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RESUMO

HATTORI, Leandro Takeshi. Contribuições para o estudo do problema de dobramento de
proteínas usando métodos de aprendizado profundo e dinâmica molecular. 2020. 130 f.
Thesis (Doctorate em Engenharia de Computação) – Federal University of Technology – Paraná.
Curitiba, 2020.

O Protein Folding Problem (PFP) é um dos principais desafios da área de Biologia Computacional.
Acredita-se que as proteínas globulares evoluem de conformações iniciais aleatórias através de
trajetórias de dobramento, alcançando, em quase todos os casos, uma estrutura nativa funcional.
Estudos relacionados ao dobramento proteico estão relacionados a vários eventos anormais, como
dobramento incorreto e agregação de proteínas. Portanto, várias abordagens computacionais têm
sido propostas na literatura para este problema. Métodos de Deep Learning (DL) têm se destacado
em estudos na área de Proteômica, dada a sua capacidade de extrair vetores de características e
também pela sua eficiência após o processo de treinamento. Recurrent Neural Network (RNN) são
métodos DL cíclicos que alcançaram desempenho do estado-da-arte para problemas sequenciais
e temporais. Esta tese apresenta contribuições para o estudo das trajetórias espaço-temporais
do enovelamento de proteínas utilizando métodos RNN. Para alcançar essas contribuições, os
experimentos desta tese foram organizados em três etapas: desenvolver um framework para
gerar grande quantidades de dados de dobramento de proteínas usando métodos sequenciais
e paralelos de Molecular Dynamics (MD) no ensemble canônico; propor uma abordagem de
Neighbourhood List (NL) para o método MD paralelo; aplicar redes RNNs ao PFP. Na primeira
etapa, apresentamos um pacote chamado PathMolD-AB para simular e analisar trajetórias de
dados de dobramento usando o modelo 3D-AB off-lattice para representar a estrutura da proteína.
Os conjuntos de dados gerados a partir do PathMolD-AB correspondem à 3.500 trajetórias
de dobras, abrangendo 35× 106 estados de dobramento. A análise de speedup mostrou que a
abordagem paralela obteve simulações mais rápidas quando se utilizaram sequências de proteínas
com mais de 99 aminoácidos. Na segunda etapa, a abordagem NL com MD paralelo mostrou
melhoria no desempenho de aceleração do que a versão MD puramente paralela com sequências
de proteínas entre 99 a 1.000 aminoácidos, que abrange 80 % de todo o Protein Data Bank
(PDB). Na última etapa desta tese, foi realizada uma análise comparativa entre as arquiteturas de
RNNs utilizando o modelo many-to-one com conjuntos de dados gerados pelo PathMold-AB.
Os resultados indicam que a Long Short-Term Memory (LSTM) obteve o melhor desempenho
que as outras arquiteturas de RNNs em termos de erro de predição. A análise biológica indicou
que a rede LSTM previu estruturas com características semelhantes ao alvo (MD), em termos
de compactação hidrofóbica e polar, e também energias de torção e ligação, sugerindo que esta
abordagem é auspiciosa para o estudo PFP.

Palavras-chave: Palavra-chave A. Palavra-chave B. Palavra-chave C. Palavra-chave D. Palavra-
chave E.



ABSTRACT

HATTORI, Leandro Takeshi. CONTRIBUTIONS TO THE STUDY OF THE PROTEIN
FOLDING PROBLEM USING DEEP LEARNING AND MOLECULAR DYNAMICS.
2020. 130 p. Thesis (DSc in Computer Engineer) – Federal University of Technology – Paraná.
Curitiba, 2020.

The Protein Folding Problem (PFP) is one of the main challenges in the Computational Biology
area. Globular proteins are believed to evolve from random initial conformations through folding
pathways achieving, in almost all cases, to a functional native structure. Studies of the folding
process are related to several abnormal events, such as misfolding and protein aggregation.
Therefore, several computational approaches have been proposed in the literature for this problem.
Deep Learning (DL) methods have been highlighted in studies in the Proteomics area, given
their ability to extract features vectors and their efficiency after the training process. Recurrent
Neural Networks (RNN) are cyclic DL methods that have achieved state-of-the-art performance
for sequential and temporal problems. Therefore, this thesis presents contributions to studying
the spatial-temporal pathways of the protein folding using RNN methods. To achieve these
contributions, experiments of this thesis were organized in three steps: develop a framework to
generate a massive amount of protein folding data using pure sequential and parallel Molecular
Dynamics (MD) methods in the canonical ensemble; propose a Neighbourhood List (NL)
approach to the parallel MD method; apply RNNs networks to the PFP. In the first step, we
presented a package called PathMolD-AB to simulate and analyze folding data trajectories using
the 3D-AB off-lattice model to represent the protein structure. The datasets generated from
PathMolD-AB correspond to the MD evolution of 3,500 folding pathways, encompassing 35×106

states. The speedup analysis showed that the parallel approach obtained faster simulations when
used protein sequences with more than 99 amino acids were used. In the second step, the NL
approach with parallel MD showed higher improvement in the speedup performance than the
purely parallel MD version with protein sequences between 99 to 1,000 amino acids, which
covers 80% of the entire Protein Data Bank (PDB). In the last step of this thesis, a comparative
analysis between RNNs architectures were carried out using the many-to-one model with datasets
generated by the PathMold-AB. Results indicate that the Long Short-Term Memory ( obtained
the best performance than other RNNs architectures in terms of prediction error. The biological
analysis indicated that the LSTM predicted structures with similar features to the target (MD), in
terms of hydrophobic and polar compactness, and also torsion and bond energies, suggesting
that this approach is auspicious for the PFP study.

Keywords: Deep Learning. Long Short-Term Memory. Protein Folding Problem. Molecular
Dynamics. High-Performance Computing.
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1 INTRODUCTION

1.1 MOTIVATION

The Protein Folding Problem (PFP) is one of the most challenging problems in the

Computational Biology area. This research area comprises the study of state sequences of a

protein’s structure from the unfolded structure for its native conformation. The protein native

structure exerts many biological functions, for instance, regulatory mechanisms, structural

function, defense mechanisms, transportation, and other functions. Thus, computational methods

have been focused on the PFP process to enlarge research on how proteins achieve their native

state.

Regarding proteomics studies, several large-scale projects have been developed to

drive this area, such as the Human Genome Project1, Folding at Home2, Critical Assessment

of Protein Structure Prediction3. These projects promote discoveries on protein structures and

new computational methods (HOU et al., 2019). Besides these works, repositories have been

developed, and the scientific community can publish new information about discovered proteins.

UniProtKB/TrEMBL is one repository, containing about 84 million protein sequences (November

/ 2020).

The Protein Data Bank (PDB) is a repository for storing structural information con-

taining over 150,000 structures (November / 2020), a relatively small amount compared to the

number of discovered sequences ( 180,179,667). The small number of protein structures is related

to the difficulties of performing experimental methods (LACAPÈRE et al., 2018). Datasets with

protein folding information are sparsely available, and when it is present, they are inconsistent

and non-standardized.

Among the computational methods for protein folding simulation, some approaches do

not require prior information, called ab initio. The Molecular Dynamics approach (MD) is an

ab initio method extensively explored for the PFP study (PEREZ et al., 2016). This approach

simulates protein folding pathways based on physical principles using energy functions. Regarded

their notability, packages have been proposed in the scientific literature, as GROMACS4 and
1 Avaiable in https://www.genome.gov/ (accessed 24 November 2020).
2 Avaiable in http://folding.stanford.edu/ (accessed 24 November 2020)
3 Avaiable in http://predictioncenter.org/ (accessed 24 November 2020)
4 http://www.gromacs.org/ (accessed 24 November 2020)

http://www.gromacs.org/
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AMBER5 (ABRAHAM et al., 2015; MERMELSTEIN et al., 2018). However, when employing

generalized ensembles, these packages usually preserve the energy sample landscape instead of

the time-dependence of the folding trajectories. The MD algorithm in the canonical ensemble

preserves these features to the time-dependence of the simulation (RAPAPORT, 2004), however,

barely exploited in the current literature.

Due to the computational power required for the PFP problem, simpler but non-

simplistic models named Coarse-Grained (CG) have been explored in the literature (KMIECIK et

al., 2019; BOIANI; PARPINELLI, 2020). These models can represent many biological behaviors

at a meso-scale (TOZZINI, 2005), such as the hydrophobic core formation, presented in many

protein domains (KALINOWSKA et al., 2017), and the protein aggregation process, which is

related to proteinopathies (FRIGORI, 2017). Among the many variants of CG models, the 3D-HP

off-lattice (STILLINGER; HEAD-GORDON, 1995) is a representation where the conformation

of the protein is contained in a tri-dimensional (3D) lattice, and each amino acid is represented

by one beads. Each bead represent the 𝐶𝛼 and the binding structure between the amino acids

sequence, which can be either hydrophobic (A) or polar (B).

Other approaches have been proposed to overcome this computational complexity, such

as parallel MD approaches using Graphics Processing Units (GPU) hardware and Neighbourhood

List (NL) technique for the MD method. Otherwise, computational intelligence has been poorly

explored for the protein folding problem (BENÍTEZ, 2015).

Recently, Deep Learning (DL) methods have been overcoming previous state-of-the-art

approaches in different Bioinformatics problems(ANGERMUELLER et al., 2016)(LI et al.,

2019). The ability to learn feature extraction from raw data is one factor that makes DL effective

(LECUN et al., 2015). Although the training process demands a high computational cost, trained

network applications can be efficient and used in real-time systems (LI et al., 2018; GUO et

al., 2018). Among DL approaches, Recurrent Neural Networks (RNNs) are methods that allow

storing information from network inputs as memory. These networks can associate a sequence of

information to improve prediction and classification tasks. For example, in the proteomics area,

RNNs are commonly used to predict protein structures using only the sequential information of

the amino acids (MIN et al., 2017).

The Long Short-Term Memory network (LSTM) among RNNs approaches, can as-

sociate long and short dependencies between the sequential input data, unlike standard RNN
5 https://ambermd.org/ (accessed 24 November 2020)

https://ambermd.org/
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(sRNN) (HOCHREITER; SCHMIDHUBER, 1997). Due to this feature, LSTMs have been

applied successfully to Bioinformatics problems, such as secondary and tertiary protein structure

prediction (PALIWAL et al., 2015; HANSON et al., 2018). Others applications of the LSTM

in proteomics include: classification of secondary protein structures (SøNDERBY; WINTHER,

2015), prediction of structural unstable regions of proteins (HANSON et al., 2017), and predic-

tion of protein functions (LIU, 2017). To the best of our knowledge, no recent work is using DL

methods for the PFP.

1.2 OBJECTIVES

This thesis aims to develop a new computational method based on DL approaches for

the Protein Folding Problem. This study concentrated on the one-step-ahead prediction approach.

The specific objectives are:

• To present a package called, PathMold-AB, to generate in silico spatio-temporal protein

folding trajectories datasets with the canonical ensemble Molecular Dynamics using a

coarse-grained model.

• To propose a parallel approach of the canonical ensemble Molecular Dynamics method;

• To compare the performance of the sequential and parallel Molecular Dynamics methods;

• To compare the synthetically folded structures and re-scaled structure from the Protein

Data Bank;

• To propose Recurrent Neural Networks using the many-to-one model to the Protein Folding

Problem;

• To compare the performance of the Recurrent Neural Networks;

• To propose an encoding of the protein structure using Relative Spherical Coordinate;

• To present metrics to analyze the performance of Recurrent Neural Networks methods

using Radii of gyration and Potential energy of predicted folded structures.
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1.3 OUTLINE

The Thesis is divided into six chapters. Chapter 2 presents the theoretical foundations of

proteins and their structures. Next, related works are presented in Chapter 3. Chapter 4 presents

the proposed methods. Chapter 5 presents the results of the experiments performed. Finally,

some conclusions and future works are presented in Chapter 6.

1.4 CONTRIBUTIONS

Along with the development of the Thesis, we have produced some works, contributing

to this project’s overall development.

In Hattori et al. (2017a) was presented an application of the Deep Learning method

using LSTM for the protein secondary structure prediction.

An application of Molecular Dynamics to the protein folding problem using the 3D-AB

off-lattice model with the NL method was presented by Takiguchi et al. (2017).

In Hattori et al. (2018) was presented a preliminary framework, results, and directions

of this Thesis.

In Hattori et al. (2020b) was proposed a framework to generate Spatio-temporal data of

protein folding trajectories, called PathMolD-AB.

In Hattori et al. (2020a) a benchmark was presented for protein structure predictor

using 3D-HP-SC model using Integer Programming (IP) method. The most important aspect

of this work was the method of development to compare predicted structures with the re-scaled

biological protein structures.

The other nine researches were developed concomitantly to the work presented in this

Thesis. Those articles are presented at the Annex A.
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2 BACKGROUND

2.1 PROTEINS

The DeoxyriboNucleic Acid (DNA) is a structure that stores the biological information

of an organism. The DNA is composed of two nucleotide strands coiled around each other. Each

nucleotide of one strand is paired with the complementary nucleotide of the other strand, as

represented in Figure 1.

All information in the DNA can be transcribed in nucleotide sequences called genes.

The transcription of a gene is the beginning of the decoding process of the stored information to

obtain the biological product, such as RiboNucleic Acid (RNA) and proteins.

Figure 1 – The central dogma of the Molecular Biology.

Source: LEHNINGER et al. (2008)

The first model describing the central dogma of Molecular Biology was proposed by

Crick (1958). This model assumes only the cascade flow, such as a gene transcription to RNA,

and the RNA translation to a protein sequence, as shown in Figure 1. The translated protein goes

through a series of conformations, called the protein folding process, until it reaches its native

structure.

Protein is a polymer of amino acids linked by peptide bonds, demonstrated in Figure 2.

In the reaction of the peptide bonds, water molecules (𝐻2𝑂) are formed. This reaction is also
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called dehydration reaction, shown in Figure 2(a). An amino acid is composed of a central carbon,

called Alpha Carbon (𝐶𝛼), shown in Figure 2. 𝐶𝛼 has bonded with: a carboxyl, hydrogen, an

amino group, and a radical.

Figure 2 – (𝑎) A peptide bond scheme, that one amino acid loses an 𝑂𝐻 molecule and the other amino acid
loses an 𝐻 atom, producing at the end of the reaction a water molecule (𝐻2𝑂). (b) The basic
structure of amino acids. In this structure, the amino acid has a 𝐶𝛼 with a carboxyl (𝐶𝑂𝑂𝐻),
hydrogen (𝐻), an amino group (𝑁𝐻2) and a radical (𝑅) bonds.

(a) (b)
Source: own authorship

Amino acids differ according to their radical, also known as a side chain. Figure 3

presents four examples of amino acids with their respective radicals. In total, there are 20

proteinogenic amino acids: Alanine (A, Ala), Arginine (R, Arg), Asparagine (N, Asn), Aspartic

Acid (D, Asp), Cysteine (C, Cys), Glutamic Acid (E, Glu), Glutamine (Q, Gln), Glycine (G,

Gly), Histidine (H, His), Isoleucine (I, Ile), Leucine (L, Leu), Lysine (K, Lys), Methionine (M,

Met), Phenylalanine (F, Phe), Proline (P, Pro), Serine (S, Ser), Threonine (T, Thr), Tryptophan

(W, Trp), Tyrosine (Y, Tyr), and Valine (V, Val). The amount and variation of these amino acids

in the protein sequence characterize the native structure and drive the folding process.

Figure 3 – Sample of four radicals (Alanine, Phenylalanine,
Aspartic acid, and Leucine) highlighted in dashed
lines.

Source: www.mdsaude.com. Accessed in January 2021.

www.mdsaude.com
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2.2 PROTEIN STRUCTURE

Proteins can be described at four levels of structure: primary, secondary, tertiary, and

quaternary (LEHNINGER et al., 2008). The primary structure represents the amino acid sequence

of the protein. In this representation level, the number, nature, and amino acids of the sequence

can be changed (LEHNINGER et al., 2008).

Secondary structures are represented by local conformations of some polypeptide chain

regions, as shown in Figure 4. The two most common structures at this level are the 𝛼-helix

(PAULING et al., 1951) and 𝛽-sheet (PAULING; COREY, 1951) structures. Other structures are

irregular, called loops (LEWIS et al., 1973). The secondary structures are described below:

• 𝛼-helix: These are highly stabilized helical-shaped structures, formed of a pattern of

hydrogen bridges between the 𝑁𝐻 group and 𝐶𝑂 (NÖLTING, 2006). This structure does

not involve the side chain, and different sequences form the helical structure, given its

stability (ALBERTS et al., 2002).

• 𝛽-sheet: These structures are formed from hydrogen bridges linked between adjacent

peptide regions of the same or another molecule. In this structure, the attraction occurs

between the NH and 𝐶𝑂 groups and does not involve the side chain. Adjacent 𝛽 sheet

sequences can be in the same direction (parallel 𝛽 sheet) or in the opposite direction

(antiparallel 𝛽 sheet).

• loops/handles: Unlike 𝛼-helix structures and 𝛽-sheet (regular regions), loops are not

presented with regular patterns. These structures are found after regular regions or where

the polypeptide changes direction. Predictions of these structures can be difficult to identify

due to their unstable feature.

Kabsch and Sander (1983) have subdivided secondary structures into eight types,

including structures such as 310-helix, 𝜋-helix and 𝛽-bridge.

In the tertiary structure, conformations of the secondary structures in the three-

dimensional space are considered, as shown in Figure 5. This representation considers interactions

between amino acids and the environment. Based on these interactions, the protein structure

seeks its thermodynamic stability.

In the quaternary structure, two or more interacting polypeptide are considered to shape

the functional structure of the protein. Each peptide in this model is called a subunit, as presented
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Figure 4 – Representation of secondary structures: (a) 𝛼 helix, and (b) 𝛽 sheet.

Source: https://www.rcsb.org/. Accessed in January 2021.

Figure 5 – Sample of a tertiary structure with 𝛼−helix, 𝛽−sheets, and coil.

Source: https://www.rcsb.org/. Accessed in January 2021.

in Figure 6.

Figure 6 – Sample of a protein with quaternary structure, where each color represents one tertiary structure.

Source: https://www.rcsb.org/. Accessed in January 2021.

https://www.rcsb.org/
https://www.rcsb.org/
https://www.rcsb.org/
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2.3 THE PROTEIN FOLDING PROBLEM

The Protein Folding Problem (PFP) is central in Science. It emerged around the 1960’s,

when the first protein structure at the atomic level was observable (DILL et al., 2008). The PFP

consists of the study of folding pathways, from the unfolded protein to its native conformation,

defining the biological function of the protein. The PFP terminology is often misused for

describing the Protein Structure Prediction ( problem (LOPES, 2008), which is the prediction of

the native three-dimensional conformation of a protein, based on its primary structure.

The PFP has raised some questions: What are the encoded physical forces in the amino

acid sequence undertakening the folding process to its native structure? How can a computational

method simulate protein folding? How do proteins fold so fast? Thus, the next sections will

present the main assumptions of the PFP area.

2.3.1 The Thermodynamics Hypothesis of Protein Folding

The folding, desnaturation, and refolding process match experimentally to the ther-

modynamics hypothesis based on the principle of Molecular Biology proposed by Anfinsen

(1973).

This hypothesis suggests that, under physiological conditions, the folding process occurs

spontaneously, and the stability of the three-dimensional structure tends to achieve the lowest

free energy (PEDERSEN, 2000). Also, the structure hardly loses its shape (DILL et al., 2008).

According to this hypothesis, all the necessary information to achieve a stable thermodynamic

state is contained in the amino acid sequence features, represented by the primary structure of a

protein (see Section 2.2).

Thermodynamically, the conformational space of a protein can be evaluated as a free

energy function, the Gibbs free energy (MOREL; HERING, 1993). Such energy, or free enthalpy,

is a thermodynamics principle: it defines the spontaneity of a chemical reaction according to

the first and second laws. The Gibbs free energy (△𝐺) is presented in Equation 1. This scalar

magnitude is defined by the enthalpy fluctuation (△𝐻) and temperature (𝑇 ) multiplied by the

entropy variation (△𝑆). The enthalpy variation represents energy fluctuation of a system, while
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the entropy variation represents its disorder level variance.

△𝐺 =△𝐻 − 𝑇△𝑆,

△𝐻 =𝐻2 −𝐻1,

△𝑆 =𝑆2 − 𝑆1.

(1)

The Gibbs free energy fluctuation discriminates between the folded and unfolded protein

states (LEHNINGER et al., 2008). The unfolded structure has a high entropy value. Usually,

hydrogen bridges and hydrophobic interactions indicate a protein structure with low entropy,

as in the native structure (DILL, 1990). Among these interactions, the hydrophobicity scale of

the amino acids is the most influential factor in the protein folding process for globular proteins

(DILL, 1999).

2.3.2 The Levinthal Paradox

In the Levinthal (1968) works, an important question was raised about protein confor-

mation space. A protein can achieve all possible conformations until reaching the native structure,

in the worst case. Nevertheless, the folding process reaches its native structure quickly. In this

regard, how can proteins find their native structure so quickly?

Levinthal’s (1986) arguments that a random search for a favourable conformation

would not be possible because the magnitude of the search space would be impracticable. The

calculation to define the time required to find all states of a protein is given by the number of

amino acids in the polypeptide chain multiplied by the time required to obtain each conformation.

For example, considering a biomolecule with 100 amino acids, the conformation space is 1070,

and a single conformation time would be 10−11s (BENÍTEZ, 2015). The time required to find the

native conformation would be the worst case, approximately 1059 years. Hence, a small protein

would take ample time to explore every possible conformation. On the other hand, biological

macromolecules achieve their native structure in seconds or even in microseconds depending on

the number of amino acids in the chain (ENGLANDER, 2000).

2.3.3 Funnel, surface energy, and folding pathway

The term ”folding funnel” was presented by Karplus (1992), and it is the study of the

kinetic mechanism to understand the principles of sequence-structure self-organization, and

explains how proteins can be folded quickly.
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Wolynes et al. (1995) presented how the Anfinsen Hypothesis (Thermodynamics) and

the Levinthal Paradox (Kinetics) are solved using a graphical approach. In Figure 7 (a), the

vertical axis represents the free energy variation of protein conformations, and the horizontal axis

is the entropy values of the conformations. The funnel shape of the energy landscape is given

as follows: at the beginning of the folding process, the protein structure may assume several

structures (states) until it reaches its native form. All initial conformations tend to have a high

level of randomness (high entropy) and high free energy value compared with the features of the

native state.

Along the folding process, free-energy values and the number of possible conformations

decrease, and, at the end of the trajectory, all conformations tend to converge to the native

conformation, as a funnel landscape, as shown in Figure 7 (b). This hypothesis is consistent with

the rate at which protein folds as if the forces of the possible conformations slope reasonably

quickly down to the free energy representing the native structure (DILL et al., 2008).

