommendation models based on the knowledge extracted from problem instances

and algorithm performance will be referred to as meta-learning based on metaknowledge.

Lemke et al. (2015) consider that a meta-learning system includes a learning subsystem,

which adapts with experience. The experience might come from previous knowledge of different

runs or different domains or problems. Therefore, meta-learning is a vast area of study encom-

passing algorithm recommendation, dynamic bias selection, transfer learning, and exploratory

analysis of metaknowledge. Even though other applications might not consider base-learner

algorithms (like MHs in optimization tasks), the term meta-learning is used to describe systems

developed to recommend algorithms in a broad set of applications like ensembles, machine

learning, optimization, time-series prediction, operational research, and algorithm design.

A key to solving these problems is gathering knowledge about the learning process

itself. Such knowledge (called metaknowledge) can be used to improve the learning mechanism

after each training episode. Metaknowledge is any knowledge derived in the course of employing

a given learning system and may take on different forms and applications (BRAZDIL et al.,

2008). The term meta-features is usually used to define the different features that are used to

characterize the problem solved on the meta-level. For example, on flowshop problem, some

simple meta-features include the problem size while complex meta-features can derive from

FLA metrics.

Figure 1 shows how different problems on algorithm selection or recommendation and

algorithm configuration are related (KERSCHKE et al., 2019).

Figure 1 – Algorithm selection and algorithm configuration problems.

Source: Adapted from Kerschke et al. (2019)
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We can see that AAC, per-instance algorithm selection and algorithm schedules gener-

alize the algorithm selection problem. Also, Per-Instance Algorithm Configuration (PIAC) is one

of the most general approaches, since it can solve AAC and per-instance algorithm selection.

Different from the algorithm selection, PIAC uses information from individual instances and

produces a configuration tailored to the problem. It mainly differs from AAC in that it produces

a meta-learning model instead of a fixed number of configurations for a whole set of problems.

2.1.1 Metaheuristics (MHs)

MHs are iterative improvement methods proposed to solve optimization problems. They

are mostly considered iterative procedures and make extensive use of neighborhood search,

perturbations, and simple heuristics over the current iteration solution (the incumbent) (HOOS;

STÜTZLE, 2004). Besides, adding the possibility to accept worse solutions, they could escape

from regions of local optima. Another advantage of MHs is that they usually offer a trade-off

between solution quality and computational cost (i.e., better solutions are found increasing the

number of iterations) (GRAHAM et al., 1979; BAKER; TRIETSCH, 2009).

Some MHs can be part of a broader algorithm category called local-search methods.

Local-search algorithms mainly (1) start from an initial solution, (2) iteratively move from

current position to neighboring position and (3) use the objective function for guidance (HOOS;

STÜTZLE, 2004). They can be expressed in four design decisions (PINEDO, 2016): (i) solution

representation; (ii) neighborhood design; (iii) search process within the neighborhood; (iv)

acceptance-rejection criterion.

Figure 2 – Types of neighborhood of permutation problems: transpose, exchange and insert.

Source: Adapted from Hoos and Stützle (2004).

In permutation problems, Shift operations form the insertion neighborhood of a permu-

tation. A shift on (𝑗,𝑗′) removes the job from position 𝑗 and inserts it at position 𝑗′. In this way, a

permutation has a total of (𝐽 − 1)2 neighbors. Other common neighborhoods are the transpose

and exchange neighborhood, formed by swapping two jobs, adjacent or not. Figure 2 shows

an example of transpose, exchange, and insertion neighborhoods. Other types embed structural
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properties of flowshop exist in the literature (JIN et al., 2009). Initialization, search process, and

acceptance-rejection criterion are particular to each MH.

The Simulated Annealing (SA) metaheuristic was proposed by Kirkpatrick et al. (1983).

Based on the annealing process in solids, Simulated Annealing (SA) starts the search with a

flexible acceptance criterion that accepts most solutions (high temperature) and, as times goes

on, the probability of accepting worse solutions is decreased (low temperature).

Tabu Search (TS) (GLOVER, 1989) is a very successful local-search MH for the

flowshop problem. Tabu Search (TS) can avoid cycling through the same solutions in a local

optima region by using a “tabu list” of old solutions that should not have their neighborhood

explored. TS can restart the search until it reaches a limit number of iterations.

The Iterated Local Search (ILS) framework encompasses most local-search based MHs.

The steps of ILS are (HOOS; STÜTZLE, 2004):

1. Define an initial solution and perform a local search

2. While a termination criterion is not satisfied:

a) Perform a perturbation on the current solution

b) Perform local search

c) Use an acceptance criterion to decide if the new one replaces the current solution

It is clear that using the appropriate perturb and acceptance functions, and the search history, ILS

can simulate SA and TS.

The basic ILS framework has inspired many other MHs. An MH similar to ILS is the

Greedy Randomized Adaptive Search, that constructs a new solution with a greedy strategy

and later applies a local search procedure (FEO; RESENDE, 1995; PRABHAHARAN et al.,

2006). Marmion et al. (2011a) propose Neutral Iterated Local Search (NILS) based on theoretical

studies about neutral regions in the fitness landscape.

All MHs mentioned so far use a single candidate solution throughout the iterations.

Population-based MHs simultaneously maintain several solutions or a population of them. Some

advantages of these population-based MHs is enhanced exploration and diversification of the

search space, as well as the capacity of combining several individual candidate solutions into

another (HOOS; STÜTZLE, 2004; ENGELBRECHT, 2007). There are not many recent works

using population-based MHs on flowshop problems and most are adapted to single-solution
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versions to reduce the cost of maintaining a population (STÜTZLE, 1998a; RUIZ; MAROTO,

2006).

Another population-based MH widely used in combinatorial problems is the Ant Colony

Optimisation (ACO) (DORIGO et al., 1996). The inspiration for ACO is the trail-following

behavior of real ants, where each ant constructs a path (solution), finding for food (local search)

and updates the pheromones trails to reflect the collective search experience. Stützle (1998a)

proposes the Min-Max Ant System (MMAS) for flowshop problem, using a single incumbent

solution and local search.

2.2 FITNESS LANDSCAPE ANALYSIS

The FLA1 consists in using metrics to define or estimate properties of the objective

function and/or search operators, usually over the search space S of NP-hard problems. A

solution x ∈ S of size 𝐽 is more commonly represented as a real vector on the real space

S = R𝐽 , a bit vector from the binary space S = {0,1}𝐽 or a permutation from the permutation

space S = (𝑥1, . . . , 𝑥𝐽 : 𝑥𝑎, 𝑥𝑏 ∈ {1, . . . , 𝐽} ∧ 𝑥𝑎 ̸= 𝑥𝑏,∀𝑎,𝑏 ∈ {1, . . . ,𝐽}). An objective

function 𝑔 : S → R maps each solution to a quantitative value to be minimized or maximized

(STADLER, 2002; PITZER; AFFENZELLER, 2012).

Besides solution space and objective function, solution neighborhood relation is neces-

sary to define a fitness landscape. A neighborhood relation is usually defined as η : S → ℘(S ),

but in continuous optimization problems it could also encompasses solution distance notions

(𝑑𝑖𝑠𝑡 : S ×S → R) (PITZER; AFFENZELLER, 2012). In permutation problems like flowshop,

the neighborhood can be defined using operators like transpose, exchange and insert, as shown

in Figure 2.

By definition, local searches trace one or more paths on the search landscape, until

meeting a stopping criterion. The search can be done from a single solution, following a single

path, performing perturbations with kicks or restarts, using information from previous steps, or

also exploring the space with many parallel solutions.

The fitness landscape can, therefore, be defined as a triplet (S ,𝑔,η). Many times the

landscape is seen as a graph𝐺 = (S , 𝐸η) where solutions are nodes and edges are neighborhood

relationships: (x,x′) ∈ 𝐸η if x′ ∈ η(x). Usually, neighborhoods are defined such that 𝐺 is a

regular graph (every solution has the same number of neighbors), symmetric (if x is neighbor of
1 Also known in the literature as: Search Space Analysis or Exploratory Landscape Analysis.
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x′, then x′ is neighbor of x) and connected (every solution is reachable from any other solution).

2.2.1 Simple fitness landscape metrics

Some common fitness landscapes metrics use simple statistics over the neighborhood

graph. For example, the distribution of node degrees and graph diameter. For the neighborhoods

in Figure 2, the graph is regular, with a constant degree of 𝐽 − 1 for transpose and (𝐽 − 1)2 for

exchange and insertion. The diameter, even on regular graphs, is not trivially calculated but can

be approximated considering the search space size (HOOS; STÜTZLE, 2004). On the mentioned

neighborhoods, the graph diameter is 𝐽 − 1 for exchange and insertion, because every solution

can be turned into another solution with 𝐽 − 1 or less exchanges or insertions. The diameter for

transpose neighborhood is not trivial, being 3, 6, 10, 15, 21 for permutations of sizes 3, 4, 5, 6, 7,

respectively.

An interesting measure regarding search-based strategies is optimal solutions density.

Considering a minimization problem 𝑁𝑜𝑝𝑡 = |{x : 𝑓(x) ≥ 𝑓(x′),x,x′ ∈ S }| as the number of

optimal solutions, and assuming that solutions are uniformly spaced, the mean number of steps a

local search would take is |S |/𝑁𝑜𝑝𝑡. Therefore, 𝑁𝑜𝑝𝑡/|S | is the probability of finding the global

optimum randomly. This measure is usually very small for large problems.

Other fitness landscape metrics come from counting the types of nodes and edges from

the graph. Given a fitness landscape (S ,𝑔,η) we can classify edges of a given node x as:

• 𝑢𝑝(x): |{(x,x′) ∈ 𝐸η : 𝑔(x) < 𝑔(x′)}|

• 𝑑𝑜𝑤𝑛(x): |{(x,x′) ∈ 𝐸η : 𝑔(x) > 𝑔(x′)}|

• 𝑠𝑖𝑑𝑒(x): |{(x,x′) ∈ 𝐸η : 𝑔(x) = 𝑔(x′)}|.

Figure 3 – Types of solution nodes.

Source: Adapted from (HOOS; STÜTZLE, 2004)

The nodes or solutions can also be classified as (see Figure 3):
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• Strict local minima (𝑁𝑆𝐿𝑀𝐼𝑁 ): 𝑑𝑜𝑤𝑛(x) = 𝑠𝑖𝑑𝑒(x) = 0

• Local minima (𝑁𝐿𝑀𝐼𝑁 ): 𝑑𝑜𝑤𝑛(x) = 0 ∧ 𝑠𝑖𝑑𝑒(x) > 0 ∧ 𝑢𝑝(x) > 0

• Plateau (𝑁𝐼𝑃𝐿𝐴𝑇 ): 𝑑𝑜𝑤𝑛(x) = 𝑢𝑝(x) = 0

• Ledge (𝑁𝐿𝐸𝐷𝐺𝐸): 𝑑𝑜𝑤𝑛(x) > 0 ∧ 𝑠𝑖𝑑𝑒(x) > 0 ∧ 𝑢𝑝(x) > 0

• Slope (𝑁𝑆𝐿𝑂𝑃𝐸): 𝑑𝑜𝑤𝑛(x) > 0 ∧ 𝑠𝑖𝑑𝑒(x) = 0 ∧ 𝑢𝑝(x) > 0

• Local maxima (𝑁𝐿𝑀𝐴𝑋): 𝑑𝑜𝑤𝑛(x) > 0 ∧ 𝑠𝑖𝑑𝑒(x) > 0 ∧ 𝑢𝑝(x) = 0

• Strict local maxima (𝑁𝑆𝐿𝑀𝐴𝑋): 𝑠𝑖𝑑𝑒(x) = 0 ∧ 𝑑𝑜𝑤𝑛(x) = 0

These node types are a partition of S . The percentage of each node and edge type is

useful since it represents a measure independent of the landscape size. These percentages can be

sampled for large instances, and the tendency with large neighborhoods (like insertion) is to find

less strict node types like ledges and rarely nodes of type strict local minima/maxima.

2.2.2 Random-walk based fitness landscape measures

Random-walks simulate a non-informed search, where neighbors (or close solutions)

are chosen randomly at each step. Typical fitness landscape measures analyze the fitness value

along a random walk of length 𝑇 (𝑔1, . . . ,𝑔𝑇 ) using similar metrics used in time series analysis.

The autocorrelation of fitness values of close solutions is used to inform the space

ruggedness. When the fitness values vary rapidly from close solutions, the space resembles a

difficult problem with random surface and no information to guide the search. Given the distance

between solutions 𝑑𝑖𝑠𝑡(x,x′) as the number of edges between them, the autocorrelation with

delay 𝑠 is defined as (WEINBERGER, 1990):

𝜌(𝑠) =
𝐶𝑜𝑣[𝑔(x), 𝑔(x′)]∀x,x′:𝑑(x,x′)=𝑠

𝜎[𝑓 ]2
=
𝐸[𝑔(x)𝑔(x′)]∀x,x′:𝑑𝑖𝑠𝑡(x,x′)=𝑠 − 𝐸[𝑓 ]2

𝜎[𝑓 ]2
.

where 𝐶𝑜𝑣[·,·] is the covariance, 𝐸[𝑓 ] and 𝜎[𝑓 ] are the mean and the standard deviation of all

fitness values, respectively. For large instances this measure can be estimated using the fitness

values 𝑓𝑟𝑤 = (𝑔(x1), . . . , 𝑔(x𝑇 )) of a random walk over the graph as:

𝜌(𝑠) =
(1/(𝑇 − 1))

∑︀𝑇−𝑠
𝑘=1 (𝑓𝑘 − 𝐸[𝑓𝑟𝑤])(𝑓𝑘+𝑠 − 𝐸[𝑓𝑟𝑤])

(1/𝑇 )
∑︀𝑇

𝑘=1(𝑓𝑘 − 𝐸[𝑓𝑟𝑤])2
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The correlation between neighbor solutions 𝜌(1) is the most common measure. In

many problems, the autocorrelation is an exponential decaying function 𝜌(1) = 𝑒𝑥𝑝(−1/𝐿𝜌)

where 𝐿𝜌 is the mean distance for which two solutions become uncorrelated. The measure

𝐿𝜌 = 1/𝑙𝑛(|𝜌(1)|), called autocorrelation length, is also used to inform search space ruggedness.

In some problems, the objective function can be decomposed into a sum of elementary

functions. This decomposition can then be used to find correlation formulas and more statistics

algebraically (STADLER, 1996; CHICANO et al., 2011).

Other types of measures over the fitness value of random walks are information-theoretic

measures (VASSILEV et al., 2000). These measures aim to provide different aspects of the

landscape, such as the degree of regularity and diversity of local optima. The first step for

information analysis is to transform the fitness sequence (𝑔1, . . . ,𝑔𝑇 ) into an ensemble of objects

string 𝑆(𝜖) = 𝑠2 . . . 𝑠𝑚 where

𝑠𝑡 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−1 if 𝑔𝑡 − 𝑔𝑡−1 < −𝜖

0 if |𝑔𝑡 − 𝑔𝑡−1| ≤ 𝜖

1 if 𝑔𝑡 − 𝑔𝑡−1 > 𝜖

where 𝜖 ≥ 0 is the parameter controlling the sensitivity of the metrics, such that high values of 𝜖

lead to very flat landscapes. The entropy metric can then be defined as:

𝐻(𝜖) = −
∑︁
�̸�=𝑏

𝑃[𝑎𝑏]𝑙𝑜𝑔6𝑃[𝑎𝑏]

where 𝑃[𝑎𝑏] is the probability of blocks 𝑎𝑏 ∈ {−1, 0, 1} × {−1, 0, 1} in the sequence 𝑆(𝜖) =

𝑠1 . . . 𝑠𝑚, i.e., 𝑃[𝑎𝑏] = 𝑛[𝑎𝑏]/𝑇 given 𝑛[𝑎𝑏] as the number of occurrences of 𝑎𝑏 in 𝑆(𝜖). Related to

the entropy, the density basin of the sequence 𝑆 measures the information over smooth regions:

ℎ(𝜖) = −
∑︁

𝑎∈{−1,0,1}

𝑃[𝑎𝑎]𝑙𝑜𝑔6𝑃[𝑎𝑎]

Another shortened sequence of landscape elements can be build from 𝑆(𝜖) as 𝑆 ′(𝜖) =

(𝑠′𝑎 : 𝑠′𝑎 ̸= 0 ∧ 𝑠′𝑖 ̸= 𝑠′𝑖−1). The length |𝑆 ′(𝜖)| of this new sequence gives the modality of the

landscape walk and, when scaled by the original sequence length, gives the partial information

content metric:

𝑀(𝜖) =
|𝑆 ′(𝜖)|
𝑇
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Finally, the difference between the lowest and highest fitness value between neighbors

is another metric called information stability 𝜖*. It is also the smallest 𝜖 such that the ensemble

𝑆(𝜖) is entirely flat.

2.2.3 Adaptive-walk based fitness landscape measures

Local search performance most likely depends on the location of local optima. On easy

problems, the local optima are usually close together and lead to global optima. Fitness landscape

metrics that consider the interval and distribution of distances between solutions to the local

optimum can show correlation with the problem difficulty.

A high correlation between a solution fitness and the distance to the closest global

optimum, the Fitnes Distance Correlation (FDC), indicates that the local search can be easily

guided to good regions. Given 𝑓 as the fitness values of each solution in S and 𝑑𝑖𝑠𝑡 the

distances to the closest global optimum (according to some distance function) the FDC can be

calculated as (JONES et al., 1995):

𝜌𝐹𝐷𝐶,𝑑𝑖𝑠𝑡 =
𝐶𝑜𝑣[𝑓 ,𝑑𝑖𝑠𝑡]

𝜎[𝑓 ]𝜎[𝑑𝑖𝑠𝑡]
=
𝐸[𝑓 * 𝑑𝑖𝑠𝑡]− 𝐸[𝑓*]𝐸[𝑑]

𝜎[𝑓 ]𝜎[𝑑]

When 𝜌𝐹𝐷𝐶 is close to 1, the fitness is a good indicator of good solutions. If 𝜌𝐹𝐷𝐶 is close to

0, most local search procedures become random searches. Otherwise if 𝜌𝐹𝐷𝐶 is negative the

problem is called “deceptive”.

Table 1 – Permutation distances.

Distance Definition Max

Absolute 𝑑𝑎𝑏𝑠(x,x
′) =

∑︀𝑛
1 𝑘𝑖, where 𝑘𝑖 = 1 if 𝑥𝑖 = 𝑥′

𝑖, otherwise 𝑘𝑖 = 0. 𝑛

Adjacency
𝑑𝑎𝑑𝑗(x,x

′) =
∑︀𝑛

1 𝑘𝑖, where 𝑘𝑖 = 1 if 𝑥𝑖 = 𝑥′
𝑗 and 𝑥𝑖+1 = 𝑥𝑗+1, otherwise

𝑘𝑖 = 0. 𝑛− 1

Precedence 𝑑𝑝𝑟𝑒(x,x
′) = 𝑛(𝑛− 1)/2− 𝑛𝑝𝑟𝑒, where 𝑛𝑝𝑟𝑒 is the number of times 𝑥𝑖 is

preceded by 𝑥𝑗 in x and x′.

𝑛(𝑛−1)
2

Deviation 𝑑𝑑𝑒𝑣(x,x′) =
∑︀
|𝜎𝑗 − 𝜎′

𝑗 |, where 𝜎𝑗 is the position of 𝑥𝑗 in reversed x.
⌊︀
𝑛2/2

⌋︀
Approximated
swap

𝑑𝑠𝑤𝑎𝑝(x,x′) = 𝑛𝑠𝑤𝑎𝑝, where 𝑛𝑠𝑤𝑎𝑝 is the number of swaps to transform
x into x′, approximated by iteratively swapping out of order jobs from left
to right.

𝑛− 1

Shift 𝑑𝑠ℎ𝑖𝑓𝑡(x,x
′) = 𝑛− 𝐿𝐶𝑆(x,x′), where 𝐿𝐶𝑆 is the length of the longest

common sub-sequence of x and x′.
𝑛− 1

Source: Adapted from Reeves (1999), Czogalla and Fink (2012)

For large problems, a set of fitness and distances can be sampled using a local search

method. Usually, a Hill Climbing (HC) performing an adaptive walk can lead from a randomly
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chosen solution to a close local optimum. The approximated FDC based on 𝑁𝑙𝑜𝑝𝑡 local optima

samples can then be computed as (JONES et al., 1995):

𝜌𝐹𝐷𝐶,𝑑𝑖𝑠𝑡 =
𝐶𝑜𝑣[𝑓 ,𝑑𝑖𝑠𝑡]

𝜎[𝑓 ]𝜎[𝑑𝑖𝑠𝑡]
=

1

(𝑁𝑙𝑜𝑝𝑡 − 1)𝜎[𝑓 ]𝜎[𝑑𝑖𝑠𝑡]

𝑁𝑙𝑜𝑝𝑡∑︁
𝑖=1

(𝑔𝑖 − 𝐸[𝑓 ])(𝑑𝑖𝑠𝑡𝑖 − 𝐸[𝑑𝑖𝑠𝑡]).

where 𝑓𝑎𝑤 is the fitness of 𝑁𝑙𝑜𝑝𝑡 solution samples and 𝑑𝑖𝑠𝑡 their respective distances to the

closest local optima. These local optima are found using a given local search procedure.

The distance metric used in FDC depends on the problem space. The flowshop problem

studied has a permutation space, and there are several ways to measure the distance between two

permutations (REEVES, 1999). The FDC experiments on Section 4.2 use six different distances

defined in Table 1.