The funnel representation reconciles with the thermodynamics and the kinetics ap-

proaches. The lowest free energy defines the native state in the funnel representation, as presented

in the thermodynamics version. Besides, different unfolded structures bring to the same native

conformation as in the kinetics description.

Rollins and Dill (2014) presented a complementary perspective of the funnel landscape

resembling a volcano shape, as shown in Figure 7 (c). In this landscape, the beginning of the

process has several energy barriers and may contain several local minima. After these barriers,

the energy landscape has the shape of a funnel. The volcano landscape contributes to explain the

energy barriers that separate the unfolded states to the folded structure.

2.3.4 Protein Properties

Yang et al. (2007) showed that the difference between the native state and unfolded

states has 5-10 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙. Thus, the intramolecular interaction of proteins can change the folding

process with different levels of influence. According to Dill et al. (2008), features with less

influence on the structural stability of the protein include the amino acid charge, pH variation,

and salt concentration.

On the other hand, the hydrogen interaction is a relevant property to the protein folding

process (DILL; MacCallum, 2012), present in globular protein structures. Estimates showed that

the energy of this interaction is between 1-4 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙 (BYRNE et al., 1995). A relatively high



23

Figure 7 – (𝑎) Representation of entropy decay concerning free energy (𝑏) Representation of folding trajecto-
ries by free energy and the number of hydrophobic contacts (𝑐) Volcanic energy landscape.

Source: (𝑎) Karplus (1992), (𝑏) Vendruscolo et al. (2001) Dobson (2004) Benítez (2015), and (𝑐) Rollins and
Dill (2014)

value when compared to the strength of the native structure.

Another aspect is the interactions between the hydrophobic amino acids. The hydropho-

bic kernel indicates the significant impact of this interaction inside the globular protein structure,

as shown in Figure 8, and it was observed denaturation of proteins that have hydrophobic core

when embedded in non-polar solvents (CHENG et al., 2015).

There are different amino acid hydrophobicity scales in the literature. In Kyte’s work

(KYTE; DOOLITTLE, 1982), this scale is obtained from the physicochemical properties of

amino acids side chains. Wimley and White (1996) defined their scale experimentally on mem-

brane interface. Hessa et al. (2005) used a physicochemical process to measure the hydrophobicity

scale. The Eisenberg scale (EISENBERG et al., 1984) is based on normalized hydrophobicity

scales. Janin’s scale provides information about accessible amino acid residues in globular

proteins (JANIN, 1979). Engleman’s scale, also known as GES-scale, can be used to predict

hydrophobicity using energy transfer calculation (TOLSTRUP et al., 1994). In Hopp and Woods
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Figure 8 – (𝑎) Secondary structures representation of the Protein 1WLA (𝑏) Surface representation of the
1WLA protein (red color represents the hydrophobic surface).

Source: https://www.quora.com/What-are-hydrophobic-pockets. Accessed in January 2021.

(1981), the energy of amino acid transfer from water to ethanol provides the necessary measure

of its hydrophobicity scale.

Table 1 show the hydrophobic scales of each approach. Each hydrophobic scale is in a

different range and direction. For example, in the Hessa scale, the hydrophobicity degree of each

amino acid increases for lower values. In Kyle, Wimley, Eisenberg, Janin, Engelman, and Hoop

scales, the amino acid hydrophobicity degree increases with the value of the scale. According to

Alberts et al. (2002), the amino acid hydrophobicity scale can also be classified as hydrophobic

(A) or polar (B) based on the mean behavior of the scales presented in Table 1.

The input of hydrophobicity classifications in simulations of the protein folding was

studied by a comparative analysis of Benítez (2015). The statistical analysis of the potential

energy showed no significant differences between these approaches. Then, since the Alberts

classification represents the average behavior, it will be used in our approach.

2.4 COMPUTATIONAL MODELS FOR PROTEIN REPRESENTATION

The time-consumption of simulations can be an issue in the PFP. For example, de-

tailed models require more computational power to calculate all interactions, while high-level

representations tend to be more computationally feasible.

Overall, it is possible to classify protein representations as Atomic or Coarse-Grained

(CG) models as presented in Figure 9. Although atomic models are the target, it is limited by

the efficiency of algorithms and the current computational power (POBLETE et al., 2018). In

this approach, all-atom interactions need to be calculated at each time step. The CG models

https://www.quora.com/What-are-hydrophobic-pockets
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Table 1 – Hydrophobicity scale and classification of each amino acid.

Aminoácidos Kyte & Doolittle Wimley Hessa Eisenberg Janin Engelman Hoop Alberts
Scale AB Scale AB Scale AB Scale AB Scale AB Scale AB Scale AB

Alanina (Ala) 1.8 A -0.17 B -0.11 A 0.62 A 0.3 A 1.6 A -0.5 A
Cisteína (Cys) 2.5 A 0.24 A 0.13 A 0.29 A 0.9 A 2 A -1.0 A
Ácido aspártico (Asp) -3.5 B -1.23 B -3.49 B -0.9 B -0.6 B -9.2 B 3.0 B
Ácido glutâmico (Glu) -3.5 B -2.02 B -2.68 B -0.74 B -0.7 B -8.2 B 3.0 B
Fenilalanina (Phe) 2.8 A 1.13 A 0.32 A 1.19 A 0.5 A 3.7 A -2.5 A
Glicina (Gly) -0.4 B -0.01 B -0.74 B 0.48 A 0.3 A 1 A 0.0 A
Histidina (His) -3.2 B -0.96 B -2.06 A -0.4 B -0.1 B -3 B -0.5 B
Isoleucina (Ile) 4.5 A 0.3 A 0.6 A 1.38 A 0.7 A 3.1 A -2.5 A
Lisina (Lys) -3.9 B -0.99 B -2.71 B -1.5 B -1.8 B -8.8 B 3.0 B
Leucina (Leu) 3.8 A 0.56 A 0.55 A 1.06 A 0.5 A 2.8 A -1.8 A
Metionina (Met) 1.9 A 0.23 A 0.1 A 0.64 A 0.4 A 3.4 A -1.3 A
Asparagina (Asn) -3.5 B -0.42 B -2.05 B -0.78 B -0.5 B -4.8 B 0.2 B
Prolina (Pro) -1.6 B -0.45 B -2.23 B 0.12 A -0.3 B -0.2 B 0.0 A
Glutamina (Gln) -3.5 B -0.58 B -2.36 B -0.85 B -0.7 B -4.1 B 0.2 B
Arginina (Arg) -4.5 B -0.81 B -2.58 A -2.53 B -1.4 B -12.3 B 3.0 B
Serina (Ser) -0.8 B -0.13 B -0.84 B -0.18 B -0.1 B 0.6 A 0.3 B
Treonina (Thr) -0.7 B -0.14 B -0.52 B -0.05 B -0.2 B 1.2 A -0.4 B
Valina (Val) 4.2 A -0.07 A 0.31 A 1.08 A 0.6 A 2.6 A -1.5 A
Triptofano (Trp) -0.9 B 1.85 A -0.3 A 0.81 A 0.3 A 1.9 A -3.,4 A
Tirosina (Tyr) -1.3 B 0.94 A -0.68 A 0.26 A -0.4 B -0.7 B -2.3 B

Source: Kyte and Doolittle (1982), Wimley and White (1996), Hessa et al. (2005), Eisenberg et al. (1984), Janin
(1979), Eisenberg et al. (1984), Hopp and Woods (1981), Alberts et al. (2002).

require less computational power compared to the atomic models, and represent each amino acid

by beads (one to six). This high-level representation allows more extended folding simulations

as well as the use of longer polypeptide chains. Since the lower amount of interactions that

need to be calculated. Also, CG models can represent the folding behaviors satisfactorily at the

mesoscale level (TOZZINI, 2005; DILL; MacCallum, 2012).

Proteins are formed by a sequence of amino acids linked by peptide bonds (see Section

2.1), called the backbone, which has degrees of freedom, torsion, and rotation between the bonds.

Each amino acid can have a different side chain. Thus, amino acids have different sizes, freedom

of movement, and interactions with the environment and other amino acids. Given these many

variables represented in the model, the CG models intent to restrict such features to make more

feasible simulations.

Due to the computational power issue, simplistic representations of protein structure

are the most widely used in recent decades (GALVÃO et al., 2012; BENÍTEZ; LOPES, 2013;

NUNES et al., 2016). Among these models, there are some with a discrete and continuous degree

of freedom of conformational space. Discrete or lattice models are simpler since the protein

conformation is limited to the space of a two-dimensional (2D) or three-dimensional (3D) lattice.

Figure 10(a) presents an example of a three-dimensional 3D lattice, and an example of a protein

with 10 amino acids (see Figure 10(b)).

Unlike the discrete model, the continuous or off-lattice model have a high degree of
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Figure 9 – The CG model organization is represented in a mind map. It was divided into two main groups:
discrete (lattice) and continuous (off-lattice). Discrete models were grouped in Side Chain and
Without Side Chain classification. The continuous model was subdivided by the number of beads
that represents an amino acid (one, two-three, and four-six).

Source: own authorship

freedom, because the structure can assume continuous values of the bond and torsion angles.

According to Tozzini (2005), CG off-lattice models can be classified by the number of beads, i.e.,

the number of elements that represent each amino acid of a protein structure. In general, models

with few beads are less computationally expensive. However, the parameters of these force fields

are challenging due to the generalization of various behaviors.

Continuous models can assume dihedral angles, representing the angles between two

planes formed from three elements (amino acids in the case of CG models). This approach is

usually applied to the Ramachandran diagram (RAMACHANDRAN et al., 1963), and a tendency
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Figure 10 – (𝑎) Sample of a 3x3x3 3D-lattice (𝑏) Example of a protein with 10 amino acids using a 3D-HP-SC
model (black vertex and edge represent backbone, blue and red vertex and edge represent side-
chain).

(a) (b)
Source: Nunes et al. (2016)

of secondary structures to be mapped in the diagram is observed.

Figure 11 presents the one-bead, two-bead, and tree-six-bead models. The one-bead

model represents each amino acid as an element. This model has a smaller number of calculations,

considering proteins with the same sequence, allowing simulations with large protein sequences

in more feasible computation time. The two-bead model adds a second element to the centroid

of the side chain, improving the specificity of local iterations. In the three-six-bead models, a

single residue represents the side chain, and two or more elements represent the backbone.

Figure 11 – Representation of the models and their respective landscape energy.

Source: Tozzini (2005).

Other discrete and continuous approaches of the literature are presented in Sections

2.4.1 and 2.4.2, respectively.
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2.4.1 Discrete models

Discrete and continuous models have been used for high-level behavior analysis

(ZHENG; WEN, 2017). Benítez (2015) presented a survey of discrete and continuous models in

his thesis, which are described below.

In discrete representation, the protein structure is restricted to a lattice. In this approach,

the one-bead model represents each amino acid as a single element. These residues can assume

hydrophobic (H) or polar (P) features. This approach describes high-level and less detailed

protein conformation behaviors, such as the Go Model, proposed by Go and Taketomi (1978).

The Go Model supported the grow of the computational biology area and fostered several studies

on protein folding (CIEPLAK; HOANG, 2000; CLEMENTI et al., 2000; KARANICOLAS;

BROOKS, 2002). Although simple, its computational complexity is NP-complete (ATKINS;

HART, 1999). Besides the H or P features, these models can be modeled in two-dimensional

(2D-HP) or three-dimensional (3D-HP) lattices (DILL et al., 1995). Lattice models can also have

different binding freedom constraints, such as the "diamond" (SKOLNICK et al., 1988) and

the "chess-knight" (SKOLNICK; KOLINSKI, 1991). These designs still allow links between

diagonal vertices, unlike the traditional GO model, which only allows connections between

orthogonal neighbors.

Lattice models can also have different binding freedom constraints, such as the "di-

amond" (SKOLNICK et al., 1988) and the "chess-knight" (SKOLNICK; KOLINSKI, 1991).

These designs still allow links between diagonal vertices, unlike the traditional GO model, which

only allows connections between orthogonal neighbors.

Besides, there is the high resolution two beads model, that considers the Side Chain (SC).

They divide the representation of each amino acid into two elements, the backbone and the side

chain. It divides variants among these representations SIde CHain Only (SICHO) (KOLIŃSKI;

SKOLNICK, 1998), 2D-HP-SC, and 3D-HP-SC (BENíTEZ; LOPES, 2010; NUNES et al., 2016;

HATTORI et al., 2020a).

2.4.2 Continuous models

Continuous or off-lattice models are one of the most classic approaches (STILLINGER;

HEAD-GORDON, 1995). They differ from lattice representation because it is free in continuous

space. Given the higher flexibility of the structure compared to discrete models, and less compu-
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tational cost required than multi-beads, these models are very explored in the current literature

(LI et al., 2015; KAUSHIK; SAHI, 2017; LI et al., 2017b).

There is the Elastic Network Model (ENM), which is a one bead-model (TIRION,

1996). This model represents amino acids of a protein as a set of particles interconnected by a

network of elastic springs. Another approach is the Go model in its off-lattice representation

(UEDA et al., 1978), which includes more sophisticated energy equations. Brown et al. (2003)

also presented a one-bead system that uses a priori information from secondary structures for

the parametrization of dihedral angle terms.

Tozzini et al. (2006) and Wolff et al. (2011) employed the one-bead representation,

presented other two models. Tozzini et al. (2006) proposed a new protein structure representation,

using the pseudo-binding and dihedrals angles to produce the Ramachandran plot (RAMACHAN-

DRAN et al., 1963). The combinations of the dihedral angles in the Ramachandran plot, represent

conformations of the protein structures. Wolff et al. (2011) proposed a model representing the

protein in a tubular geometry to describe polypeptide chain evasion effects. In this approach, two

parameters are used: one for effective model connectivity and another based on the Go model

potential using Contact Map representation.

Gu et al. (2009) and Bezkorovaynaya (2011) also proposed Two-bead models. Gu et al.

(2009) presented a potential energy calculation based on protein fold recognition. The measures

use three interactions: contacts between residues, hydrophobicity, and pseudo-dihedral potentials

(DEWITTE; SHAKHNOVICH, 1994). In the Bezkorovaynaya (2011) model, they consider

simulations with protein and water molecules. Also, implicit interactions are represented between

side chains, and CG-level water molecules using the one-bead model means the explicit ones.

The UNited RESidue model (LIWO et al., 2005) is a three-bead representation and

considers interactions between 𝐶 − 𝛼, side-chain, and the peptide bond. This approach yielded

promising results for prediction of the protein structure (CASP10 (HE et al., 2013)), protein-site

linkage (SIERADZAN et al., 2012), and for the protein aggregation study (ROJAS et al., 2010).

Zacharias (2003) presented another three-bead model with the flexible side-chain, aiming to

work with complex protein structure on the protein coupling problems.

Monticelli et al. (2008) presented a four-bead model called MARTINI. This model

considers four amino acid features (hydrophobic, charged, polar, and non-polar). The PRIME

is an intermediate resolution protein model for simulations of polyalanine and polyglutamine

aggregation (CHEON et al., 2010). The PRIME 20 model, later extended, includes 20 types
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of side chains. This model contains 14 representation groups, according to the hydrophobicity,

polarity, size, charge, and hydrogen bonding potential. The Optimized Potential for Efficient

Structure Prediction ( is a different approach compared to the previous ones, because it considers

all backbone atoms, while the side chains are represented as CG models (CHEBARO et al.,

2012).

Moreover, Maupetit et al. (2007) also presented a six-bead model that applies the

OPEC energy function. This function includes terms for hydrogen bridges interactions, potential

locations related to torsion, rotation angles, and long-range potentials.

Gopal et al. (2010) presented a model called Protein Interactive Modelling (. The protein

backbone is represented by three-beads, 𝐶𝛼 and 𝑁 elements, and a carbonyl (𝐶𝑂) functional

group placed at the geometric center of the 𝐶 and 𝑂 atoms. Side-chains are represented by

different amounts of elements, from one to five (one-bead to five- beads), depending on the

residue type. For example, Alanine and Valine have only one element representing the side-chain,

while five elements represent Arginine.

Tian et al. (2011) proposed a five-bead template, the backbone of this model is repre-

sented by four elements and one for the side chain. The function comprises four energy terms:

element contact potentials, sequence-dependent location, solvation, and the 𝛽 sheet geometry

propensity.

Pierri et al. (2008) proposed a procedure for re-scaling the biological structures from

PDB to compare with the predicted structure in CG models. The results suggest that the CG

model can represent a similar structure with the re-scaled physical conformation.

2.4.3 The 3D-AB Off-lattice Model

In the 3D-AB model, the residues are simplified and represented by spheres, implicitly

categorized according to their affinity with water: either hydrophobic (represented by the letter

“A”) or polar (represented with “B”). These features are fundamental for the formation of the

native structure of proteins (PIERRI et al., 2008). The distance between a given residue and

the next one in the chain is always constant and equal to one. This constraint helps to decrease

the computational cost for extensive simulations. Energetic terms drive the models during the

protein folding process, and they could have opposite directions. For example, Angle and Torsion

energies are short-distance terms that guide the stretched of the structure. In contrast, the LJ

energy is a long-distance term that tends to lead to the compaction of the conformation. The
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gradient of the potential energy function (𝐸𝑝) associated with the 3D-AB model, which ultimately

drives the folding of the protein, is computed by Equation 2 (RAPAPORT, 2004; BENÍTEZ,

2015):

𝑓 = ∇𝑢(𝑟) = ∇𝐸𝑝(�̂�𝑖;𝜎) = ∇ (𝐸𝐴𝑛𝑔𝑙𝑒𝑠 + 𝐸𝑇𝑜𝑟𝑠𝑖𝑜𝑛 + 𝐸𝐿𝐽) , (2)

the terms 𝐸𝐴𝑛𝑔𝑙𝑒𝑠, 𝐸𝑇𝑜𝑟𝑠𝑖𝑜𝑛 and the gradient of the 𝐸𝐿𝐽 are described below in Equations 7, 11

and 12, respectively.

The equations of motion are given according to Newton’s second law, as shown in

Equation 3, where 𝑁 represents the number of residues:

𝑓𝑖 = 𝑚¨⃗𝑟𝑖 =
𝑁∑︁

𝑖=𝑗=1(𝑗 ̸=𝑖)

𝑓𝑖𝑗 (3)

According to Newton’s third law, which implies 𝑓𝑖𝑗 = −𝑓𝑖𝑗 , the forces need to be

calculated only once for each pair of particles. In particular, in this work, the AB model uses

𝑚 = 1, following (BENÍTEZ, 2015).

The bond-angle generate forces between three points residues (𝑗 = 𝑖− 2,𝑖− 1,𝑖), and

the corresponding energy (𝐸𝐴𝑛𝑔𝑙𝑒𝑠) is given by Equation 4:

−∇𝑟𝑗𝑢(𝜏𝑖) = − 𝑑𝑢(𝜏𝑖)

𝑑(cos 𝜏)

⃒⃒⃒
𝜏=𝜏𝑖

𝑓
(𝑖)
𝑗 , (4)

where 𝑢(𝜏) is the bond-angle potential, and 𝑓
(𝑖)
𝑗 = ∇𝑟𝑗 cos(𝜏𝑖). As proposed by (RAPAPORT,

2004), when
∑︀

𝑗 𝑓𝑗 = 0 , the bond-angle can be represented by Equation 5:

𝑓
(𝑖)
𝑖−2 = (𝑐𝑖−1,𝑖−1𝑐𝑖𝑖)

− 1
2

[︁(︁
𝑐𝑖−1,𝑖

𝑐𝑖−1,𝑖−1

)︁
�⃗�𝑖−1 − �⃗�𝑖

]︁
,

𝑓
(𝑖)
𝑖 = (𝑐𝑖−1,𝑖−1𝑐𝑖𝑖)

− 1
2

[︁
𝑏𝑖−1 −

(︁
𝑐𝑖−1,𝑖

𝑐𝑖𝑖

)︁
�⃗�𝑖

]︁ , (5)

where 𝑐 is the scalar product between the bond vectors of the 𝑖−th and the 𝑗−th pair. This pair

is expressed by 𝑐𝑖,𝑗 = �⃗�𝑖 · �⃗�𝑗 , where �⃗�𝑖 indicates the 𝑖-th bond of the joins between the 𝑖-th and

(𝑖− 1)-th residues.

The potential associated with the bond-angle force for the AB model (𝐸𝑎𝑛𝑔𝑙𝑒𝑠) is

described as:

−𝑘1
𝑁−2∑︁
𝑖=1

�̂�𝑖 · �̂�𝑖+1, (6)

where 𝑘1 = −1 (IRBÄCK et al., 1997). Given that the AB model restricts the unit distance

between consecutive residues of the protein structure, the derivative used for the forces in

Equation 4 can be calculated using

𝐸𝐴𝑛𝑔𝑙𝑒𝑠 = 𝑢(𝜏) = −𝑘1
𝑁−2∑︁
𝑖=1

�̂�𝑖 · �̂�𝑖+1 =
𝑁−2∑︁
𝑖=1

cos(𝜏𝑖). (7)
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The bond-torsion potential is associated with four consecutive residues. For instance,

the torsion in the 𝑖−th residue causes force in the 𝑗 = 𝑖− 2,𝑖− 1, . . . ,𝑖 + 1. When
∑︀

𝑗 𝑓𝑗 = 0,

the torsion force can be expressed by the following equations (RAPAPORT, 2004):

𝑓
(𝑖)
𝑖−2 = 𝑐𝑖𝑖

𝑞
1
2
𝑖 (𝑐𝑖−1,𝑖−1𝑐𝑖𝑖−𝑐2𝑖−1,𝑖)

[︁
𝑤1⃗𝑏𝑖−1 + 𝑤2⃗𝑏𝑖 + 𝑤3⃗𝑏𝑖+1

]︁
,

𝑓
(𝑖)
𝑖−1 = −

(︁
1 +

𝑐𝑖−1,𝑖

𝑐𝑖𝑖

)︁
𝑓
(𝑖)
𝑖−2 +

(︁
𝑐𝑖,𝑖+1

𝑐𝑖𝑖

)︁
𝑓
(𝑖)
𝑖+1,

𝑓
(𝑖)
𝑖 =

(︁
𝑐𝑖−1,𝑖

𝑐𝑖𝑖

)︁
𝑓
(𝑖)
𝑖−2 +

(︁
𝑐𝑖,𝑖+1

𝑐𝑖𝑖

)︁
𝑓
(𝑖)
𝑖+1,

𝑓
(𝑖)
𝑖+1 = 𝑐𝑖𝑖

𝑞
1
2
𝑖 (𝑐𝑖𝑖𝑐𝑖+1,𝑖+1−𝑐2𝑖,𝑖+1)

[︁
𝑤4⃗𝑏𝑖−1 + 𝑤5⃗𝑏𝑖 + 𝑤6⃗𝑏𝑖+1

]︁
,

(8)

where:
𝑤1 = 𝑐𝑖−1,𝑖+1𝑐𝑖𝑖 − 𝑐𝑖−1,𝑖𝑐𝑖,𝑖+1,

𝑤2 = 𝑐𝑖−1,𝑖−1𝑐𝑖,𝑖+1 − 𝑐𝑖−1,𝑖𝑐𝑖−1,𝑖+1,

𝑤3 = 𝑐2𝑖−1,𝑖 − 𝑐𝑖−1,𝑖−1𝑐𝑖𝑖,

𝑤4 = 𝑐𝑖𝑖𝑐𝑖+1,𝑖+1 − 𝑐2𝑖,𝑖+1,

𝑤5 = 𝑐𝑖−1,𝑖+1𝑐𝑖,𝑖+1 − 𝑐𝑖−1,𝑖𝑐𝑖+1,𝑖+1,

𝑤6 = −𝑤1,

𝑞𝑖 =
(︀
𝑐𝑖−1,𝑖−1𝑐𝑖𝑖 − 𝑐2𝑖−1,𝑖

)︀ (︀
𝑐𝑖𝑖𝑐𝑖+1,𝑖+1 − 𝑐2𝑖,𝑖+1

)︀
.

(9)

where:
𝑤1 = 𝑐𝑖−1,𝑖+1𝑐𝑖𝑖 − 𝑐𝑖−1,𝑖𝑐𝑖,𝑖+1,

𝑤2 = 𝑐𝑖−1,𝑖−1𝑐𝑖,𝑖+1 − 𝑐𝑖−1,𝑖𝑐𝑖−1,𝑖+1,

𝑤3 = 𝑐2𝑖−1,𝑖 − 𝑐𝑖−1,𝑖−1𝑐𝑖𝑖,

𝑤4 = 𝑐𝑖𝑖𝑐𝑖+1,𝑖+1 − 𝑐2𝑖,𝑖+1,

𝑤5 = 𝑐𝑖−1,𝑖+1𝑐𝑖,𝑖+1 − 𝑐𝑖−1,𝑖𝑐𝑖+1,𝑖+1,

𝑤6 = −𝑤1,

𝑞𝑖 =
(︀
𝑐𝑖−1,𝑖−1𝑐𝑖𝑖 − 𝑐2𝑖−1,𝑖

)︀ (︀
𝑐𝑖𝑖𝑐𝑖+1,𝑖+1 − 𝑐2𝑖,𝑖+1

)︀
.

(10)

According to (IRBÄCK et al., 1997), the potential associated by the torsion-angle

(𝐸𝑇𝑜𝑟𝑠𝑖𝑜𝑛) force for the AB model is described by Equation 11, where 𝑘2 = −0.5.

𝐸𝑇𝑜𝑟𝑠𝑖𝑜𝑛 = −𝑘2
𝑁−3∑︁
𝑖=1

�̂�𝑖 · �̂�𝑖+2 (11)

The Lennard-Jones potential represents the interactions between residues based on their

distance and hydrophobicity. Its gradient is defined by Equation 12.

𝑓𝑖𝑗 = ∇𝐸𝐿𝐽 = 48 · 𝜀 (𝜎𝑖, 𝜎𝑗)

(︂
𝑟−14
𝑖𝑗 −

1

2
𝑟−8
𝑖𝑗

)︂
· �⃗�𝑖𝑗, (12)
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Algorithm 1 – Shake algorithm
Start
Coordinates correction:

𝛾 ← �⃗�2’𝑖𝑗 −𝑏2𝑖

4(𝛿/2)2(1/𝑚𝑖+1/𝑚𝑗)�⃗�𝑖𝑗 ·�⃗�′𝑖𝑗
while |𝛾| < 10−𝑘 · 𝑏2𝑖 do

�⃗�
′

𝑖 ← �⃗�𝑖 − 𝛾�⃗�𝑖𝑗
�⃗�
′

𝑗 ← �⃗�𝑗 + 𝛾�⃗�𝑖𝑗

𝛾 ← �⃗�2
′

𝑖𝑗−𝑏2𝑖

4(𝛿/2)2(1/𝑚𝑖+1/𝑚𝑗)�⃗�𝑖𝑗 ·�⃗�′𝑖𝑗
end while
Velocities correction:
𝛾 =

¨⃗𝑟𝑖𝑗 ·�⃗�𝑖𝑗
2�⃗�2𝑖𝑗

while |𝛾| < 10−𝑘 · 𝑏2𝑖 do
˙⃗𝑟𝑖 ← ˙⃗𝑟𝑖 − 𝛾�⃗�𝑖𝑗
˙⃗𝑟𝑗 ← ˙⃗𝑟𝑗 + 𝛾�⃗�𝑖𝑗

𝛾 =
˙⃗𝑟𝑖𝑗 ·�⃗�𝑖𝑗
2�⃗�2𝑖𝑗

end while
Source: Benítez (2015)

where the distance between amino acids 𝑖 and 𝑗 is represented by 𝑟𝑖𝑗 , and 𝜀(𝜎𝑖, 𝜎𝑗) weighs the

interaction between amino acids based on hydrophobicity interaction. For example, hydropho-

bic interactions is weighted equal to 1.0, and all other interactions are weighted equal to 0.5

(IRBÄCK et al., 1997), as shown in Equation 13.

𝜀 (𝜎𝑖, 𝜎𝑗) =

⎧⎪⎨⎪⎩1 if 𝐴𝐴 interaction,

0.5 if 𝐵𝐵 or 𝐴𝐵 interactions.
(13)

Due to the constraints imposed on the model used in this work by the unit distance between

subsequent residues of the chain, the Shake algorithm was employed (see Algorithm 1) for

updating the estimated coordinates (𝑟) using a correction factor (𝛾). The velocities are also

adjusted using the same approach, where the mass of each residue is equal to one (𝑚 = 1).

2.5 METHODS APPLIED TO THE PROTEIN FOLDING PROBLEM

To predict the protein structure is not a trivial task, and it is still an open problem (DILL

et al., 2008). The development of computational methods is a necessary to the progress of this

problem, given the difficuties of the experimental approaches. Overall, these methods can be

divided into three categories: comparative modelling (homology), fold-recognition (threading)

and first-principles (ab initio) (MALDONADO-NAVA et al., 2018).

Methods for protein structure prediction using the homology approach depend on a

set of protein samples. This method uses known structures from a database, such as PBD or
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Table 2 – Main protein databases.
Database Description Web Address

PDB Biological molecular structure http://www.rcsb.org/
UniProtKB Information about protein sequence and function-

ality
http://www.uniprot.org/

PIR Integrated information that support genomic, pro-
teomic and sysstem biology

http://pir.georgetown.edu/

PROSITE Information about protein domains, families and
functionalities sites

http://www.expasy.org/

Prints Information about protein sequence, focus on pro-
tein ’figerprinting’

http://www.bioinf.man.ac.uk/

BLOCKS A homology database (not update) http://blocks.fhcrc.org/
eMOTIF A database from protein motifs, it is derived from

BLOCKS and PRINTS database
http://motif.stanford.edu/

PRODOM Protein domain families information extracted
from Uniprot

http://prodom.prabi.fr/

InterPro Database with protein families, domain and sites
informations

http://www.ebi.ac.uk/

Source: Benítez (2015)

IniProtKB (see Table 2), to predict the conformation of a new protein is used single or multiple

alignments of the primary representation. According to Orengo et al. (2003), for the alignment

between sequences higher than 70 %, this is a more manageable and reliable process. For the

alignment with lower value, it requires multiple sequence alignments. A practical roadmap for

this method is the increasing amount of data available in databases (BOHNUUD et al., 2017).

The threading or fold-recognition approaches use statistical analysis of previously

known structures (JONES et al., 1992). This approach is based on the principles of the limited

number of conformation that can be assumed by an amino acid sequence. The threading method

complements the comparison method, as it requires a priori protein structures homologous to

the target sequence. The target sequence is compared to portions in other sequences containing

known structures and reasonable similarity. Several similarity factors can be used, such as the

energy level, the similarity between amino acid sequences, alignment penalties, among others

(BONETTI, 2015).

The ab initio method predicts the protein structure without previous knowledge by

minimizing the free energy of the protein structure using physical principles. Unlike comparison

and threading methods, the ab initio approach assumes no prior information. This feature allows

its applicability when no information is available to support the structure prediction or when the

information is limited or precarious. The predicted conformation is evaluated with an objective

function related to a force field (ZAKI et al., 2004). Several approaches have been published

with different energy evaluation functions and optimization methods (see Section 3.2). The

commonality between these approaches, the Molecular Dynamics (MD) method, has been

http://www.rcsb.org/
http://www.uniprot.org/
http://pir.georgetown.edu/
http://www.expasy.org/
http://www.bioinf.man.ac.uk/
http://blocks.fhcrc.org/
http://motif.stanford.edu/
http://prodom.prabi.fr/
http://www.ebi.ac.uk/
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highlighted (DILL; MacCallum, 2012).

2.6 MOLECULAR DYNAMICS

The MD method is an ab initio computational approach that uses physical forces to

simulate the particles motion (atoms or molecules). The theories of motion mechanics are the

theoretical base of the MD algorithm. However, this canonical approach exceeds Newton’s

Second Law. This approach is applied to all atoms or particles simultaneously over 𝑡 iteration,

generating a protein folding trajectory information. With the folding data information, it is

described and analyzed how protein structures evolve (KMIECIK et al., 2016).

McCAMMON et al. (1977) presented one of the first studies that applied the MD

algorithm. Since then, several works have been developed (LEVITT, 1983; KARPLUS; Mc-

CAMMON, 2002; MIAO et al., 2015; RYCKBOSCH et al., 2017). The MD algorithm is

still currently explored, for example, the MD algorithm for PFP using the 3D-AB off-lattice

model in the canonical ensemble, and also in other studies involving dynamic folding processes

(BARRETO-OJEDA et al., 2018; MICHELARAKIS et al., 2018b) were presented by Benítez

and Lopes (2012).

The MD method aims predicting the a native structure based on the protein folding

simulation. In its canonical ensemble, the simulation is deterministic, unlike other approaches,

such as Monte Carlo (MC) (LI; SCHERAGA, 1987), Replica Exchange (RE), and Umbrella

Sampling (US). In this regard, a protein fold trajectory will always be the same considering the

same initial structure, velocities, and temperature. Besides, the round-off error is noteworthy,

since they can lead to a difference in the final values, and this can generate inconsistent values with

different calculation sequence. Then, the canonical ensemble is also dependent on the calculation

sequence, consequently, by the hardware used to perform this calculation (FLEISCHMANN et

al., 2019; IAKYMCHUK et al., 2020). Differently from the sampling/statistic approaches, the

canonical ensemble preserves the Newtonian feature, which is essential for the dynamic study of

the PFP and folding trajectories (RAPAPORT, 2004).

The MD method requires a high computational cost to perform the simulation, given the

number of calculations of all elements interactions at each simulation snap (MERMELSTEIN et

al., 2018). The Lennard-Jones (LJ) energy calculation is an example of an process that require

a high computational power (HOWARD et al., 2019a), demanding significant time for the

simulation (HATTORI et al., 2020b). In simulations of complex systems, such as in the protein
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aggregation, the computation cost problem still increases since the number of force calculations

escalates (WEN et al., 2017).

CG models and parallelization of sequential codes have been used to minimize the

computation cost (ABRAHAM et al., 2015). Commonly, high-performance architectures employ

Graphics Processing Unit (GPU) to accelerate the MD method (STONE et al., 2017). Besides, it

has been applied techniques to minimize the amount of calculations, such as the Neighbourhood

List algorithm (PENNYCOOK et al., 2013), which omits pairwise iterations based on distance

threshold.

2.7 DEEP LEARNING

Deep Learning (DL) methods are based on Artificial Neural Networks (, which are

mathematical models for information processing inspired in biological neurons (MCCULLOCH;

PITTS, 1988; SCHNEIRLA et al., 1963; RUMELHART et al., 1986). DL methods are multilayer

networks, where each layer acts as a feature extractor, adding different levels of abstraction at

each layer.

A simple ANN, called multilayer perceptron, is composed of nodes and weighted links

(𝑤) that connect two nodes of a layer to the next one, as shown in Figure 12. The data input

accomplishes the activation of each node or neuron of the input layer. These values are propagates

forwardly across the network through the weights, allowing information to stream with more

or less intensity from the hidden layer to the output layer. This process is called feed-forward

because of the data flow propagated across the network.

Figure 12 – Scheme of a MultiLayer Perceptron Network.

Source: own authorship

The process that represents the feed-forward is presented in Equations 14, 15, 16, and
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17.

𝑎𝑗 =
𝐼∑︁

𝑖=1

𝑤𝑖𝑗𝑥𝑖 (14) ℎ𝑗 = 𝑎𝑐𝑡 (𝑎𝑗) (15)

𝑎𝑘 =
𝐽∑︁

𝑗=1

𝑤𝑗𝑘ℎ𝑗 (16)
𝑦 = 𝑎𝑐𝑡 (𝑎𝑘) (17)

where 𝐼 represents the number of feature vector �⃗�, 𝑎𝑐𝑡 is a non-linear function, called the

activation function, 𝑎𝑗 and 𝑎𝑘 represent the sum of the neurons in the input to hidden layers, and

the hidden to the output layers, respectively. The outputs of the hidden layer and output activation

functions are represented by ℎ𝑗 and 𝑦, respectively. There are several activation functions used in

DL, such as sigmoid (Equation 18), hyperbolic tangent (Equation 19) and Rectified Linear Units

( (Equation 20).

𝑠𝑖𝑔𝑚(𝑧) =
1

1 + 𝑒−𝑧
(18) 𝑡𝑎𝑛ℎ(𝑧) =

𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧
(19) 𝑅𝑒𝐿𝑈(𝑧) = 𝑚𝑎𝑥(0,𝑧) (20)

In order to minimize the network output error it is necessary to update its weights. For

this optimization, the Gradient Descendent method ( is used (HECHT-NIELSEN, 1989). The GD

is based on the partial derivative of a cost function 𝑄 concerning the weights, and it is presented

in Equation 21.

𝑤𝑛𝑒𝑤 = 𝑤𝑜𝑙𝑑 − 𝜂
𝜕𝑄

𝜕𝑤
, (21)

where 𝑤𝑜𝑙𝑑 represents the weight before the update, and 𝑤𝑛𝑒𝑤 represents the updated

weight, 𝜂 is the learning rate, which is higher than zero and represents the step size of the GD

algorithm. Weights can be updated using the mean error of a sample set, called batch. With its

application, the training process is more efficient because the updates in the network weights

are less frequent, and the error tends to decrease, given the update is performed on the errors

average.

There are several ways to update weights, such as the Stochastic Gradient Descent,

which uses a subset of the dataset, called a batch, randomly chosen to calculate the GD average.

On the other hand, the Momentum (QIAN, 1999) and RmsProp (TIELEMAN; HINTON, 2012)

add a momentum term to calculate the update. There are still methods that allow 𝜂 to be auto-

adjusted, theses approaches considering the values of the network weights, such a AdaGrad

(DUCHI et al., 2011) and Adam (KINGMA; BA, 2014). Similarly, AdaDelta (ZEILER, 2012)

uses a limited amount of past gradients to calculate the current parameter setting.

One of the challenges for training a DL network is the over-fitting problem (LECUN et

al., 2015). In this problem, the network can achieve satisfactory results in the training set, but the
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predicted results do not achieve similar performances when new data is presented for testing in

this trained model. In this regard, regularization methods to increase the generality of models

have been proposed in the literature. Dropout can be understood as a regularization technique

of the neural network by adding noise to its hidden units. This technique is done by randomly

removing connections between network nodes during the training process (SRIVASTAVA et al.,

2014). Other forms of regularization are the L1 and L2 (NG, 2004), where a term in the cost

function is added based on the values of the network weights, forcing them to have small values.

Moreover, classical machine learning techniques, such as the data augmentation (AQUINO et

al., 2017a), or the acquisition of more data to train the network could be also used to avoid the

over-fitting behaviour.

Several methods in DL have been proposed in recent years, networks can be classified

into acyclic (feed-forward) and cyclic (recurrent). Among the acyclic approaches, there are the

Deep Neural Network (, Auto-encoders, and Convolutional Neural Networks. In the recurrent

methods, there are the traditional Recurrent Neural Networks (RNN), Long Short-Term Memory

(LSTM) (HOCHREITER; SCHMIDHUBER, 1997), Gated Recurrent Unit (GRU) (CHO et al.,

2014), among others networks.

2.7.1 Recurrent Neural Network

In the beginning, the feed-forward network was used for sequential problems. This

network used the sliding window technique (PALIWAL et al., 2015). In this technique, a fixed-

size window slide across the feature vectors (�⃗�) (i.e., 𝑡 − 1, 𝑡, and 𝑡 + 1), and insert them

concatenated in the input layer. Usually, the prediction/classification focus is the feature vector

of the center of the window (Figure 13). Although it allows the use of feed-forward in sequential

problems, the information of the prediction is restricted to the size of the window.

Recurrent Neural Networks (RNN) or "vanilla" are MultiLayer Perceptron (MLP)

networks with a memory (Figure 14). In this network persists the information is processed during

the sequence of data input presented to the network. These approaches are commonly used in

problems where the sequence of data inserted into the network brings additional information,

such as speech recognition, language processing, translation, and image subtitling. They also

appear in many Bioinformatics problems, such as pattern recognition in nucleotide sequences

and amino acid patterns in proteins (MIN et al., 2017). Several networks have been presented in

the literature, turning this method popular, such as Elman (ELMAN, 1990), Jordan (JORDAN,
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Figure 13 – Sliding window method at the instant 𝑡.

Source: own authorship

1990), and time delay neural network (LANG et al., 1990) networks.

Figure 14 – Recurrent Neural Network in a simplified and
extended representation.

Source: http://colah.github.io/posts/
2015-08-Understanding-LSTMs/. Accessed in Jan-
uary 2021.

In RNNs, inputs sequence (�⃗�) is provided to the network, as shown in Figure 14. At

each network input, the information is processed, and an output is produced (𝑦). The information

generated by the network is stored in the memory (ℎ) and insert in the next input step. This

process occurs iteratively until reach the end of the input sequence. The calculations used to

obtain the RNN output are presented in Equations 22, 23, 24, and 25.

𝑎𝑡𝑗 =
𝐼∑︁

𝑖=1

𝑤𝑖𝑗𝑥
𝑡
𝑖 +

𝐼∑︁
𝑖=1

𝑤𝑗𝑗ℎ
𝑡−1
𝑗 (22) ℎ𝑡

𝑗 = 𝑎𝑐𝑡
(︀
𝑎𝑡𝑗
)︀

(23)

𝑎𝑡𝑘 =
𝐽∑︁

𝑗=1

𝑤𝑗𝑘ℎ
𝑡
𝑗 (24)

𝑦𝑡 = 𝑎𝑐𝑡
(︀
𝑎𝑡𝑘
)︀

(25)

where ℎ𝑡
𝑗 represents the hidden layers and 𝑦𝑡 represents the output layer. Also, 𝑤𝑖𝑗 , 𝑤𝑗𝑗

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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and 𝑤𝑗𝑘 represent the weights of the RNN.

Several adjustments of RNN weights are present in the literature, such as Real-Time

Recurrent Learning (ROBINSON; FALLSIDE, 1987), and BackPropagation Through Time (

(WERBOS, 1990). However, the BPTT algorithm stands out for being computationally faster

and simpler (GRAVES et al., 2005). Equation 26 presents the BPTT algorithm.

𝑤𝑒𝑝𝑜𝑐ℎ = 𝑤𝑒𝑝𝑜𝑐ℎ−1 − 𝜂
𝜕𝑄𝑡

𝜕𝑤
, (26)

where 𝑒𝑝𝑜𝑐ℎ represents an iteration in the training process, 𝜂 represents the learning rate of the

GD algorithm, and 𝜕𝑄𝑡

𝜕𝑤
represents the partial derivative of the output cost function 𝑡 concerning

the RNN weights.

As the GD algorithm, the BPTT algorithm consists of a repeated application of the

chain rule (CHEN, 2016), as presented in Equation 27.

𝜕𝑄𝑡

𝜕𝑤
=

𝑡∑︁
𝑘=0

𝜕𝑄𝑡

𝜕𝑦𝑡

𝜕𝑦𝑡
𝜕ℎ𝑡

𝜕ℎ𝑡

𝜕ℎ𝑘

𝜕ℎ𝑘

𝜕𝑤
, (27)

where 𝜕𝑄𝑡

𝜕𝑦𝑡
, 𝜕𝑦𝑡
𝜕ℎ𝑡

and 𝜕ℎ𝑘

𝜕𝑤
represent their partial derivatives of the cost with the output function,

output with the memory weights, and memory weights concerning the network weights. The

BPTT calculation for recurrent networks depends not only on the hidden layer but also on

previous influences inputs. This difference is reflected in the partial derivative term 𝜕ℎ𝑡

𝜕ℎ𝑘
that

depends on the previous input and the current state, see Equation 28.

𝜕ℎ𝑡

𝜕ℎ𝑘

=
𝑡∑︁

𝑖=0

𝜕ℎ𝑖

𝜕ℎ𝑖−1

(28)

Although traditional RNNs are a suitable method to deal with sequential problems, they

can not store information in memory for a long time, affecting the capability to connect distant

inputs in the sequence. Then, a particular RNN approach was developed to solve this problem,

called Long Short-Term Memory.

2.7.2 Long Short-Term Memory

The Long Short-Term Memory (LSTM) network proposed by Hochreiter and Schmidhu-

ber (1997) was developed with the intention of decreasing the impact of the long-term dependency

learning problem.
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LSTM networks have a different structure from those of traditional RNNs, as shown

in Figure 15. The LSTM framework contains a link system (peephole connections) connected

through gates. This system allows the gradient to flow during inputs without losing long term

memory (𝐶𝑡) (HOCHREITER; SCHMIDHUBER, 1997). The LSTM structure, also called cell,

is made up of three gates: forgot gate (𝑓𝑡), update gate (𝑖𝑡), and output gate (𝑂𝑡). In order for

the gates to achieve their respective objectives, the concatenated input information (𝑥𝑡) and

short-term memory (ℎ𝑡−1) are imputed.

Figure 15 – Cell of the Long Short-Term Memory.

Source: http://colah.github.io/posts/
2015-08-Understanding-LSTMs/. Accessed in Jan-
uary 2021.

The forgot gate weighs the information that remains in long-term memory. Meanwhile,

the update gate aims to control the amount of information entered there. Finally, the output

gate defines how long-term information generates short-term memory information and network

output.

As the traditional RNN, the variable 𝑥𝑡 represents the network´s input while ℎ𝑡 rep-

resents the output. The layers with sigmoid activation function and hyperbolic tangent are

represented respectively by 𝑠𝑖𝑔𝑚 and 𝑡𝑎𝑛ℎ. Equations 29 - 35 present mechanisms of LSTM.