Other features of the landscape are also defined in the literature. Neutral networks are

sub-graphs of the neighborhood where each solution has the same fitness as its neighbor. Features

of this graph include the average and autocorrelation of neutral degrees (VEREL et al., 2006).

Basins of attraction are partitions of the search space where every solution in the basin arrives at

the same local optima with an adaptive walk (PITZER; AFFENZELLER, 2012).

Moreover, a common hypothesis in FLA is the presence of a big valley structure, which

states that local optima are relatively close to each other and the global optima. Several problems

like the Traveling Salesperson Problem, quadratic assignment problem, capacitated vehicle

routing problem and permutation flowshop are known to have a big valley structure.

2.3 MULTI-LABEL LEARNING

This work also deals with some machine learning concepts like multi-label classification

and feature selection. In multi-label learning, each input from feature space 𝐹 is associated with

multiple output labels from a label space O. Given an example set {(𝜑, 𝑦𝑖) : 𝜑 ∈ 𝐹, 𝑦𝑖 ∈ O},

the goal of multi-label classification is to find a function ℎ : 𝐹 → ℘(O) that maximizes a

performance measure. Likewise, in multi-label ranking, a model learns ℎ𝑀𝐿 : 𝐹 ×O→ S where

S is the ranking space of each pair of input and label.

There are several strategies for multi-label classification and ranking (TSOUMAKAS

et al., 2009; MADJAROV et al., 2012; MONTAÑES et al., 2014; GIBAJA; VENTURA, 2015;

RIVOLLI; CARVALHO, 2018). The methods are usually classified as algorithm transformation

and problem transformation. In algorithm transformation, a special algorithm is proposed, or a
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single-label one is adapted to deal with multi-label data. In this work, we investigate problem

transformation, where the multi-label problem is transformed, allowing it to be solved with any

traditional single-label model. According to the descriptions provided in Rivolli and Carvalho

(2018), 17 strategies are investigated and those can be classified into four main categories:

• Binary relevance methods. Binary Relevance (BR) transforms the problem into one

binary problem for each label. Therefore, BR assumes that the labels are independent. The

Ensemble of Binary Relevance (EBR) uses multiple models and a simple voting scheme

for prediction. Ensemble of Single Label (ESL) focuses models on the least frequent

labels.

• Label powerset methods. Label Powerset (LP) creates one class for each combination of

output labels, transforming the problem into a single-label multi-class problem. RAndom

k-labELsets (RAKEL) builds and ensamble of LP classifiers and avoids problems with

unseen class combinations. Hierarchy Of Multi-label classifiER (HOMER) decomposes

the problem into an efficient hierarchy of multi-label problems (recursively solved by inner

multi-label algorithms) reducing the complexity of LP for problems with many labels.

• Pairwise methods. Ranking by Pairwise Comparison (RPC) transforms the 𝑘-label prob-

lem into (𝑘 − 1)𝑘/2 binary problems, for each pair of labels. During the testing, the labels

are chosen by counting the votes for each comparison. Calibrated Label Ranking (CLR)

extends RPC by using an artificial label to indicate the split between the output labels.

• Transformations for Identifying Label Dependencies. Classifier Chain (CC) method for

a 𝑘-label problem uses 𝑘 chained classifiers, where each classifier includes the previous

labels as part of its feature set. Ensemble of Classifier Chains (ECC) uses an ensemble of

multiple random orders of labels where the output is decided by a voting scheme.

Nested Stacking (NS), is similar to CC, but the classifiers in the chain use the predicted

label instead of the labels known during the training step. Another method that overcomes

the BR assumption of label independence is Meta Binary Relevance (MBR). In MBR, the

BR procedure is done twice, first as the regular BR and second as a meta-learning model

taking the outputs of the previous BR models as inputs like in a stacking ensemble.

Dependent Binary Relevance (DBR), and Binary Relevance Plus (BRPLUS) are methods

that include all other labels as inputs in order to provide conditional dependency informa-
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tion. ConTRolled Label correlation exploitation (CTRL) applies feature selection methods

to identify label dependencies. Pruned and Confident Stacking Approach (PRUDENT)

iterates the stack of classifiers, eliminating features with low information gain.

There are several multi-label performance metrics, mostly are an adaptation of known

metrics used in machine learning like accuracy, precision, recall, F1, and others. Specifically,

multi-label performance can be evaluated in the micro-, macro- and example-level, where the

prediction quality is averaged over the individual outputs, labels and examples, respectively.

Besides those, other metrics based on ranking are used to evaluate multi-label models like

Hamming and ranking loss.

In this work, we use macro-AUC and average-precision, as those are known to show

complementary behavior (WU; ZHOU, 2017). The macro-AUC is the average Area Under the

receiver operating characteristic Curve (AUC) for each label (in our case, each recommended

MH). The average precision is the mean value of the fraction of labels ranked above each

particular label for all test samples (as recommended MHs are above the statistically worse

non-recommended MHs). In both cases, higher values indicate better performance.

2.4 MONO AND MULTI-OBJECTIVE OPTIMIZATION

An unrestricted optimization problem with a single objective function can be formulated

as minimization problem:

min 𝑔(x)

subject to x𝐿 ≤ x ≤ x𝑈

(1)

where: x = (𝑥1, . . . , 𝑥𝑛) is a solution vector of 𝑛 decision variables between upper and lower

bounds, x𝐿 and x𝑈 respectively, and 𝑔 is the objective function to be optimized.

An optimization problem is multi-objective when there are two or more objective

functions. Several engineering problems are modeled as multi-objective ones. An unrestricted

multi-objective problem can be formulated as (DEB, 2011):

min g(x) =
{︀
𝑔1(x), 𝑔2(x), . . . , 𝑔𝑁𝑜𝑏𝑗

(x)
}︀

subject to x𝐿 ≤ x ≤ x𝑈

(2)

where: x = (𝑥1,...,𝑥𝑛) is a solution vector, and g is a vector of 𝑁𝑜𝑏𝑗 objective functions to be

optimized.
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On multi-objective problems, a solution is compared with another based on a dominance

relation. A solution x𝑎 dominates x𝑏 if x𝑎 is, for at least one objective, strictly better than x𝑏.

More precisely (DEB, 2011):

x𝑎 dominates x𝑏 →∀𝑖 ∈ {1, . . . ,𝑁𝑜𝑏𝑗} , 𝑓𝑖(x𝑎) ≤ 𝑓𝑖(x𝑏) and

∃𝑘 ∈ {1, . . . ,𝑁𝑜𝑏𝑗} : 𝑓𝑘(x𝑎) < 𝑓𝑘(x𝑏).
(3)

The set of all non-dominated solution in the decision space is called a Pareto set and the

corresponding image on the objective space is called a Pareto optimal front, Pareto front for

short.

2.4.1 MOEA/D: Multi-objective evolutionary algorithm based on decomposition

As multi-objective problems are often unfeasible for solving using exact approaches,

the Pareto front is approximated by Multi-objective evolutionary algorithms (MOEAs). De-

composition is a successful technique used by most state-of-the-art MOEAs. It uses weights

to decompose the problem into several mono-objective problems and aggregation functions to

select the most fitted solutions.

The algorithm in Figure 4 describes the original MOEA/D, where first, the population

of 𝑁𝑝𝑜𝑝 solutions is initialized randomly.

Figure 4 – MOEA/D algorithm.
1: procedure MOEAD(g, 𝑁𝑝𝑜𝑝, 𝑁𝑔𝑒𝑛, 𝑁𝑛𝑒𝑖𝑔ℎ)
2: 𝑃 ← RANDOMPOPULATION(𝑁𝑝𝑜𝑝)
3: 𝑊 ← UNIFORMWEIGHTS(𝑁𝑝𝑜𝑝)
4: 𝐵 ← ASSIGNNEIGHBORS(𝑃,𝑊 )
5: while stop condition is not achieved do
6: for x𝑖 ∈ 𝑃 do
7: x′

𝑖 ← GENETICOPERATORS(x𝑖, 𝐵𝑖,w𝑖)
8: z* ← min{z*,g(x′

𝑖)}
9: for x𝑛𝑒𝑖𝑔ℎ ∈ 𝐵𝑖 do

10: if G(x′|w𝑖,z
*) ≤ G(x𝑛𝑒𝑖𝑔ℎ|w𝑖,z

*) then
11: x𝑛𝑒𝑖𝑔ℎ ← x′

12: end if
13: end for
14: end for
15: end whilereturn All non-dominated solutions from 𝑃
16: end procedure

Source: Adapted from Zhang and Li (2007)

Each individual is associated with a weight w𝑖 from a weight set 𝑊 , where w𝑖 consists

on a vector of 𝑁𝑜𝑏𝑗 numbers that sum to 1 and are distributed uniformly in the objective space.
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The corresponding solutions for the closest 𝑁𝑛𝑒𝑖𝑔ℎ weights form a neighborhood set (𝐵𝑖) for

each solution. For 𝑁𝑔𝑒𝑛 generations, each solution in the population is modified by a variation

operator and the child solution is evaluated. After that, an aggregation function 𝑔(·) value is used

to compare and update the solutions from the neighborhood 𝐵𝑖. At the end, the algorithm returns

the non-dominated solutions from the population.

The original MOEA/D uses simulated binary crossover and polynomial mutation as

variation and Tchebycheff aggregation function, given by:

𝑔𝑡𝑐ℎ𝑒(y|𝑊𝑖,z) = max
1≤𝑖≤𝑁𝑜𝑏𝑗

{𝑤𝑖|𝑦𝑖 − 𝑧*𝑖 |} (4)

where z* is the current reference point, composed of the best value of each objective function.

2.5 FLOWSHOP PROBLEMS

Flowshop is a combinatorial optimization problem of sequencing or scheduling. The

problem involves deciding how 𝐽 jobs will be processed on 𝑀 machines in series, given their

processing times. A permutation x = (𝑥0, . . . , 𝑥𝐽) informs the order jobs will be executed on

each machine. Besides, a schedule shows the system state at any time, allowing job preemption,

dynamic release times, and out of order execution. Given that, the most common flowshop

formulations look for a sequence of jobs that maximizes a performance measure and obeys given

constraints (PINEDO, 2016).

This section presents a review of the literature of methods to solve the permutation

flowshop problem. It covers a broad set of methods ranging from classic exact methods like

Johnson’s algorithm (JOHNSON, 1954) to recent state-of-the-art MHs like Iterated Greedy

(RUIZ; STÜTZLE, 2007).

Scheduling problems are a broad topic with several works in the literature. Graham et

al. (1979), Baker and Trietsch (2009), Pinedo (2016) provide theoretical results and formulations.

The review made by Potts and Strusevich (2009) focuses on historical milestones in the field.

More recently, Ruiz and Maroto (2005), Fernandez-Viagas et al. (2017) review and compare

several flowshop heuristics and MHs.

According to Baker and Trietsch (2009), the usual permutation flowshop formulation

has the following conditions:

1. a set of 𝐽 unrelated, multiple-operation jobs is available for processing at time zero;
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2. each job requires 𝑀 operations, and each operation requires a different machine;

3. setup times for the operations are sequence-independent and included in processing times;

4. job times on each machine are known in advance;

5. all machines are continuously available;

6. once the operation begins, it proceeds without interruption.

Besides, a flowshop problem instance for a set of 𝐽 jobs and 𝑀 machines is given by

three pieces of information:

Processing times (𝑝𝑗,𝑚): the amount of processing required by job 𝑗 in machine 𝑚;

Due time (𝑑𝑢𝑒𝑗): the time that each job 𝑗 is due to be completed (required only when the

objective involve tardiness or earliness measures);

Release time (𝑟𝑒𝑙𝑗): the time job 𝑗 is available for processing (usually 𝑟𝑒𝑙𝑗 = 0 according to

condition 1).

A sequence is a permutation of jobs x = (𝑥1, 𝑥2, . . . , 𝑥𝐽). Given these conditions,

each machine can process an available job immediately when it is available. In other words,

machine 1 starts processing the first job in the sequence at time zero and 𝑚-th machine can start

processing job 𝑥𝑘 as soon as job 𝑥𝑘−1 finishes and job 𝑥𝑘 is done on machine 𝑚− 1. Formally,

the completion time of job 𝑥𝑘 on machine 𝑚 is given by:

𝐶𝑥1,𝑚 =
∑︀𝑚

𝑙=1 𝑝𝑥1,𝑙 𝑚 = 1, . . . ,𝑀

𝐶𝑥𝑘,1 =
∑︀𝑘

𝑙=1 𝑝𝑥𝑘,1 𝑘 = 1, . . . ,𝐽

𝐶𝑥𝑘,𝑚 = max(𝐶𝑥𝑘,𝑚, 𝐶𝑥𝑘−1,𝑚) + 𝑝𝑥𝑘,𝑚 𝑚 = 2, . . . ,𝑀 ; 𝑘 = 2, . . . , 𝐽

Figure 5 shows an example with 𝐽 = 3 jobs in an 𝑀 = 4 machine shop and a job

schedule x = (2,1,3). The processing times are 𝑝1,1 = 𝑝1,4 = 1 and 𝑝1,2 = 𝑝1,3 = 4 for the first

job; 𝑝2,1 = 𝑝2,4 = 4 and 𝑝2,2 = 𝑝2,3 = 1 for the second job; 𝑝3,1 = 3; and 𝑝3,2 = 𝑝3,3 = 𝑝3,4 = 1

for the third job. Due to flowshop restrictions, there are delays for example between jobs 1 and 3

on machine 2.

Given a flowshop instance, usually, the objective is to find the best permutation of jobs

with regard to an objective function. Having defined some measurements:
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Figure 5 – Permutation flowshop example.

Machine 1

Machine 2

Machine 3

Machine 4
Time

Job 1

Job 2

Job 3

Candidate solution: < 2,1,3 > 𝐶2 𝐶1 𝐶3

Source: The author.

Flowtime (𝐹𝑗 = 𝐶𝑗,𝑀 ): total processing time of job 𝑗;

Tardiness (𝑇𝑗 = max{0, 𝐶𝑗,𝑀 − 𝑑𝑢𝑒𝑗}): delay time on job 𝑗;

Earliness (𝐸𝑗 = max{0, 𝑑𝑢𝑒𝑖 − 𝐶𝑗,𝑀}): time job 𝑗 is early with respect to its due date.

The most common objective functions are:

Maximum completion time or Makespan: 𝐶𝑚𝑎𝑥 = max{𝐶𝑗,𝑀 , 𝑗 = 1, . . . 𝐽};

Total flowtime: 𝐹 =
∑︀𝐽

𝑗=1 𝐹𝑗;

Maximum tardiness: 𝑇𝑚𝑎𝑥 = max{𝑇𝑗 , 𝑗 = 1, . . . 𝐽};

Number of tardy jobs: 𝑈 =
∑︀𝐽

𝑗=1{1 if 𝑇𝑗 > 0 else 0});

Weighted earliness and tardiness: 𝑈𝑤𝑒,𝑤𝑡 =
∑︀𝐽

𝑗=1{𝑤𝑒𝑗𝐸𝑗 +𝑤𝑡𝑗𝑇𝑗} (for some given earliness

and tardiness costs, 𝑤𝑒𝑗 and 𝑤𝑡𝑗 respectively);

It is worth noting that, with some exceptions, non-permutation schedules (different job orders

between machines) can be better than permutations (BAKER; TRIETSCH, 2009). Nonetheless,

permutations provide a simple solution structure and a search space of 𝐽 ! instead of 𝐽 !𝑀 for

non-permutation flowshops. In this work we only consider permutation flowshops.

Some flowshop formulations add new constraints to better model real-world scenarios.

The no-wait flowshop variant includes the requirement that the products can not be stored

between operations (BAKER; TRIETSCH, 2009). Storages or buffers are considered in a variant

called limited buffers flowshop (EMMONS, 2013). In no-idle flowshops, machines should not

have idle time between job exchanges (MARIUSZ, 2015) as is common in steel production.
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Storing, transportation, break-down times, and weights of jobs can also be possible constraints

(BONNEY; GUNDRY, 1976).

Graham et al. (1979) provide a survey and convenient notation for the flowshop and

related scheduling problems. In the single-machine model, where 𝑀 = 1, specific job sorting

methods and dispatch rules can be efficiently used. Parallel machine formulations cover the

cases where 𝑀 = 1, but more than one machine is available to execute a job operation at the

same time. On the other hand, hybrid flowshops allow multi-stage parallel machines (LINN;

ZHANG, 1999), also, in job shop scheduling problems the machine order is specified for each

job (BAKER; TRIETSCH, 2009; MASTROLILLI; SVENSSON, 2011).

Other flowshop variants relax the mentioned conditions. For example, the flowshop

with setup times relax condition 3, allowing sequence-dependent setup times (RUIZ; MAROTO,

2006; ALLAHVERDI et al., 2008; BAKER; TRIETSCH, 2009). A relaxation on condition 4,

with processing times drawn from a random distribution, is known as the stochastic flowshop

(PINEDO; SCHRAGE, 1982; BAKER; TRIETSCH, 2009). Also, in some formulations, the

processing times can depend on time (PINEDO; SCHRAGE, 1982), and model the learning

effects (BISKUP, 2008). Job preemption and unknown release times relax conditions 1 and 6

and can affect the makespan (BAKER; TRIETSCH, 2009).

Any combination of constraints and objectives can have different methods proposed

to solve it. For example, in the 𝑀 = 2 machine flowshop, the optimal makespan sequence is

easily found. However, allowing stochastic processing and sequence-dependent setup times,

the problem can be hard to solve (BAKER; TRIETSCH, 2009). Alternatively, multi-objective

flowshop formulations adopt two or more trade-off objectives to be simultaneously optimized

(YENISEY; YAGMAHAN, 2014). However, most of the literature focuses on the permutation

flowshop and makespan objective.

There are many algorithms proposed to solve flowshop problems. Exact methods include

the classic Johnson’s algorithm (JOHNSON, 1954) for two machines. The general case can

be modeled as linear programming problems (WAGNER, 1959; MANNE, 1960; TSENG et

al., 2004) or branch-and-bound methods (LAGEWEG et al., 1978; MELAB et al., 2012). In

spite of being proposed many time ago, these classic methods are still in use. Recent works are

proposed, for example, mixed integer programming and constraint programming models for

different flowshop variants (ÖZGÜVEN et al., 2010; MALECK et al., 2018).

Although exact methods are optimal, they may not be computationally efficient in
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instances with many jobs. The general flowshop problem with makespan minimization for

𝑀 = 3 or more machines is proved to be NP-Hard (GAREY et al., 1976). It means that there

is no efficient way to solve it (if P ̸= NP). Therefore, it is common in practice to use heuristics

yielding solutions that are close enough to optimal.

Well known flowshop heuristics include: Palmer (1965) proposes a constructive heuris-

tic, Campbell-Dudek-Smith heuristic (CAMPBELL et al., 1970), Rapid Access (DANNEN-

BRING, 1977), and Heuristic for Flowshop Scheduling (KOULAMAS, 1998).

The NEH heuristic, proposed by Nawaz et al. (1983), is perhaps the most popular

flowshop heuristic. It is a constructive heuristic that works by inserting jobs in partial sequences.

The following steps can describe the NEH algorithm:

1. Initialization: calculate the sum of processing times of each job, and sort them by decreas-

ing order of that sum;

2. For 𝑖 = 2, . . . , 𝐽 do:

a) Insertion: Insert 𝑖-th job in every position in the partial sequence 1, . . . , 𝑖− 1

b) Select the best partial sequence and continue

This procedure has a complexity of 𝑂(𝐽3𝑀). Taillard (1990) later improved NEH’s com-

plexity to 𝑂(𝐽2𝑀) because it is easy to recalculate the makespan from each insertion, given

the previous partial sequences completion times. With extensive tests, NEH is considered the

best heuristic for flowshop (RUIZ; MAROTO, 2005). Thus, many recent heuristics and MHs

proposals internally use NEH or some variant of NEH. These variants improve aspects like

the initial order (DONG et al., 2008; RIBAS et al., 2010; NAGANO; MOCCELLIN, 2002;

KALCZYNSKI; KAMBUROWSKI, 2008) and introduce tie-breaking mechanisms (KALCZYN-

SKI; KAMBUROWSKI, 2007; KALCZYNSKI; KAMBUROWSKI, 2008; KALCZYNSKI;

KAMBUROWSKI, 2009; DONG et al., 2008; Fernandez-Viagas; FRAMINAN, 2014).

2.5.1 Meta-heuristics to solve Flowshop problems

Osman and Potts (1989) propose a SA cooling schedule for flowshop problems with or-

dered and random neighborhoods (order of neighbors change withing iterations). Later, Ishibuchi

et al. (1995) propose a SA with a dynamic cooling schedule, that adapts the frequency of temper-

ature updates. Zegordi et al. (1995) incorporate flowshop specific knowledge to SA, using a table
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with the “move desirability for jobs” during the annealing process. Also, recent work presented

by Chen and Sandnes (2015) propose SA with an internal local search based in job insertion.

Widmer and Hertz (1989) propose a TS variant for the flowshop problem named SPIRIT.

The proposal uses a constructive heuristic based on a travelling salesperson problem formulation

and job insertion, followed by TS with exchange neighborhood. Reeves (1993) further improves

SPIRIT with NEH initialization. Nowicki and Smutnicki (1996) improve the basic TS with

blocks of jobs, a fast TS implementation that does not explore all solutions in potentially big

neighborhoods. Ben-Daya and Al-Fawzan (1998) propose another TS variant considering the

intensification versus diversification dilemma. Moccellin and Santos (2000) hybridize TS and

SA.