𝑓𝑡 = 𝑠𝑖𝑔𝑚(𝑊𝑓 [ℎ𝑡−1,𝑥𝑡] + 𝑏𝑓 ) (29)
𝑖𝑡 = 𝑠𝑖𝑔𝑚(𝑊𝑖[ℎ𝑡−1,𝑥𝑡] + 𝑏𝑖) (30)

∼
𝒞𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶 [ℎ𝑡−1,𝑥𝑡] + 𝑏𝐶) (31) 𝐶𝑡 = 𝑓𝑡 ∘ 𝐶𝑡−1 + 𝑖𝑡 ∘

∼
𝒞𝑡 (32)

𝑜𝑡 = 𝑠𝑖𝑔𝑚(𝑊𝑜[ℎ𝑡−1,𝑥𝑡] + 𝑏𝑜) (33) 𝐶𝑡 = 𝑡𝑎𝑛ℎ(𝐶𝑡) (34)

ℎ𝑡 = 𝑜𝑡 ∘ 𝐶𝑡 (35)

where, 𝑓𝑡, 𝑖𝑡, 𝐶𝑡, 𝑜𝑡, and ℎ𝑡 (∈ ℜ𝑘) are activations of the forgot gate, update gate, LSTM

internal memory at time 𝑡, output gate, and network output. Besides, 𝑊𝑓 , 𝑊𝑖, 𝑊𝐶 and 𝑊𝑜

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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(∈ ℜ3𝑞×𝑘) are network weights; and 𝑏𝑓 , 𝑏𝑖, 𝑏𝐶 and 𝑏𝑜 (∈ ℜ𝑘) represent the bias.

Other studies proposed new models to modify the peephole connections and the gate

system of the cell with the popularization of the LSTM. Gers and Schmidhuber (2000) added

two connections: one at the forgot gate and the other in the output gate. The long-term memory

information links to both connections (forgot and output gates) in this network. Cho et al. (2014)

presented another method called Gated Recurrent Unit (GRU). In this case, it is placed together

with the forgot and the output gate. Unlike LSTM, the long and short term memories in this

approach are merged into a single memory. Given the more straightforward nature, GRU has been

receiving attention (LI; YU, 2016), but overall, the LSTM network is giving more satisfactory

results (BREUEL, 2015).

New models are still emerging, including LSTM-like structures, such as Depth-Gated

Recurrent Neural Networks, and divergent structures, such as Clockwork. A question arises

whether these proposed networks are relevant and whether these extent variants are beneficial.

According to Greff et al. (2017) and Jozefowicz et al. (2015) these models have only advantages

in specific problems over LSTM.

In addition to the recurrent network variants, there are also the bidirectional networks,

such as the Bidirectional LSTM network, which allows the merge information from future inputs

(backward) with the current input information (forward) (GRAVES et al., 2005), as shown in

Figure 16. For example, a secondary structure classification can be enhanced with the knowledge

of subsequent and previous amino acid features (HATTORI et al., 2017a).

Figure 16 – Scheme of the Bidirectional Long Short-Term Memory.

Source: own authorship

Despite the highlights of the RNN approach in sequential problems, the flexibility of
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problems that they can handle using different models was fundamental for disseminating these

techniques. Figure 17 presents these models.

• One-to-many model: it obtains a sequence of outputs from a network input. This model is

usually applied to generate sequences (ALEMI et al., 2017).

• Many-to-one model: it receives an output from a string input. This model was used for the

prediction/classification of feelings (MARGARIT; SUBRAMANIAM, 2016).

• Many-to-many model: it receives an input data sequence and generates an output sequence.

This model was applied to predict protein torsion angles (LI et al., 2017).

Figure 17 – Recurrent Neural Network models one-to-many, many-to-one, and many-to-many.

Source: own authorship

2.8 HIGH-PERFORMANCE COMPUTING

The High-Performance Computing ( area is related to the progress of computational

methods (HOWARD et al., 2019b), given that the HPC hardware allows executions in a more

feasible time and with a higher number of calculations. When tasks are potentially paralleliz-

able, concurrent approaches decrease time-consumption and increase the speedup performance

compared to sequential methods (HATTORI et al., 2020b).

Currently, several architectures allow parallelization of sequential methods. For example:

multi-core processors, Field Programmable Gate Array (FPGA), cluster Beowulf, and Graphics

Processing Unit (GPUs) (GIZOPOULOS et al., 2019). This hardware has multiple processing

cores that can be used for parallel calculations in different ways. Among these architectures,

GPUs have been outstanding due to their cost-effectiveness. The purchasing and maintaining of

a GPU are not costly compared to a cluster Beowulf. The GPU hardware has also a large number
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of processing cores when compared to CPU multi-core hardware. Another factor are the libraries

available for the GPU architecture development, such as Compute Unified Device Architecture

(CUDA), Keras, Tensorflow, Torch, among other frameworks (GUTOSKI et al., 2018).

The CUDA library has been fostered the experience of parallel programming in the

NVIDIA GPU platform. Consequently, applications that required intensive processing are

being converted to the use of this high-performance hardware (ESSAID et al., 2019). An

advantage of using GPU is that the developer and operational system do not require managing

the organizational processing architecture. This processing architecture is composed of threads

organized by blocks, and these blocks are arranged in a grid. Besides, the blocks of threads

can be executed concurrently, and they could be performed in a different order (HENNESSY;

PATTERSON, 2011). A thread in GPU is accessible using the coordinates of block index

(𝐵𝑙𝑜𝑐𝑘𝐼𝐷) and thread index (𝑇ℎ𝑟𝑒𝑎𝑑𝐼𝐷). The grid and block dimensions can be accessible

using 𝑔𝑟𝑖𝑑𝐷𝑖𝑚 and 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚, respectively.

The parallelization with GPU hardware allows a massive number of threads when

compared with the number of CPU hardware. The threads in GPU are organized in grids, which

in turn are organized in blocks (Lindholm et al., 2008). At each level of organization, they can

share memory space, while having local memory. Threads can be initialized from a process that

runs on a CPU, as the master-slave technique, where the process (master) manages the threads

(slaves). The massive parallelism allowed by the GPU hardware can be a useful technique to

decrease the computation time of a program. However, the communication and initialization of

threads generate overhead on the communication time (TANGHERLONI et al., 2018). Therefore,

the parallelized tasks must be performed massively, and each task needs to require a high

computational cost to counterbalance the time spent in the management (YANG et al., 2018).
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3 RELATED WORKS

This chapter presents a literature review of related studies. The research highlights open

problems and the current state-of-the-art methods, unfolding promising research directions. This

Chapter is divided into two Sections: DL methods applied to proteomics and computational

methods applied for the protein folding problem.

We considered electronic databases in the Computer Science and Technology fields,

such as the ACM Digital Library1, IEEE Xplore 2, Science Direct3, Scopus4, Google Scholar5

(accessed 24 November 2020)), and a specific Bioinformatics-related basis, the National Center

for Biotechnology Information (. The Nature journal was also considered, given its scope in the

Bioinformatics research field.

3.1 DEEP LEARNING APPLIED TO PROTEOMICS PROBLEMS

To the best of our knowledge, there have been no studies using DL for the protein

folding problem up to this point. Thus, the focus of this Section has become to research DL in

proteomics, which is a broader (or closely related) subject. In proteomics, DL has been used in

secondary and tertiary structure prediction.

There are many pieces of research related to DL applied to the protein structure pre-

diction problem. In order to group some of these works, Paliwal et al. (2015) presented a brief

review of the literature. The authors divide the research into two types of mechanisms: Feed-

forward DNNs, which uses the sliding window strategy, and Other Architectures, which are

RNNs. Another present factor is the impact of RNNs in these problems. They were developed

for issues which the data sequence adds information about the problem, such as the primary

structure information being included in the classification of proteins. Two networks are pointed

out as methods that may stand out in the future: Neural Turing Machines (GRAVES et al., 2014)

and Memory Networks (SUKHBAATAR et al., 2015).

Min et al. (2017) presented a literature review of DL applied to Bioinformatics. The

authors highlighted DL techniques applied to the protein structure prediction and classification.
1 dl.acm.org/ (accessed 24 November 2020)
2 ieeexplore.ieee.org/ (accessed 24 November 2020)
3 sciencedirect.com/ (accessed 24 November 2020)
4 scopus.com.br/
5 scholar.google.com/

dl.acm.org/
ieeexplore.ieee.org/
sciencedirect.com/
scopus.com.br/
scholar.google.com/
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According to the authors, one of the main open problems is the large number of unbalanced

datasets found in the literature.

Similar to Min et al. (2017), Angermueller et al. (2016) presented a survey of Bioin-

formatics applications using DL. The main difference from Min et al. (2017) ‘s work is the

breadth of Bioinformatics studies and issues. For instance, the authors presented issues such as

the prediction of secondary and tertiary structures, identification of disorder regions, and the

prediction of contact between amino acids. The authors also presented suitable questions about

DL methods, such as how to define the DL model architecture, how to best train them, avoiding

over-fitting, ways to train in GPUs, among other questions. Finally, the work reinforces DL

obstacles, such as identifying a generic DL architecture that works for different issues, and that

the optimization of hyperparameters could be computationally costly and sometimes unfeasible.

As presented in the previous survey, the secondary protein structure prediction has

gained a lot of space in DL applications, where for each amino acid, its secondary structure

class is predicted. Wang et al. (2011) proposed a new probabilistic method based on the Con-

ditional Neural Fields ( for the secondary structure prediction problem. Subsequently, Zhou

and Troyanskaya (2014) presented his approach named Generative Stochastic Network, which

aims to improve the prediction of local secondary structures. A similar technique was also

proposed by Yaseen and Li (2014b), who explores template methods using a DL approach,

named C8-SCORPION.

Recently, in the secondary structure prediction problem, an approach called Deep

Convolutional Neural Fields (DCNF) was proposed by Wang et al. (2016). This work obtained

similar results compared to the SSpro (MAGNAN; BALDI, 2014), PSIPRED (SPENCER et

al., 2015), JPRED (CUFF et al., 1998) and RaptorX-SS8 (WANG et al., 2011) approaches.

Another paper, presented by Li and Yu (2016), used an approach named Cascaded Convolutional

and Recurrent Neural Networks (CCRN) based on RNNs. This method employs stacked and

convolutional GRU cells. This is the current state-of-the-art work for the secondary structure

classification problem. According to the authors, the results suggest that the RNN-based approach

is appropriated for working with protein structure prediction.

Given the protein structure representation, the Contact Map 6 ( is one of the represen-

tations used by predictors. Lena et al. (2012a) developed a 2D RNN for amino acid contacts

forecast integrating spatial and temporal information. In Lena et al. (2012b) a DL approach was
6 The Contact Map is a 3D structure of a protein in a 2D matrix, where the position (𝑖, 𝑗) represents the contact

between amino acids 𝑖 and 𝑗 of the protein.
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applied for predicting the amino acid contacts of a protein. The technique presented here proposes

a three-dimensional stacked neural network 𝑁𝑁𝑘
𝑖𝑗 , where 𝑖 and 𝑗 represent the spatial coordinate

indicators of the CM, whereas 𝑘 is the index of time (Deep Spatio- Temporal Network). The

results indicated that the forecast of the proposed method was superior compared to the literature

methods (MLP and RNN).

Wang et al. (2017) presented a DL technique for predicting CMs, called ultra-deep

residual convolutional networks. The advantage of this approach is due to its use of information

from the primary and secondary structures to infer the CMs. The approach suggested superior

results when compared to the previous most modern methods: CCMpred (SEEMAYER et al.,

2014), and MetaPSICOV (JONES et al., 2014). Hanson et al. (2018) proposed to predict CMs

using RNNs, specifically, the Convolutional Bidirectional LSTM network. The results reached

competitive values with highly advanced ones presented by Wang et al. (2017). The proposed

approach highlighted the importance of predicting linkage between amino acids which are distant

in the sequence.

Although the CM representation is simple, because it is a 2D representation, the

reconstruction of the 3D structure is not trivial (BENÍTEZ et al., 2015). An alternative procedure

is to work with a three-dimensional structure using twisted angles. According to Staples et al.

(2019), DL approaches have been shown promising results in the protein structure prediction

problem during this decade, which is described below. Therefore, Wood and Hirst (2005)

proposed a predictor to forecast the psi angles of the protein conformation, aiming to identify

secondary structures using MLP networks, called DESTRUCT. Subsequently, Xue et al. (2008)

presented another approach, named Real-SPINE2.0, which applies a set of MLP networks, based

on the work of Dor and Zhou (2007), to predict torsion angles. Wu and Zhang (2008) also

presented an approach that uses a set of prediction methods, MLP with Support Vector Machine,

called ANGLOR.

DL approaches have also been applied to protein torsion angles prediction and overcame

the results compared to the previous studies. Torsion angle prediction is commonly used in the

Ramachandran diagram for secondary structure prediction and sequence alignment. Yang et

al. (2017) presented a DL method based on multiple fully connected stacked layers, called

SPIDER2. In this work, the method was tested in several case studies, including the prediction

of secondary structures and torsion angles. Subsequently, Li et al. (2017) presented a benchmark

with four DL methods for the torsion angle prediction problem. These four methods include Deep
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Neural Network (DNN), Deep Recurrent Neural Network (DRNN), Deep Restricted Boltzmann

Machine Network (DRBM), and Deep Recurrent RBM network (DRRBM). The paper compares

its method with two approaches from the literature: TANGLE (SONG et al., 2012) and SPIDER2.

The tested methods achieved superior and comparable results to state-of-the-art methods. Among

the tested approaches, RNN achieved higher results than non-recurrent networks.

Fang et al. (2018) 7 presented another work for predicting torsion angles using a method

called DeepRIN. The composition of the DeepRIN approach is based on a network for image

processing, and its architecture comprises Inception layers (SZEGEDY et al., 2017) and Residual

Networks (HE et al., 2016). When compared with the SPIDER3 (HEFFERNAN et al., 2017)

method, the approach presented superior results considering the MAE value. AlQuraishi (2019)

proposed a protein structure prediction method based on a co-evolution using neural networks

called Recurrent Geometric Network (RGN). On all CASPs, RGNs obtained the best performance

when compared to servers that use co-evolution data (KRYSHTAFOVYCH et al., 2016) and

benchmarked to both short and long multi-domain proteins (SCHAARSCHMIDT et al., 2018).

3.1.1 Long Short-Term Memory (LSTM)

Among DL approaches, LSTM has shown the ability to work with sequential data in

different problems, with promising results (LI; CAO, 2018; SUN; GONG, 2020; SHEN et al.,

2020).

Sønderby and Winther (2015) applied the Bidirectional LSTM Network ( to the sec-

ondary structures classification, considering eight types of structures. In this work, the CB6133

dataset was used for training and the CB513 dataset was used for the test procedure. The proposed

method was compared to the other three approaches in literature (BRNN, CNF, and GSN). The

BLSTM obtained better results compared to the others in terms of accuracy per class.

Sønderby and Winther (2015) applied the Bidirectional LSTM network ( to classify the

secondary structures, considering eight types of structures. In this study, the CB6133 dataset was

used for training, and the CB513 dataset was used for the test procedure. The proposed method

was compared to the other three approaches (BRNN, CNF, and GSN). The BLSTM obtained

better results when compared to the others in terms of accuracy per class.

In Lipton et al. (2015), a RNN survey was presented based on the last three decades,

and how these computational methods have become a practical and robust model for dealing
7 available at http://dslsrv8.cs.missouri.edu/~cf797/MUFoldAngle/ (accessed 24 November 2020)

http://dslsrv8.cs.missouri.edu/~cf797/MUFoldAngle/
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with sequential problems. This article raises questions about sequential models, for example:

information about traditional RNNs as well as its training, and the most current RNNs methods,

such as LSTM, BLSTM, and Neural Turing machines.

Fleming et al. (2016) presented an application of the LSTM to predict the protein

thermal stability after mutation. The work used simulation data extracted from the Molecular

Dynamics (MD) approach. The results of this model achieved similar predictions when compared

to Machine Learning approaches and the other two off-the-shelf software.

For the protein function prediction,Liu (2017) proposed the use of the LSTM. The

method employs the classification protein functionality based on the primary sequence informa-

tion feature. When compared with softwares in the literature, such as BLAST and HMMER,

the RNN approach showed better results. The author cites the benefits of the LSTM, such as its

ability to extract relationships between intricate patterns in data that comparative approaches

were not capable of doing it.

Heffernan et al. (2017) conducted three case studies on proteomics applying LSTM

networks, called SPIDER3. This research includes the secondary structure prediction, protein

structure angle prediction, and the protein solvent accessibility forecast. Overall, the LSTM

network achieved superior state-of-the-art results for all case studies (DCNF, SPIDER2, PORTER

4.0 (MIRABELLO; POLLASTRI, 2013), SCORPION-C3 (YASEEN; LI, 2014a), PSIPRED 3.3

(JONES, 1999), SPINE-X (FARAGGI et al., 2012) and Jpred4 (DROZDETSKIY et al., 2015)).

Li et al. (2017a) applied the BLSTM network to predict protein homology. The authors

showed that DL methods automatically extract characteristics from raw data, with any or few

pre-processing steps, especially when compared to traditional machine learning techniques. The

comparative analysis using Receiver Operating Characteristic (ROC) Curve indicated that the

proposed approach obtained superior results when compared to the ones found in literature. An

extension of this work was produced, and it merged the new approach with Ranking methods

(LIU; LI, 2018). The results were similar to the previous method.

LSTMs have also been applied for Protein Fold Recognition (PFR) (TSUBAKI et al.,

2017). The process was divided into two stages: application of the feature extractors of dataset

samples (MIKOLOV et al., 2013; PENNINGTON et al., 2014), and a supervised approach using

the LSTM network. In addition, the LSTM method had a superior performance when compared

to those based on the Support Vector Machine (GHANTY; PAL, 2009; DING; DUBCHAK,

2001; YANG et al., 2011; SHARMA et al., 2013), which were the most advanced ones nowadays.
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Recently, Villegas-Morcillo et al. (2020) proposed an Convolutional layers with GRU layers to

the PFR. This approach indicated superior performance compared to literature methods, such as

DeepFRpro, (ZHU et al., 2017), CEthreader (ZHENG et al., 2019), DeepSVM-fold (LIU et al.,

2019), among others.

3.1.2 Analysis of the related works

As presented in the beginning of this Section, the protein folding problem using DL

methods has not been explored by other researches. On the other hand, we observed that DL

has proved to be successful in many problems related to the PFP. Table 3 provides a summary

of proteomics problems, protein representations, work references, and methods used in these

problems found in the literature review. Besides, there is a lack of datasets for the protein folding

study. Hence, we also present new datasets for this study.

Among scientific researches related to the DL applied to the proteomics problems, DL

techniques proved to be effective. Specifically, for the protein secondary and tertiary structure

predictions, RNN has been emphasized when compared to the literature approaches, including

other Machine Learning methods and ab initio approaches. Among the RNNs, LSTM networks

have been highlighted in these proteomics problems. Other RNN methods have been identified,

such as GRU and standard RNN.

Additionally, two types of protein structure representations in the tertiary space (CM

and torsion angles) were identified. Although CM representation is a simplified approach to

represent protein structure, the reconstruction of this three-dimensional representation is an

open problem. On the other hand, there is no problem to reconstruct the three-dimensional

structure with the angle representation. Then, angle representations based on Spherical Relative

Coordinate (SRC) were employed in this work. According to our research, no recent study has

been using DL methods for the PFP with this representation.

3.2 THE PROTEIN FOLDING PROBLEM

In this section, we present computational methods applied to the PFP.
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3.2.1 Computational methods

Experimental techniques have been supporting the development of the proteomics

area (FERSHT, 2017). Among these techniques there are X-ray Crystallography (LIZAK et al.,

2017), Nuclear Magnetic Resonance (ROGAWSKI; MCDERMOTT, 2017), and recently, Mi-

croscopy cryoelectronics (ZEYTUNI et al., 2017). However, they are costly and time-consuming

processes (MCPHERSON; GAVIRA, 2014; LACAPÈRE et al., 2018). For these reasons, com-

putational methods are justifiable in this area.

Although computational methods are an alternative for studying proteomics problems,

they are an NP-complete problem for protein structure predictions and they have been open for

over 50 years (DILL; MacCallum, 2012; FINKELSTEIN, 2018).

Several approaches have been proposed to explore this problem. Table 4 presents

methods used in the PFP study. According to Morriss-Andrews and Shea (2015), the computa-

tional methods used for the protein folding study can be divided into thermodynamics, kinetics,

trajectory analysis, and systematic approaches.

Thermodynamic approaches allow simulating physical and chemical processes in differ-

ent systems based on energy to drive simulations. According to Dill et al. (2008), thermodynamic

methods commonly used for PFP simulation are MD (KARCZYŃSKA et al., 2017) and MC

(FARRIS et al., 2018) approaches. Due to popularization of these methods, different scientific

programs have been developed and published. GROMACS and AMBER are examples of state-

of-the-art softwares in the literature (SALOMON-FERRER et al., 2013; ABRAHAM et al.,

2015). However, these programs commonly use heuristic strategies in the simulations. In other

words, they may lose the Spatio-temporal feature of the folding pathway to enhance the sampling

of the energy landscape.

The popularization of MD method brings discoveries to the pharmacology study applied

to drug design (VIVO et al., 2016; GANESAN et al., 2017; MICHELARAKIS et al., 2018a).

These approaches have been instrumental tools to explore the propensity for protein interaction

and finding ’hot-spots’ for receptor binding (proteins that interact with other substances). Despite

these insights, the computational time required by the MD is a problem. Some features contribute

to increase the time-consumption of MD simulations. For example: the size of the protein chain,

extensive time-step simulations, and detailed models, such as the atomic model (EASTMAN

et al., 2017; MERMELSTEIN et al., 2018). According to Lee et al. (2017), the MD approach
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would take over 1000 years to run 300 micro-seconds using a distributed system for a protein in

the atomic model.

As presented in Section 2.6, the MD method has a high computational cost. In the

last decade, several computational approaches have been proposed to optimize it (SALOMON-

FERRER et al., 2013; ABRAHAM et al., 2015), including parallelism support with GPUs

(Graphics Processing Units) (PHILLIPS et al., 2011; SPELLINGS et al., 2017; YANG et al.,

2018). Although the parallelization of the MD method decreases time cost, it can be computa-

tionally expensive for atomic model simulations for larger polypeptide chains.

The main time-consumption of the MD is the Lennard-Jones (LJ) energy calculation

(HOWARD et al., 2019a). Neighbourhood List (NL) has been used to decrease the number of LJ

calculations. The NL restricts the number of pairwise interactions to the nearest neighbors in the

space of each residue. This approach has achieved high success in many studies (HOWARD et

al., 2019a; BAILEY et al., 2017; EASTMAN; PANDE, 2010).

The 3D-AB off-lattice model, a CG representation, can be used to decrease such time-

consumption. The 3D-AB off-lattice model is a one-bead model used to represent proteins at a

high-level to simulate globular protein behavior (STILLINGER; HEAD-GORDON, 1995; DILL;

MacCallum, 2012). This toy model turned out to be a flexible representation, when compared

to other popular lattice models, since it allows more arrangements of the structure (PIERRI et

al., 2008). Therefore, simulations with the 3D-AB model demand lower computational cost

than atomic representation and other multi-beads models. For instance, in aggregation studies,

where a higher computational effort is required, this model enabled realistic simulations of

fibrillar aggregates (FRIGORI et al., 2013; FRIGORI, 2014; FRIGORI, 2017). It was also able

to represent a similar final structure of the re-scaled biological native structure (HATTORI et al.,

2020b). Nowadays, the 3D-AB model has been used in many benchmark studies for the PSP

problem (LIN et al., 2018; ZHOU et al., 2018).

The Replica exchange method is also a thermodynamic approach used to overcome the

problem of energy barriers. In this method, several simulations/replicas occur in parallel and

can change the temperatures of the simulations in each iteration. This technique is commonly

applied to MC and MD methods (SWENDSEN; WANG, 1986; SUGITA et al., 2000). Despite a

more extensive landscape sampling than canonical approaches, they lose the Spatio-temporal

feature of the folding pathway (STILLINGER; HEAD-GORDON, 1995). There are different

Replica exchange variations, such as procedures that optimize the number of replicas required in
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the simulation (KIM et al., 2012).

The Markov State Model ( is a complementary technique of thermodynamic methods.

Unlike most, which lose kinetic characteristics in favor of energy landscape sampling, this

approach preserves the simulation kinetics (SWOPE et al., 2004). This strategy is modeled as a

Markovian transition system set, generating a map of transition probabilities between states.

Free energy guided sampling (ZHOU; CAFLISCH, 2012) is another kinetic approach.

Unlike MSM, it uses a free energy approximation to start simulation settings. In this method,

small trajectories are executed iteratively in parallel, based on the landscape exploitation and

the refinement of simulations settings. Another kinetic method called WExplore (DICKSON;

BROOKS, 2014) uses settings that determine the simulation dynamically defined by sampling

the hierarchically organized region. There are parallel simulations in the WExplore technique,

and the trajectory is oriented to new directions of space configurations.

Transition path sampling (DELLAGO et al., 1998) is an approach that involves the

generation of a pathway based on the initial and final states, usually using an optimization

function that maximizes the probability of obtaining reaction coordinates. The String method

(MARAGLIANO et al., 2006), in turn, performs multiple simulations in parallel and selects the

pathway with the lowest energy barrier between two states.

In the systematic methods, the process follows the opposite directions of the previous

methods. Native structures are predicted from the behavior of experimental data (MORRISS-

ANDREWS; SHEA, 2015). Among the systematic techniques, the Relative Entropy approach

uses the probability of structure conformations, and it is considered the structure with the minimal

loss of information function (SHELL, 2008). Multi-scale is a variation approach that predicts

the protein structure based on the minimization of the difference between the reference data and

the predicted structure (IZVEKOV; VOTH, 2005). Another systematic approach is the Iterative

Boltzmann Inversion method. This method was designed to reproduce Boltzmann statistics for

structural prediction and the other systematic approaches comparing the reference results with

the inferred structure (REITH et al., 2003).

In order to reduce the computational cost of the protein folding simulation and present

a new approach for PFP based on computational intelligence methods, Benítez (2015) used

Cellular Automata ( using CM representation. To infer the folding rules for the AC, it used the

Gene Expression Programming method (BENÍTEZ et al., 2015). The data used to infer the rules

were based on the folding pathway simulation using the MD method with the 3D-AB off-lattice
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model (BENÍTEZ; LOPES, 2013). Parallel Ecology-Inspired Optimization, which is a set of

approaches based on evolutionary computation, is used to reconstruct the predicted structures

from CM representation (PARPINELLI; LOPES, 2015). Regarding the reconstruction problem,

Hattori et al. (2017c) proposed using Relative Spherical Coordinates (RSC) to avoid this step,

which is simpler to convert to the Cartesian Coordinates, and its representation maintained the

unitary distance constrain between each amino acid as required by the 3D-AB off-lattice model.

3.2.2 Analysis of the related works

As shown in this section, the PFP is an NP-complete problem. Given the computational

cost required for folding simulation, several CG representations have been proposed in the

literature. Among protein model representations, the 3D-AB off-lattice is still a common approach

used in researches. The main reasons identified to use 3D-AB off-lattice include the higher degree

of flexibility (continuous angles) than discrete models, as well as the lower computational cost

compared to multi-beads and atomic models. It can also represent several behaviors of protein

folding at the mesoscale. Given these features, the CG model was the representation chosen for

this study.

Computational methods are essential for the study of PFP because of the difficulties

of the experimental methods. Among these techniques, physical, chemical, and statistical ap-

proaches were identified. The Molecular Dynamics (MD) procedure is one of the most commonly

used in Computational Biology researches. Despite its substantial computational burden, Molec-

ular Dynamics (MD) is the leading approach for the PFP studies. Also, this technique in the

canonical ensemble conserves the spatial-temporal feature of the protein folding pathway. Thus,

we used this approach in our experiments. As it is computationally costly, we proposed the

parallel MD using GPU architecture. Given the improvement of the NL mechanism to increase

the MD method, we also proposed the parallel NL in the MD method with a canonical ensemble.

As shown in Table 4, the computational intelligence methods are not sufficiently ex-

plored in the literature for the PFP (BENÍTEZ, 2015). In this scenario, we also intended to

explore the protein folding problem using computational intelligence methods, explicitly using

the DL methods (see Section 3.1). Moreover, we presented the RSC representation of the protein

structures instead of CM maps (BENÍTEZ, 2015), avoiding the reconstruction issue as presented

in Hattori et al. (2017c).

It is worth noting that several works in the literature have been using the wrong nomen-
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clature of the PFP. Many of these studies aim to predict the native conformation, also called

the Protein Structure Prediction (PSP) problem. The researches presented by Li et al. (2015),

Kaushik and Sahi (2017), and Li et al. (2017b) are examples of this erroneous nomenclature. This

mistake is a persistent issue, and it has already been addressed by Lopes (2008). This problem

actually makes it harder to identify studies that were related to this research.

Table 4 – Computational methods applied to the protein folding problem.
Source: Based on Morriss-Andrews and Shea (2015).

Computational
Method Method Ref.

Thermodynamics

Metadynamics (LAIO; PARRINELLO, 2002)
Umbrella sampling (TORRIE; VALLEAU, 1977)
Molecular Dynamics (McCAMMON et al., 1977)
Parallel tempering
(temperature REMD) (SUGITA; OKAMOTO, 1999)

Replica exchange
Molecular Dynamics
(REMD)

(SUGITA et al., 2000)

Replica exchange
Statistical Temperature
molecular dynamics

(KIM et al., 2012)

Monte Carlo (LI; SCHERAGA, 1987)
Replica exchange
Monte Carlo (SWENDSEN; WANG, 1986)

Kinetic

Markov State Model (SWOPE et al., 2004)
Free Energy Guided
Sampling (ZHOU; CAFLISCH, 2012)

WExplore (DICKSON; BROOKS, 2014)
Transition Path
Sampling (DELLAGO et al., 1998)

String method (MARAGLIANO et al., 2006)

Systematic Methods

Relative Entropy
Coarse graining (SHELL, 2008)

Multiscale
Coarse Graining (IZVEKOV; VOTH, 2005)

Iterative Boltzmann
Inversion (REITH et al., 2003)

Computational
intelligence

Cellular Automata
Genetic Programming (BENÍTEZ et al., 2015)

Proposed method (Deep Learning) (HATTORI et al., 2018)
Source: own authorship
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4 MATERIAL AND METHOD

This thesis presents a novel computational approach based on Deep Learning (DL)

methods applied to the Protein Folding Problem study, concentrated on one-step-ahead prediction

analysis.

The overview of the proposed approach is presented in Figure 18. It can be divided into

two steps: generate in silico datasets and process it using DL methods.

In the first step, to generate in silico datasets, a package was developed called PathMolD-

AB (HATTORI et al., 2020b). This package provides an integration with the Protein Data Bank

to perform the data acquisition of the amino acid sequence and convert it to the AB sequence.

This package supplies variants of the MD in the Canonical Ensemble. PathMolD-AB offers a

visualization tool to analyze the protein folding simulation. A comparative method is presented

to analyze the similarity between the rescaled biological structure with the predicted structure

(generated by the MD method).

In the second step, to train DL methods, a pre-processing step in datasets was performed.

This pre-processing convert the Cartesian coordinates representation to the Relative Spherical

Coordinate (RSC). These datasets are divided into three subsets: training, validation and test.

Subsequently, it is performed train and test of DL methods. Lastly, the trained model is validated,

and the differences and similarities between the target results (MD) and predicted structures (DL)

are analyzed.

The following sections deepen these two steps.

4.1 GENERATION OF IN SILICO DATASETS USING PATHMOLD-AB

Figure 18(a) presents an overview of the proposed end-to-end framework, called

PathMold-AB. The core of the framework comprises three steps/modules, plus other add-ons

for specific analyzes. In step 1, it is generated the input file based on raw data acquired from

the Protein Data Bank (PDB)1. In this step, the Cartesian coordinates 𝐶𝛼 of all amino acids

are extracted, and the distance between 𝐶𝛼 − 𝐶𝛼 is rescaled to one, aiming to compare with

3D-AB off-lattice model. In step 2, the folding simulations are accomplished, and pathways data

are generated, based on parallel and sequential models of the canonical MD method using a
1 http://pdb.org/ (accessed 24 November 2020)
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Figure 18 – Overview of the proposed method for the protein folding problem using Deep Learning.

Source: own authorship

3D-AB off-lattice. In step 3, the simulation results are compared with the rescaled biological

structure of the protein (performed in step 1), aiming to compare the predicted structures with

the corresponding “biological” structure. In the following Sections, these steps will be detailed.

4.1.1 PDB data processing

To properly extract useful information from the PDB files, two procedures are necessary:

first, the AB sequence is obtained (for simulating the folding pathways of the protein); second,

the rescaled biological structure is constructed (for comparing with the predicted structures).

The conversion of an amino acid sequence to the corresponding hydrophobic-polar

(AB) sequence is shown in Algorithm 2. We used the Python programming language together

with the Biopython2 framework. The program downloads the PDB file and extracts the amino

acids’ sequence starting from a PDB ID. Next, this sequence is converted into the AB model
2 http://biopython.org/ (accessed 24 November 2020)
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using a hydrophobicity conversion table. Following a previous work (BENÍTEZ, 2015), here we

used the hydrophobicity scale proposed by Alberts et al. (2002) (see Table 5) for converting the

20 different amino acid types to either A or B. Next, the AB sequence is saved in a file together

with other features to run the MD simulation (see Appendix C.2).

Algorithm 2 – Protein Sequence conversion procedure.
Input PDB ID
Download PDB File
Read PDB File
for 𝑖 = 0 : 𝑁 do

Extract Amino Acid AA𝑖 ∈ SEQRES
Add AA𝑖 to 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒[𝑖]

end for
Read AB Classification Table
for 𝑖 = 0 : 𝑁 do

if 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒[𝑖] == ‘A’ then
AB_𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒[𝑖]← ‘A’

else
AB_𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒[𝑖]← ‘B’

end if
end for
Save AB_𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒

Source: Hattori et al. (2020a)

Table 5 – Hydrophobicity scale.

Amino
Acid

Hydrophobicity classifi-
cation

Amino
Acid

Hydrophobicity classifi-
cation

ALA A MET A
CYS A ASN B
ASP B BRO A
GLU B GLN B
PHE A ARG B
GLY A SER B
HIS B THR B
ILE A VAL A
LYS B TRP A
LEU A TYR B

Source: Alberts et al. (2002)

In the rescaling process, the Cartesian coordinates of the protein structure are extracted

from the PDB file. Furthermore, from them, the coordinates of the 𝐶𝛼 of each amino acid

(PIERRI et al., 2008). The distances between each consecutive 𝐶𝛼 is rescaled, dividing by 3.8

Å, to obtain the normalized distance (equal to 1) according to the 3D-AB off-lattice model

(CHAN; DILL, 1990; PIERRI et al., 2008; KOLINSKI, 2011; ONOFRIO et al., 2014). Then,

the target structure represented by the 3D-AB off-lattice model is obtained and compared with

the predicted structures (PIERRI et al., 2008).



60

4.1.2 Parallel Molecular Dynamics

The MD implementation of the PathMolD-AB software package was based on previous

works described in Benítez (2015), Stillinger and Head-Gordon (1995), Benítez and Lopes

(2012). This approach uses the canonical NVT ensemble, where the number of residues (𝑁 )

and volume (𝑉 ) are constants, and the temperature (𝑇 ) is controlled at a specific value. The

parallelization proposed in this work is based on a CPU-GPU master-slave computation model.

A master process running on CPU manages the sequential part of the algorithm, while slave

processes running on GPU cores execute the main computations in parallel.

The algorithm consists of a sequence of steps, starting with a structure randomly posi-

tioned in the space. The initial procedures are naturally serial or require low computational efforts.

Therefore, they run on a CPU. Next, the central part of the MD algorithm is the computation of

the torsion, bond, and Lennard-Jones energies, as described in Section 2.4.3. The computation

of each energy function is parallelized separately. For each energy term, the computation to

assigned to a thread, and the value is stored in an array position. After computing these energies,

the partial energies are summed by parallel reduction to sequential addressing, as shown in

Figure 19. The reduction algorithm is accomplished by summing in pairs, and these calculations

are performed in parallel. The sums of each pair are saved in the memory position of the first

partial value. This process takes place iteratively until all values are summed in a single array

position.

Figure 19 – Parallel reduction to sequential addressing.

Source: own authorship
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In the sequence, velocities and accelerations of all the residues are computed. These

computations are independent of each other and are performed in parallel. Then, due to the

physical forces acting on the residues, they are pushed to another position in the 3D space. As

this step is highly parallelizable, it was also accomplished in parallel with a GPU. Next, The

weak coupling adjustment into a thermal bath method provides the temperature system proposed

by (BERENDSEN et al., 1984). Finally, the geometric constraints are applied to adjust the

coordinates and velocities (see Algorithm 1).

In order to evaluate the compactness of protein conformations, the radius of gyration

(KHOKHLOV, 1994) is computed at each 𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒. The smaller the radius of gyration, the

more compact is the set of residues. Three radii of gyration are provided 𝑅𝑔𝐴𝑙𝑙 (all the structure),

𝑅𝑔𝐻 (only hydrophobic residues), and 𝑅𝑔𝑃 (only polar residues). It is worth noting that the

observation of the temporal changes of 𝑅𝑔𝐻 and 𝑅𝑔𝑃 may indicate the formation of the

hydrophobic core, typical of many proteins. Equation 36 presents how the radius of gyration is

computed:

𝑅𝑔𝐴𝑙𝑙 =

⎯⎸⎸⎸⎷𝑁−1∑︀
𝑖=0

[(𝑥𝑖 − �̄�)2 + (𝑦𝑖 − 𝑌 )2 + (𝑧𝑖 − 𝑍)2]

𝑁
, (36)

where 𝑥, 𝑦, and 𝑧 represent the Cartesian coordinates of each residue 𝑖, �̄�, 𝑌 , and 𝑍 the average

of each Cartesian coordinate, and 𝑁 is the number of residues of the sequence.

At each pre-defined number of iterations (𝑠𝑡𝑒𝑝), the program saves the protein infor-

mation state as a report file. At each 𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒 are saved: the structure, the energy, and the

radii of gyration of the protein. All the procedure is repeated until a stop criterion is satisfied.

For example, a pre-defined number of iterations (𝑡𝑚𝑎𝑥) or, eventually, when the 𝐸𝑝 stabilizes

according to a specific criterion. Algorithm 3 shows the main execution steps of PathMolD-AB.

4.1.3 Generation of Datasets for Studying the Protein Folding Dynamics

Four datasets of protein folding trajectories were produced as case studies using the

PathMolD-AB software. Four proteins were simulated, one artificially created and three real-

world proteins with a growing number of amino acids, as shown in Table 6, and detailed as

follows:

• 13FIBO: it contains 13 amino acids, and it was artificially created by Stillinger and Head-

Gordon (1995), by distributing the hydrophobic amino acids according to the Fibonacci
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Algorithm 3 – Main execution steps of PathMolD-AB. The shaded lines are executed in parallel in GPU, while
the others are executed in CPU.

Set the initial conditions of all particles of the proteins: positions 𝑟𝑖(𝑡0), velocities 𝑣𝑖(𝑡0) and accelerations 𝑎𝑖(𝑡0)

for 𝑡 = 0 : 𝑡𝑚𝑎𝑥 do
Compute Lennard-Jones energy
Compute torsion energy
Compute bond energy
Summarize the partial energy (Parallel reduction to sequential addressing)
Update positions, velocities, and accelerations
Adjust temperature (thermostat)
Compute geometric constraints (Shake algorithm)
if (𝑡 mod 𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒) == 0 then

Compute radii of gyration
Save the state of the protein in a report file (structure, potential energy, and radii of gyration)

end if
𝑡← 𝑡+ 1

end for
Store data

Source: own authorship

sequence.

• 2GB1 3: it contains 56 amino acids, and this protein is in the group of the G proteins,

which exerts signal transduction functions. The dysfunction of this protein is linked to

diseases such as schizophrenia in humans (MIRNICS et al., 2001);

• 1PLC 4: it contains 99 amino acids, and this protein performs the function of electron

transportation, which is related to the process of energy production in the cell. Its functional

impairment results in cell death (WATABE; NAKAKI, 2007);

• 5NAZ 5: it contains 229 amino acids, and this is a globular structural protein of collagen,

related to the Goodpasture’s and Alport’s syndromes (CASINO et al., 2018).

For each protein, a dataset was generated with 1,000 (for 13FIBO, 2GB1, and 1PLC)

or 500 (for 5NAZ) different pathways. The size of the 5NAZ protein sequence implied the

run of fewer simulations. As earlier mentioned, all simulations start with structures randomly

initialized in the 3D space to achieve higher diversity of pathways, each one leading to the native

conformation of the protein.

The maximum number of time-steps (𝑡𝑚𝑎𝑥) for the simulations of the 13FIBO, 2GB1,

and 1PLC proteins were set to 3× 106 iterations and 1× 108 for the 5NAZ protein to guarantee
3 http://10.2210/pdb2GB1/pdb (accessed 24 November 2020)
4 http://10.2210/pdb1PLC/pdb (accessed 24 November 2020)
5 https://www.rcsb.org/structure/5NAZ (accessed 24 November 2020)
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Table 6 – Information about the protein sequences used to generate the datasets.
ID # amino acids AB sequence
13FIBO 13 𝐴𝐵2(𝐴𝐵2𝐴𝐵)2

2GB1 56
𝐴𝐵3𝐴3𝐵𝐴𝐵2𝐴𝐵𝐴𝐵5(𝐴2𝐵)2𝐴𝐵2𝐴2

(𝐵3𝐴)2(𝐴𝐵)3(𝐵3𝐴)2𝐵𝐴𝐵2

1PLC 99
(𝐴𝐵𝐴5𝐵𝐵)2(𝐴𝐵)2𝐴2𝐵2𝐴3𝐵3𝐴4𝐵2

𝐴3𝐵4𝐴2𝐵𝐴(𝐴𝐵)2(𝐵𝐴)2𝐵4𝐴(𝐴𝐵)32
(𝐵𝐴)𝐴𝐴(𝐵2𝐵𝐴)2(𝐵𝐴)2𝐵2𝐴6(𝐵𝐴)2𝐵

5NAZ 229

(𝐵𝐴2)2𝐴2𝐵8(𝐴2𝐵)2(𝐴𝐵)3(𝐵𝐴2)
(𝐵𝐴)2𝐵3(𝐴𝐵)2(𝐵𝐴2)3(𝐵2𝐴)2𝐴5𝐵𝐴
𝐵(𝐵𝐴2)2𝐵7𝐴2𝐵(𝐵𝐴)2𝐴3(𝐵𝐴)2

(𝐴𝐵)2(𝐵𝐴)2𝐴2𝐵2𝐴4𝐵𝐴8𝐵4𝐴(𝐵𝐴2)3

𝐵2𝐴4𝐵2𝐴3𝐵3𝐴3(𝐵𝐴)3(𝐴2𝐵)3

𝐵𝐴𝐵2𝐴4(𝐵𝐴)4𝐵3𝐴𝐵4𝐴3(𝐴𝐵)3𝐵𝐴2

𝐵2𝐴𝐵3(𝐵𝐴)2(𝐴𝐵)2(𝐵2𝐴)2𝐵𝐴2𝐵3

Source: own authorship

reliable stabilization of the native structure. Consequently, for standardizing the number of

Spatio-temporal states per pathway in each dataset, the 𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒 for 13FIBO, 2GB1, and 1PLC

were 3000 and 8000 for the 5NAZ. For each pathway, 1,000 folding states were recorded. Figure

20 illustrates snapshots of protein folding states.

Figure 20 – Sample of a pathway for the protein 13FIBO.

Source: own authorship
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4.1.4 Comparison with the biological structure from the PDB

This section focus on the structure comparison of the crystallized proteins identified in

the PDB with the corresponding structure predicted by our approach (see Figure 18(a)). This

comparison is accomplished indirectly by computing the radii of gyration of both structures and,

in a direct way, employing the Kasbch-RMSD measure described below.

Following the prepossessing, the step number two comprises some simulations that

originate the protein pathway dataset using MD (see Sections 2.4.3 and 4.1.2), organized after

simulations in a way to enable the comparison with biological structures. As presented in Section

4.1.3, the three real-world proteins included in this case study were: 2GB1, 1PLC, and 5NAZ.

However, due to the lack of information about the coordinates of the 5NAZ residues in the PDB

file, the scaling process was unfeasible for this protein. Thus, the analyzes were performed only

for the first 2GB1 and 1PLC. This section focus on the structure comparison of the crystallized

proteins identified in the PDB with the corresponding structure predicted by our approach (see

Figure 18(a)). This comparison is accomplished indirectly by computing the radii of gyration of

both structures and, in a direct way, employing the Kasbch-RMSD measure described below.

The comparison of the rescaled PDB structure and the MD predicted structure is a

problem that can be modeled as an Orthogonal Procrustes problem (GOWER; DIJKSTERHUIS,

2004). Kabsch (KABSCH, 1976) proposed an algorithm to solve this problem by approximating

two matrices 𝑃 and 𝑄, which represent the spatial coordinates of the two structures. In this work,

the movement allowed is only the rotation of 𝑃 and 𝑄. First, residues of 𝑃 and 𝑄 are superposed,

followed by a rotation applied to minimize the difference between these two matrices, based on

the Root Mean Square Deviation (RMSD) (KRAVRAKI, 2007), as shown in Equation 37.

RMSD =

√︃∑︀𝑁
𝑖=1(𝑃𝑖𝑥 −𝑄𝑖𝑥)2 + (𝑃𝑖𝑦 −𝑄𝑖𝑦)2 + (𝑃𝑖𝑧 −𝑄𝑖𝑧)2)

𝑁
, (37)

where 𝑁 represents the number of amino acids of the protein, 𝑖 is the 𝑖-th amino acid, and 𝑥, 𝑦, 𝑧

are the Cartesian coordinates of each amino acid.