Stützle (1998b) applies the standard ILS with NEH heuristic initialization, the common

types of neighborhoods and Metropolis-Hastings acceptance criterion (i.e. the same used by SA

metaheuristic) to the permutation flowshop problem.

Ruiz and Stützle (2007) proposes a very successful ILS variant called Iterated Greedy

(IG). IG main feature is deconstruction/construction perturbation function based the NEH

heuristic. The perturbation locks some jobs positions (destruction) and allows inserting the

others in the best possible position (construction). Some variants of IG are proposed, like

Fernandez-Viagas and Framinan (2014), that integrate NEH tie-breaking mechanisms to IG,

and Dubois-Lacoste et al. (2017) that proposes using local-search between the construction and

destruction perturbations, namely IG with Local Search on Partial Solution (LSPS).

Rajendran and Ziegler (2004) enhance MMAS construction and local search phases.

Also, Tzeng et al. (2012) make use of estimation of distribution algorithms to improve ACO

performance on the flowshop problem.

Several other population-based MHs are proposed to solve the flowshop problem:

genetic algorithms (REEVES, 1995; REEVES; YAMADA, 1998; WANG; ZHENG, 2003; RUIZ;

MAROTO, 2006), differential evolution (PAN et al., 2008) and particle swarm optimization (LIU

et al., 2011). In this work we mostly focus on stochastic local search metaheuristics based on a

single incumbent solution, as those methods show good performance in comparison to population

based metaheuristics (RUIZ; MAROTO, 2005; RUIZ; STÜTZLE, 2007).
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2.5.2 Flowshop fitness landscape analysis

There are several FLA results on flowshop problems in the literature. One of the first

works was presented by Reeves (1999). Reeves investigates local minima distribution, FDCs

with different distances and concludes with evidence that flowshop problems do contain big

basins of attraction.

Marmion et al. (2011a) investigate neutrality on flowshop problems. Neutral regions

are characterized by studying the neutral degree during a random walk on flowshop landscapes,

concluding that the neutral degree is not random and they are mostly present on instances with

processing time correlation. Marmion et al. (2011b) apply the previous analysis for the design of

a new ILS variant (Neutral ILS).

Czogalla and Fink (2012) analyze the no-wait flowshop variant using node type fre-

quencies and FDC with seven different permutation distances. None of the distances proved to

be superior. Therefore it is interesting to use different operators and hybrid MHs on the no-wait

flowshop problem.

Hernando et al. (2017) perform a fitness landscape analysis with Local Optima Networks

(LONs) on permutation flowshop with makespan and flowtime objectives. They measure several

features like funnel size, frequency of sink nodes, and page rank. They also propose a compressed

LON where nodes are grouped when they have the same fitness and called “neutral nodes”.

Given that, they were able to justify why the flowtime objective is usually harder to solve than

the makespan objective.

2.6 RELATED WORKS

Analyses of flowshop features effects on MHs performance are present in FLA works

(REEVES, 1999; CZOGALLA; FINK, 2012; MARMION et al., 2011a; MARMION; Regnier-

Coudert, 2015; HERNANDO et al., 2017). Many concepts of these works contribute to our

proposal, but they focus on studying the main effects of different instance features, solution

representation, and neighborhood operator on flowshop search landscapes.

Also related to our proposal, there are many meta-learning frameworks for combinatorial

optimization problems. One could cite proposals for quadratic assignment problem (SMITH-

MILES, 2008; DANTAS; POZO, 2018), graph coloring (SMITH-MILES et al., 2013), travelling

salesperson problem (KANDA et al., 2011; KANDA et al., 2012; KANDA et al., 2016), travelling
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thief problem (WAGNER et al., 2018), vehicle routing problem (Gutierrez-Rodríguez et al.,

2019), statisfiability problem (XU et al., 2008) and more. Compared to our study, the main

differences are the focus on PIAC strategy and flowshop scheduling problems which are the

focus of our proposal.

Table 2 – Related works.
Base problem Meta-learning Strategy Reference
Job-sorting heuristic recommendation for the
Early/Tardy scheduling problem

Neural networks, decision trees,
and self-organizing maps

(SMITH-MILES et al.,
2009)

Predicting the cost and local search dynamics
of tabu search for the job shop problem

Linear regression and Markov
models

(WATSON, 2010)

Parameter recommendation for tabu search
in set covering, Cplex in mixed integer-
programming and stochastic local search for
satisfability problems

Adaptive K-Nearest Neighbors al-
gorithm

(KADIOGLU et al.,
2010)

Performance prediction and algorithm recom-
mendation on six types of combinatorial opti-
mization problem

Generic meta-learning formula-
tions using Rice’s framework

(SMITH-MILES;
LOPES, 2012)

Parameter recommendation support vector ma-
chines and random forest in classification prob-
lems

K-nearest neighbors in the feature
space are used to warm initialize a
bayesian parameter tuner

(FEURER et al., 2015)

Source: The author.

Some closely related works about meta-learning for scheduling problems and parameter

recommendation are shown in Table 2. As we can see, different from our proposal, none of the

papers directly addresses flowshop problems, and most PIAC strategies use simple models like

𝑘-nearest neighbors on the feature space.

There are several works in the literature that address the AAC on different base prob-

lems. For example, on flowshop problems using racing and grammar-based evolutionary algo-

rithms (MARMION et al., 2013; MASCIA et al., 2014a; MASCIA et al., 2014b; PAGNOZZI;

STÜTZLE, 2017). Multi-objective approaches to the AAC problem are much more scarce.

One way to model AAC as a multi-objective problem is to consider performance

fronts (DRÉO, 2009). This approach considers two conflicting criteria: the performance on

the base problem and the computational cost. The formulation allows solving continuous and

combinatorial problems with multiobjective algorithms like Non-dominated Sorting Genetic

Algorithm (NSGA-II).

Other proposals (DYMOND et al., 2013; DYMOND et al., 2015; DYMOND et al.,

2017) expand this concept by using the search history to evaluate several budgets at once. For

the authors, the performance at the beginning, middle or end of the evolutionary process is

different due to the budget associated with the number of generations and must be compared in a
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multi-criteria way. For example, a solution can be chosen because it provides a good performance

earlier than another one with better performance but achieved at the end of evolution. Such

approaches can also handle multiple utilities simultaneously and use resampling mechanisms to

deal with noisy objective function of stochastic algorithms.

Another example of MOAAC/D is the adaptation of ParamILS, a known single-objective

AAC, for handling multi-objective tuning (BLOT et al., 2016). For that, ParamILS is augmented

with an archive of non-dominated solutions. The archive is used in the perturbation mecha-

nism, by choosing a random non-dominated configuration, and also on local search uses the

dominance relation to explore the neighborhood of the current configuration. Multi-objective

ParamILS shows good results for tuning mixed-integer optimization algorithm with bi-objective

formulations like solution quality and cutoff time.

The multi-objective model racing SPRINT (ZHANG et al., 2013; ZHANG et al., 2015)

extends the dominance concept with statistical inference and shows good results on an ant

colony algorithm bi-objective tuning of travelling salesperson tour length and computation time.

Also, combining different metrics with multi-objective indicators like hypervolume is useful for

selecting metaheuristics for problems like travelling salesperson’s penalized average runtime and

penalized quantile runtime (BOSSEK et al., 2020).

Despite the similar end goal of AAC, in our proposals, the main focus is the instance-

based recommendation of MHs and configurations, or PIAC, based on knowledge of algorithm

configurations performance. Compared to other multi-objective AAC approaches, our approach

is different in the sense it considers different instances of the problem for each objective and

proposes a well-suited strategy to improve compromise solutions in this space with MOEA/D

with (optional) irace operator for automatic algorithm configuration (iMOEA/D).
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3 PER-INSTANCE ALGORITHM CONFIGURATION

In this chapter, as one of the contributions of our work, we present in Section 3.1 the

PIAC problem under the perspective of Rice’s framework (RICE, 1976). Then we describe the

two approaches (Sections 3.2 and 3.3) proposed to solve the formulated problem.

3.1 THE PIAC PROBLEM AND RICE’S FRAMEWORK

Rice (1976) provides the basic notation and a framework for the algorithm recommenda-

tion problem. Rice’s framework, as seen in Figure 6, models several meta-learning systems in the

literature. Nevertheless, in this work, it serves as the base for both of our proposed approaches.

Figure 6 – Building and using algorithm recommendation models with Rice’s framework.

Problem space:
𝑝 ∈ 𝑃

Feature space:
𝜑𝑝 ∈ 𝐹𝑝

Algorithm space:
𝛼 ∈ 𝐴

Performance space:
𝑢 ∈ 𝑈

1) Feature
extraction 𝑓

3) Learn selection
mapping from features

2) Performance
mapping 𝑢(𝛼,𝑝)

𝛼* = ℎ(𝑓(𝑝))

Select 𝛼 to
maximize ||𝑢||

(a) Building algorithm recommendation model (training phase).

Unseen
problem 𝑝′

Problem
features 𝜑

Selection
mapping

𝛼′ = ℎ(𝜑)

Feature
extraction 𝑓

Algorithm with
best ||𝑢(𝛼′,𝑝′)||

(b) Using the recommendation model (prediction phase).

Source: Adapted from Rice (1976).

Given a space of problems 𝑝 ∈ 𝑃 , a space of features 𝑓(𝑝) ∈ 𝐹 , each one extracted

from the problems, a space of algorithms 𝛼 ∈ 𝐴, a performance metric or utility ||𝑢(𝛼,𝑝)|| ∈ 𝑈 ,

the main task involves learning the mapping ℎ (selection mapping or recommendation function)

from problem features 𝑓(𝑝) to the algorithm that maximizes ||𝑢(𝛼,𝑝)||. After building the model

that provides ℎ, one can use it to predict the best algorithm, based on the instance features of a

new problem (Figure 6).

When designing recommendation algorithms, three main phases are feature extraction,

performance mapping, and recommendation model building (Figure 6). The feature selection

procedure extracts the meta-features from the problem instances. In the performance mapping,
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the main concern is to build knowledge about how good each algorithm in the portfolio is for

each problem instance (SMITH-MILES; LOPES, 2012; LEMKE et al., 2015). Finally, with

problem features and performance at hand, the recommendation model can be built.

There could be many algorithms (𝛼 ∈ 𝐴) that yield the (statistically) same performance.

Besides, each algorithm could contain a set of parameters that affect its performance. Then,

recommending a proper configuration considering instance’s meta-features and past experience,

like performed in the classic PIAC, is mainly an open problem (KERSCHKE et al., 2019). In

the PIAC formulation proposed here, a typical algorithm 𝛼 contains a set of parameters Π𝛼. A

parameter 𝜋 ∈ Π𝛼 controls some aspect(s) of algorithm 𝛼 and it can assume a value 𝜃. The set

of all parameters’ values is called configuration 𝜃 vector, drawn from a configuration space Θ𝛼.

Therefore, in the present work the whole space 𝐴+ Θ encompasses not only the algorithms but

also their configurations. A function given by 𝑢 : Θ𝛼 → R defines a utility value to be optimized

for a configuration. The utility represents the quality or cost associated with the configuration, to

be maximized or minimized.

To provide the PIAC formalization, first we consider 𝑢 regarding the configuration cost,

and the AAC formulation as the following minimization problem:

𝜃* = arg min
𝜃

𝑢(𝜃|Θ𝑓
𝛼, 𝑃, 𝐶𝜃, 𝑡) (5)

where 𝑢 depends on Θ𝑓
𝛼 ⊆ Θ𝛼, i.e., the space of feasible configurations for algorithm 𝛼; the

problem space 𝑃 , usually composed by a set of instances {𝑖𝑛𝑠𝑡}; the distribution of costs 𝐶𝜃

for a particular configuration 𝜃; and the function 𝑡 : 𝑃 → R, associating the computation time

allocated for each problem.

The estimation of the utility of a configuration 𝜃 ∈ Θ𝑓
𝛼, for a particular algorithm 𝛼, on

a specific problem 𝑝, is based on the expected value of the cost distribution as:

𝑢(𝜃) = E[𝐶𝜃]. (6)

𝐶𝜃 can be sampled by running 𝛼 configured by 𝜃 with different seeds 𝑠, 𝑠 = 1,..,𝑆,

with each sample given by 𝑐𝑠,𝜃 = 𝑔(x𝑠,𝜃,𝑝), i.e. the sampled cost is obtained from the objective

function (fitness) of the best solution x𝑠 achieved at the end of evolution, using the seed 𝑠 to

generate the initial population of solutions for the base problem 𝑝 ∈ 𝑃 .

In most cases, the configuration 𝜃 guides the algorithm 𝛼 running on a sample of

instances {𝑖𝑛𝑠𝑡}𝑠𝑎𝑚𝑝𝑙𝑒 ⊂ 𝑃 . The performance/cost is measured on time limited to 𝑡(𝑖𝑛𝑠𝑡),
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and the mean cost of the sample runs, each one with a different seed 𝑠 in the random number

generator, accesses the configuration utility 𝑢 (BIRATTARI, 2009).

Assuming a given algorithm 𝛼 and 𝐹 as the problem features space, the PIAC problem

generalizes AAC by finding the mapping ℎ : 𝐹 → Θ𝛼 that optimizes 𝑢:

ℎ* = arg min
ℎ:𝐹→Θ𝛼

||uℎ||

uℎ = (𝑢(ℎ(𝑓(𝑝))), for 𝑝 ∈ 𝑃 )

(7)

where 𝑓 : 𝑃 → 𝐹 is a function that extracts relevant features from the problem space, and ||uℎ||

is the norm of the mapping ℎ performance over all the problems in the problem space 𝑃 .

By solving the PIAC problem, one can use the mapping ℎ, usually the one provided by

a machine learning model, to find best fit configurations for unseen instances only by computing

their feature vectors. The challenges here are (i) designing a good feature extractor, (ii) building

a performance dataset consisting of pairs of feature and utility for each configuration 𝜃, i.e.,

(𝑓(𝑝),𝑢(𝜃|𝑃 = {𝑖𝑛𝑠𝑡})), and (iii) training the model to recommend configurations.

In the next sections, we detail the two proposed approaches: (i) one, based on meta-

learning, recommends not only the algorithm (MH) in the optimization task but also its configura-

tion parameters; (ii) the other, considered a completely new approach, addresses a multi-objective

AAC based on problem space decomposition. In both cases, the approaches are presented as

generalizations of AAC for solving the PIAC problem.

3.2 METAL PIAC: A PROPOSAL BASED ON META-LEARNING

As several examples in the literature, the basic Rice’s framework can be expanded to

accommodate different systems (SMITH-MILES, 2009). This work proposes and investigates

a framework, Meta-Learning based Per-Instance Algorithm Configuration (MetaL PIAC), con-

sidering parameters as part of the algorithm space, as well as different performance mappings

like multi-label and ranking algorithms recommendations. An overview of Meta-Learning based

Per-Instance Algorithm Configuration (MetaL PIAC) can be seen in Figure 7.

As in the case of Rice’s framework, MetaL PIAC works on algorithm, performance,

problem, and feature spaces. The main differences are: (i) it uses an internal AAC tuner for

building the meta-data and (ii) it considers extra information on best configurations for the

parameter recommendation phase. In the performance space, a tuner evaluates each configuration
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Figure 7 – MetaL PIAC: the proposed framework for algorithm and parameter recommendation.

Source: The author.

based on its utility and defines the best configuration for each algorithm (MH) when solving each

instance. The tuned algorithm competes with other tuned algorithms and the “recommended” ones

are those with the best mean performance value (best mean fitness) or are statistically equivalent

to the one with best mean fitness. The meta-data for MH recommendation is composed of

instance features (problem-based and FLA based features) and the recommended MH for each

problem. An MH is considered recommended if it is statistically superior to others or equivalent

to the MH with the best mean final fitness value. Therefore, it is possible that multiple MHs are

recommended at once, making it a multi-label classification problem. The evaluation is made

using the multi-label metric macro-AUC and average precision. Finally, the proposal considers

training one model for each parameter, using the configurations found by the internal AAC. The

output of this procedure is the mapping:

𝛼′ = ℎ𝑀𝐻(𝜑) = PREDICTMULTILABEL(𝜑)

𝜃′ = ℎ𝛼′,𝜋(𝜑) = (PREDICT(𝜑),𝜋), for 𝜋 ∈ Π𝛼)
(8)

where ℎ𝑀𝐻(·) is the output of the algorithm recommendation model, and ℎ𝛼′,𝜋(·) is the output

of the parameter 𝜋 model for algorithm 𝛼′.
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3.2.1 MetaL PIAC Algorithm

Figure 8 details all the steps performed to provide PIAC recommendations.

Figure 8 – MetaL PIAC framework.
1: procedure BUILDMETALEARNINGFRAMEWORK(algorithm space 𝐴, problem space 𝑃 )
2: 𝜑𝑝 ← 𝑓(𝑝) for all problem 𝑝 ∈ 𝑃
3: 𝜃*,𝛼* ← BUILDPERFORMANCEDATA(𝐴, 𝑃 )
4: ℎ𝛼 ← TRAINMODEL({(𝜑𝑝,𝛼

*
𝑝) : for all problem 𝑝 ∈ 𝑃})

5: for each algorithm 𝛼 ∈ 𝐴 do
6: for each parameter 𝜋 of Π𝛼 do
7: ℎ𝛼,𝜋 ← TRAINMODEL({(𝜑𝑝,𝜃

*
𝑝,𝛼,𝜋) : for all 𝑝 ∈ 𝑃})

8: end for
9: end for

10: end procedure

11: procedure BUILDPERFORMANCEDATA(algorithm space 𝐴, problem space 𝑃 )
12: for each instance 𝑝 ∈ 𝑃 do
13: for each algorithm 𝛼 ∈ 𝐴 do
14: 𝜃 ← AUTOMATICALGORITHMCONFIGURATOR(𝛼, 𝑝)
15: 𝜃*𝑝,𝛼,𝜋 ← 𝜃*𝜋 for all parameters 𝜋 ∈ Π𝛼

16: end for
17: 𝛼*

𝑝 ←COMPARE({𝜃*𝑝,𝛼,Π𝛼
: for all algorithm 𝛼}, 𝑝)

18: end for
19: return best configurations table 𝜃*, best algorithms 𝛼*

20: end procedure

21: procedure RECOMMEND(Unseen instance 𝑝′)
22: 𝜑′ ← 𝑓(𝑝′)
23: 𝛼′ ← PREDICTMULTILABEL(ℎ𝛼, 𝜑)
24: for each parameter 𝜋 of Π′

𝛼 do
25: 𝜃′𝜋 ← PREDICT(ℎ𝛼′,𝜋 , 𝜑)
26: end for
27: return 𝛼*,𝜃
28: end procedure

Source: The author.

The first step is to extract the features 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 from the problem instances using a given

set of metrics, for example, problem-specific metrics and others from FLA (Line 2 in Figure 8).

For instance-based recommendations the next step for building the meta-data is to run the tuner

for each instance and each algorithm (Lines 13 to 16 of Figure 8). The best configurations are

then compared against each other to define the best single algorithm for that instance, using a

given statistical test (Line 17 in Figure 8).

Considering the features as inputs and the performance data as outputs, different ma-

chine learning models are trained for algorithm recommendation and each individual parameter

recommendation (Lines 4 to 9 in Figure 8). At last, these models can be used to predict the

best algorithm and, subsequently, its configuration from the parameter recommendation models
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(Lines 22 to 26 in Figure 8).

In summary, in MetaL PIAC, the prediction of the best MH and its configuration for

unseen instances occurs in three phases:

1. Predicting the best MH strategy. For this, the BR multi-label models for all three inner

algorithms (Classification and Regression Tree (CART), Random Forest (RF), and eXtreme

Gradient Boosting (XGB)) are used to predict the best MH for all problems from the test

set. Since the inner models’ output is a probability, the highest probability is selected as

the best MH;

2. Predicting the best configurations. All parameter models are used for the chosen MH. If

there are parameter dependencies, the dependent models are evaluated later;

3. According to Equation (7), the recommendation results are obtained from the best mapping

ℎ* for unseen problems 𝑝′ taken from randomly generated test folds.

Unlike previous strategies in the literature, the practitioner only needs to choose the

available algorithms to compose the portfolio, since there is no need to tune them with different

parameters. Although the procedure to tune each parameter of each problem could be more

expensive than solving the base problem directly, it can be easily parallelized. It is also the case

for training and prediction of parameter models.

It is possible to extend the meta-data with more algorithms, features, or problems.

Adding new instances of the same problem can be done with a small cost, especially with

incremental models (VEN; TOLIAS, 2019), like Random Forest or Neural Networks, where the

user might just continue to train with new data. Adding new algorithms implies re-training the

MH recommendation models and new parameter models. Another possibility is to extend the

models for new problem formulations by transfer learning. This implies that the feature spaces

of both problem types are related.

Another aspect of our model is the possibility of recommending many algorithms

simultaneously. The comparison of configurations (Line 17 in Figure 8) addresses algorithms

with similar performance and the configurations therefore could yield a draw. Moreover, the

comparison could rank the algorithms accordingly. As a consequence, by having multiple classes

or ranking the recommendation models must be chosen to handle multi-label or ranking data.

It is important to note that, during the prediction phase, the recommendation quality

diretly depends on how the new problem relates to the problems used during training. For
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instance, in a previous work (PAVELSKI et al., 2021b) using MetaL PIAC for NEH algorithms

recommendation, the performance of the configuration decreases when the testing problems have

more than double the number of jobs of training problems.

3.3 PIAC PROPOSAL BASED ON PROBLEM SPACE DECOMPOSITION

In the present work, we consider that different problems’ instances can map to the same

configuration, i.e., the same algorithm configuration is the best for a set of instances. Then, the

instance space can be decomposed (partitioned) into 𝑚 sets of related problems, {𝑃1, . . . , 𝑃𝑚},

such that 𝑃 = 𝑃1 ∪ · · · ∪ 𝑃𝑚 and 𝑃𝑖 ∩ 𝑃𝑗 = ∅, for all 𝑖 ̸= 𝑗 ∈ {1,...,𝑚}. In this second proposal,

we assume that a function 𝑚𝑠ℎ𝑝(𝜑) = 𝜓 maps the problems’ features into a vector 𝜓 ∈ [0,1]𝑚,

such that each element 𝜓𝜌 indicates the membership of problem 𝑝 to the problem partition subset

𝑃𝜌, and
∑︀

𝜌 𝜓𝜌 = 1.

Since each problem partition subset can lead to a different configuration, and therefore

to a different algorithm’s performance, the search for the best configurations can be seen as a

multi-objective AAC problem where 𝑚 = 𝑁𝑜𝑏𝑗 . By solving the problem under a multi-objective

perspective, we have a Pareto-set approximation 𝒫𝒮 of the configurations that optimize the

different compromises between the different problem partition subsets 𝑃𝜌, 𝜌 = 1, . . . , 𝑁𝑜𝑏𝑗 .

When faced with a new problem 𝑝′ the following decision maker strategy can be used

to recommend an adequate configuration:

𝜃* = arg min
𝜃∈𝒫𝒮

𝑑(𝜓, û(𝜃)). (9)

where 𝑑 is an arbitrary distance function, and û(𝜃) is the vector corresponding to the utility

vector u(𝜃) scaled to the unit space [0,1]𝑁𝑜𝑏𝑗 . In other words, this strategy simply chooses the

configuration whose performance best fits the membership vector 𝜓.

As an example, the function 𝑚𝑠ℎ𝑝 could be used to classify between 𝑃1 = large and

𝑃2 = small size problems. This way for a new problem 𝑝′ with an intermediate to large size,

the decision maker would choose as the best fit a compromise configuration closer to the large

objective, i.e. closer to 𝑃1.

The PIAC mapping (7) can be given here equivalently by:

ℎ(𝑓(𝑝′)|𝒫𝒮) = arg min
𝜃∈𝒫𝒮

𝑑(𝑚𝑠ℎ𝑝(𝑓(𝑝′)), û(𝜃)). (10)
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Therefore, the PIAC definition in (7) can be generalized to finding the best Pareto-Set

(𝒫𝒮) such that:

ℎ* = ℎ(𝑓(𝑝′)|𝒫𝒮)

𝒫𝒮 = arg min
𝒫𝒮⊆Θ

||q𝒫𝒮 ||

q𝒫𝒮 = (min
𝜃∈𝒫𝒮

𝑑(𝑚𝑠ℎ𝑝(𝑓(𝑝)), û(𝜃), min
𝜃∈𝒫𝒮

||û(𝜃)||), for 𝑝 ∈ 𝑃 )

(11)

where ||q𝒫𝒮 || represents the quality of the Pareto-Set regarding the distance from each member-

ship vector 𝑚𝑠ℎ𝑝(𝑓(𝑝)) to the closest point in the Pareto-Front. As we might expect, finding

a good Pareto-Front is equivalent to finding smaller distances between 𝑚𝑠ℎ𝑝(𝑓(𝑝)) and û(𝜃)

(spread) and the norm ||û(𝜃)|| (convergence). Therefore, the best Pareto-Fronts yields a good

mapping between problems’ features and the best compromise configuration.

The decomposition procedure can be performed manually or automatically. In the

second case, the feature space 𝐹 can be used in association of Principal Component Analysis

(PCA) to automatically decompose the problem space 𝑃 into a reduced space of relevant

information. Since the feature space 𝐹 might have many dimensions (one for each feature), we

can apply a dimensional reduction method to reduce the feature space into an ℜ𝐷 space. Notice

that setting not very high 𝐷 dimensions allows a good number of partition subsets without

degenerating the performance of multi-objective optimization algorithms. In case of high 𝐷

dimensions, many-objective optimization algorithms are better options. In particular, we can

build a PCA model to reduce the feature space to 𝐷 dimensions and select the problems that

best represent each of the first 𝐷 axis. Any metric can be used with PCA to identify such inputs.

Therefore the membership function 𝑚𝑠ℎ𝑝 is defined as:

𝑚𝑠ℎ𝑝(𝑝) = 𝜓𝑝 = metric(𝑃𝐶𝐴𝑝𝑟𝑒𝑑(𝑓(𝑝))) (12)

where 𝑃𝐶𝐴𝑝𝑟𝑒𝑑 is the model’s prediction function, yielding the projected coordinates of the

new problem, and metric refers to the quality of this projection on each dimension of the reduced

feature space. In this proposal, we use PCA mainly due to its simplicity and because it provides

explainable models. Moreover, one could further investigate which are the most important

features considered for each objective. Further works might include other clustering methods for

this purpose.

In the next sections we detail the proposed approach, which considers the decomposition-

based multi-objective context previously discussed. First we detail the MOAAC/D proposal,
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particularly its multi-objective formulation. And then we discuss the hybridization of MOEA/D

and irace, named iMOEA/D, as a possible solution of the multi-objective formulation.

3.3.1 MOAAC/D: A Multi-objective AAC based on Decomposition

Assuming that the problem space is a set of problem instances 𝑃 = {𝑖𝑛𝑠𝑡} and it can

be decomposed into sets of related problems, {𝑃1, . . . , 𝑃𝑁𝑜𝑏𝑗
} such that 𝑃 = 𝑃1 ∪ · · · ∪ 𝑃𝑁𝑜𝑏𝑗

,

the present work proposes an innovative formulation where each problem space partition subset

𝑃𝜌 is associated with a utility 𝑢𝜌, 𝜌 = 1, . . . ,𝑁𝑜𝑏𝑗 , on the objective space and the decision space

Θ𝛼 is the set of all possible configurations of algorithm 𝛼. The multi-objective configuration

optimization problem can then be formulated as (see also Figure 12):

Minimize u(𝜃) =
(︀
𝑢1(𝜃), . . . , 𝑢𝑁𝑜𝑏𝑗

(𝜃)
)︀

subject to 𝜃 ∈ Θ𝑓
𝛼

(13)

where 𝑁𝑜𝑏𝑗 is the number of objectives or the total number of problem space partition subsets in

our case, 𝑢𝑝(𝜃) = 𝑢(𝜃 | Θ𝑓
𝛼, 𝑃𝜌, 𝐶𝜃, 𝑡), 𝜌 = 1, . . . , 𝑁𝑜𝑏𝑗 , and Θ𝑓

𝛼 ⊆ Θ𝛼 is the space of feasible

configurations of algorithm 𝛼. That is, each objective 𝑢𝑝(𝜃) represents a cost (drawn from 𝐶𝜃)

associated with problem partition subset 𝑃𝜌, to be minimized within time 𝑡, considering as

decision variables the algorithm 𝛼’s configuration 𝜃 ∈ Θ𝑓
𝛼.

In contrast to the usual AAC, the proposed formulation considers the fact that there

might be several configurations to solve different problem instances. Our proposal can fall in

between two different formulation scenarios:

• In one extreme, the problem space can be partitioned into 𝑁𝑜𝑏𝑗 = |𝑃 | sets, one for each

problem instance, i.e., |𝑃𝜌| = 1, for all 𝜌. In this case, assuming that the best configurations

have been found, the Pareto set solutions associated with the extremes of 𝒫ℱ would

enumerate each best configuration for each instance. The usual AAC is not adequate

for this assumption, since it would at most provide an average-performance generalist

configuration.

• Alternatively, based on the hypothesis that a unique configuration would be capable of

maximizing the performance for all instances, we should not perform any decomposition,

assuming a single instance set 𝑃𝜌 = 𝑃 , 𝜌 = 1. Although in this second case, a single AAC
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search on any instance would suffice, it is not plausible in general, since it can contradict

the No Free Lunch Theorems.

We believe that a more interesting formulation, like the one we propose in the present

work, is a trade-off between both scenarios. And more important, it presents a useful characteristic

regarding flexibility: based on the level of instance decomposition, i.e. the value of 𝑁𝑜𝑏𝑗 , the

proposal guides the formulation toward one of each scenario.

As shown in Figure 9, in the proposed formulation there are three levels of optimization

being performed.

Figure 9 – A MOAAC/D overview: base level optimization on the top left side, AAC level optimization on the
top right, and MOAAC/D on the bottom.

Source: The author.

In the base level (top left), assuming decision variables x, the MH optimizes the problem

formulated in (1) aiming to produce a solution x* that minimizes the objective function 𝑔 (fitness)
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for a single problem instance. It should be noted that in the proposal, the base problem can be

multi-objective, i.e., formulated as in (2). In this case, the set of solutions {x*} in the Pareto

set are expected to minimize different compromises between the multiple objective functions

g = (𝑔1, . . . , 𝑔𝑁𝑜𝑏𝑗
) of the base problem. The mapping of {x*} into the objective space provides

the base 𝒫ℱ({x*}), which is the Pareto Front associated with the base problem.

In the AAC level (top right), a tuner adjusts and evaluates a configuration 𝜃 based on

its utility 𝑢𝜌, where the utility value depends on a given set of instances 𝑃𝜌 of the base problem.

When the base problem is multi-objective, the utility function must be provided for AAC as a

unique indicator value calculated over the base Pareto Front, i.e., 𝑢𝜌 = 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟(𝒫ℱ({x*})).

In the MOAAC/D level (bottom), a multi-objective tuner1 adjusts and evaluates configu-

rations 𝜃 considering multiple base problem sets {𝑃1, 𝑃2, . . . , 𝑃𝑁𝑜𝑏𝑗
}, decomposed according to

the problem features. A multi-objective optimization algorithm must therefore be considered to

find good configurations improving utility functions 𝑢𝜌 for each problem subsets 𝑃𝜌. Therefore,

we refer to a problem or instance as being related to a particular objective when it has similar

features to the instances used to compute the objective’s utility function. In the next section, we

describe the approach conceived to solve the MOAAC/D formulation proposed here.

3.3.2 iMOEA/D: irace+MOEA/D for MOAAC/D

In this section, we present a practical method to solve AAC problems using the problem

space decomposition. For that we use a decomposition-based MOEA with a proposed local

search procedure based on a given AAC. We present this proposal in terms of the MOEA/D and

irace algorithms, but it could be easily adapted for other strategies for the AAC and MOEA.

The configuration space Θ can be complex, containing different types of parameters,

dependencies and constraints. Aiming to apply the multi-objective formulation from Equation 13,

we can consider state-of-the-art MOEAs based on decomposition and, at the same time, existing

successful AAC search strategies. Described in the algorithm in Figure 10, in the hybrid tuner

named iMOEA/D, we consider that MOEA/D embeds irace as a local search operator capable of

leveraging the decomposition aspects of MOEA/D.

The iMOEA/D general framework described in Figure 10 and works as follows. First,

the population is initialized with𝑁𝑝𝑜𝑝 randomly generated configurations. Then, as in the original

MOEA/D, each weight vector w𝑖 ∈ 𝑊 with𝑁𝑜𝑏𝑗 elements in [0,1] is set in a way that𝑊 provides
1 Any multi-objective optimizer could be adopted here.
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Figure 10 – iMOEA/D
1: procedure IMOEA/D(𝑃 , 𝑁𝑝𝑜𝑝, 𝑁𝑔𝑒𝑛, 𝑁𝑛𝑒𝑖𝑔ℎ, 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠, 𝑁𝑒𝑣𝑎𝑙𝑠)
2: Θ𝑝𝑜𝑝 ← 𝑁𝑝𝑜𝑝 random configurations from Θ𝑓

3: 𝑊 ← UNIFORMWEIGHTS(𝑁𝑝𝑜𝑝)
4: Calculate u(𝜃𝑖), 𝑖 = 1, . . . , 𝑁𝑝𝑜𝑝

5: 𝐵 ← ASSIGNNEIGHBORS({u(𝜃𝑖)},𝑊,𝑁𝑛𝑒𝑖𝑔ℎ)
6: {𝑃1, . . . , 𝑃𝑁𝑜𝑏𝑗

} ← DECOMPOSE(𝑃,𝑁𝑜𝑏𝑗)
7: 𝑔𝑒𝑛← 1
8: while 𝑔𝑒𝑛 < 𝑁𝑔𝑒𝑛 do
9: for 𝜃𝑖 ∈ Θ𝑝𝑜𝑝 do

10: 𝜃𝑛𝑒𝑤𝑖 ← IRACELS(𝐵𝑖,w𝑖, {𝑃1, . . . , 𝑃𝑁𝑜𝑏𝑗
}, 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠, 𝑁𝑒𝑣𝑎𝑙𝑠)

11: Calculate u(𝜃𝑛𝑒𝑤𝑖 )
12: Update non-dominated archive
13: 𝜗* ← min{𝜗*,u(𝜃𝑛𝑒𝑤𝑖 )}
14: for 𝜃𝑛𝑔ℎ𝑘 | 𝑘 ∈ 𝐵𝑖 do
15: if 𝑔𝑡𝑐ℎ𝑒(u(𝜃𝑛𝑒𝑤𝑖 )|w𝑖,𝜗

*) ≤ 𝑔𝑡𝑐ℎ𝑒(u(𝜃𝑛𝑔ℎ𝑘 )|w𝑖,𝜗
*) then

16: 𝜃𝑛𝑔ℎ𝑘 ← 𝜃𝑛𝑒𝑤𝑖

17: u(𝜃𝑛𝑔ℎ𝑘 )← u(𝜃𝑛𝑒𝑤𝑖 )
18: end if
19: end for
20: end for
21: 𝑔𝑒𝑛← 𝑔𝑒𝑛 + 1
22: end while
23: return Non-dominated archive
24: end procedure

Source: The author.

a uniform distribution in the objective space. Each individual configuration 𝜃𝑖 in the population

is evaluated (line 4) and associated (line 5) with a weight w𝑖, and indexes of the closest 𝑁𝑛𝑒𝑖𝑔ℎ

weights form the neighborhood set (𝐵𝑖) of each configuration 𝜃𝑖. Next, as an exclusive step

of the proposed approach, the set of problem instances 𝑃 is decomposed into non-overlapping

subsets 𝑃𝜌, 𝜌 = 1, . . . ,𝑁𝑜𝑏𝑗 .

The main loop starts with every configuration in the population being modified to

generate a new configuration. The modification is performed by an irace-based local search. After

that, the new configuration 𝜃𝑛𝑒𝑤𝑖 is evaluated. A non-dominated solution archive is maintained,

and is updated whenever irace finds out a non-dominated configuration. The new solution

replaces all the solutions in the archive that contain worse aggregation function values. In the

sequence, an aggregation function 𝑔𝑡𝑐ℎ𝑒(·) compares, in a mono-objective way, 𝜃𝑛𝑒𝑤𝑖 with every

neighbor configuration 𝜃𝑛𝑔ℎ𝑘 . There is an update in the 𝑘-th neighbor whenever it is outperformed

by the new configuration. In this case, a new solution can replace any number of parents. The

main loop repeats for 𝑁𝑔𝑒𝑛 generations. Since in our case the objective function is quite costly

(evaluate a configuration on several problems), we use low values for the population size (8 to 20

individuals) and number of generations (50 when using irace as local search). At the end, all the
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configurations present in the non-dominated solutions archive are returned as the approximated

Pareto Set.

We can use any aggregation function to evaluate the vector u(𝜃) = (𝑢1(𝜃), . . . , 𝑢𝑚(𝜃))

of configuration utilities according to the weight w𝑖. For example. the Tchebycheff aggregation

function is shown in (14).

𝑔𝑡𝑐ℎ𝑒(u(𝜃)|w𝑖,𝜗
*) = max

1≤𝑝≤𝑁𝑜𝑏𝑗

{𝑤𝑝𝑖

⃒⃒
𝑢𝑝(𝜃)− 𝜗*

𝑝

⃒⃒
} (14)

where 𝜗* is the current reference point, composed of the best value of each configuration utility.

The algorithm in Figure 11 describes the local search (LS) using irace. It is performed

on 𝜃𝑖 at every generation of Figure 10 (see Line 7). During the local search, irace considers a

maximum of 𝑁𝑒𝑣𝑎𝑙𝑠 configurations tests, each test involving the optimization of the base problem

through the MH parameterized by the candidate configuration.

Besides the neighborhood 𝐵𝑖 and the associated weight w𝑖, Figure 11 also requires the

decomposed instance sets {𝑃1, . . . , 𝑃𝑁𝑜𝑏𝑗
}, and two additional hyper-parameters: the total number

of instances to be sampled (𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠) and the maximum number of configuration tests (𝑁𝑒𝑣𝑎𝑙𝑠)

performed by irace. At each run, irace uses the particular vector (w𝑖) and its neighborhood (𝐵𝑖)

information to produce new offspring solutions. Moreover, it considers instances sampled from

the different decomposed sets to perform the local search.

Figure 11 – irace Local Search.
1: procedure IRACELS(𝐵𝑖,w𝑖,{𝑃1, . . . ,𝑃𝑁𝑜𝑏𝑗

}, 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠,𝑁𝑒𝑣𝑎𝑙𝑠)
2: 𝑃𝑖𝑟𝑎𝑐𝑒 ← ∅
3: for 𝜌 = 1, . . . , 𝑁𝑜𝑏𝑗 do
4: 𝑃𝑎𝑢𝑥 ← sample 𝑤𝑝𝑖 ×𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 instances from 𝑃𝜌

5: 𝑃𝑖𝑟𝑎𝑐𝑒 ← 𝑃𝑖𝑟𝑎𝑐𝑒

⋃︀
𝑃𝑎𝑢𝑥

6: end for
7: Θ𝑖𝑛𝑖𝑡 ← ∅
8: for 𝜃𝑛𝑔ℎ ∈ 𝐵𝑖 do
9: Θ𝑖𝑛𝑖𝑡 ← Θ𝑖𝑛𝑖𝑡

⋃︀
{𝜃𝑛𝑔ℎ}

10: end for
11: 𝜃 ← IRACE(Θ𝛼, 𝑃𝑖𝑟𝑎𝑐𝑒,Θ𝑖𝑛𝑖𝑡, 𝑁𝑒𝑣𝑎𝑙𝑠)
12: return 𝜃
13: end procedure

Source: The author.

In the first steps (Lines 2 to 6), the algorithm in Figure 11 samples instances from each

set 𝑃𝜌, proportional to the 𝜌-th component 𝑤𝜌𝑖 in the weight vector w𝑖. After that, the algorithm

in Figure 11 takes solutions from the neighborhood 𝐵𝑖 as the initial configurations (Θ𝑖𝑛𝑖𝑡) for

irace. Starting with the initial configurations, irace iteratively samples new configurations from



62

a distribution. The new configurations are evaluated and raced against each other. Statistically

better configurations proceed to the next iterations and the distribution is updated. In a sense, one

could think of this local search as evolving the irace search space itself. However, the internal

irace’ models are reset every time.

Figure 12 shows an example of the objective space on which iMOEA/D (Figure 10)

could run.

Figure 12 – An example of objective space decomposition: bi-objective formulation (𝑢1(𝜃), 𝑢2(𝜃)) with five
individuals in the population (𝜃1, . . . ,𝜃5), five corresponding weights (w1, . . . ,w5), 𝜃3 and 𝜃4 and
neighborhoods (B3 = {𝜃2,𝜃3,𝜃4}, B4 = {𝜃3,𝜃4,𝜃5}).

w3 = (.5,.5)

Configurations’
utility

Weights Neighborhoods

w4 = (.75,.25)

w5 = (1,0)

𝐵3

𝐵4

𝑢2(𝜃)

𝑢1(𝜃)

u(𝜃1)

u(𝜃2)

u(𝜃3)
u(𝜃4)

u(𝜃5)

Source: The author.

It shows a MOAAC/D formulation with 𝑁𝑜𝑏𝑗 = 2 objectives and 𝑁𝑝𝑜𝑝 = 5 individuals

of Θ𝑝𝑜𝑝. Every configuration 𝜃 is associated in the objective space with a 2D coordinate:

u(𝜃) = (𝑢1(𝜃|Θ𝛼, 𝑃1, 𝐶𝜃, 𝑡), 𝑢2(𝜃|Θ, 𝑃2, 𝐶𝜃, 𝑡))

which represents the utility of algorithm’s (𝛼) configuration 𝜃 on the problem instance sets

𝑃1 and 𝑃2, respectively. In the MOEA/D framework, each configuration 𝜃𝑖 ∈ Θ𝑝𝑜𝑝 has also

a corresponding weight w𝑖. In the example shown in Figure 12, the proposed irace-based

local search (Figure 11) when performed on 𝜃4 would sample 75% problems from 𝑃1 and

25% problems from 𝑃2 to provide 𝑃𝑖𝑟𝑎𝑐𝑒. It would also use the neighbors {𝜃3,𝜃4,𝜃5} as the

initial configurations for irace. Notice that MOEA/D is proposed for continuous problems,

therefore in its canonical version, it generates new individuals with simulated binary crossover

and polynomial mutation.