4.1.5 Parallel Molecular Dynamics with Neighbourhood List

The parallel Neighbourhood List (NL) technique is proposed in this work to decrease

the time processing of the purely parallel MD simulation.

The NL approach works using only the nearest residues to calculate the potential energy
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of each residue in the protein sequence. The neighborhood to each residue is defined by a radius

cut-off, as represented in Figure 21. Then, if a residue is inside of this radius cut-off, it is a

neighbor. Thus, pairwise interaction can be neglected in the simulation favoring the computation

speedup, which needs broadening efforts as presented in the Section 3.2.

Figure 21 – The neighborhood space representation of the residue one (dashed line). The gray spheres
represent the residues inside the neighborhood space of the residue 1 (residues 2, 3, and 4). Also,
it is presented residues outside of this space by black spheres (residues 5 and 6).

Source: own authorship

The NL mechanism presented is divided into three steps. The management of the update

list using threads in CPU and GPU, the calculation of the NL, and NL application in the energy

function calculation. The overview of this proposed approach is presented in Figure 22.

In the first step of the NL algorithm, a CPU-thread is stated to manage the NL update

procedure. This procedure initiates 𝑁 other threads in GPU. Each GPU-thread started is re-

sponsible for calculating the neatest residues of a specific residue. After these calculations, the

main thread in CPU organized all these results and returned the NL to the process. This task

is computational costly (𝑂(𝑁2))(HOWARD et al., 2019a), then, this task is performed at each

𝑠𝑡𝑒𝑝_𝑡𝑖𝑚𝑒 (see Section 4.1.2). To take advantage of the time spent by the NL update, we execute

the Shake algorithm (HATTORI et al., 2020b) in parallel using another CPU-thread.

In the second step, it is presented the NL update procedure, see Algorithm 4. Each

thread calculates the Euclidean distance of the 𝑖-th residue to the other 𝑁 − 𝑖𝑑 residues, where 𝑖

represents the current residue analyzed, and 𝑁 − 𝑖𝑑 represents the other residues of the protein
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Figure 22 – Overview of the proposed approach.

Source: own authorship

Algorithm 4 – Update the neighbour list in GPU.
UpdateNeighbourList
id← ThreadID + BlockID x BlockSize
i← id + 1
while i < N do

distance← Euclidian distance between id and i
if distance < cut-off radius then

Neighbourlist[id][i]← 1
else

Neighbourlist[id][i]← 0
end if
i← i + 1

end while
end procedure

Source: own authorship

chain. In this algorithm, if the pairwise Euclidean distance is lower than the cut-off radius, they

are considered neighbors. Then, the position of the list correspondent to this pairwise receives

the value equal to one, otherwise, receives the value equal to zero.

Finally, when LJ energy function is calculated, it is considered the NL calculated in
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Algorithm 5 – Lennard-Jones Potential Energy Calculation with Neighbour List.
LJEnergy
id← ThreadID + BlockID x BlockSize
for i=(id+2) : i < 𝑁 do

if Neighbourlist[id][i]=1 then
Calculate the energy between the particle[id]
Update particle[id].acceleration
Update particle[i].acceleration

end if
end for
LJEnergyVector[id]← calculated energy
end procedure

Source: own authorship

Table 7 – Information about the protein sequence added.
ID # amino acids AB sequence

2QHT 210

𝐴𝐵𝐴3𝐵2𝐴5𝐵𝐴𝐵𝐴3𝐵4𝐴𝐵3𝐴4𝐵2𝐴2𝐵𝐴4𝐵(𝐵𝐴)2𝐴
𝐵𝐴2𝐵2(𝐴𝐵)2𝐵𝐴4𝐵2𝐴𝐵4𝐴(𝐴𝐵)2𝐴2𝐵2𝐴(𝐴𝐵)2𝐵2

𝐴3𝐵𝐴3𝐵𝐴6𝐵2(𝐴𝐵𝐵𝐴)2𝐵2𝐴3𝐵𝐴4𝐵𝐴(𝐴𝐵)3𝐴2𝐵
𝐴6𝐵3𝐴8𝐵2𝐴(𝐴𝐵)2𝐴4𝐵𝐴𝐵3𝐴𝐵2𝐴𝐵𝐴8(𝐵𝐴)2
(𝐴𝐵𝐵)2𝐴3𝐵3𝐴3𝐵(𝐵𝐴)3𝐴5𝐵𝐴4𝐵𝐴2

Source: own authorship

the previous step. In this procedure, if this pairwise of residues are neighbors, the thread saves

the value in the output vector (see Algorithm 5). Otherwise, the thread verifies the subsequent

pairwise interaction. The summarization of these partial energies values are summarized using

the parallel reduction to sequential addressing method (see Figure 19).

To analyze the speedup of the MD with the NL mechanism, we used 23 artificial protein

sequences ranged from 13 to 28657 amino acids. The artificial sequences were generated using

the Fibonacci sequence method to distribute hydrophobic and polar residues in the artificial

sequence, as presented by Hsu et al. (2003).

Moreover, in the case study, we used three biological protein sequences (2GB1, 1PLC,

and 2QHT) and an artificial sequence (13FIBO), as shown in Table 6. The method used to convert

the amino acid sequence to the AB sequence was presented in Section 4.1.3. There is one protein

sequence changed to test this mechanism when compared in the purely parallel MD algorithm

experiment. It was changed the 5NAZ to the 2QHT (see Table 7), given miss values in the amino

acid sequence data in the PDB. The 2QHT is a protein that has 210 amino acids, while 5NAZ

has 229 amino acids.
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4.2 DEEP LEARNING

In this section, it is described the DL method applied to the PFP. Figure 18(b) presents

a simplified overview of the proposed approach.

4.2.1 Protein Folding Dataset

The protein folding dataset was generated using the PathMolD-AB6 software package,

which was previously presented in Section 4.1. Then, the parallel implementation of MD in

the canonical ensemble and the minimalist model for representing proteins known as 3D-AB

off-lattice were used in this step to simulate the protein folding datasets.

Three protein sequences were used to generate the folding pathways datasets, as shown

in Table 6. The first sequence (13FIBO), created by Stillinger and Head-Gordon (1995), is a

synthetic protein with 13 amino acids. The other two proteins are real-world biological sequences

extracted from Protein Data Bank: 2GB1 (GRONENBORN et al., 1991) and 1PLC (GUSS et

al., 1992), with 56 and 99 amino acids, respectively. The 20 different proteinogenic natural

amino acids present in biological sequences were translated into AB (A for hydrophobic, and B

for polar) sequence. This translation was accomplished based on the Alberts (ALBERTS et al.,

2002) scale, as presented in the Section 4.1.1.

Each dataset is constituted of a series of protein folding pathways. Besides, each

folding pathway data is comprised of a sequence of folding states. Where a folding state is a

representation of a protein conformation in a specific iteration of the simulation (see Figure 7).

The dataset comprises 1,000 different folding pathways per protein sequence, each one starting

from a different initial folding state. Each pathway is composed of 1,000 folding states equally

spaced in time. Therefore, the final number of folding states is 106 for each protein dataset.

4.2.1.1 Evaluation Measures

An analysis of the structural similarity between subsequent folding states of the path-

ways is proposed in this work. For this purpose, we use the Root-Mean-Square-Deviation (RMSD)

to evaluate the structural difference between two protein structures, as shown in Equation 38.
6 https://github.com/bioinfolabic/protein_folding_datasets (accessed 24 November 2020)

https://github.com/bioinfolabic/protein_folding_datasets
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𝑅𝑀𝑆𝐷 =

√︃∑︀𝑆−1
𝑖=1 |𝑃1,𝑖 − 𝑃2,𝑖|

𝑆
, (38)

where 𝑆 represents the number of amino acids, and 𝑃1𝑖 and 𝑃2𝑖 are the Cartesian coordinates of

the protein structures 𝑃1 and 𝑃2 at time stamp 𝑖, respectively.

Since the RMSD is a rotation-dependent measure, an optimized RMSD is done using

the Kabsch algorithm (KABSCH, 1978) to obtain the smallest RMSD.

4.2.1.2 Pre-processing the Protein Folding Dataset

Each sample of the dataset is comprised by inputs and a target. Input data consist

in 𝜏 subsequent folding states, for example, if the initial state is equal to 1 and 𝜏 = 4, then
−−−−→
𝑖𝑛𝑝𝑢𝑡𝑠 = {𝜒1, 𝜒2, 𝜒3, 𝜒4}. Therefore, the target data consists in the next folding state of the last

input data (𝑡𝑎𝑟𝑔𝑒𝑡 = 𝜒5).

We organized datasets as follows: separating 𝜏 states of folding subsequent of the

pathways data as input data, and the next folding states as target data. Using a hold-out procedure,

we split these samples into the train, validation, and test subsets (70% for the train, 20% for the

validation, and 10% for the test) based on our previous work (HATTORI et al., 2018).

DL methods are highly based on the data and the encoded of these data. In this work, it

was proposed the Relative Spherical Coordinate (RSC) encoding to represent the states of the

protein structure in the input and output data (HATTORI et al., 2018). This scheme dealing with

geometrical constraints of the fixed unit-length bonds between amino acids (𝑟), when using the

3D-AB off-lattice model.

Due to the PathMolD-AB generating and storing protein structures data in the Cartesian

coordinate encoding (𝑥, 𝑦, 𝑧), it was necessary to perform a pre-processing step to convert into

the RSC encoding (𝜃, 𝜙). This procedure is presented in the Algorithm 6. Considering the folding

of a protein with 𝑆 amino acids, this conversion is performed in subsequent amino acid pair,

such as, between 𝑖th and (𝑖 + 1)th, (𝑖 + 1)th and (𝑖 + 2)th, until the (𝑆 − 1)th and 𝑆th pair, as

presented in Figure 23(b). Thus, an RSC encoding has 2𝑆 − 2 variables, and 𝑟 is equal to one as

the unit length bonds between amino acids in the 3D-AB off-lattice model. Finally, RSC vectors

are normalized of the range [0 : 𝜋] and [−𝜋 : 𝜋] to the range [0 : 1].
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Algorithm 6 – Conversion procedure of the Cartesian coordinate to the RSC, as proposed in (HATTORI et
al., 2018).

1: Start
Let 𝑆 be the protein size (number of amino acids)
Let 𝑝 be the input Cartesian coordinates ( −→𝑥 𝑖, −→𝑦 𝑖, −→𝑧 𝑖)
Let
−−−→
𝑅𝑆𝐶 be the relative Spherical coordinates of the output

Let 𝑟 be the unit length bond between 𝑖 and (𝑖+ 1) amino acids
2: for 𝑖 = 1→ 𝑆 − 1 do
3: for 𝑗 = 0→ 𝑆 do
4: 𝑥𝑗 = 𝑥𝑗 − 𝑥𝑖−1

5: 𝑦𝑗 = 𝑦𝑗 − 𝑦𝑖−1

6: 𝑧𝑗 = 𝑧𝑗 − 𝑧𝑖−1

7: end for
8: 𝑅𝑆𝐶.𝑟𝑖−1 = 𝑠𝑞𝑟𝑡(𝑥2

𝑗 + 𝑦2𝑗 + 𝑧2𝑗 )
9: 𝑅𝑆𝐶.𝜃𝑖−1 = 𝑎𝑐𝑜𝑠(𝑧𝑗/𝑅𝑆𝐶.𝑟𝑖−1)

10: 𝑎.𝜙𝑖−1 = 𝑎𝑡𝑎𝑛2(𝑦𝑗/𝑥𝑗)
11: 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝑅𝑆𝐶)
12: end for
13: return 𝑎
14: End

Source: Hattori et al. (2018)

Figure 23 – (𝑎) LSTM for the protein folding prediction based on the many-to-one model. (𝑏) Sample of the
relative spherical coordinate vector of the state 𝜒0 from a protein with 𝑠 amino acids.

(a) Many-to-one model. (b) Relative Spherical Coordenates.
Source: own authorship

4.2.2 RNN Many-to-one Encoding

As presented in the previous section, the data is encoded using RSC, the input data is

composted by a sequence of folding states, and the target data is composed by the next folding

state. Then, we modelled the RNN with the many-to-one model to receive the input data and to

compare the target data.

Considering the folding of a protein with 𝑆 amino acids, we represent the set of relative

spherical coordinates of the amino acids as a one-dimensional feature vector, as shown in Figure

23(a) (step 3). The first amino acid of the sequence is located at the origin. Thus, a feature vector

has (2𝑆 − 2) variables, these positions 𝑘th and 𝑘 + 1th represent the spherical coordinates 𝜃𝑘 and
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𝜙𝑘 of the second to 𝑆 amino acid of the sequence. The input and output vectors are normalized

in the range of [0 : 1].

4.2.3 RNN Setup and Architecture

In this study, the Gradient Optimizer RMSProp (TIELEMAN; HINTON, 2012) is used

to optimize the gradient descent of the RNNs network. The RMSProp was selected among others

based on a previous analysis of optimizers (HATTORI et al., 2017b).

The RNN methods used in this work are sRNN, GRU, or LSTM, which are commonly

explored in the literature (see Section 3.1). In the benchmark analysis using these RNN, 800

neurons were used in the networks, based on our previous work (HATTORI et al., 2018). The

output layer added a fully-connected layer with the number of RSC used to represent the protein

structure (see Figure 23(a)), such as 24 neurons for 13FIBO protein, 110 for 2GB2, and 196

for the 1PLC. The activation function of the output layer is a sigmoid function to obtain output

values in the range [0,1].

As proposed by Hattori et al. (2018), the cost function applied in this study is the Mean

Absolute Error (𝑀𝐴𝐸), shown in Equation 39, which is used to evaluate the prediction of RSC

concerning target data.

𝑀𝐴𝐸 =

∑︀𝑆−1
𝑖=1 |𝑡𝑎𝑟𝑔𝑒𝑡− 𝑜𝑢𝑡𝑝𝑢𝑡|

𝑆 − 1
, (39)

this measure is the absolute difference between the predicted (𝑜𝑢𝑡𝑝𝑢𝑡) and the 𝑡𝑎𝑟𝑔𝑒𝑡.

Here, both 𝑡𝑎𝑟𝑔𝑒𝑡 and 𝑜𝑢𝑡𝑝𝑢𝑡 are in the range [0 : 1] and 𝑆 is the sequence length.

In this work, it was also used the trained model to compare the predict results of the

test subset with the target data generated by the MD approach in terms of radii of gyration (see

Section 4.1.2) and energies (see Section 2.4.3). To perform this analysis the output vector is

returned to the real range, and the RSC encoding is represented in the Cartesian coordinates.

Then, we calculated the radii of gyration and energies of the output and the target structures.
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5 RESULTS AND ANALYSIS

As presented in Chapter 4, we propose a framework to generate a dataset of protein

folding pathways to train DL methods (HATTORI et al., 2020a; HATTORI et al., 2020b). In

our preliminary study, we observe indications that this approach is viable and could improve

(HATTORI et al., 2018). In this regard, we consolidate and enhance this methodology. In the

next sections, we will present these results stating from the results of the generation of the in

silico dataset, experiments to improve the acceleration of the dataset generation, and the DL

methods benchmark with a new model.

5.1 GENERATION OF THE PROTEIN FOLDING DATASET

Experiments were run in a workstation running Ubuntu 18.04 LTS operating system,

composed of an Intel i7-8700 processor at 3.2GHz, 32 GBytes RAM, and an Nvidia Titan-Xp

GPU (12 GBytes RAM DDR5 and 3,840 CUDA cores at 1.6 GHz). The code was developed

using the standard C programming language, and for the parallelization of the code, the CUDA

library was used.

5.1.1 Performance of the parallel PathMolD-AB

This Section aims at verifying the computational efficiency of the proposed parallel

MD method of the PathMolD-AB software package. The reference for comparison is the pure

sequential approach, previously introduced by (BENÍTEZ; LOPES, 2012).

The sequences used to evaluate the performance of the proposed parallel MD were the

four proteins shown in Section 4.1.2. Other synthetic sequences, ranging from 286 to 28,657

amino acids, were also used specifically to assess the scalability of the parallel approach.

The experiments performed were based on 3,000 iterations of the MD method for

both serial and parallel approaches. The comparison metric used was the speedup, that is, the

processing time of the sequential approach is divided by the corresponding processing time of

the parallel approach. Figures 24(a) and 24(b) show the processing time of the MD functions

(summarization, initialization, thermostat, evaluate, shake algorithm, update velocity, update

position, Lennard-Jones energy, torsion energy, and bond energy) for both approaches. The most
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time-consuming part is the computation of the LJ function, considering the sequential approach.

Only for the smallest protein (with 13 amino acids), the processing time of the initialization

function exceeded the other functions. On the other hand, for the parallel approach, the processing

time of the LJ function decreased significantly when compared to the sequential approach.

We observed that the computation of the geometric constraints (see Algorithm 1) tends

to increase when compared to the sequential approach. Unfortunately, this algorithm is not

parallelizable. The adjustment of the (𝑖+ 1)-th residue depends on the adjustment of the previous

one. Also, the velocities update depends on the adjustment of the coordinates.

Figure 24 – Processing time of the PathMolD-AB functions, for both, sequential and parallel approaches.

(a) Sequential approach

(b) Parallel approach
Source: own authorship

The speedup of the parallel model relative to the sequential model was evaluated using

synthetic sequences of different growing sizes (see Figure 25). Surprisingly, a speedup lower than

one (the sequential approach was faster than the parallel version) was observed for sequences

smaller than 99 amino acids, such as 13FIBO and 2GB1. This behavior happened due to the time

required for the communication between GPU-CPU and, more specifically, by the initialization

function. On the other hand, for sequences larger than 99 amino acids, such as 1PLC, a speedup

higher than one was obtained, indicating that the parallel approach is faster than the serial one.
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The largest sequence used in this experiment had 28,657 amino acids, and the corresponding

speedup was 23.27. This result suggests that the parallel approach has high scalability for large

sequences than the sequential approach. Regardless of the sequential or parallel approach, the

processing time tends to follow a logarithmic curve, as shown in Figure 24(b). This Figure

allows inferring that the function that most influences the speedup decay is that in charge

of processing the geometric constraints (the Shake algorithm), which increases for the larger

sequences, exceeding the time required by the LJ function.

Figure 26 shows the speedup values for the three energy functions of the PathMolD-AB

(torsion, bond, and Lennard-Jones). The highest speedup value was achieved for the Lennard-

Jones energy (see Speedup LJ). This result indicates that the parallelization of the LJ function

contributed the most to the overall speedup. This result is quite important, considering that the

computation of this energy is the most time-consuming in the sequential approach. Although the

bond and torsion energies (see Speedup Torsion and Speedup Bond) achieved lower speedup

than LJ, some improvement in the speedup can also be observed for large sequences. Overall, the

parallelization of these two functions also helped to increase the speedup value of the approach.

Despite the speedup decay of the parallel approach for the large protein sequences, most

of the real biological proteins are quite below that upper bound (BROCCHIERI; KARLIN, 2005;

TIESSEN et al., 2012). The statistical information extracted from PDB, as shown in Figure 27,

corroborates that this improvement covers more than 92 % of proteins currently deposited in

PDB.

Figure 25 – Overall speedup for the simulation of a single pathway, considering the sequential and parallel
approaches.

Source: own authorship
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Figure 26 – Energy functions speedup for the simulation of a single pathway, considering the sequential and
parallel approaches.

Source: own authorship

Figure 27 – Number of entries per protein size range

Source: www.rcsb.org/. Acessed in October 2019).

5.1.2 Data analysis of the case study

As proposed in Section 4.1.3, we generated a dataset of protein folding pathways for

four case studies: 13FIBO, 2GB1, 1PLC, and 5NAZ.

A high diversity of initial conformations is required to show that the structures will

evolve towards their native structure, starting from any initial spatial position. Therefore, the

initial structures were randomly initialized before running the PathMolD-AB simulation. In

such a situation, it is essential to evaluate how different the initial structures generated are and,

www.rcsb.org/
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conversely, how similar are the final ones after the simulation. For each case study, all the 1,000

protein structures were compared one each other, in the first and the last step of the pathways.

The comparison of two structures is not trivial, since they must be previously aligned using

the Kabsch-RMSD method (see Section 4.1.4). Results were normalized in the range [0..1] and

plotted in the heatmaps shown in Figure 28, for the initial and final structures.

Each point of the horizontal and vertical axes of the heatmaps represents a protein

structure at a given point of the pathway (in this case, either the initial or the final point). The

darker the color in the heatmap, the closer to 1 it is according to the Kabsch scale, meaning that

the structures tend to be different. The opposite holds, meaning similar spatial structures.

As mentioned before, the values of the potential energy and the radii of gyration were

also recorded along the pathway. They give additional insights about the compactness of the

protein and convergence of the folding process towards the native structure of the protein. Figure

29 illustrates the potential energy (𝐸𝑝), normalized in the range [1..0], at each pathway time step.

It is shown that the energy starts near one and decreases along with the iterations and tends to

stabilize at the end of the simulation.

Figure 30 shows the radii of gyration (𝑅𝑔𝑃 , 𝑅𝑔𝐻 , and 𝑅𝑔𝐴𝑙𝑙) of the proteins, normal-

ized in the range [0..1]. It is shown that, in the beginning, all the radii of gyration are high, but

soon decay exponentially, and later stabilize at low values.

Additional information is provided in Table 8. It presents the average and standard

deviation values of the energy and the radii of gyration, computed at the final step of the pathways.

Final values of 𝑅𝑔𝐻 are lower than 𝑅𝑔𝑃 , suggesting the formation of a hydrophobic core (DILL;

MacCallum, 2012). Notice that the standard deviations are small for all cases, confirming that

proteins converged to quite similar compact structures at the final step of the pathways, as

previously shown by the heatmaps.

5.1.3 Comparison with biological structures

As mentioned in Section 4.1.4, we proposed a procedure for comparing the structures

predicted by the MD method with structures re-scaled from the PDB.

Figure 31 shows the results for the 2GB1 and 1PLC proteins in terms of 𝑅𝑔𝐴𝑙𝑙, 𝑅𝑔𝐻 ,

and 𝑅𝑔𝑃 (see Equation 36). The results showed that the protein folding simulation yielded

compactness values closer to the native structure. This behavior suggests that the method tends

to bring the unfolded structure closer to the native biological structure. We also observed that the



77

Figure 28 – (a,c,e,g) Normalized Kabsch RMSD between the 1,000 initial structures of the four datasets, and
the final structures similarity (b,d,f,h).

(a) (b)

(c) (d)

(e) (f)

(g) (h)
Source: own authorship

predicted structures tended to be more compact than those of the PDB, and the radii of gyration

of hydrophobic and polar were not as distinct as those of the prediction. Possibly, the lower

values of the compactness of the predicted structures may have been caused by the weight of

the hydrophobicity interactions in Equation 13. Overall, results suggest a further refinement of

those parameters to improve the model representation. In addition, it depends on the degrees of

freedom of their simplified systems and the convergence criterion of pathMolD-AB.
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Figure 29 – Average potential energy (𝐸𝑝) per iteration.