Therefore, in the proposed approach, two levels of decomposition occur: (i) one per-

formed off-line on the problem space to formulate the MOAAC/D (each decomposed subset gives
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rise to a particular utility in the multi-objective objective space); (ii) other performed online by

the multi-objective algorithm to solve the MOAAC/D problem (each decomposed sub-problem,

associated to a weight vector w𝑖 can be solved in a traditional way by means of MOEA/D

enhanced by irace). The original irace algorithm performs the search focusing on instances

partition subsets whose weight components are higher and uses the neighborhood solutions as

the initial configurations. For example, for weights located exactly on each dimension 𝑢𝜌, it

performs the race exclusively for this objective, using nearby solutions, therefore, optimizing a

specialist configuration to the decomposed set 𝑃𝜌. For weights whose components are balanced,

it performs the race on central regions of the objective space looking for generalist configurations

with good trade-offs between the decomposed sets in the problem space. When the base problem

is multi-objective and we also consider a decomposition-based MOEA to solve it, a third level of

decomposition might occur. However, as discussed in the next section, in the present work, the

addressed base problem is a mono-objective combinatorial optimization problem.

We can notice that the MOAAC/D formulation is general and can be solved by any

MOEA. Also, the proposed iMOEA/D mixes the original MOEA/D with irace, but any decom-

position based algorithm and AAC could be used in the same manner. For such, in Chapter 5

we present results for MOAAC/D formulation using the original MOEA/D where the proposed

irace-based local search is replaced by the original genetic operators.

In summary, in MOAAC/D recommendation, the training phase uses iMOEA/D to

find the approximated Pareto-set of solutions. The problem space partitioning might be done

manually, if the user knows or is interested in a given separation. Alternatively, given the problem

features, the problem space can be partitioned into 𝐷 dimensional principal components using

PCA. Finally, the prediction is done by:

1. Applying the new instance’s features to the PCA model to obtain its coordinates in the

reduced dimensionality space;

2. Computing the values of a given PCA metric to evaluate how suitable is the new coordinates

to the first 𝐷 components;

3. Using an aggregation function to find the configuration that best fits the metric values.
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4 PIAC ON FLOWSHOP PROBLEMS

In this chapter we describe the application of the proposed approaches to several

instances of FlowShop Problems (FSPs). As discussed in Section 2.5, FlowShop Problems

(FSPs) have been studied since the 1950s, with many applications, variants and proposed MHs.

In the present work we explore these problems from the perspective of a practitioner looking for

a suitable MH and its configuration.

Figure 13 – The proposed framework for MetaL PIAC applied to flowshop problems.

(a) Training phase.

(b) Testing phase.

Source: The author.
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As shown in Figure 13, the main components of the proposed MetaL PIAC framework.

These components are associated with the same four spaces defined in the Rice’s framework

(algorithm, problem, features, performance) and consider the FSP as the base-level problem.

Besides FSP, the figure also highlights the type of addressed algorithms (MHs for solving FSP),

meta-features (basic and optimization plus FLA features), the statistical test used to set the

recommended MH and its configurations.

Figure 14 – The proposed framework for MOAAC/D applied to flowshop problems.

(a) Training phase.

(b) Testing phase.

Source: The author.

As shown in Figure 14 the main components of the proposed iMOEA/D framework

encompasses irace as local search and MOEA/D as the multi-objective algorithm based on

decomposition used to find configurations for FSP problem. The diagram also highlights the

principal components model used in the multi-objective decomposition and ILS and IG as the

main MHs being analyzed.
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In the next sections, we describe the set up for problem, feature, algorithm and perfor-

mance spaces of the PIAC formulation proposed in the present work. From now on we will refer

to configuration performance as the utility of a configuration 𝜃 ∈ Θ𝑓
𝛼 for a particular algorithm

𝛼 (or metaheuristic MH) on a specific FSP problem 𝑝 (or instance 𝑖𝑛𝑠𝑡).

All experiments are performed on Intel i7 machines with 16 GB of RAM. We implement

the algorithms using R language and packages like future to use multiple cores wherever the

proposals allow parallel execution, i.e. building MetaL PIAC performance data and evaluating

iMOEA/D configurations. The base flowshop MHs are implemented in C++ using ParadisEO

framework (HUMEAU et al., 2013). The time to reproduce all experiments in the thesis would

be two weeks using 16 cores. The source code and instances data are available at https://github.

com/lucasmpavelski/FlowshopSolveR.

4.1 BUILDING THE PROBLEM SPACE (𝑃 )

FSP problems model a production line where jobs are processed by sequential machines

(see Section 2.5). To perform the experiments we divide the attributes of the problem space into

two main categories:

• Basic attributes: the number of jobs (𝐽), the number of machines (𝑀 ), the processing

times distribution (𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛), and correlation type (𝑐𝑜𝑟𝑟);

• Optimization attributes: the objective function (𝑔) to be optimized, the budget size

(𝑏𝑢𝑑𝑔𝑒𝑡) for solving the problem, and the stop condition (𝑠𝑡𝑜𝑝𝐶).

4.1.1 Setting Up the Basic Attributes

Several works point that the number of jobs influences the flowshop problem difficulty

on uniformly random instances (REEVES, 1995). The number of machines is usually smaller in

practice and the difficulty seems to depend mostly on the number of jobs.

The times taken to process each job on each machine are given as a positive matrix

whose element 𝑝𝑗,𝑚 is the time to process job 𝑗 on machine 𝑚. In this work, processing times

are generated randomly from different multivariate distributions to simulate several different

instances, modeling different production-line environments.

The parameters used to generate different flowshop instances are the sizes (𝐽 and 𝑀 ),

https://github.com/lucasmpavelski/FlowshopSolveR
https://github.com/lucasmpavelski/FlowshopSolveR
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the processing time distribution, and the correlation among processing times of different jobs

and machines. More specifically, we use all combinations of attributes shown in Table 3.

Table 3 – FSP basic attributes.
Feature Description Numerical/Categorical values
𝐽 The number of jobs {10, 20, 30, 50}
𝑀 The number of machines {5, 10, 20}
𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 Processing time distribution {uniform, binomial, exponential}
𝑐𝑜𝑟𝑟 Correlation type {uncorrelated, machine-correlated,

job-correlated}
Source: The author.

All distributions have a mean processing time of 50 time units. For the job-correlated

(machine-correlated) processing times each line (column) of the processing times matrix is

generated with a correlation of 0.95 from other lines (columns). Figure 15 shows examples for

instances with 100 jobs and 2 machines using different correlations types and processing times

distributions. Without loss of generality, we generate integer time steps (rouded to the nearest

integer in case of the exponential distribution), since they are faster to perform comparisons and

sum.

Given the processing time distributions, in the experiments we consider multiple in-

stances samples, and use multiple random number generator seeds to create similar instances.

4.1.2 Setting up the Optimization Attributes

Other attributes can be used to define the Problem Space 𝑃 . In the present work, as

optimization plays a fundamental role, we consider attributes associated with different aspects of

base problem optimization.

Given an instance and its processing times, FSP can be modeled as:

minimize 𝑔(𝑝𝑗,𝑚(x)), for all j ∈ {1, . . . , 𝐽} and m ∈ {1, . . . ,𝑀})

subject to x is a permutation

subject to a maximum 𝑏𝑢𝑑𝑔𝑒𝑡 of 𝑠𝑡𝑜𝑝𝐶

(15)

where 𝑔(.), 𝑏𝑢𝑑𝑔𝑒𝑡, 𝑠𝑡𝑜𝑝𝐶 are the objective function, computational budget, and stopping crite-

rion, respectively.

In the experiments we consider all the attributes addressed in (15), i.e., the type of

objective function 𝑔, stopping criterion 𝑠𝑡𝑜𝑝𝐶, budget 𝑏𝑢𝑑𝑔𝑒𝑡 to solve the problem, as shown in

Table 4.



68

Figure 15 – Example of processing times distributions for an instances with 𝐽 = 100 and 𝑀 = 2 using
two correlations (uncorrelated and job-correlated) and three different distributions (binomial,
exponential and uniform)
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Source: The author.

Table 4 – FSP optimization attributes.
Feature Description Categorical Values
function 𝑔 The objective (to be minimized) {makespan, total flowtime}
𝑠𝑡𝑜𝑝𝐶 The stopping criterion {number of evaluations (eval)

time limit (time)}
𝑏𝑢𝑑𝑔𝑒𝑡 The budget to solve the problem {low, medium, high}

Source: The author.

Table 5 shows how we set in the experiments numerical values for the three budget

types (low, medium, high) considered in Table 4.

Table 5 – Maximum budgets for each stopping criterion.
Budget Evaluations Time (ns)
low 𝐽 ×𝑀 × 10 𝐽2 ×𝑀 × 0.2
med 𝐽 ×𝑀 × 100 𝐽2 ×𝑀 × 2
high 𝐽 ×𝑀 × 1000 𝐽2 ×𝑀 × 20

Source: The author.
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4.1.3 FSP Problem Space: Basic × Optimization Attributes

As discussed in the previous sections, the basic subspace contains FSP problems with

a given number of jobs, number of machines, processing times distribution, and processing

times correlations. The optimization subspace is composed of problems with different objective

functions, budgets, and stopping criteria.

Instances with the same basic attributes can be solved with different optimization

attributes. Therefore the FSP space 𝑃 can be defined as the Cartesian product of basic versus

optimization subspaces.

For example, assuming 𝐽 = 10, 𝑀 = 5, the fitness, i.e., the objective function 𝑔(.), as

makespan, 𝑠𝑡𝑜𝑝𝐶 as the total number of evaluations and the 𝑏𝑢𝑑𝑔𝑒𝑡 = 10,000 evaluations of

makespan, a specific instance of the base problem could be described as:

minimize MAKESPAN(𝑝10×5)

subject to a maximum of 10000 EVALUATIONS
(16)

All combinations of problem attributes yield a total of 1296 × 5 = 6480 problems,

where 5 is the number of instance samples, generated with the same attributes but different seeds.

Despite only considering small instances (𝐽 ≤ 50, 𝑀 ≤ 20) due to the high computational cost

of solving the instances several times, we believe that these problems cover a representative

portion of the problem space. Moreover, experiments on bigger instances found in the literature

have been performed in a publication by the authors (PAVELSKI et al., 2021b), which has a

focus slightly different from the one of the present work since that work is focused on the use of

NEH for solving FSP with MetaL PIAC.

4.2 BUILDING THE FEATURE SPACE (𝐹 )

The feature space 𝐹 considered in this work is composed of two feature types: problem-

based features and fitness landscape-based features. The problem-based features are the attributes

described in Section 4.1: number of jobs, number of machines, distribution, correlation, objective,

budget, and stopping criterion. The more advanced features considered are based on FLA.

The features that compose the meta-data in meta-learning experiments are:

• 5 simple problem features: number of jobs, number of machines, objective, budget and
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stopping criterion;

• 5 simple computed features: the ratio between the number of jobs and machines, the mean

deviation between job processing times, the mean deviation between machine processing

times, mean correlation between processing times, mean correlation between machine ties;

• 10 solution statistic FLA metrics: percentage of the plateau, ledge, slope, local maximum

or minimum, strict local maximum or minimum solutions and up, down, side edges;

• 7 random-walk FLA metrics: autocorrelation with delay 1, 2 and 4, entropy, partial

information, information stability, and density basin;

• 22 adaptive-walk FLA metrics: mean number of steps, FDC using the seven different

distances from Table 1 and three local search procedures: first improvement hill-climbing,

best improvement hill-climbing, and best insertion.

We do not include the instance processing time and correlation type because the practitioner

might not know these parameters exactly in the test phase.

For training better models, the feature dataset is pre-processed based on the following

steps:

• Create numerical dummy variables: transform discrete features like budget and objective

into a number of numeric indicator features (for example 0 for makespan objective and 1

for flowtime) to facilitate further processing methods;

• Zero variance feature elimination: filter features like frequency of plateau, local minima

and maxima solutions, which are constant for all instances;

• Highly correlated features: recursive elimination of features with an absolute correlation

higher than 0.95. Highly correlated features include mean walk length with the tree

different strategies, random-walk autocorrelation with 2 and 4 delays, FDC with precedence

distances that are similar to FDC with shift distance;

• Linear combinations elimination: remove features that can be approximated by a linear

combination of other features: like solution and edge statistics that always sum to 1,

therefore one of the features can be removed;
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Additionally, the experiments include another reduction procedure based on information

gain feature selection. The information gain measures how much information (entropy) is given

by the inputs considering the target output values (MITCHELL, 1997). Features with less than

0.001 information gain are eliminated with respect to the output for each meta-learning task.

Besides providing the meta-data, a side benefit of using FLA is that we can also

gain insights on the problem space, such as the effects of different operators and hardness. In

Appendix C we analyze four types of FLA metrics, based on solution and edge type statistics,

random walks, adaptive walks, and local optima networks. The main insights obtained from the

analysis are that:

• Ruggedness metrics like the random walk auto-correlation are proportional to the number

of jobs;

• Mean-distance between local optima and basin size is dependent on the types of instance

correlation (job correlated instances have small number of very connected local optima

and machine correlated instances have many local optima in large spread regions);

• Considering the proportion of improvement of a state-of-the-art IG over a simple HC as a

difficulty measure, the best FLA metrics are the ones based on compressed LONs (VEREL

et al., 2018), such as the mean network size (number of neutral regions) and mean node

size (size of the neutral region).

Despite having good descriptive quality, LON-based metrics have high computational

cost as meta-features. This is particularly critical for small instances, since the cost of calculating

the LON is bigger than the cost of solving the problem several times. Therefore, although they

contribute to the problem understanding, FLA metrics based on LONs have not been included in

the meta-data of the present work. Nevertheless, details of the analysis on LON-based metrics

are discussed in Pavelski et al. (2021c).

4.3 BUILDING THE ALGORITHM AND CONFIGURATION SPACE: (𝐴+ Θ)

In this work, the whole space of the algorithms encompasses not only the algorithms

(MHs) themselves but also all possible configurations of its parameters. Therefore, the task of

selecting from a portfolio of algorithms configured a priori is generalized to the task of selecting

the algorithm and its configuration from the expanded space 𝐴+ Θ.
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In the experiments, we consider six different MHs: Hill Climbing (HC) (RUSSELL;

NORVIG, 2003), Simulated Annealing (SA) (KIRKPATRICK et al., 1983), Tabu Search (TS)

(GLOVER, 1989), Ant Colony Optimisation (ACO) (STÜTZLE, 1998a), Iterated Local Search

(ILS) (STÜTZLE, 1998b), and Iterated Greedy (IG) (RUIZ; STÜTZLE, 2007). All MHs and

operators are implemented using the ParadisEO framework (HUMEAU et al., 2013).

The main reason to address all these MHs, is that they have been successfully used to

solve FSPs. We use the original implementations of these MHs, but we also consider some exten-

sions like NEH initialization, three types of cooling schedules for SA, TS with different types of

tabu list, ACO with single-step iterations, IG with partial solution optimization (Dubois-Lacoste

et al., 2017) and others. The full list of parameters for each MH is described in Appendix B.

It is worth mentioning that the configuration space Θ for flexible MHs like ILS and IG

is quite complex. Parameters can be categorical, integer, or real-valued. There are dependencies

between values; for example, the acceptance temperature for ILS is only necessary for the

acceptance criterion based on Metropolis-Hastings (other possibilities are to accept any or

accepting only improving solutions). Moreover, as discussed in the next chapter, ILS and IG

present the best performance for almost all the instances addressed by MetaL PIAC. Therefore,

in the experiments associated with the second proposal (MOAAC/D), we focus on these two

MHs analysis.

4.4 BUILDING THE PERFORMANCE SPACE (𝑈 )

Using the problem, feature and algorithm spaces described in the previous sections,

the next step for solving the PIAC problem formulated under the Rice’s framework involves

building the performance space 𝑈 , which associates, to the feature vector 𝜑 extracted from every

candidate configuration 𝜃, a performance metric value 𝑢(𝜃) or a set of performance metric values

u(𝜃). A challenge in this task is defining the best metric and how many evaluations (N. of tests)

are enough for a good recommendation. As detailed in the next sections, the performance space

𝑈 is modeled, and thus built, differently for MetaL PIAC and MOAAC/D.

4.4.1 MetaL PIAC performance space

In the first proposal, the space of performance on the permutation FSP is built, for

all MHs and their configurations, using irace as the AAC component in the meta-learning
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framework (see Figure 13). For this, irace runs with its default hyper-parameters from the

R package version 2, aiming at solving the AAC problem given by (5). In the experiments

performed in the present work, the problem space 𝑃 encompasses a set of training ({𝑖𝑛𝑠𝑡}𝑡𝑟)

an testing instances ({𝑖𝑛𝑠𝑡}𝑡𝑠), and the function 𝑡 : 𝑃 → R, which associates the computation

time/resource (budget) allocated for each base problem 𝑝 ∈ 𝑃 , follows the rules presented

in Table 5. During its run, irace distributes internally the maximum number of configuration

evaluations (𝑁.𝑡𝑒𝑠𝑡𝑠), among the races. So, it is not possible to identify the limit of evaluations

established for each configuration.

An example of configurations data provided by irace on each problem addressed in the

present work is analyzed in Appendix A. The main observations are that some parameters values

are very correlated, therefore they might interact with each other and some parameter values

like random initialization are not used, NEH-based initialization is preferred (see Section 2.5 for

more details).

As mentioned in Section 3.2, in the process of indicating the best configurations for each

MH at the performance space of MetaL PIAC, a statistical test is used to compare the best final

configurations for each problem (instance) aiming to determine the best MH. In the experiments,

the distribution costs are estimated using 𝑆 = 50 different seeds, and the samples achieved by

the different MHs are compared using the non-parametric Friedman test (CONOVER, 1999). If

the test considers the samples of the costs distribution different with a statistical confidence of

95%, an all-pairs post-hoc Conover test is used. The “recommended” MHs are the ones that have

the best mean values for cost distributions or are statistically equivalent to the MH with best

mean. For the configuration recommendation, all configurations found by irace are considered

for building the performance space.

4.4.2 MOAAC/D Performance Space

In the second proposal, the space of performance on the permutation FSP is built,

for ILS and IG and their configurations, using iMOEA/D as the MOAAC/D component (see

Figure 14). For this, MOEA/D and irace run with the hyper-parameters presented in Section 4.5.2,

aiming at solving the MOAAC/D formulation given by (13). In the experiments performed in

the present work, the function 𝑡 set as the budget also follows the rules presented in Table 5.

The problem space 𝑃 also encompasses a set of training {𝑖𝑛𝑠𝑡}𝑡𝑟 and testing {𝑖𝑛𝑠𝑡}𝑡𝑒 instances.

However, differently from the MetaL PIAC, here the problem space associated with the training
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instances is decomposed into 𝑁𝑜𝑏𝑗 non-overlapping sets 𝑃𝜌, 𝜌 = 1, . . . , 𝑁𝑜𝑏𝑗 and each objective

𝑢𝑝(𝜃) is associated with problem partition 𝑃𝜌 ∈ {𝑖𝑛𝑠𝑡}𝑡𝑟. As in the first proposal, 𝑢𝑝(𝜃) can be

estimated based on sample costs (drawn from 𝐶𝜃).

Differently from the MetaL PIAC, where a statistical test compares directly the samples

𝑐𝑠,𝜃, 𝑠 = 1, . . . , 𝑆, of different cost distributions 𝐶𝜃, here an average cost calculated based on

𝑆 samples is used to assess the utility value. In the experiments, we consider the utility metric

given by Average Relative Performance Difference (ARPD), which is based on the relative

difference between the fitness 𝑔(x𝑠,𝜃,𝑝) found using the configuration 𝜃 and seed 𝑠 and the best

known fitness 𝑔(x*
𝑝) for each problem 𝑝. ARPD can be averaged over several instances, e.g.

over all instances of partition subset 𝑃𝜌, and 𝑆 seed samples, resulting in an estimation of the

configuration utility value for a problem partition subset 𝜌 given by:

𝑢𝜌(𝜃) = 𝐴𝑅𝑃𝐷(𝜃) =
1

|𝑃𝜌|
∑︁
𝑝∈𝑃𝜌

1

𝑆

𝑆∑︁
𝑠=1

𝑔(x𝑠,𝜃,𝑝)− 𝑔(x*
𝑝)

𝑔(x*
𝑝)

(17)

4.5 INDIVIDUAL EVALUATION OF THE PIAC PROPOSALS

In the previous sections, the set up performed in every space of both PIAC proposals

provided a general framework for experiments in which the problem space 𝑃 associated with the

FSP problem encompasses more than 6000 generated instances. Moreover, six MHs and their

parameters compose the algorithm+configuration space of MetaL PIAC, and a hybrid MH joining

ILS and IG, as well as the associated parameters, compose the algorithm+configuration space

for MOAAC/D. Simple metrics like basic and optimization attributes, all of them extract from

the FSP instances, are joined with more complex FLA-based metrics to form the feature space 𝐹 .

The performance space 𝑈 is built differently for the two proposals: i) MetaL PIAC considers the

results of irace (López-Ibáñez et al., 2016) to compose the configuration performance space and

compares these results using the Friedman statistical test to provide the recommended MHs; ii)

MOAAC/D considers either the results of irace running as a local search or the modifications

performed by the genetic operators of MOEA/D to provide in the Pareto set 𝒫𝒮 specialists and

generalists configurations for a particular MH, which are mapped to the extremes or middle of

the same Pareto Front 𝒫ℱ .

In this section, we describe how each proposal builds and uses the mapping ℎ to

recommend the MH configurations. Sections 4.5.1 and 4.5.2 show that the mapping ℎ is built
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exclusively from machine learning models for the first proposal and from PCA plus Multi-

objective decision-making for the second one. We also describe the experiments designed to

individually evaluate the proposals.

In Section 4.5.1, we describe the experiment in which MetaL PIAC is evaluated under

a machine learning perspective when performing regression or classification tasks. From an

AAC perspective and considering iMOEA/D as the proposed multi-objective framework, in

Section 4.5.2 we discuss how MOAAC/D can be evaluated on manually performed partitions of

the problem space and compared with irace-based baselines. We compare, as part of our proposal,

the iMOEA/D and the original MOEA/D algorithms for solving the MOAAC/D formulation.

Therefore, the purpose of this comparisons are to show that MOAAC/D formulation is capable

of improving the irace mono-objective baselines, as well as the effectiveness of iMOEA/D local

search.

In Section 4.5.2.2, an experiment focused on the PIAC task is described. It aims at

evaluating iMOEA/D when recommending configurations over a problem space that is auto-

matically partitioned. Finally, in Section 4.6, we describe the experiment that compares both

approaches with two alternatives to perform the PIAC task. In all the proposed experiments, the

approaches run on a particular set ({𝑖𝑛𝑠𝑡}𝑡𝑟) that is randomly chosen for training and another

one ({𝑖𝑛𝑠𝑡}𝑡𝑠), randomly chosen for testing. Whenever it is applicable, a third set ({𝑖𝑛𝑠𝑡}𝑣𝑎𝑙) is

chosen as validation to tune the hyper-parameters of the approaches.

4.5.1 Building and using the mapping ℎ in MetaL PIAC

Aiming to build the mapping ℎ for MetaL PIAC, we train the recommendation models

using the meta-data that encompasses the problem features (Section 4.2) as inputs and the tuned

configurations of the recommended MH (Sections 4.3 and 4.4) as outputs. As it might be quite

useful to provide explainable models for algorithm and problem insights, we use the following

tree-based models for the recommendation tasks:

• Classification and Regression Tree (CART) (BREIMAN et al., 1984): simple binary

decision trees built by greedily splitting the data using Gini index function for classification

or squared error for regression. An important parameter is the tree complexity;

• Random Forest (RF) (BREIMAN, 2001): bagged ensemble of decision trees, where

each split is made using the best variable of a random subset of features. Some parameters
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are the number of trees and size of the random feature subsets;

• eXtreme Gradient Boosting (XGB) (FRIEDMAN, 2001): boosting ensemble of trees

that uses splitting functions based on gradient values derived from a wide range of objective

functions. An improved and fast implementation is named as the XGBoost algorithm pro-

posed by Chen and Guestrin (2016). XGB has many parameters like number of iterations,

objective function, learning rate, etc.

CARTs are explainable as simple decision trees, and RFs and XGBs present ’feature

importance’ metrics based on the mean decreased impurity of nodes. Another advantage of

these models is that they are capable of solving classification and regression problems, used for

categorical and numeric parameter recommendations, respectively.

4.5.1.1 Evaluating MetaL PIAC from a machine learning perspective

For all tests performed for MetaL PIAC, the model hyper-parameters are the ones shown

in Table 6, which have been defined based on a 10-fold cross-validation performed on the training

set. The final parameters are chosen as the best average macro-AUC.

Table 6 – Learning model parameters.

Model Fixed parameters Tuned parameters

CART Complexity ∈ {0.0005, 0.001, 0.005, 0.01, 0.05}
RF Number of trees = 300 Number of features per split ∈ {6, 13}
XGB 𝜂 = 0.3, 𝛾 = 0, 50% features sampled Max. depth ∈ {3,6,12}

75% sub-sampling, 300 rounds

Source: The author.

In classification problems, AUC and average prediction metrics are used. The AUC

metric is useful because it can measure the amount of information the model expresses (values

of 0.5 or lower for single-class models) (BRADLEY, 1997). For regression problems, the metric

used is the Mean Absolute Error (MAE). The MAE is a simple mean of the absolute prediction

error, similar to the Root Mean Squared Error but not as sensible to outliers.

Training and validation phases correspond, respectively to building the meta-data to

further train the machine-learning models and tuning the models hyper-parameters of tree-base

and multi-label models based on a 10-fold cross-validation. During the testing phase, data not

used during training and validation phases, is used to test the recommendation: presents it at

the built model and get the output with the recommended MH or its configuration. For the MH
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recommendation on MetaL PIAC, we test the 17 multi-label strategies described in Section 2.3.

All strategies use CART, RF and XGB as the underlying learning models.

4.5.2 Building and using the mapping ℎ in MOAAC/D

The MOAAC/D proposal involves finding good configurations on a multi-objective

formulation of the AAC problem. First it decomposes the problem space 𝑃 into different partition

subsets. Then it solves the multi-objective problem of multiple partitions by providing, for each

algorithm, specialist and compromise configurations within a Pareto set. Further it evaluates how

similar is a new problem 𝑝′ to each objective argument, i.e., to each partition subset, and chooses

the configuration whose compromise with each objective is most similar with the compromises

estimated for the test problem 𝑝′.

In the experiments, we test four different scenarios based on different decomposition

possibilities of the FSP problems. As detailed in the next sections, in the first three scenarios a

manual partition decomposes the problem space aiming to evaluate different strategies in terms of

AAC performance. The last scenario is used to test the performance of the iMOEA/D algorithm

performing the PIAC task.

4.5.2.1 Evaluating MOAAC/D from an AAC perspective

The first three scenarios used to evaluate the multi-objective proposed approach as a

simple AAC approach, consider the following alternatives to decompose the problem space:

• a) 𝑃 decomposed by means of FSP objective function type into two partition subsets

(𝜌 = 1,2), one for each objective: makespan and flowtime. All problems have 50 jobs;

• b) 𝑃 decomposed by means of correlation into two partition subsets (𝜌 = 1,2), one for

instances with job- or machine-correlated processing times, and another for instances with

uncorrelated processing times. All problems have 50 jobs and makespan objective;

• c) 𝑃 decomposed by means of instance size into three partition subsets (𝜌 = 1,2,3)

defined by the number of jobs: small (𝐽 = 10), medium (𝐽 = 30) and large (𝐽 = 50). All

problems have makespan objective;

In all these scenarios, we use a reduced set of problems, only including random and
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exponential distributions, 𝑏𝑢𝑑𝑔𝑒𝑡 set as high, the stopping criterion 𝑠𝑡𝑜𝑝𝐶 set as time-based. This

is done to focus on the particular features of the manual partitions. Including all instances might

induce different configurations that maximize performance (for different budgets for example),

also, it would require more computational time to evaluate the objective functions.

As shown in Section 5.2, in the context of AAC, we compare four different approaches.

Two of them are based on irace, (i) the original irace algorithm used to provide a generalist

configuration (G-IRACE), and (ii) Original irace algorithm optimizing a particular Extreme of

the Pareto front (E-IRACE), and two are the variants of the proposed approach running with and

without irace as local search:

• G-IRACE: single-objective AAC tuner (original irace algorithm) with default hyper-

parameters;

• E-IRACE: single-objective AAC tuner (original irace algorithm), but it runs individually

on each instance set 𝐼𝑝 (to solve only its associated objective 𝑢𝑝), i.e., one whole execution

for each 𝐼1, . . . ,𝐼𝑚 with the total budget 𝑁𝑒𝑣𝑎𝑙𝑠 divided by the number of objectives 𝑚;

• MOEA/D: the MOAAC/D formulation solved using the MOEA/D algorithm with default

genetic operators (all parameters are considered as real-valued);

• iMOEA/D: the proposed MOEA/D with irace as local search operator on the MOAAC/D

formulation.

In additional to the scalarization function set as 𝑔𝑡𝑐ℎ𝑒, the remaining hyper-parameters

established for iMOEA/D are shown in Table 7. These parameter values have been set based on

the original MOEA/D (ZHANG; LI, 2007).

Table 7 – iMOEA/D parameters.
Scenario |𝑃 | 𝑁𝑜𝑏𝑗 𝑁𝑝𝑜𝑝 𝑆 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑁𝑛𝑒𝑖𝑔ℎ 𝑁𝑒𝑣𝑎𝑙𝑠 𝑁𝑔𝑒𝑛 Total

iMOEA/D iMOEA/D MOEA/D no. tests
By objective 8 2 8 4 206 52800

By correlation 8 2 8 4 4 2 100 50 206 52800
By size 12 3 16 2 260 99200

Source: The author.

Notice that the first four hyper-parameters are scenario-dependent, including the total

number of seeds 𝑆 used to calculate the utility value for each candidate configuration in Figure 10

(lines 4 and 5). 𝑁𝑒𝑣𝑎𝑙𝑠 and 𝑁𝑔𝑒𝑛 are MH-dependent, with 𝑁𝑒𝑣𝑎𝑙𝑠 = 100 for iMOEA/D. Since

this hyper-parameter defines the total tests performed by irace running as local search it is not
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applicable for MOEA/D. 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 and 𝑁𝑛𝑒𝑖𝑔ℎ are set as 4 and 2, respectively, for all scenarios

and all algorithms. The value of 𝑁𝑔𝑒𝑛 for MOEA/D is set to guarantee a fair comparison between

its performance and that of iMOEA/D; MOEA/D evolves for more generations, since it does not

use irace local search. In the last column, the total number of configurations tests performed by

MOEA/D and iMOEA/D is given by 𝑁𝑝𝑜𝑝𝑁𝑔𝑒𝑛(𝑁𝑒𝑣𝑎𝑙𝑠 + (|𝑃 |𝑆)).

In the experiments, irace baselines (G-IRACE and E-IRACE) run with default hyper-

parameters and the same maximum number of tests. The irace hyper-parameters are chosen

to provide reasonable computational costs (small population and few generations), while still

providing good demonstration of the proposed approaches (robust performance with𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 ≥ 2

and 𝑁𝑒𝑣𝑎𝑙𝑠 = 100 evaluations for irace local search in iMOEA/D).

Finally, for all the three AAC scenarios previously described, the final configurations

of every comparison approach is evaluated with 𝑆 = 100 on each instance 𝑝. This should

give a better accuracy to validate the performance of each baseline and the proposed approach

iMOEA/D. The final Pareto fronts 𝒫ℱ produced by each approach (G-IRACE, E-IRACE,

MOEA/D and iMOEA/D) are evaluated in terms of dominance and performance on each group

of instances.

4.5.2.2 Evaluating MOAAC/D from a PIAC Perspective

In Section 3.3 we describe how the MOAAC/D formulation can be used to solve

the PIAC problem, given a membership function 𝑚𝑠ℎ𝑝 : 𝑃 → 𝜓 ∈ [0,1]𝑁𝑜𝑏𝑗 indicating the

compromise of each problem 𝑝 with each objective 𝑢𝑝. We also discussed how the feature space

can be used to automatically decompose the problem space. In these experiments, we use the

proposed iMOEA/D as the strategy for solving the MOAAC/D formulation during the PIAC

training phase. It is chosen as its irace-base local search gives good results compared to the

MOEA/D with genetic operators during the evaluation from the AAC perspective.

In this fourth and last scenario considered for the MOAAC/D proposal, 𝑃 is automati-

cally decomposed into four partition subsets (𝜌 = 1,2,3,4), one for each principal component of

the PCA model. For this, we perform a space reduction in the pre-processed 𝐹 data by means

of PCA, providing ℜ4 feature space. Notice that the choice of four dimensions seems a good

compromise between not degenerating iMOEA/D performance and also allowing a suitable

partition in the problem space. It is known that the number of objectives affects the performance

of MOEAs (DEB; JAIN, 2012) since they require exponentially larger populations to cover
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the whole objective space. In this automated partitioning approach, the number of objectives

is considered a parameter and the aspects of MOEAs’ performance, quality of the decomposi-

tion (like PCA’s percentage of variance explained), and the expected amount of compromise

configurations could be investigated in future works.

After building a PCA model to reduce the feature space to four dimensions we select

the problems that best represent each of the first four axis. The metric 𝑐𝑜𝑠2 is commonly used

with PCA to identify such inputs. Therefore the membership function 𝑚𝑠ℎ𝑝 is defined as:

𝑚𝑠ℎ𝑝(𝑝) = 𝜓𝑝 = cos2(𝑃𝐶𝐴𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛(𝑓(𝑝))) (18)

In the experiments, the 𝑚𝑠ℎ𝑝 defines the problem partition subsets 𝑃1, 𝑃2, 𝑃3, and

𝑃4 by selecting the top 100 problems that have the highest 𝑚𝑠ℎ𝑝 values for each of the four

dimensions.

The approach chosen to perform the MOAAC/D task in this last scenario is iMOEA/D.

It is tuned using validation data to find a good approximation of the Pareto-Set. The iMOEA/D

parameters are: 𝑁𝑝𝑜𝑝 = 20, 𝑁𝑔𝑒𝑛 = 400, 𝑁𝑒𝑣𝑎𝑙 = 400 and 𝑁𝑛𝑒𝑖𝑔ℎ = 2. These configurations use

roughly the same number of tests performed for building MetaL PIAC performance space.

Training and validation phases correspond, respectively to performing the multi-

objective optimization and setting the hyper-parameters of iMOEA/D by means of irace. During

the testing phase, data not used during training or testing is used to recommend configuration for

an unseen problem as:

ℎ*(𝑓(𝑝′)|𝒫𝒮) = arg min
𝜃∈𝒫𝒮

𝑔𝑡𝑐ℎ𝑒(u(𝜃)|𝑚𝑠ℎ𝑝(𝑓(𝑝′)),𝜗*)

= arg min
𝜃∈𝒫𝒮

𝑔𝑡𝑐ℎ𝑒(u(𝜃)| cos2(𝑃𝐶𝐴𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛(𝑓(𝑝′))),𝜗*)
(19)

where 𝑔𝑡𝑐ℎ𝑒(.) is the Tchebycheff aggregation function (Equation 4) and 𝜗* is the reference point,

obtained from the Pareto-Front as the best utility for each partition subset.

4.6 COMPARING PIAC APPROACHES: AN OPTIMIZATION PERSPECTIVE

The previous sections have described the experiments designed to evaluate individually

the MetaL PIAC in machine learning perspective, MOAAC/D in AAC perspective and its

adaptation to PIAC. Next, we discuss an experiment focused on PIAC comparison that tests

the configuration recommendations. The experiments consider MetaL PIAC, MOAAC/D and
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baseline methods performing the PIAC task. This section aims at describing the last experiments

designed to compare different PIAC approaches.

The process of training and testing the proposed PIAC approaches is based on a 5-

fold cross-validation procedure. Every recommendation model obtained from both proposals is

trained using the meta-data, which is built using the training set {𝑖𝑛𝑠𝑡}𝑡𝑟 and joins the feature

space with the performance values. The results are evaluated on the test set {𝑖𝑛𝑠𝑡}𝑡𝑠 using the

ARPD metric (Equation 17) considering the best known solution 𝑔(x*
𝑝) as the ones found by

irace while building MetaL PIAC’s performance space. Therefore, for all strategies compared for

the PIAC task under an optimization perspective, the same training problems are used and the

final comparison depends on the performance on all problems from the test set. For this, we use

the final PIAC recommendation schemes learned from the 5-fold cross validation and evaluate

its recommendation quality when solving (optimizing) problems from the test set. Aiming to

reduce uncertainty, we evaluate the final per-instance configurations with 𝑆 = 30 samples.

For a fair comparison, all PIAC strategies when tested on unseen instances from the test

set use roughly the same number of configurations tests 1000|{𝑖𝑛𝑠𝑡𝑡𝑠}|. Since no previous work

on AAC uses the same flowshop problem dataset, we compare the proposed recommendation

models with two recommendation strategies:

• a baseline approach that randomly chooses MH and its configuration - Recommends a

random configuration (randPIAC);

• an overall best solver G-IRACE achieved by the original irace, used to find the best MH

and generalist configurations at once on all problems in the training set. It uses the same

configurations evaluations budget (1000× the number of problems) as MetaL PIAC and

iMOEA/D. The MH is an additional parameter for tuning, and there are dependencies

between all parameters and their respective MH;

The best solver configuration found by G-IRACE running on the overall dataset is

an IG with LSPS using random NEH initialization, random best hill-climbing local search,

63% of the neighborhood, single-step hill-climbing LSPS and acceptance criterion of only

improving solutions. As expected, this configuration is similar to the state-of-the-art for flowshop

problems (Dubois-Lacoste et al., 2017). The best solvers for every single external fold have very

similar configurations; therefore the best solver obtained by G-IRACE is simply determined over

all problems.
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In addition, we test two different tie-breaking strategies whenever statistical test used in

the comparison phase of MetaL PIAC: random choice and Performance-Priority tie-breaking

between recommended MHs (PP). In a PP strategy, MH with lowest parameters average training

errors is chosen as the recommended MH. Besides the CART, RF, and XGB multi-label BR

recommendation models, we also consider each model equipped with Feature selection (FS).
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5 RESULTS

This chapter presents the results obtained by both proposals. First we present the results

of MetaL PIAC, under a machine-learning perspective, i.e., considering the regression problem

of ranking algorithms and classification/regression problem of recommending the algorithm’s

configuration depending on the parameter type. Then we present the results of MOAAC/D

proposal running only as an AAC approach, i.e., it does not perform the PIAC task. Finally we

compare the two PIAC strategies proposed in the present work, with one irace-based baseline

and a random tuner.

5.1 METAL PIAC: RESULTS FROM A MACHINE-LEARNING PERSPECTIVE

The results for MetaL PIAC are presented in two parts: MH recommendation and

parameter recommendation.

5.1.1 Metaheuristic recommendation

As described in the previous chapter, the meta-data for MH recommendation is com-

posed of problem features (problem-based and FLA based features) and the recommended MH

for each problem or instance. An MH is considered recommended if it is statistically superior to

others or equivalent to the MH with the best mean final fitness value. Therefore, it is possible

that multiple MHs are recommended at once, making it a multi-label classification problem. The

evaluation is made using the multi-label metric macro-AUC and average precision.

Figure 16 shows the comparison between the performance of different multi-label

strategies (from Ranking by Pairwise Comparison (RPC) to the Binary Relevance (BR) - see

Section 2.3 for more details on these strategies) for the three addressed machine-learning

algorithms (CART, RF, XGB) using or not the information gain feature selection procedure.

Most of approaches present good performance for average-precision, and CART seems less

effective than the others for macro-AUC. Regarding the machine-learning techniques, CART

models are inferior, as expected for simple models, and RF and XGB have similar performance.

The boxplots shown in blue and red in Figure 16 represent metrics with and without

feature selection, respectively. We can see no clear advantage of using feature selection. In
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Figure 16 – Multi-label MH recommendation models performance for average precision (left) and AUC
(right) for CART (top) , RF (middle) and XGB (bottom).
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some cases like macro-AUC of RF and Recursive Dependent Binary Relevance (RDBR) the

feature selection is better. On the other hand, the feature selection presents worse results when

we use LP on the same metric and base learner. Some of the features that are not included in

feature selection are redundant metrics, like the percentage of local optima nodes (zero in most

cases) and random walk correlation with multiple steps (highly correlated with the single step
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Figure 17 – Critical difference plot of the Friedman post-hoc Nemeny test comparing different multi-label
algorithms for MH recommendation.
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autocorrelation).

The main performance differences are between multi-label strategies. For example, the

label powerset (LP) has good performance for macro-AUC but it is inferior regarding the average

precision. Ensemble of Single Label (ELS) seems the worst of macro-AUC and is among the

worst for precision.

We use the Friedman test to compare the different strategies. The critical difference

plots on Figure 17 allow us to conclude that Binary Relevance (BR) strategies are as good as the

best strategy for both metrics.

Figure 18 shows the performance of the binary relevance models for each possible label

(recommended MH).

For the HC and SA recommendation, the models show similar performance (AUC is

0.75 ± 0.05). Models recommending TS and ACO have better recommendation performance
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Figure 18 – Performance for each MH recommendation model using binary relevance multi-label strategy.

l

l l

l

l

l

l

l
l

l

l
l

l

l l

l l

l

l

l

ACO ILS IG

HC SA TS

CART RF XGB CART RF XGB CART RF XGB

CART RF XGB CART RF XGB CART RF XGB
0.4
0.5
0.6
0.7
0.8
0.9

0.4
0.5
0.6
0.7
0.8
0.9

With feature selection Without feature selection

Source: The author.

(AUC is 0.82± 0.04). As ILS and IG algorithms are mostly recommended for the majority of

instances, the training data is imbalanced and models are inferior in terms of AUC. For those,

CART models have a single node, recommending ILS and IG for all instances.

Regarding the model’s interpretation, Figure 19 shows a CART model for TS recom-

mendation and Figure 20 summarizes the model importance for all BR base RF models.

The most important features are the budget, stopping criterion, and the mean number of

steps of an FI adaptive walk. The objective, instance size, and solution type frequencies have little

contributions for the MH recommendation models. Also, since ILS and IG are recommended

most of the time, the features are not very informative, and the decrease in node impurity is

small.