(a) 13FIBO (b) 2GB1

(c) 1PLC (d) 5NAZ
Source: own authorship

Figure 30 – Average radii of gyration (𝑅𝑔𝐴𝑙𝑙, 𝑅𝑔𝑃 and 𝑅𝑔𝐻) per iteration.

(a) 13FIBO (b) 2GB1

(c) 1PLC (d) 5NAZ
Source: own authorship

The predicted and the re-scaled biological structures were directly compared using the

Kabsch-RMSD method (see Section 4.1.4), as shown in Figure 32. Kabsch-RMSD values were

observed to be more distinct ( 6 for the 1PLC and 4.5 for the 2GB1) in the initial iterations than

in the final ones ( 4.5 for the 1PLC and 3.5 for the 2GB1). Similarly, the standard deviation
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Table 8 – Average and standard deviation energy and radii of gyration of the final state for the four proteins
(13FIBO, 2GB1, 1PLC and 5NAZ).

Protein Structure Predicted (avg. ± 𝜎)
13FIBO 2GB1

𝐸𝑝 −24.921± 0.831 −156.117± 3.884
𝑅𝑔𝐴𝑙𝑙 1.080± 0.027 1.840± 0.035
𝑅𝑔𝐻 0.896± 0.090 1.600± 0.093
𝑅𝑔𝑃 1.164± 0.069 1.970± 0.058

1PLC 5NAZ
𝐸𝑝 −331.246± 7.136 −808.516± 12.08
𝑅𝑔𝐴𝑙𝑙 2.306± 0.080 3.192± 0.175
𝑅𝑔𝐻 2.147± 0.120 2.929± 0.155
𝑅𝑔𝑃 2.452± 0.081 3.443± 0.211

Source: own authorship

Figure 31 – Radii of Gyration of the crystallized structure (from the PDB) and predicted structure by
PathMolD-AB, at the initial and final step of the simulation.

(a) 2GB1 (b) 1PLC
Source: own authorship

is higher in the initial iterations than in the final ones. These results reinforce the analysis of

compactness presented before and the conclusion that the simulation produces results structurally

similar to the biological structure (see, also, the diagram of Figure 33).

Figure 32 – Kabsch-RMSD (Mean and standard deviation) between the biological sequence and the predicted
structure along of the iterations.

Source: own authorship
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Figure 33 – Sample of a folding pathway simulation of 2GB1 and 1PLC proteins compared with the re-scaled
biological structures from the PDB.

Source: own authorship

5.2 PARALLEL MOLECULAR DYNAMICS WITH NEIGHBOURHOOD LIST

This Section aims at analyzing the feasibility of the proposed Neighbourhood List

with a parallel Molecular Dynamic method (NL) presented in Section 4.1.5. Our approach

was compared with results obtained with the pure sequential MD (seq) and parallel MD (par)

approaches (previously presented by (BENÍTEZ; LOPES, 2012) and (HATTORI et al., 2020b)).

This analysis includes experiments of the relative processing time assessment and speedup

evaluation. We also investigated the energy over time to observe the impact of the NL application.

The cut-off radius that defines the neighbors of each protein was based on the analysis

of the Lennard-Jones energy (LJ) values in different distances, as shown in Figure 34. The energy

was based on the value generated by two hydrophobic residues in five different distances between

two to six. Results indicated a high energy decay for a longer distance between the residues,

as expected, given the Equation 12. For example, the energy value for a distance equal to four

(−9.76𝑥10−4) between two hydrophobic residues represents only 1.58% when compared to the

energy in the distance equal to two (−6.15𝑥10−2). Then, residues with distances higher than

four have even fewer values and are near to zero. Given that this work´s main objective is not to

test different cut-off radius values, we defined empirically this value equal to four.



81

Figure 34 – The absolute Lennard-Jones energy value is generated by interacting two hydrophobic residues
(AA) at different distances.

Source: own authorship

5.2.1 Speedup Performance evaluation

The experiments were executed in a GPU Titan XP and 12GB of global memory, CPU

processor Intel(R) Core(TM) i7-8700 3.20GHz with 31GB of RAM with Linux Ubuntu server

18.04. To compile the GPU program, we used CUDA 9.0.

Synthetic sequences were used to evaluate the speedup performance of the NL method

(see Section 4.1.5). The performed experiments were based on 3,000 iterations of the MD

method.

Figures 35(a), 35(b), and 35(c) show the relative processing time of each function

of the MD method for the sequential, parallel, and NL approaches, respectively. In the pure

sequential and parallel models, we observed the same behavior of the previous works presented

by (HATTORI et al., 2020b). In the sequential model, it was shown that most of the used

processing time is spent by the LJ function. Also, it was observed in the parallel model that the

proportion of LJ function time-consumption decreased when compared to the sequential model.

In the NL model, we observed that the time-consumption of the LJ calculation decreased

even more when compared to the other two models. Furthermore, for larger protein sequences,

the relative processing time almost vanishes from the plot. On the other hand, we observed

that the Shake algorithm is a new issue for larger protein sequences (see Algorithm 1). As

previously presented by (HATTORI et al., 2020b), this algorithm is a non-parallel process given

the dependence of the variables that are updated.

The speedup performance of the sequential and parallel models was evaluated with
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Figure 35 – Time-consuming of the MD functions in the sequential, parallel, and parallel with neighbourhood
list.

(a) Sequential version

(b) Parallel version

(c) Parallel with neighbourhood list
Source: own authorship

chains of different amounts of amino acids, as showed in Figure 36. The speedup metric consists

of the division of the computational time of one model by the other model. For example: the time

generated by the sequential model divided by the pure parallel version. Figure 36(a) shows the

overall speedup between the sequential model and the parallel MD (𝑠𝑒𝑞 − 𝑝𝑎𝑟), as well as the

sequential model and parallel MD with the NL technique (𝑠𝑒𝑞 − 𝑛𝑙). We observed that the NL

approach obtained performance improvement when compared to the parallel model speedup for

all different proteins’ sizes. As shown in the zoom, the NL method overcomes the performance

of the sequential model (speedup > 1) for protein sequences larger than 56 amino acids, while

the pure parallel model overcomes the sequential approach for proteins higher than 99 amino

acids. Despite the performance improvement, the speedup curve maintained the same logarithmic

behavior.

As previously demonstrated in Figure 35(a), the LJ function is the most time-

consumption function in the sequential model. As shown in Figure 36(c), the NL model showed
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Figure 36 – Speedup analysis of the parallel and NL models.

(a) Speedup between the sequential and parallel model (𝑠𝑒𝑞 − 𝑝𝑎𝑟), and speedup between the
sequential and parallel model with neighborhood list (𝑠𝑒𝑞 − 𝑛𝑙).

(b) Speedup between the parallel model and par-
allel model with neighborhood list (𝑝𝑎𝑟 − 𝑛𝑙).

(c) Speedup of the Lennard-Jones function of the
sequential and parallel models (𝑠𝑒𝑞−𝑝𝑎𝑟 𝐿𝐽),
and the speedup of the Lennard-Jones func-
tion of the sequential and NL model, includ-
ing the time of the neighborhood update list,
(𝑠𝑒𝑞 − 𝑛𝑙 𝐿𝐽 + 𝑙𝑖𝑠𝑡𝑢𝑝𝑑𝑎𝑡𝑒).

Source: own authorship

a higher performance in terms of LJ speedup when compared to the parallel model, even when

the time required by the updated list is added, this approach shows a higher speedup. We also

compared the speedup between the parallel model and the NL method (𝑝𝑎𝑟 − 𝑛𝑙), as shown in

Figure 36(b). The results suggested that the improvement of the NL approach performance was

between 99 and 916 amino acids. The NL achieves performance at least four times faster than

the pure parallel model. This result is a crucial improvement given that many biological proteins

contain this range of amino acids in the chain (BROCCHIERI; KARLIN, 2005; TIESSEN et al.,

2012). Based on PDB statistical information, this improvement covers more than 80% of the

proteins from PDB, as presented in Figure 27.
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5.2.2 Case Study

In this section, an analysis is presented of the behavior of energy and the compactness

along the folding process. These analyses were performed with the sequential model and with

the NL approach in four case studies (13FIBO, 2GB1, 1PLC, and 2QHT), see Sections 4.1.3 and

4.1.5 for more details. Also, the sequential MD as well as the MD with NL simulations were

based on an average of 100 experiments.

Figures 37(a), 37(b), 37(c), and 37(d) show the normalized potential energy between

zero and one along the iteration for 13FIBO, 2GB1, 1PLC, and 2QHT. Overall, we observed that

the NL technique does not change the energy decay behavior, even for the longer protein used

in this case study (2QHT). Surprisingly, the potential energy for the 13FIBO obtained smaller

values in the NL simulation. Despite producing a lower energy value, the results suggest that

applying NL to smaller proteins may be more sensitive. On the other hand, for proteins larger

than 56, just a slight difference in behavior was observed, even for 2QHT protein, where the

cut-off radius represents 1.9% of protein size.

Figures 38(a), 38(b), 38(c), and 38(d) show the 𝑅𝑔𝐴𝐿𝐿 normalized along the folding

simulation. We also observed that the structure compactness obtained similar results between the

NL and the sequential approach. In the simulation of the 13FIBO protein, we observed in the

NL simulation that the structure stabilized in the lower compactness values, while the sequential

structures increased, possibly caused by the interactions between the elements of the structure.

5.3 RECURRENT NEURAL NETWORK FOR THE PROTEIN FOLDING PROBLEM

All experiments done in this section were run on a computer with an Intel Core i7

processor at 3.30GHz, two GPU Nvidia Titan X, and minimal installation of Ubuntu 18.04 LTS
1. The software was developed using the Python programming language, the Keras 2.4, and

Tensorflow 1.3 frameworks 2.

5.3.1 Dataset of protein folding trajectories

This experiment aims at analyzing the protein structure differences along the folding

trajectories. The protein structure was collected along the MD simulation using different spacings.
1 Available in: www.ubuntu.com
2 Available in: https://keras.io/
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Figure 37 – Energy normalized along the simulation for the 13FIBO, 2GB1, 1PLC, and 2QHT proteins.

(a) 13FIBO (b) 2GB1

(c) 1PLC (d) 2QHT
Source: own authorship

Figure 38 – Compactness normalized along the simulation for the 13FIBO, 2GB1, 1PLC, and 2QHT proteins.

(a) 13FIBO (b) 2GB1

(c) 1PLC (d) 2QHT
Source: own authorship
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The 𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒 (see Section 4.2) used in this work was at each 3,000, 6,000, 15,000, and 30,000

iteration of the MD. After that, the subsequence structures were analyzed using the Kabsch

RMSD algorithm (see Section 4.2.1.1) to get the structural differences in distinct 𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒

values.

Figure 39 shows the average Kabsch RMSD (see Section 4.2.1.1) between the consecu-

tive folding states along the trajectories. For all proteins datasets, in the three higher 𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒 val-

ues, we observed more abrupt changes in the structures along the folding process. The 𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒

equal to 3,000 demonstrated smoother changes in the structure than the other 𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒 val-

ues. We also noted differences in structural changes in the 2GB1 and 1PLC datasets for each

𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒. They were indicating that even at the end of the simulation, the bigger the structure,

the higher the changes in the 𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒 values. These abrupt or higher modifications could make

it difficult to predict the tendency of the next folding state. Thus, we adopted the 𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒 equal

to 3,000 for the following experiments with RNN.

5.3.2 Recurrent Neural Networks analysis

In this experiment creates a comparison between the RNN architectures (sRNN, GRU,

and LSTM) and analyzes the number of folding trajectories on network results.

The RNNs setup used the same parameters, described in Section 4.2.3. In this exper-

iment, 100 prior folding states were used to predict the next one. 13FIBO, 2GB1, and 1PLC

datasets (see Section 5.3.1) with 1,000 folding trajectories data were used for the benchmark. A

subset of these folding trajectories with 100 samples was also used to analyze the influence of

the amount of trajectories data in the results.

Table 9 presents the results of the RNN architectures. The RNN with the gate system

(GRU and LSTM) showed smaller prediction errors and more similar results than the sRNN.

Among these gate system networks, the LSTM got the smallest errors between the RNN ar-

chitectures in all datasets. We also observed that a longer protein sequence produces higher

differences between predicted and target structures. When the amount of the protein folding data

was analyzed, we achieved a lower difference between the prediction and target using more data.

The sRNN was the architecture with the most positive impact with the increased data amount.

Finally, the LSTM learning curve showed that the model could generalize the predictions, as

shown in Figure 40.

The second experiment aims to analyze the impact of different amounts of previous
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Figure 39 – The subsequent structural change of the protein over the simulation, considering different
𝑠𝑡𝑒𝑝𝑠_𝑠𝑖𝑧𝑒 (3000, 6000, 15000, 30000).

(a) 13FIBO (b) 2GB1

(c) 1PLC
Source: own authorship

Table 9 – Test loss performance of the sRNN. GRU and LSTM in 13FIBO. 2GB1 and 1PLC datasets using
100 and 1,000 pathways data.

Test Loss (x10^-2)
13FIBO 2GB1 1PLC

network / #pathway 100 1000 100 1000 100 1000
sRNN 7.95 5.60 5.15 4.25 11.58 5.21
GRU 3.17 2.63 4.84 3.85 6.09 4.81

LSTM 3.03 2.53 4.77 3.59 5.97 4.42
Source: own authorship

states to predict the next one. According to the best setup of the previous experiment, we used the

LSTM architecture. The result of the second experiment is present in Figure 41. The LSTM was

tested using 2, 20, 40, 60, 80, and 100 previous folding states. Among these different amounts of

such conditions, we observed an improvement in the prediction using over 20 previous folding
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Figure 40 – LSTM learning curve for the train and test sets using different # pathways.

Source: own authorship

states. However, the use of 20, 40, 60, 80, and 100 of them did not reveal notable improvements.

It was observed that even with the increase of the previous folding states amount, the results for

longer proteins were less effective.

Figure 41 – Test MAE loss for different amounts of previous folding states (2, 20,40,60, 80, and 100) to predict
the next state in 13FIBO, 2GB1, and 1PLC datasets.

Source: own authorship

When compared to the results of the literature, the loss results reduced ten times the

error prediction for the protein 13FIBO (0,33 to 0,03), see Appendix A, showing that the new

network model and dataset proposed in this work contributed to the improved performance of

the result.
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In the third experiment, we analyzed the LSTM predictions in the test subset with the

trained model using other Bioinformatics metrics, such as radii of gyration and energies. These

experiments were performed using the heatmap plot. In this representation, more similar values

between predicted (LSTM) and target (MD) are more concentrated and placed closer to the

diagonal of the heatmap. It is also possible to identify the scattering of these values in this plot

since a considerable density value in one point of the plot increases the color intensity of the

pixel.

The hydrophobic and polar radius of gyration of the LSTM and MD method is pre-

sented in Figure 42. It was observed that the prediction results of the radius of gyration of the

hydrophobic elements (𝑅𝑔𝐻) generated similar values from the prediction (see Figure 42(a)).

It was also detected that this behavior was reproduced at different stages of folding, given that

the distribution of points changes along the diagonal of the plot. The radius of gyration of polar

elements (𝑅𝑔𝑃 ) also showed a similar behavior of the hydrophobic results, as presented in

Figure 42(b). Also, it was noticed that 𝑅𝑔𝐻 results are lower than the 𝑅𝑔𝑃 ones, the expected

behavior of the globular representation of proteins, where the hydrophobic drives the folding

process to generate a core of these elements.

Figure 42 – Heatmap plots of the angle, torsion, and Lennard-Jones energies of the predicted structure
(LSTM) and the target (MD).

(a) Hydrophobic radius of gyration (𝑅𝑔𝐻) (b) Polar radius of gyration (𝑅𝑔𝑃 )
Source: own authorship

The angle, torsion, and Lennard-Jones energies of the LSTM and MD method are

presented in Figure 43. The angle and torsion energies of the predicted model demonstrated a

more similar behavior when compared with the target, as showed in Figures 43(a) and 43(b),

indicating that the relative spherical coordinates can be favorable to represent these two energy

features. We observed that the Lennard-Jones´s energy obtained by the LSTM was higher

than the MD results (see Figure 43(a)), showing a distribution under the diagonal line of the
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plot. The high sensitivity of the LJ energy to near distances of two residues can generate this

difference in the behavior. Even with a small error prediction, the LJ energy might produce

higher values depending on the interaction and the distance of elements. This result shows that

our representation model may not be enough to predict the structure in this energy term.

Figure 43 – Heatmap of angle, torsion, and Lennard-Jones energy of the predicted structure (LSTM) and the
target (MD).

(a) Angle energy (b) Torsion energy

(c) Lennard-Jones energy
Source: own authorship
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6 CONCLUSION

The Protein Folding Problem (PFP) is an open challenge in the Computational Biology

area. Recent studies indicate that Deep Learning approaches have overcome some traditional

methods in many proteomics problems. However, computational intelligence has been poorly

explored for the PFP. In this theses, we proposed a novel approach based on Recurrent Neural

Networks focused on one-step-ahead prediction of protein folding pathways. (1) a framework to

generate protein folding datasets using sequential and parallel MD; (2) an NL approach to the

GPU-parallel MD; and, then, (3) RNNs approaches for the PFP.

MD is an approach widely used for simulating the mechanistic behavior that takes

place during the protein folding. However, MD is computationally intensive, and the processing

time increases exponentially as the number of amino acids of the simulated protein increases.

This fact justifies developing the first step of this thesis, more efficient methods, such as the

PathMolD-AB package. This software package uses MD with the canonical ensemble that deals

with the Newtonian evolution of protein models. This software also uses a coarse-grained model

to represent proteins and a parallel master-slave computing architecture that enables experiments

for tracking the Spatio-temporal pathways of protein folding. Such pathways can help analyze

the structure changes over the folding and visualize possible abnormal events during this process,

such as misfolding and structural instability, typical of intrinsically disordered structures.

The performance of parallel and sequential MD approaches showed that the parallel

version is faster than the sequential version for protein sequences larger than 99 amino acids,

and speedup increases significantly for the parallel version. We showed that, among several

functions of the PathMolD-AB package, the LJ function is the most computationally expensive.

Notwithstanding, we achieved the highest speedup in this function with the parallel version,

decreasing the bottleneck of sequential MD method.

The speedup measured in different protein sequences sizes suggested a logarithmic

trend. The decay of speedup for large sequences could result from the massive concurrency

between processing threads in the CUDA cores of the GPU and the high processing demand

of the Shake algorithm. However, this is not a drawback, since the distribution of the protein

sequences sizes deposited in the PDB shows that the proposed software can simulate the folding

of most biological proteins in the PDB.

PathMolD-AB generated a large amount of simulation data when applied to the case
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studies. Their analyses indicated that at the final state of the Spatio-temporal trajectories lead to

similar conformations, starting from distinct initial structures, as suggested by the energy funnel

theory. The thermodynamic characteristics are coherent with the energy curve that decays at the

initial iterations and stabilizes later.

Furthermore, we showed that the predicted structures simulated by PathMolD-AB

were similar to the re-scaled biological structures. Even considering coarse-grained model

employment, as “biological-like” validation is a step for more realistic simulations.

The main drawback of the PathMolD-AB simulations are that the compactness of

predicted structures were smaller than the re-scaled biological structures. These results suggest

the need to optimize the hydrophobicity interaction weights between the residues proposed by

Irbäck et al. (1997).

In the second step of this thesis, the NL approach to the GPU-parallel MD was proposed

to decrease the computational time of the purely sequential and parallel MD versions. Then, the

time-consumption performance of the NL approach was compared to the purely sequential and

GPU-parallel MD methods (presented in the PathMolD-AB package). Results revealed that the

NL approach reduces the time-consumption of the LJ function compared to the purely sequential

and parallel versions.

The NL approach was faster in almost all cases compared to the purely sequential and

parallel MD versions, only with protein sequences smaller than 56 amino acids, there was a faster

simulation result to the sequential version. The higher improvements of the NL compared to the

purely parallel MD were in simulations with protein sequences between 99 to 1,000, covering

80% of the sequences from Protein Data Bank. This improvement indicates that the NL approach

can be promising for many Bioinformatics and Biophysics studies simulating large sequences.

Since the NL decreases time-consumption omitting long-range pairwise interactions,

the energy curve of simulations were analyzed to observe whether this approach generates

anomalies in the curve. For proteins larger than 13 amino acids, few differences were observed

between the simulation performed were identified by the sequential MD, and the NL approaches.

These results indicate that this approach can be more appropriate for lager protein sequences and

conclusions presented in the speedup experiment.

In the third step of this thesis, RNNs using the many-to-one model were proposed for

the PFP, and protein folding datasets using Relative Spherical Coordinates (RSC) were presented.

Analysis of protein folding datasets indicated that the low frequency of data collection during the
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MD simulation (𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒) generates more sudden changes in the structure. At the beginning of

the simulation, the structure tends to change suddenly, where the energy curve tends to decrease

abruptly. This fact indicates that trajectory data with sudden changes (higher 𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒) can

make it more difficult to predict the movement and to achieve the next folding state.

Regarding the comparative analysis between LSTM, GRU, and sRNN approaches for

the PFP, network architectures with a gated system (GRU and LSTM) obtained the smaller

prediction errors, indicating a more suitable for this problem. LSTM achieved the best results

compared to the GRU and sRNN in all datasets, using less or more protein trajectory data. Thus,

results indicated that LSTM is a more consistent approach to the PFP study.

Regarding the number of previous folding steps for predicting the step ahead, 20

previous folding states generate a higher positive impact on predictions with the LSTM. It was

observed that the addition of previous folding states in the input data helped to decrease the

error prediction, indicating that the many-to-one with the RNN model is an appropriate model to

explore this problem. Concerning the number of previous folding states, we detected a higher

improvement when it was used over 20 previous times. However, we do not observe a significant

difference for longer than 40 previous folding states.

The radii of gyration and energies analysis showed new insights of the predicted

structures. For example, we observed that the compactness of the hydrophobic and the polar

elements between the target and predicted structures obtained similar values. And so the bond

and torsion energies. This shows that the relative spherical representation is suitable for this

problem. However, we observed more dissimilar values between the predicted and the target for

the Lennard-Jones features. A possible reason for this result is the sensibility energy. Additional

investigations regarding the LJ energy shall be done seeking to keep reducing the foreseeability

gap.

The PathMolD-AB package can be applied for several computational studies related to

the PFP and generate new insight about the Spatio-temporal feature of the data. The NL approach

using parallel MD with GPU showed promising features to studies applied to a massive amount

of protein folding data, making this type of research more feasible to be performed. Finally, our

study related to the LSTM obtained new research directions that suggest the continuity of this

work, the initial objectives were achieved satisfactorily.
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6.1 FUTURE WORKS

Future works will address the MD refining, such as the impact of the weights of the

short-range interactions in the PathMolD-AB simulation in order to achieve results closer to the

rescaled biological structure, as reported by (ONOFRIO et al., 2014).