5.1.2 Parameter recommendation

For each parameter, the CART, RF, and XGB models are trained for classification or

regression tasks, according to the parameter domain. Since there is a model for each parameter,

the full configuration is built by joining the predictions of all models. The same methodology for

MH recommendation of 5 external folds and 10 internal folds for parameter setting is used for

each parameter and model combination.
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Figure 19 – CART model for TS recommendation.
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Table 8 shows the results for categorical parameters in terms of the AUC metric. The

generalized multi-class AUC proposed by Hand and Till (2001) evaluates parameters with

multiple categories. For most HC parameters, SA initialization and cooling schedules, ACO

single-step local search, ILS local search and neighborhood strategy, and IG acceptance and

single-step local search, the performance was acceptable with most models presenting AUC

higher than 0.5. Some parameters like IG perturbation have poor performance.

The performance of numerical parameters are shown in Table 9 in terms of MAE. For

better comparison, the values are normalized between [0,1]. With some exceptions like HC and

ACO neighborhood size and SA temperature decay, the error is around 0.3, which indicates high

variation with respect to the best parameter values.

From the machine-learning perspective, we conclude that the proposed models induce ℎ

mappings capable of providing good recommendations for MH and their categorical parameters.

However, for numerical parameters, the models induce mappings with high levels of regression

errors. For example, the ILS parameter ’number of kicks’ has above 30% variance in all models.

This means that either the models are not well trained or the parameter recommendation is not

suitable given the provided problem features. In Section 5.3, we present the results obtained with

the testing configurations under optimization perspectives.
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Figure 20 – RF models feature importance for each MH recommendation.
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5.2 MOAAC/D: RESULTS FROM AAC AND PIAC PERSPECTIVES

The results for the second proposal are presented in this section, considering first the

three scenarios described in Section 4.5.2 and then the last scenario described in Section 4.5.2.2.

5.2.1 Results for Scenario a): flowshop instances decomposed by FSP objective

This scenario is particularly interesting considering that configurations with average

performance between both objectives can be used in multi-objective formulations of flowshop

that consider makespan and flowtime simultaneously (YENISEY; YAGMAHAN, 2014).

Figure 21 shows the final configurations performance with instances decomposed

by objective. The original MOEA/D only finds low quality configurations. E-IRACE finds

configurations with good utilities for makespan objective. The irace baseline finds configurations
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Table 8 – Categorical parameter recommendation performance: AUC for each model with or without feature
selection.

No feature selection Feature selection
Parameter CART RF XGB CART RF XGB
HC local search (FI,HC,Random HC,IG) 0.625 0.669 0.668 0.631 0.658 0.650
HC comparison operator (>, ≥) 0.705 0.785 0.755 0.749 0.780 0.750
HC initialization (random,NEH,random NEH) 0.553 0.624 0.618 0.549 0.607 0.602
HC neighborhood strategy (ordered,random) 0.657 0.718 0.708 0.687 0.707 0.705
SA comparison operator (>, ≥) 0.508 0.493 0.488 0.508 0.493 0.488
SA initialization (random,NEH,random NEH) 0.609 0.680 0.665 0.626 0.677 0.666
SA cooling schedule (simple,dynamic,OsmanPotts) 0.693 0.751 0.740 0.692 0.698 0.676
TS aspiration (none,better) 0.481 0.507 0.506 0.495 0.491 0.488
TS comparison operator (>, ≥) 0.634 0.662 0.641 0.640 0.657 0.637
TS initialization (random,NEH,random NEH) 0.562 0.621 0.609 0.571 0.597 0.602
TS local search (FI,HC,HC random) 0.593 0.650 0.629 0.586 0.653 0.633
TS neighborhood strategy (ordered,random) 0.659 0.735 0.725 0.684 0.728 0.749
TS taboo list (index,random index,solution,neighbor) 0.494 0.525 0.518 0.494 0.523 0.523
ACO comparison operator (>, ≥) 0.601 0.631 0.619 0.628 0.624 0.634
ACO initialization (random,NEH,random NEH) 0.514 0.556 0.545 0.519 0.539 0.526
ACO neighborhood strategy (ordered,random) 0.611 0.657 0.651 0.631 0.647 0.638
ACO single-step local search (yes,no) 0.775 0.838 0.814 0.772 0.839 0.819
ILS acceptance (always,better,temperature) 0.595 0.660 0.640 0.632 0.643 0.647
ILS comparison operator (>, ≥) 0.528 0.567 0.555 0.541 0.558 0.563
ILS initialization (random,NEH,random NEH) 0.556 0.615 0.601 0.572 0.600 0.594
ILS local search (FI,HC,Random HC or IG) 0.600 0.664 0.625 0.613 0.663 0.624
ILS neighborhood strategy (ordered,random) 0.607 0.627 0.614 0.605 0.611 0.595
ILS neutral escape strategy (restart,destruction,kick) 0.427 0.521 0.532 0.429 0.519 0.526
ILS perturb (restart,kick,NILS) 0.596 0.654 0.638 0.605 0.654 0.635
ILS restart strategy (random,NEH,random NEH) 0.504 0.572 0.570 0.518 0.578 0.577
ILS single-step local search (yes,no) 0.599 0.633 0.617 0.634 0.639 0.629
IG acceptance (always,better,temperature) 0.559 0.646 0.625 0.605 0.631 0.631
IG perturbation (RMS, LSPS) 0.494 0.445 0.445 0.501 0.474 0.467
IG comparison operator (>, ≥) 0.565 0.593 0.567 0.551 0.577 0.577
IG initialization (random,NEH,random NEH) 0.517 0.557 0.545 0.560 0.559 0.558
IG local search (FI,HC,Random HC,IG) 0.571 0.672 0.658 0.575 0.672 0.658
IG neighborhood strategy (ordered,random) 0.562 0.567 0.556 0.583 0.566 0.563
IG partial solution local search (FI,HC,Random HC,IG) 0.418 0.504 0.507 0.490 0.499 0.513
IG single-step local search (yes,no) 0.592 0.636 0.617 0.609 0.623 0.611

Source: The author.

with good compromise between objectives, while iMOEA/D mostly focus on the flowtime

objective.

Some examples of configurations found are:

• Best for flowtime found by iMOEA/D: best-insertion local search, with destruction-

construction with LSPS using single-step best improvement local search and 𝑑 = 7, and

accepting only improvements;

• Best for makespan found by E-IRACE: best-insertion local search on 73% of the neighbor-

hood, with a single swap as perturbation, and acceptance criterion based on temperature

with very low factor of 𝑇 = 0.015;
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Table 9 – Numerical parameter recommendation performance: MAE for each model with or without feature
selection, normalized to each parameter range.

No feature selection Feature selection
Parameter CART RF XGB CART RF XGB
HC neighborhood size (0-10%,...,90-100%) 0.195 0.179 0.217 0.186 0.184 0.200
SA initial temperature 0.283 0.247 0.284 0.259 0.255 0.279
SA neighborhood size (0-10%,...,90-100%) 0.204 0.193 0.232 0.202 0.194 0.229
SA final temperature (0,...,1) 0.247 0.228 0.248 0.239 0.231 0.257
SA initial temperature factor (0.1,...,10) 0.284 0.241 0.273 0.272 0.244 0.267
SA max. moves in span (50,...,500) 0.256 0.234 0.264 0.260 0.253 0.299
SA max. number of span moves (n/a,2,...,10) 0.345 0.311 0.360 0.300 0.315 0.316
SA max. trie in span (1000,...,7000) 0.299 0.253 0.282 0.271 0.266 0.283
SA Osman and Potts beta (0,...,1) 0.287 0.249 0.280 0.252 0.252 0.268
SA simple schedule span size (50,100) 0.318 0.270 0.316 0.276 0.274 0.345
SA temperature decay (0.1,...,1) 0.243 0.216 0.238 0.239 0.214 0.236
TS max. steps a move is taboo (1,...,10) 0.299 0.276 0.352 0.283 0.294 0.321
TS neighborhood size (0-10%,...,90-100%) 0.161 0.146 0.187 0.154 0.149 0.163
TS random taboo size (n/a,1,...,8) 0.331 0.282 0.320 0.305 0.291 0.337
TS taboo list maximum size (2,...,10) 0.317 0.279 0.315 0.305 0.276 0.310
TS max. moves without improvement 0.270 0.244 0.301 0.264 0.255 0.274
ACO initial pheromone level factor 0.282 0.261 0.325 0.256 0.264 0.265
ACO evaporation rate (0.01,...,1) 0.271 0.252 0.315 0.248 0.256 0.259
ACO neighborhood size (0-10%,...,90-100%) 0.239 0.220 0.271 0.230 0.228 0.247
ACO prob. of choosing best path (0,...,1) 0.274 0.252 0.305 0.256 0.251 0.275
ILS accept. temperature factor (0,...,5) 0.285 0.234 0.263 0.247 0.245 0.272
ILS kick perturb strength factor (0*N,...,1*N) 0.282 0.255 0.287 0.268 0.260 0.283
ILS neighborhood size (0-10%,...,90-100%) 0.264 0.234 0.280 0.262 0.235 0.285
ILS neutral number of kicks (n/a,1,2,3) 0.416 0.376 0.389 0.435 0.380 0.375
ILS neutral perturb destruction size (n/a,2,...,6) 0.316 0.289 0.334 0.298 0.294 0.334
ILS neutral perturb maximum number of steps (0,...,1000) 0.291 0.262 0.287 0.276 0.277 0.302
ILS number of kicks (n/a,0-0.1*N,...,0.9-0.1*N) 0.398 0.358 0.412 0.382 0.367 0.409
ILS restart perturb. patience (0,...,10) 0.325 0.298 0.317 0.318 0.310 0.358
IG accept. temperature factor (0,...,5) 0.304 0.256 0.270 0.299 0.269 0.313
IG destruction size (0*N,...,1*N) 0.241 0.218 0.267 0.230 0.222 0.261
IG neighborhood size (0-10%,...,90-100%) 0.266 0.242 0.295 0.256 0.246 0.292

Source: The author.

• Compromise solution by G-IRACE: similar to the state-of-the-art IG with LSPS configura-

tion with 𝑑 = 4 and accepting only improvements.

5.2.2 Results for Scenario b): flowshop instances decomposed by processing time correlation

Correlated instances are known to be easy to solve using simple hill-climbing meth-

ods (WATSON et al., 1999). For this reason, most configurations that include a local search on

the full neighborhood can perform well.

Figure 22 shows the configurations performance with instances decomposed by process-

ing times correlation. We notice that irace and iMOEA/D are able to find good configurations for

correlated processing times. The best configurations for each objective are very similar to the
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partition by objective, where there might not be compromises, only specialist configurations that

share little information. This might also be the reason why MOEA/D with genetic operators does

not perform well on objective scenario, since the genetic operators mostly generate individuals

that share similarities with their parents.

5.2.4 Results for scenario d): automatic problem space decomposition by principal components

Figure 24 – PCA variable plot for flowshop features that most contribute on each axis. For better visualization,
we only show the top six features.
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As described in Section 4.5.2.2, we can use a PCA model of the feature space to

automatically decompose the problem space. PCA models provide the contribution measure for

the problem features in relation to each component. Figure 24 shows the top six features that

most contribute for the dimensionality reduction. In summary, the partitioning explains 45,6% of

the data variability and follows:

• Dimension 1: instances with low number of jobs and makespan objective;

• Dimension 2: instances with many neutral (side) edges and low number of steps to reach

local optima using first improvement;

• Dimension 3: job-correlated instances with high entropy on random walk fitness;
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Table 10 – Percentage of better, equal, worse and better or equal configurations compared to the instance-
based optimal configuration and MH.

Strategy Better Equal Worse Better or equal
randPIAC 0.59 30.14 69.27 30.73
G-IRACE 3.30 54.49 42.21 57.79
MetaL PIAC – CART 6.48 51.02 42.50 57.50
MetaL PIAC – RF 5.74 51.90 42.36 57.64
MetaL PIAC – XGB 5.52 49.68 44.80 55.20
MetaL PIAC – CART-FS 6.08 51.91 42.01 57.99
MetaL PIAC – RF-FS 5.26 50.88 43.86 56.14
MetaL PIAC – XGB-FS 5.31 49.27 45.42 54.58
MetaL PIAC – CART-PP 5.52 50.46 44.01 55.99
MetaL PIAC – RF-PP 6.94 53.75 39.31 60.69
MetaL PIAC – XGB-PP 4.92 48.95 46.13 53.87
MetaL PIAC – CART-FS-PP 6.36 52.04 41.60 58.40
MetaL PIAC – RF-FS-PP 6.56 52.31 41.13 58.87
MetaL PIAC – XGB-FS-PP 5.00 49.01 45.99 54.01
iMOEA/D 15.56 60.65 23.80 76.20

Source: The author.

Overall, the configurations found by iMOEA/D outperform all other strategies, reaching

76.20% configurations with better or equal performance, compared to the instance-based best

configuration. MetaL PIAC’s RF-PP model has the least worse configurations (39.31%), and

60.69% of the recommendations are better than or equal to the instance-base best.

Interestingly, even recommending algorithms that are simpler than the state-of-the-art

IG, the PIAC models are more capable of producing configurations that are better than the

instance-based optimal, for around 6% for MetaL PIAC models and 15.56% for iMOEA/D,

considering all problems.

Table 11 shows the same percentages for instances with 𝐽 = 50 jobs. For these harder

instances, the MetaL PIAC models are mostly better than the overall best solver provided by

G-IRACE: all percentages of better configurations of the first are higher than the later. Moreover,

all percentages of worse configurations in MetaL PIAC are lower than the ones in G-IRACE. In

these harder instances, iMOEA/D has the higher amount configurations that are better than the

baseline (27.79). For equal, worse and better or equal, MetaL PIAC performs the best (37.28%,

51.17% and 48.83%, respectively). This difference might be due to the PCA model that running

over the problem features in iMOEA/D focuses on only one axis (axis 𝑓3 in Figure 25) for

probably harder instances (higher values of ARPD).

Figure 26 shows the critical difference comparison of the best models, MetaL PIAC

RF-PP and iMOEA/D, with the random and best-solver baseline strategies.

The plot shows the statistic values for the Friedman test with Nemenyi post-hoc and
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Table 11 – Percentage of better, equal, worse and better or equal configurations compared to the instance-
based optimal configuration and MH considering only instances with 𝐽 = 50 jobs.

Strategy Better Equal Worse Better or equal
randPIAC 0.37 17.16 82.47 17.53
G-IRACE 3.95 35.86 60.19 39.81
MetaL PIAC – CART 10.80 35.99 53.21 46.79
MetaL PIAC – RF 8.89 35.62 55.49 44.51
MetaL PIAC – XGB 8.64 34.32 57.03 42.96
MetaL PIAC – CART-FS 9.81 37.04 53.15 46.85
MetaL PIAC – RF-FS 9.63 35.74 54.63 45.37
MetaL PIAC – XGB-FS 10.19 33.77 56.05 43.95
MetaL PIAC – CART-PP 8.83 34.75 56.42 43.58
MetaL PIAC – RF-PP 11.54 37.28 51.17 48.83
MetaL PIAC – XGB-PP 7.22 34.14 58.64 41.36
MetaL PIAC – CART-FS-PP 10.56 37.10 52.35 47.65
MetaL PIAC – RF-FS-PP 11.73 36.48 51.79 48.21
MetaL PIAC – XGB-FS-PP 9.81 33.58 56.60 43.40
iMOEA/D 27.79 10.19 62.04 37.96

Source: The author.

Figure 26 – Friedman test critical difference plot of relative improvement of recommendation strategies.
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the critical difference considering 𝛼 = 0.05 significance level. We can see that the iMOEA/D

outperforms all strategies and RF-based models can mostly outperform the best solver and other

models.

The values for the ARPD metric are shown for each problem 𝐽 in Table 12 and for each

problem correlation type in Table 13. Comparing the overall best solver provided by G-IRACE

to the PIAC strategies, we see that the MetaL PIAC models are the best on 𝐽 = 50 instances,

while iMOEA/D have good performance on 𝐽 = 10 and 𝐽 = 30. The ARPD by processing

time correlation shows that iMOEA/D performs better on instances with correlated processing
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times, while RF models from MetaL PIAC have good recommendations on harder uncorrelated

instances, and G-IRACE is better on job-correlated instances.

Table 12 – ARPD over the instance-based best configurations for different number of jobs.
Strategy 10 20 30 50
randPIAC 1.8621467 2.7769920 2.6985613 3.5113785
G-IRACE 0.0504838 0.0707775 0.0759169 0.1289456
MetaL PIAC – CART 0.2039080 0.4312832 0.1451264 0.0973404
MetaL PIAC – RF 0.1420477 0.1265833 0.2641105 0.0649518
MetaL PIAC – XGB 0.1284261 0.1518446 0.1933849 0.1186370
MetaL PIAC – CART-FS 0.2585760 0.1255681 0.1042376 0.0966631
MetaL PIAC – RF-FS 0.2065405 0.1414928 0.1851762 0.0928052
MetaL PIAC – XGB-FS 0.9328087 0.3294801 0.3945023 0.1112641
MetaL PIAC – CART-PP 0.2008428 0.1955303 0.1308527 0.1090830
MetaL PIAC – RF-PP 0.0449009 0.1598861 0.0935169 0.0675427
MetaL PIAC – XGB-PP 0.2859672 0.3372254 0.2436894 0.1257882
MetaL PIAC – CART-FS-PP 0.5580679 0.2423539 0.1055191 0.0877328
MetaL PIAC – RF-FS-PP 0.1542107 0.0881221 0.1037375 0.0747267
MetaL PIAC – XGB-FS-PP 0.9031691 0.3266154 0.3924017 0.1077634
iMOEA/D 0.0332770 0.0970083 0.0718594 0.1396014

Source: The author.

Table 13 – ARPD over the instance-based best configurations for different correlation types.
Strategy job-correlated machine-correlated non-correlated
randPIAC 4.1018945 0.2717023 3.7632120
G-IRACE 0.0121109 0.0061273 0.2263547
MetaL PIAC – CART 0.4049182 0.0261983 0.2271270
MetaL PIAC – RF 0.2512856 0.0143181 0.1826663
MetaL PIAC – XGB 0.1721288 0.0336721 0.2384186
MetaL PIAC – CART-FS 0.0972662 0.0325028 0.3090146
MetaL PIAC – RF-FS 0.1646906 0.0298418 0.2749786
MetaL PIAC – XGB-FS 0.8856861 0.0488105 0.3915448
MetaL PIAC – CART-PP 0.1936907 0.0138164 0.2697246
MetaL PIAC – RF-PP 0.1149538 0.0134066 0.1460247
MetaL PIAC – XGB-PP 0.4533118 0.0231233 0.2680676
MetaL PIAC – CART-FS-PP 0.4876789 0.0176097 0.2399667
MetaL PIAC – RF-FS-PP 0.1038594 0.0148917 0.1968467
MetaL PIAC – XGB-FS-PP 0.8629502 0.0490871 0.3854249
iMOEA/D 0.0171043 -0.0006360 0.2398413

Source: The author.

Overall, we observe that there is a compromise between learning the models of rec-

ommendation with MetaL PIAC and exploring the compromise of distinct problem partition

subsets with iMOEA/D. The iMOEA/D is better in general, probably because the problem space

includes many small instances, where it performs better. However, the MetaL PIAC models are

better for hard problems. This could be explained by the fact that features are more useful for

defining the best operators and algorithms when the search space is large. Therefore it is able to

recommend specialist configurations where otherwise iMOEA/D would recommend generalist

ones because of the limited number of partitions.
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6 CONCLUSIONS AND FUTURE WORK

This work has formalized, discussed and analyzed two proposals for the Per-Instance

Algorithm Configuration (PIAC) problem. One namely MetaL PIAC is based on an extension to

Rice’s meta-learning model, and other is inspired on the Multi-objective Automatic Algorithm

Configuration based on problem space Decomposition (MOAAC/D). The strategies have been

tested on the flowshop scheduling problem using more than 6,000 instances. The problem’s

features include simple attributes and fitness landscape analysis metrics.

MetaL PIAC has been evaluated for recommending six metaheuristics (HC, SA, TS,

ACO, ILS, and IG) and their parameters using tree-based models (CART, RF, and XGB). The

results from a machine learning perspective showed that the models are able to predict the best

metaheuristic using multi-label binary relevance classifiers. The parameters recommendation,

specially real-valued parameters, like ILS number of kicks, have large variance. Some possible

reasons for this are:

• a single parameter value dominates, leading to an unbalanced dataset;

• the MH performance is insensitive to the parameter value, and the output is close to

random;

• parameter interactions can influence MH performance.

MOAAC/D proposal is evaluated in the task of finding good configurations for a hybrid

MH encompassing ILS and IG algorithms in different problem space partition types: by objective,

by correlation and by size. The final configurations are compared with single-objective AAC like

G-IRACE and E-IRACE, focusing on generalist and specialist configurations for each partition

subset. The results have shown that the proposed iMOEA/D, i.e. MOEA/D with or without irace

as local search, performs well finding non-dominated configurations in most scenarios.

Disadvantages of the MetaL PIAC strategy:

Number of configuration evaluations spent on easy instances: the MetaL PIAC has to build

a database of the best configurations for several problems in order to build its models

(for this work we use 1000 configuration evaluations for each problem). Easy instances,

like the ones with correlated processing times, must be solved during the training phase
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with the same budget as harder instances. Ideally, the search could focus on regions of the

problem space where more sophisticated configurations and better tuning of the parameters

are necessary;

Equivalent configurations: as one might expect, there may be several ways to solve a given

optimization problems that yield the same performance. For the MetaL PIAC, this means

that the performance dataset can contain noise from the best configurations search process.

This imposes difficulties in choosing the appropriate models on the training phase;

Interpretability: the models produced during the training phase might not be easily inter-

pretable. Tree-based models like CART do not produce the best results. Also, since there

is a separate model for each parameter, the understating of why a full configurations is

chosen requires aggregating several interpretations involving different problem features.

Multi-label model choice: the result have shown that the impact of multi-label models on the

MetaL PIAC performance is higher for multi-label models than for inner models. As there

are several options, the problem of selecting such model can be harder than recommending

the configuration.

Advantages of the MetaL PIAC strategy:

Good performance on harder instances: the results show that the MetaL PIAC models are

better on harder instances, like the ones with larger sizes and uncorrelated processing

times. This could be due to the fact that the performance data on harder instances is more

reliable, with well defined parameters;

Reusability: the parameter recommendation models could also be used to, for example, auto-

matically adapt the configuration during the search. By getting features online, the adapt

could check in the meta-data which is the better configuration and updates it. Another

application is to use it as a guide to understating instances features and how they affect the

performance on certain algorithms, operators or parameter values.

MOAAC/D PIAC disadvantages:

Problem space partition: the practitioner should know previously how to partition the problem

space. Alternatively, one can use the problem features and possibly a dimensionality
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reduction technique to automatically find the problem space partition. Nonetheless, it

introduces complexity, specially when the problem is not well known;

Search space limitations: since testing configurations is usually a computationally expensive

process, the number of individuals and generations should be small. Therefore, the multi-

objective process might not be able to explore large configuration spaces;

MOAAC/D PIAC advantages:

Compromise configurations: as the strategy includes a Pareto-set of good configurations, the

practitioner can choose the most adequate according to different criteria;

Flexibility: since the space of problems is partitioned, it is possible to model different features

or combinations of features and directly search for specialist and generalist configurations.

The final comparison involves testing the configuration models in terms of the objective

function value against a random recommendation and an overall best-solver provided by G-

IRACE. The overall best-solver is a state-of-the-art IG with parameters tuned for all instances in

the problem dataset. The results show that both proposed approaches are advantageous, specially

MetaL PIAC for larger instances and iMOEA/D overall.

Regarding the hypothesis, we can empirically conclude that the mono-objective ap-

proach based on meta-learning and the multi-objective approach based on problem space decom-

position can provide good configurations even for unseen instances. However, this conclusion is

particular for the flowshop scenarios addressed in the present work. Moreover, it was not possible

to identify whether the advantages and drawbacks of each proposal were due to mono/multi

formulation or classification-regression/optimization modeling.

6.1 FUTURE WORK

The current work can be improved in many directions:

1. Expand meta-data: including different flowshop variants, as well as generating harder

instances (VALLADA et al., 2015);

2. Improve meta-features: studying the cost of LON meta-features (HERNANDO et al.,

2017), specially for harder problems, when the use of costly meta-features is acceptable,

or else reduce its computation cost;
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3. Alternative utility metrics: using different cost measures like empirical mean run time

(HOOS; STÜTZLE, 2004) to compare algorithms while building the performance data;

4. Use and compare with other AACs both proposals use irace as main component, other

competitive AACs, like SMAC and ParamILS (HUTTER et al., 2014), could yield better

results;

5. Use and compare with other MOEAs, the multi-objective proposal (MOAAC/D) is

implemented by means of the MOEA/D framework. Other state-of-the-art MOEAs and

even Many-objective Optimization Algorithms (MaOEAs) - algorithms developed to deal

with 4 or more objectives - could be considered;

6. Explore generated models and configurations: MetaL PIAC models and iMOEA/D

final Pareto-set can be interpreted and matched against the problem features could lead to

insights on the base problem;

7. Scale to larger problems: further investigations on how to scale the MetaL PIAC frame-

work to address real0world instances could include sampling small sets of large problems

and using few-shot learners (WANG et al., 2020) for efficient recommendation with less

meta-data.

8. Explore the parameters of MOAAC/D with automated partitioning: we consider

the number of objectives as a parameter and it could be further investigated. This is

an important parameter, since it influences the quality of the configurations with better

partitions, but also aspects of many-objective MOEAs’ performance. Also, we do not

explore the percentage of data variation provided by PCA models, as well as alternative

clustering methods.

In the big picture, the present work points toward the increasing use of problem infor-

mation for automatically solve optimization problems. We think that there is a large room for

improvements and PIAC could, in the future, be used in several complex real-world problems,

where there are many complexities and costs involved. Moreover, we can also see a hybridization

of both proposed approaches with MetaL PIAC providing initial solutions for iMOEA/D.
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APPENDIX A – METAHEURISTIC AAC ANALYSIS

In this appendix, we investigate the instance-based algorithm configuration data, using

irace for 1296 groups of instances: 𝐽 ∈ {10,20,30,50}, 𝑀 ∈ {10,20,30}, 3 processing time

distributions (uniform, exponential and binomial), 3 processing time correlation (job-, machine-

and non-correlated), 2 objectives (makespan and flowtime), 2 stopping criteria (number of

evaluations and time) and 3 budgets (low, medium and high). For each feature combination, irace

uses as the training set 5 instances with different processing times samples.

Figures 27 to 29 show PCA variable plots for each MH with the best projected

(𝑐𝑜𝑠2 > 0.05) parameters. For that, all categorical parameters are transformed into k dummy

indicator parameters, where k is the number of parameter values.

Figure 27 – PCA for HC and SA parameters.
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From HC parameters (Figure 27(a)), we notice that random neighborhood are larger

and local searches like best and random best are used with smaller neighborhoods. Figure 27(b)

shows that Osman and Potts (1989) cooling schedule uses smaller neighborhoods, while dynamic

cooling schedule uses large neighborhoods. SA initial temperatures and span sizes are not well

projected.

Regarding the TS and ACO parameters from Figure 28, we notice that most TS parame-

ters are not well projected. For ACO on the other hand, we notice that random best local search

is usually accompanied with larger neighborhood sizes and single-step local searches while
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Figure 28 – PCA for TS and ACO parameters.
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the greedy insert local search of IG uses small neighborhoods and better or equal comparison

operator.

Figure 29 – PCA for ILS and IG parameters.
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Figure 29 shows the PCA for ILS and IG configuration spaces. For ILS, we notice that

metropolis hastings acceptance criterion is mostly used with larger neighborhoods and random-

best local searches, while greedy insertion local searches uses kick perturbation accepting only
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improving solutions (similar to the ILS configuration proposed by Stützle (1998b)). For IG,

the local search based on best solutions on the neighborhood is correlated with single-step

local searches and, like ILS, configurations with greedy insertion local search mostly uses the

acceptance criterion on only improving solutions.

Overall, we notice that parameters like local search, acceptance criterion are better

projected. Some categorical parameters indicators like random initialization strategy are never

shown, mostly because the best configurations almost never use random initialization. Compari-

son operators and most numerical parameters are not well projected, which implies that either

their values setting do not depend on other parameters, or they assume the same value for most

problems.
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APPENDIX B – METAHEURISTICS PARAMETERS

This appendix describes the parameter for each MH implemented in this work for

solving flowshop problems. There are two basic parameter types or domains: categorical (like

initialization and local search strategies) and numerical (like neighborhood size and temperature

decay factor). Some parameters are also conditional to each other; for example, the ILS accept

temperature factor is only used when the metropolis hastings acceptance criterion is used. All

MHs and operators are implemented using the ParadisEO framework (HUMEAU et al., 2013).

The parameters, domain and conditionals are described in Tables 14 to 19. HC is a

simple MH using a local search strategy and restarting until the evaluations budget is exhausted.

SA has a simple, dynamic and a cooling schedule based on Osman and Potts (1989). TS can

use different local searches and tabu list types. ACO is based on the proposal presented by

Stützle (1998a). ILS is mainly based on the approach proposed by Stützle (1998b), including

new perturbation operators like neutral walk perturbation (MARMION et al., 2011b). Finally,

IG is implemented providing two variants, the classic IG from Ruiz and Stützle (2007) and the

state-of-the-art IG based on partial solution optimization from (Dubois-Lacoste et al., 2017).

Table 14 – HC parameters.
Parameters Descriptions (possible values) and dependencies
Initialization (random, NEH or randomized NEH)
Neighborhood type How neighborhood is explored (ordered or random)
Comparison Used to compare solutions (strict >, or equal ≥)
Neighborhood size (Integers between 1 and 2𝑁−1 normalized to 0%-100%)
HC variant First improvement (FI), local search the best (BEST), random local search for the

best (RANDOM_BEST)
Source: The author.

Table 15 – SA parameters
Parameters Descriptions (possible values) and dependencies
Initialization (random, NEH or randomized NEH)
Comparison Used to compare solutions (strict >, or equal ≥)
Neighborhood size (Integers between 1 and 2𝑁−1 normalized to 0%-100%)
SA variant SA variant Classic SA (SIMPLE) or with dynamic cooling schedule (DYNAMIC)
Initial temperature (Real between 5.0 and 10.0)
Final temperature (Real between 0.1 and 1.0) used if SA variant is SIMPLE
Alpha Temperature decay rate (Real between 0.1 e 1.0)
Span Temperature update span (Integer between 5 e 100) used if SA variant is SIMPLE
Maximum span, maximum
moves and maximum
updates

Maximum number of tries (integer between 1000 and 7000), moves (integer between
50 and 500) and updates (integer between 2 e 10) with the same temperature, used if
SA variant is DYNAMIC

Stagnation window Maximum number of moves with same fitness until a restart (integer between 1 and
budget size)

Source: The author.
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Table 16 – TS parameters
Parameter Description (and possible values)
Initialization (random, NEH or randomized NEH)
Neighborhood type How neighborhood is explored (ordered or random)
Comparison Used to compare solutions (strict >, or equal ≥)
Neighborhood size (Integers between 1 and 2𝑁−1 normalized to 0%-100%)
TS variant TS local search strategy of first improvement (FI), best neighbor (BEST) or random-

ized best neighbor (RANDOM_BEST)
Tabu list type Simple tabu list (INDEXED), with variable tabu period (RANDOM_INDEXED),

neighbors tabu (NEIGHBOR) or solutions tabu (SOL)
Aspiration function None (NONE) or best improvement (BEST)
Tabu list size Maximum tabu list size (integer between 2 and 10), used if tabu list type is NEIGH-

BOR or SOL
Tabu length Number of iterations a move is considered tabu (integer between 1 and 10)
Tabu length variance Maximum number of iterations added to the tabu length (integer between 1 and 8),

used if tabu list type is RANDOM_INDEXED (LÜ et al., 2010)
Source: The author.

Table 17 – ACO parameters
Parameter Description (and possible values)
Initialization (random, NEH or randomized NEH)
Neighborhood type How neighborhood is explored (ordered or random)
Comparison Used to compare solutions (strict >, or equal ≥)
Neighborhood size (Integers between 1 and 2𝑁−1 normalized to 0%-100%)
Local Search ACO local search strategy of first improvement (FI), best neighbor (BEST), random-

ized best neighbor (RANDOM_BEST) or greedy insert (IG)
Single-step local search Indicates (true or false) if the local search executes for a Single-step
Pheromone decreasing factor
𝜌

Factor to update the current pheromone levels τ𝑡+1 ← 𝜌τ𝑡 (real value between 0 and
1)

Minimum pheromone factor
𝑠

Scaling of the maximum pheromone to define the minimum level τ𝑚𝑖𝑛 = 𝑠τ𝑚𝑎𝑥

(real value between 0 and 1) where τ𝑚𝑎𝑥 = ((1 − 𝜌)𝑓0)−1 and 𝑓0 is the initial
solution fitness.

Random mutation probabil-
ity

Probability of choosing a random job during the construction phase (real value
between 0 and 1)

Source: The author.
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Table 18 – ILS parameters
Parameter Description (and possible values)
Initialization (random, NEH or randomized NEH)
Neighborhood type How neighborhood is explored (ordered or random)
Comparison Used to compare solutions (strict >, or equal ≥)
Neighborhood size (Integers between 1 and 2𝑁−1 normalized to 0%-100%)
Local search First improvement (FI), best (BEST), randomized best (RANDOM_BEST), greedy

insertion (IG)
Perturbation Restart (RESTART), solution kick with random swaps (KICK) (STÜTZLE, 1998b)

or neutral walk perturbation strategy (NILS) (MARMION et al., 2011b)
Acceptance criterion Always accept (ALWAYS), accept improvements (BETTER) or metropolis hastings

(TEMPERATURE) (STÜTZLE, 1998b)
Accept temperature Temperature factor (real between 0 and 5.0), used if acceptance criterion is TEM-

PERATURE
Single-step local search Indicates (true or false) if the local search executes for a Single-step
Restart initialization Initialization used on restart perturbation (random, NEH or randomized NEH), used

if perturbation is RESTART
Restart threshold Number of non-improving steps until restart operator is applied (integer between 0

and 10), used if perturbation is RESTART
Number of kicks Number of random swaps (integer between 1 and 3), used if perturbation is KICK
Kick strength factor 𝑘𝑠 Maximum positional distance of a swap, relative to the job size (real between 0 and

1), used if perturbation is KICK
Neutral walk number of
steps

Neutral walk’s maximum number of moves (integer between 0 and 1000), used if
perturb is NILS

Neutral escape perturbation Perturbation applied in NILS (random, NEH, randomized NEH, IG destruction or
solution kick), used if perturb is NILS

Neutral escape destruction
size

Number of destructions of IG style perturbation on NILS escape, used if perturb is
NILS and NILS perturb is IG destruction

Neutral escape number of
kicks

Number of random swaps of kick perturbation on NILS escape (integer between 1
and 3), used if perturb is NILS and NILS perturb is solution kick

Source: The author.

Table 19 – IG parameters
Parameter Description (and possible values)
Initialization (random, NEH or randomized NEH)
Neighborhood type How neighborhood is explored (ordered or random)
Comparison Used to compare solutions (strict >, or equal ≥)
Neighborhood size (Integers between 1 and 2𝑁−1 normalized to 0%-100%)
Local search First improvement (FI), best (BEST), randomized best (RANDOM_BEST), greedy

insert (IG)
Single-step local search Indicates (true or false) if the local search executes for a Single-step
Acceptance criterion Always accept (ALWAYS), accept improvements (BETTER) or metropolis hastings

(TEMPERATURE) (STÜTZLE, 1998b)
Accept temperature Temperature factor (real between 0 and 5.0), used if acceptance criterion is TEM-

PERATURE
Destruction size factor 𝑠𝑑 IG destruction size 𝑛𝑑 relative to the total number of jobs 𝐽 , i.e, 𝑛𝑑 = 𝑠𝑑𝐽
IG variant Original IG or IG with local search on partial solutions (Dubois-Lacoste et al., 2017)

(IG or IG-LSPS)
Single-step partial local
search

Indicates (true or false) if the partial local search executes for a Single-step

Source: The author.
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APPENDIX C – FLOWSHOP FITNESS LANDSCAPE ANALYSIS

Aiming to show insights on the addressed FSP instances, in this chapter, we show the val-

ues obtained using different FLA metrics on 3240 flowshop instances with: 𝐽 ∈ {10,20,30,50},

𝑀 ∈ {10,20,30}, 3 processing time distributions (uniform, exponential and binomial), 3 process-

ing time correlation (job-, machine- and non-correlated), 2 objectives (makespan and flowtime),

3 flowshop variants (permutation, no-wait and no-idle) and 5 different random seeds for each

feature combination.

Figure 30 – Histograms of edge and solution type FLA metrics per objective and flowshop type.
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(a) Proportion of side edge types.
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(b) Proportion of SLOPE solution types.

Source: The author.

Regarding solution and edge type statistics, we measure the type of 1000 samples of the

search space of each instance, flowshop type and objective. The proportion of up and down edges

are similar for all problems, normally distributed around 50%. The proportion of side edges is

higher on makespan problems and job-correlated processing times, as shown in Figure 30(a).

Plateau, local minima or maxima solutions are rarely present. Slope solutions are more common

in job-correlated and non-correlated solutions with flowtime objective, as shown in Figure 30(b).

Other FLA metrics are based on a 10,000 step random walks starting from a random

solution. From this, we measure the random walk autocorrelation with delays of 1, 2, and 4, as

well as the other information theory measures from Section 2.2.2. The autocorrelation with delay 1

mainly depends on the number of jobs, as seen in Figure 31(a), higher delay values show the same
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Figure 31 – Histograms of FLA metrics based on random walks per objective and flowshop type.
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(a) Random walk autocorrelation with delay of 1.
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(b) Entropy of random walk fitness values.
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(c) Partial information of random walk fitness values.

Source: The author.

behavior. As seen in Figure 31(b), entropy is high mostly in job-correlated and non-correlated

problems of no-idle and permutation problems. For no-wait flowshop, the machine-correlated

instances show high entropy but low partial information, as seen in Figure 31(c). Information

stability is dependent on the fitness range and is lower for makespan objective and high for

instances with exponentially distributed processing times.

One of the most informative FLA metric types are local optima networks (LONs). We

use the snowball procedure with 𝑙 = 15 random walk steps, 𝑚 = 10 local optima neighbors and

depth 𝑑 = 3. The local search used is a random best HC, and the perturbation operator performs

two random swaps. From the sampling, we also obtain other FLA metrics such as FDCs, adaptive

walk lengths, and mean distances between local optima.

From the performed adaptive walks, we observe in Figure 32(a) that the mean length

to reach a local optimum is lower on makespan objective and machine-correlated instances.
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Figure 32 – Histograms of FLA metrics based on adaptive walks per objective and flowshop type.
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(a) Mean number of steps to reach a local optima solution.
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(b) FDC using job-precedence distance.
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(c) FDC using shift distance.

Source: The author.

The FDC values, considering job-precedence distance, is high for job-correlated instances with

flowtime objective and machine-correlated instances with makespan objective. Other distances

also follow this pattern as seen for shift distance in Figure 32(c). Although, in some cases like

makespan no-idle flowshop the different FDCs complement each other on distinguishing job-

and machine-correlated instances.

Figures 33(a) and 33(b) show the mean distance between local optima using precedence

and shift distance, respectively. From the histograms, we observe that job-correlated instances

have closer local optima, except for no-idle and permutation flowshop with makespan objectives,

which present local optima with similar distances to each other.

FLA metrics derived from LONs and CLONs are shown in Figures 34 and 35, respec-

tively. The LONs with a greater number of nodes are machine-correlated instances, as well as

no-wait and permutation flowshop problems with makespan objective. In most of this LONs
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Figure 33 – Histograms of the mean distance between local optima per objective and flowshop type.
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(a) Mean job-precedence distance between local optima.
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(b) Mean shift distance between local optima.

Source: The author.

sampling always reaches a new local optimum every time it applies the perturbation operator.

The output degree is lowest on job-correlated instances, mostly from small LONs with several

self-loops. Fitness-fitness correlation mostly does not depend on the instance features. For the

other measures, job-correlated instances have high average self-loop weights and high weight

disparity for flowtime objective.

From the derived CLONs, Figure 35(a) shows the distribution of the number of nodes.

The correlated instances have their LONs compacted into a few neutral nodes, as also shown by

the average node size in Figure 35(b). The average output degree is smaller in non-correlated

instances, mainly for flowshop objective (Figure 35(c)).

The sampling process is also tested using more complex initialization procedures and

local searches like NEH and IG algorithm. For those, LONs are smaller and have a better

distinction of correlation types for the mean average distance between local optima.

In order to observe the correlation between the different FLA metrics, we use principal

component analysis (PCA) to find the best projection of all FLA metrics computed (including

others not mentioned, like FDC with different metrics, other graph-based metrics for LONs).

Several FLA metrics are correlated with each other, like random-walk autocorrelation with

different delays, FDC, and mean distance between local optima with different distances.

Figure 36 shows the PCA graph of variables with some chosen FLA metrics to avoid
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Figure 34 – Histograms of LON based metrics per objective and flowshop type.
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(a) LON sizes (excluding instances with 10 jobs).
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(b) LON average output degrees.
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(c) LON fitness-fitness correlation.

Source: The author.

over-plotting. The number of jobs and machines are shown as supplementary variables. As noted

above, the autocorrelation is related to the number of jobs. The number of machines does not

seem to influence any FLA metric.

In order to better understand the importance of each FLA metric in predicting the

problem hardness, the following ratio is computed for all instances:

𝑖𝑔_𝑝𝑒𝑟𝑓 =
IG performance with 100 * J function evaluations

Random local optima fitness

𝑖𝑔_𝑝𝑒𝑟𝑓 is close to 1 for easy instances where a simple HC is comparable to a state-of-the-art

IG. Otherwise, the instance is not trivial, and the IG run can significantly improve the final

fitness. This metric is also projected on PCA of Figure 36, showing that IG outperforms HC

most frequently on instances where:

• the number of jobs is high (subsequently the autocorrelation is high);
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Figure 35 – Histograms of CLON based metrics per objective and flowshop type.
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(a) CLON sizes (excluding instances with 10 jobs).
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(b) CLON average node size.
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(c) CLON average output degrees.

Source: The author.

• the neutral regions are small and separate (high number of neutral groups or CLON nodes);

• the partial information and density basin is high;

• the average number of steps until finding a local optimum is high;

• The FDC is low.

The main conclusions from analyzing FLA metrics are that most of them can be used

to indicate some instance feature. Several metrics are sensitive to the type of processing times

correlation, as well as the objective, and type of flowshop problem. Some features can, and

possibly some combination of them can also indicate instance hardness, as seen in the case of

correlation with 𝑖𝑔_𝑝𝑒𝑟𝑓 .
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Figure 36 – Principal component analysis for FLA metrics (supplementary variables are shown as dashed
arrows).
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