In the NL technique, the future work may include an approach to decrease the frequency

at which the Shake algorithm is computed, since the geometric constraint function causes the

highest computing overhead. We also suggest applying other NL techniques, such as Bound-

ing Volume Hierarchy (BVH) (ERICSON, 2004), and Bounding Volume Compressed (BVC)

(HOWARD et al., 2019b). In addition, another distance metrics will be considered, such as

Mahalanobis distance (MARTOS et al., 2013).

Other works may include Transfer Learning analysis between RNN models trained in

different datasets (13FIBO, 2GB1, 1PLC, and 5ANZ). It is suggested to perform the protein

folding prediction with other types of RNN, such as the Neural Turing Machines and Memory

Networks. Other features can be considered to decrease the protein folding prediction error,

such as the hydrophobicity of the protein sequence. In addition, experiments applying Transfer

Learning techniques are proposed as future work (WEN et al., 2020).
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UEDA, Yuzo; TAKETOMI, Hiroshi; GŌ, Nobuhiro. Studies on protein folding, unfolding, and
fluctuations by computer simulation. Biopolymers, v. 17, n. 6, p. 1531–1548, 1978.

VENDRUSCOLO, M; PACI, E; DOBSON, CM; KARPLUS, M. Three key residuees form a
critical contact network in a transition state for protein folding. Nature, v. 409, n. 1, p. 641–645,
2001.

Villegas-Morcillo, A.; Gomez, A. M.; Morales Cordovilla, J. A.; Sanchez Calle, V. E. Protein
fold recognition from sequences using convolutional and recurrent neural networks. IEEE/ACM
Transactions on Computational Biology and Bioinformatics, IEEE Press, Piscataway, NJ,
v. 14, n. 1, p. 1–8, 2020.

VIVO, Marco De; MASETTI, Matteo; BOTTEGONI, Giovanni; CAVALLI, Andrea. Role of
molecular dynamics and related methods in drug discovery. Journal of Medicinal Chemistry,
v. 59, n. 9, p. 4035–4061, 2016.

WANG, Sheng; PENG, Jian; MA, Jianzhu; XU, Jinbo. Protein Secondary Structure Prediction
Using Deep Convolutional Neural Fields. Scientific Reports, v. 6, n. 1, p. 1–11, 2016.



118

WANG, Sheng; SUN, Siqi; LI, Zhen; ZHANG, Renyu; XU, Jinbo. Accurate De Novo Prediction
of Protein Contact Map by Ultra-Deep Learning Model. PLOS Computational Biology, Public
Library of Science, v. 13, n. 1, p. 1–34, 2017.

WANG, Zhiyong; ZHAO, Feng; PENG, Jian; XU, Jinbo. Protein 8-class secondary structure
prediction using conditional neural fields. Proteomics, v. 11, n. 19, p. 3786–3792, 2011.

WATABE, M.; NAKAKI, T. ATP depletion does not account for apoptosis induced by inhibition
of mitochondrial electron transport chain in human dopaminergic cells. Neuropharmacology,
v. 52, n. 2, p. 536 – 541, 2007.

WEN, Bo; ZENG, Wen-Feng; LIAO, Yuxing; SHI, Zhiao; SAVAGE, Sara R.; JIANG, Wen;
ZHANG, Bing. Deep learning in proteomics. PROTEOMICS, v. 20, n. 21-22, p. 1900335,
2020.

WEN, Jingran; SCOLES, Daniel R; FACELLI, Julio C. Molecular dynamics analysis of the
aggregation propensity of polyglutamine segments. PloS One, v. 12, n. 5, p. e0178333, 2017.

WERBOS, Paul J. Backpropagation through time: what it does and how to do it. Proceedings of
the IEEE, v. 78, n. 10, p. 1550–1560, 1990.

WIMLEY, William C; WHITE, Stephen H. Experimentally determined hydrophobicity scale
for proteins at membrane interfaces. Nature Structural & Molecular Biology, v. 3, n. 10, p.
842–848, 1996.

WOLFF, Katrin; VENDRUSCOLO, Michele; PORTO, Markus. Coarse-grained model for
protein folding based on structural profiles. Physical Review E, v. 84, n. 4, p. 041934, 2011.

WOLYNES, P G; ONUCHIC, J N; THIRUMALAI, D. Navigating the folding routes. Science,
v. 267, n. 5, p. 1619–1620, 1995.

WOOD, Matthew J; HIRST, Jonathan D. Protein secondary structure prediction with dihedral
angles. PROTEINS: Structure, Function, and Bioinformatics, v. 59, n. 3, p. 476–481, 2005.

WU, Sitao; ZHANG, Yang. ANGLOR: a composite machine-learning algorithm for protein
backbone torsion angle prediction. PloS One, v. 3, n. 10, p. e3400, 2008.

XUE, Bin; DOR, Ofer; FARAGGI, Eshel; ZHOU, Yaoqi. Real-value prediction of backbone
torsion angles. Proteins: Structure, Function, and Bioinformatics, v. 72, n. 1, p. 427–433,
2008.



119

YANG, Jae Shick; CHEN, William W.; SKOLNICK, Jeffrey; SHAKHNOVICH, Eugene I.
All-atom ab initio folding of a diverse set of proteins. Structure, v. 15, n. 1, p. 53 – 63, 2007.

YANG, Lin; ZHANG, Feng; WANG, Cai-Zhuang; HO, Kai-Ming; TRAVESSET, Alex.
Implementation of metal-friendly EAM/FS-type semi-empirical potentials in HOOMD-blue: A
GPU-accelerated molecular dynamics software. Journal of Computational Physics, v. 359, p.
352 – 360, 2018.

YANG, Tao; KECMAN, Vojislav; CAO, Longbing; ZHANG, Chengqi; HUANG, Joshua Zhexue.
Margin-based ensemble classifier for protein fold recognition. Expert Systems with
Applications, v. 38, n. 12, p. 348–355, 2011.

YANG, Yuedong; HEFFERNAN, Rhys; PALIWAL, Kuldip; LYONS, James; DEHZANGI,
Abdollah; SHARMA, Alok; WANG, Jihua; SATTAR, Abdul; ZHOU, Yaoqi. SPIDER2: A
package to predict secondary structure, accessible surface area, and main-chain torsional angles
by deep neural networks. In: Prediction of Protein Secondary Structure. Heidelberg: Springer,
2017. p. 55–63.

YASEEN, Ashraf; LI, Yaohang. Context-based features enhance protein secondary structure
prediction accuracy. Journal of Chemical Information and Modeling, v. 54, n. 3, p. 992–1002,
2014.

YASEEN, Ashraf; LI, Yaohang. Template-based C8-SCORPION: a protein 8-state secondary
structure prediction method using structural information and context-based features. BMC
Bioinformatics, v. 15, n. 8, p. 153–164, 2014.

ZACHARIAS, Martin. Protein–protein docking with a reduced protein model accounting for
side-chain flexibility. Protein Science, v. 12, n. 6, p. 1271–1282, 2003.

ZAKI, Mohammed J; NADIMPALLY, Vinay; BARDHAN, Deb; BYSTROFF, Chris. Predicting
protein folding pathways. Bioinformatics, v. 20, n. 5, p. i386–i393, 2004.

ZEILER, M. D. DADELTA: An Adaptive Learning Rate Method. ArXiv. 2012.

ZEYTUNI, Natalie; HONG, Chuan; FLANAGAN, Kelly A; WORRALL, Liam J; THEILTGES,
Kate A; VUCKOVIC, Marija; HUANG, Rick K; MASSONI, Shawn C; CAMP, Amy H;
YU, Zhiheng et al. Near-atomic resolution cryoelectron microscopy structure of the 30-fold
homooligomeric SpoIIIAG channel essential to spore formation in Bacillus subtilis. Proceedings
of the National Academy of Sciences, v. 114, n. 34, p. E7073–E7081, 2017.

ZHENG, Wenjun; WEN, Han. A survey of coarse-grained methods for modeling protein
conformational transitions. Current Opinion in Structural Biology, v. 42, n. 1, p. 24–30, 2017.



120

ZHENG, Wei; WUYUN, Qiqige; LI, Yang; MORTUZA, S. M.; ZHANG, Chengxin; PEARCE,
Robin; RUAN, Jishou; ZHANG, Yang. Detecting distant-homology protein structures by
aligning deep neural-network based contact maps. PLOS Computational Biology, v. 15, p.
1–27, 10 2019.

ZHOU, Changjun; SUN, Chuan; WANG, Bin; WANG, Xiaojun. An improved stochastic fractal
search algorithm for 3D protein structure prediction. Journal of Molecular Modeling, v. 24,
n. 6, p. 125, 2018.

ZHOU, Jian; TROYANSKAYA, Olga G. Deep supervised and convolutional generative
stochastic network for protein secondary structure prediction. ArXiv. 2014.

ZHOU, Ting; CAFLISCH, Amedeo. Free energy guided sampling. Journal of Chemical
Theory and Computation, v. 8, n. 6, p. 2134–2140, 2012.

ZHU, Jianwei; ZHANG, Haicang; LI, Shuai Cheng; WANG, Chao; KONG, Lupeng; SUN,
Shiwei; ZHENG, Wei-Mou; BU, Dongbo. Improving protein fold recognition by extracting
fold-specific features from predicted residue–residue contacts. Bioinformatics, v. 33, n. 23, p.
3749–3757, 2017.



ANNEX



122

ANNEX A – PUBLICATIONS

It was developed projects in different Computational Intelligence areas that help, directly

or indirectly, the development of this Thesis. These works are present bellow:

An approach to identifying writer based on songwriting images using Convolutional

Neural Networks ( (HATTORI et al., 2017c), Data augmentation effects on CNN performance

(AQUINO et al., 2017b), soft biometrics classification using Convolutional Autoencoders (

(AQUINO et al., 2017a) Unsupervised image classification (GUTOSKI et al., 2017), political

parties using clustering methods (INACIO et al., 2018), how to measure the importance, influence,

and relevance of Twitter users? (GABARDO et al., 2018). An analysis of the transfer learning

technique for the anomaly detection (GUTOSKI et al., 2020) A qualitative analysis of the Deep

Learning frameworks (GUTOSKI et al., 2018). A framework for analyzing book covers and

co-purchases using object detection and data mining methods was proposed by Berno et al.

(2019). A classification approach to identify weeds and crops at the pixel-level using CNNs was

presented in Brilhador et al. (2019).
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Abstract—The Protein Folding Problem (PFP) is considered
one of the most important open challenges in Biology and
Bioinformatics. Long Short-Term Memory (LSTM) methods have
risen recently, achieving the state-of-art performance for several
Bioinformatics problems such as, protein secondary and tertiary
protein structure prediction. This paper describes the application
of a novel approach based on the LSTM networks to the PFP
using a coarse-grained model of proteins. An specific encoding
scheme for representing protein folding states is also presented.
The proposed approach was evaluated by means of several
experiments with a dataset of protein folding, which was obtained
by Molecular Dynamics simulations. We also propose a novel
method for evaluating the performance of the approach based
on measures used in Bioinformatics. Furthermore, a new analysis
method for protein folding pathways is presented. Results suggest
that the proposed approach is able to learn the protein fold
transitions. Also, it is promising for the research areas related to
Bioinformatics and Computational Intelligence.

I. INTRODUCTION

The Protein Folding Problem (PFP) is considered to be one
of the most challenging open problems in science. Basically,
a PFP consists in determining the sequence of folding events
that leads from the primary structure of a protein to its native
structure which, in turn, defines its specific biological function.

Notwithstanding, researchers have been focusing on the
study of this process and, consequently, a large amount of
information is currently available regarding this issue. This is
mainly due to its importance for medicine, the several genome
sequencing projects being conducted in the world and the
development of computational models and approaches for the
PFP. For instance, several diseases, known as proteinopathies,
are believed to be the result of misfolded proteins (i.e. proteins
structurally abnormal), such as Alzheimer’s disease, cystic
fibrosis and some types of cancer [1]. Here, it is important
to know that therapeutic drugs for proteinopathies can be
discovered from previous knowledge of polypeptide structures.
Also, this problem rises three broad questions: (i) What is
the physical code by which an amino acid sequence dictates
a protein’s native structure? (ii) How can proteins fold so

fast? (iii) Can we devise a computer algorithm to predict
polypeptide structures from their sequences? [2].

To the best of our knowledge, the Molecular Dynamics
(MD) approach (including its variations) is the only computa-
tional method that really provides a time-dependent analysis
of the folding mechanism [3]. Generally, it involves the three-
dimensional coordinates of the particles that form the protein
and numerical integration of the classical equations of motion.
Despite the great advances in recent years, MD simulations
have been limited mainly by their computationally expensive
brute force calculation. Due to the lack of methods for solving
such class of problems in a reasonable computing time, the
need for alternative non-traditional mathematical approaches
for reproducing the complex behavior of the folding process
has risen.

For decades, Computational Intelligence (CI) has provided
a large range of robust optimization methods, capable of suc-
cessfully dealing with complex optimization problems, such as
the Protein Structure Prediction (PSP) [4]. Furthermore, within
the scope of CI, Deep Learning (DL) methods have yielded
significant results on Bioinformatics [5], [6] during the recent
years, including the torsion angles prediction methods pro-
posed by [7], for instance. Among DL approaches, the Long
Short-Term Memory (LSTM) networks have excelled results
in sequential/temporal problems. Therefore, an alternative non-
deterministic way to reduce the inherent complexity of the
simulations with three-dimensional structures is proposed in
this preliminary work, using a minimalist representation of
proteins and a LSTM architecture.

The main highlights of this work are:

• a novel approach based on LSTM networks applied to
the protein folding prediction;

• a novel method for evaluating the predictor performance
based on measures commonly used in Bioinformatics;

• a novel encoding scheme for representing protein folding
states and low-level input/output representation for Deep
Learning approaches;
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A B S T R A C T
The Protein Structure Prediction (PSP) problem comprises, among other issues, forecasting the three-
dimensional native structure of proteins using only their primary structure information. Most com-
putational studies in this area use synthetic data instead of real biological data. However, the closer
to the real-world, the more the impact of results and their applicability. This work presents 17 real
protein sequences extracted from the Protein Data Bank for a benchmark to the PSP problem using
the tri-dimensional Hydrophobic-Polar with Side-Chains model (3D-HP-SC). The native structure of
these proteins was found by maximizing the number of hydrophobic contacts between the side-chains
of amino acids. T he problem was treated as an optimization problem and solved by means of an
Integer Programming approach. Although the method optimally solves the problem, the processing
time has an exponential trend. Therefore, due to computational limitations, the method is a proof-of-
concept and it is not applicable to large sequences. For unknown sequences, an upper bound of the
number of hydrophobic contacts (using this model) can be found, due to a linear relationship with the
number of hydrophobic residues. The comparison between the predicted and the biological structures
showed that the highest similarity between them was found with distance thresholds around 5.2 to 8.2
Å. Both the dataset and the programs developed will be freely available to foster further research in
the area.

1. Introduction
The Protein Structure Prediction (PSP) problem is an ac-

tive field of research in Bioinformatics. One of the many
issues studied in this field comprises forecasting the three-
dimensional native structure of proteins using only their pri-
mary structure information (Dill and MacCallum, 2012).

Proteins have key functions in the living cell, such as
transmembrane receptors (Vinogradova et al., 2000; Chua
et al., 2011), storage (Reinhard et al., 1999), cellular pro-
cesses (Mortishire-Smith et al., 1995), and signaling (Grace
et al., 2007). However, when some proteins fail to fold into
their functional form, they are associated to some human dis-
eases, such as Alzheimer (Benaki et al., 2005, 2006). They
are also associated with viruses, like the Hepatitis C Virus
(HCV) (Gouttenoire et al., 2009), Human Immunodeficiency
Virus (HIV) (Amodeo et al., 2017), Bovine viral diarrhea
virus (Sapay et al., 2006), and bacteria, e.g., Escherichia
coli (Duarte et al., 2007) and Acholeplasma laidlawii (Lind
et al.).

Experimental techniques are not trivial for unveiling pro-
tein structures. This is evidenced by the number of pro-
tein sequences that have been discovered along time (more
than 160 million sequences1) compared to the number of
known protein structures (155,618 structures2). This huge
gap shows that it is still quite important to invest efforts in
methods for unveiling protein structures. In this sense, com-

thumbnails/cas-email.jpeglthattori@gmail.com (L.T. Hattori); nunes@utfpr.edu.br (L.F.
Nunes); hslopes@utfpr.edu.br (H.S. Lopes)

ORCID(s): 0000-0003-3984-1432 (H.S. Lopes)
1as in September, 10th 2019 at the site https://www.uniprot.org/
2as in September, 10th 2019 at the site https://www.rcsb.org/

putational approaches in Bioinformatics have been explored
in the literature (Dorn et al., 2014a; Ovchinnikov et al., 2018)
for the PSP problem.

According to the Levinthal’s paradox, a protein can as-
sume an astronomic number of possible conformations (Karplus,
1997). Therefore, if a protein was supposed to sequentially
try all possible conformations sequentially until finding its
native form, this possibly would take untold time. However,
the paradox is that most proteins fold spontaneously on less
than a millisecond time scale, To the computational point of
view, finding the native structure of a protein is an open chal-
lenge. Atkins and Hart (1999), using the simplest HP model,
demonstrated that an algorithm for exhaustive search of all
conformations would take time that grows exponentially, as
the size of the protein grows linearly. Therefore the protein
structure prediction problem is reputed as NP-complete, that
is, it cannot be solved in polynomial time. To overcome
such a computational complexity, several approaches have
been proposed, such as methods based on mathematical pro-
gramming (Carr et al., 2003; Yanev et al., 2011, 2017) and
those based on heuristic approaches (Parpinelli et al., 2014;
Li et al., 2015; Kaushik and Sahi, 2017; Li et al., 2017). The
Integer Programming (IP) optimization is a mathematical
method that can present the optimal result given a set of con-
straints and an objective function (Nunes et al., 2016). This
approach has been poorly explored in the literature when ap-
plied to the PSP problem (Yanev et al., 2011, 2017). How-
ever, since it produces optimal results, it can be very useful
for establishing the ground truth for comparison with other
heuristic approaches.

Due to the computational power required for the PSP

L.T. Hattori et al.: Preprint submitted to Elsevier Page 1 of 10
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ANNEX C – PATHMOLD-AB SOFTWARE

C.1 RUNNING PARAMETERS

In principle, PathMolD-AB needs to read an input text file before starting any run.

However, the software can be reconfigured before the compilation by editing the following files:

• define.h: the main configuration file that sets the MD parameters and constants. This

file includes, but it is not limited to, the energy variables (𝐸𝑇𝑜𝑟𝑠𝑖𝑜𝑛, 𝐸𝐴𝑛𝑔𝑙𝑒 and 𝐸𝐿𝐽 ), radii

of gyration variables (𝑅𝑔𝐴𝑙𝑙, 𝑅𝑔𝐻 and 𝑅𝑔𝑃 ), the number of the MD iterations, as well

as the maximal size and number of proteins.

• functions.h: contains the declaration of the routine (utilities, initialization, power

functions, assembly control, as well as those related to the I/O process).

• main.c: this is the main routine of the simulation module. It receives the program

arguments such as the input file, GPU type, and the seed for the initialization.

• function.cu: contains the implementations of the routines defined in the

functions.h file is contained in this file. For instance, the routines used for MD

simulation contain all GPU communication, I/O functions, and ensemble control.

To improve the program’s usability, we developed a script file for the program execution

(Makefile). This script can be run in the command line using make all. All procedures

available in this package will be run with that command, including download of the protein file

from the PDB file, extraction of the AB sequence, creation of the MD input file, compilation

of the parallel and sequential models of the MD program, execution of the simulation in both

models, and generation a visualization movie of the protein trajectory.

C.2 INPUT AND OUTPUT FILES

It is necessary to configure only an input text file containing information about the simu-

lation and the protein to be folded to simulate the protein folding trajectories using PathMolD-AB,

as shown in Table 10. Other control parameters of the program were centralized in the function

𝑙𝑜𝑎𝑑𝐹 𝑖𝑙𝑒 (in file function.cu) for future modifications, such as the Shake algorithm (to deal
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Table 10 – Input file parameters for the protein folding simulation.
Parameter Description Example
sequence hydrophobic-polar sequence of the protein ABBABBABABBAB
ProtLen number of amino acids 13
LV box size of the simulation 26
stepLimit maximum number of MD iterations 3000000
savepathways if yes (y), save the pathway data y
pathwaysstep number of iterations between saving partial results 3000
temperature temperature of the simulation 0.1

Source: own authorship

with algorithm’ constraints), the mass and distance between each residue of the model (𝑚𝑎𝑠𝑠

and 𝑏𝑜𝑛𝑑_𝑙𝑒𝑛).

To obtain the AB sequence information, the Python script ab_sequence.py is

provided to extract and convert the amino acids sequence directly from a FASTA file (downloaded

from the PDB) to an AB sequence based on the hydrophobicity scale proposed by (ALBERTS et

al., 2002).

The output text file generated by PathMolD-AB contains spatiotemporal information

about the protein residues along the folding process. At each time step 𝑡 of the simulation (i.e

𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒), the Cartesian coordinates of all residues are recorded along with with the overall 𝐸𝑝

energy. The format of the records in the dataset is shown in Figure 44(a).

Figure 44 – (a) a sample of the pathway data format, (b) Sample of a video frame generated by the visualiza-
tion program. The image represents a protein structure at a given folding step, along with the
plots of energy and radius of gyration.

(a) (b)
Source: own authorship

To make the pathway data generated in the simulations humanly interpretable, the

PathMolD-AB software package provides a visualization tool (pathway_print_multi-
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subplot.py). This program produces a video using the folding data’s information showing

the protein structure evolving along with many iterations. Other information is also presented,

including the plots of potential energy (𝐸𝑝) and the radii of gyration (𝑅𝑔𝐴𝑙𝑙, 𝑅𝑔𝑃 , 𝑅𝑔𝐻). A

sample of a video frame generated by this program is shown in Figure 44(b). This software was

developed for the Linux operating system using the Python programming language.
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ANNEX D – SOFTWARE-HARDWARE COMPATIBILITY

Table 11 presents the PathMolD-AB software compatibilities in terms of the CUDA

toolkit version, programming language version, and compute capability1, in which comprehends

a set of features related to NVIDIA devices, including hardware and software features support.

All experiments were run under the Ubuntu 18 LTS operating system.

Table 11 – PathMolD-AB package compatibility
GPU model Compute Capability CUDA7 CUDA8 CUDA9
GTX660 3 NO NO NO
K40 3.5 NO NO NO
GTX750 5 NO NO NO
Titan X 5.2 NO YES YES
GTX 1080 6.1 NO YES YES
Titan Xp 6.1 NO YES YES
GCC/G++ 4.8 5.3 6.5
Python 2.7/3.6

Source: own authorship

1 https://developer.nvidia.com/cuda-gpus

https://developer.nvidia.com/cuda-gpus
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