UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE MECÂNICA CURSO SUPERIOR EM ENGENHARIA MECÂNICA

GUSTAVO BAGGIO RATTI

EFEITO DA VELOCIDADE DE FLUIDIZAÇÃO E DO INVENTÁRIO DE SÓLIDOS NO PERFIL DE PRESSÃO DE UMA VÁLVULA *LOOP-SEAL* ACOPLADA A UM SISTEMA DE LEITO FLUIDIZADO CIRCULANTE

TRABALHO DE CONCLUSÃO DE CURSO

PONTA GROSSA

2015

GUSTAVO BAGGIO RATTI

EFEITO DA VELOCIDADE DE FLUIDIZAÇÃO E DO INVENTÁRIO DE SÓLIDOS NO PERFIL DE PRESSÃO DE UMA VÁLVULA *LOOP-SEAL* ACOPLADA A UM SISTEMA DE LEITO FLUIDIZADO CIRCULANTE

Trabalho de Conclusão de Curso apresentado como requisito parcial à obtenção do título de Bacharel em Engenharia Mecânica, do Departamento Acadêmico de Mecânica - DAMEC, da Universidade Tecnológica Federal do Paraná / Ponta Grossa.

Orientador: Prof. Dr. Jhon Jairo Ramírez Behainne.

PONTA GROSSA

2015

Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Ponta Grossa

Departamento Acadêmico de Mecânica

TERMO DE APROVAÇÃO

EFEITO DA VELOCIDADE DE FLUIDIZAÇÃO E DO INVENTÁRIO DE SÓLIDOS NO PERFIL DE PRESSÃO DE UMA VÁLVULA *LOOP-SEAL* ACOPLADA A UM SISTEMA DE LEITO FLUIDIZADO CIRCULANTE

por

Gustavo Baggio Ratti

Este Trabalho de Conclusão de Curso (TCC) foi apresentado em 01 de dezembro de 2015 como requisito parcial para a obtenção do título de Bacharel em Engenharia Mecânica. O candidato foi arguido pela Banca Examinadora composta pelos professores abaixo assinados. Após deliberação, a Banca Examinadora considerou o trabalho aprovado.

Prof. Dr. Jhon Jairo Ramirez Behainne Prof. Orientador

Prof^a. Dra. *Maria Regina Parise* Membro Titular

Prof^a. Dra. *Érica Roberta L. R. Watanabe* Membro Titular

Prof. Me. Marcos Eduardo Soares Responsável pelos TCC

Prof. Dr. Laercio Javarez Junior Coordenador do Curso

DEDICATÓRIA/AGRADECIMENTOS

Este trabalho não poderia ter sido finalizado sem a ajuda de diversas pessoas e entidades às quais presto sinceros agradecimentos:

Especialmente ao Prof. Dr. Jhon Jairo Ramirez Behainne, pela oportunidade, orientação e transmissão do conhecimento em todo o trabalho.

À Prof.^a Dra. Maria Regina Parise pelo apoio e disponibilização de materiais e equipamentos para o desenvolvimento dos testes experimentais.

Ao Prof. Dr. Ivanir Luiz de Oliveira, pela disponibilização do Laboratório de Fundição (CETEM) dos equipamentos e da areia, necessários para a realização da presente pesquisa.

Aos nossos colegas, em especial, Adinaldo Valaszek, Relander Martins e Andrel Pecete, pela colaboração na adequação da UFRAF, e auxílio no desenvolvimento dos trabalhos experimentais.

Ao SENAI Ponta Grossa por realizar o peneiramento da areia, em grande escala.

Ao Departamento Acadêmico de Mecânica (DAMEC) pelo apoio e espaço técnico.

A minha família pelo apoio, incentivo e compreensão nos momentos mais difíceis desta jornada.

A Deus pela força e auxílio em todos os momentos deste trabalho.

A todas as pessoas que contribuíram de alguma forma e/ou incentivaram a realização do presente trabalho, não menos importantes, porém não mencionadas, mas que com toda certeza estão presentes em nossos pensamentos, merecendo toda a nossa gratidão.

RESUMO

RATTI, G.B. Efeito da velocidade de fluidização e do inventário de sólidos no perfil de pressão de uma válvula *loop-seal* acoplada a um sistema de leito fluidizado circulante. 2015. 74 f. Trabalho de Conclusão de Curso (Graduação em Engenharia Mecânica) – Universidade Tecnológica Federal do Paraná. Ponta grossa, 2015.

Válvulas do tipo loop-seal são dispositivos utilizados na reciclagem de sólidos em sistemas de leito fluidizado circulante. Estas válvulas são ausentes de partes móveis e acionadas pela injeção de ar (aeração) em locais apropriados, regulando a taxa de recirculação externa de sólidos a valores requeridos para uma operação estável do sistema de fluidização. As válvulas tipo loop-seal são acopladas a sistemas de leito fluidizado circulante (LFC) e usadas para a geração de energia térmica em processos de combustão e gaseificação e em aplicações da indústria petroquímica. As características fluidodinâmicas do contato gás-sólido na válvula loop-seal e no sistema em geral dependem das condições operacionais impostas ao circuito de fluidização. Tendo em vista a importância que representa a válvula de recirculação de sólidos para um sistema de LFC, este trabalho estudou o efeito produzido pela variância da velocidade de fluidização e do inventário de sólidos do leito sobre o comportamento da pressão estática do escoamento gás-sólido no riser e no interior da válvula de reciclagem. Os ensaios experimentais seguiram um planejamento fatorial 2² com três repetições, totalizando 12 testes experimentais, alterando a velocidade de fluidização entre 3,5 e 4,5 m/s e o inventário de sólidos entre 3,5 e 5 kg, utilizando em todos os testes, partículas de areia guartzosa com 180 µm de diâmetro médio e taxa de aeração fixa no valor de 0,4 Nm³/h. A discussão dos dados foi realizada com base na análise dos perfis axiais e quedas de pressão obtidas, em análise de variância ANOVA e gráficos Pareto. Os resultados mostraram que nos componentes do riser, ciclone, standpipe e câmara de reciclagem o inventário de sólidos apresentou significância na variação da pressão com efeito, diretamente proporcional. A velocidade de fluidização apresentou influência significativa no ciclone e standpipe também com efeito diretamente proporcional. Adicionalmente, nenhum dos dois parâmetros analisados influenciou significativamente na câmara de alimentação e, bem como também não influenciou a altura da passagem horizontal da válvula. Na câmara de alimentação foi observada uma região de estagnação, sugerindo a possibilidade de melhoria na geometria da válvula loop-seal. Adicionalmente, foi observado nos experimentos um caminho preferencial de escoamento gás-sólido na válvula de recirculação, como esperado para o caso de apenas aeração da câmara de reciclagem.

Palavras-chave: Válvula *loop-seal.* Leito fluidizado circulante. Inventário de sólidos. Velocidade de fluidização.

ABSTRACT

RATTI, Gustavo Baggio. Effect of the fluidization velocity and the solids inventory in the pressure profile of a loop-seal valve coupled to a circulating fluidized bed system. 2015. 74 f. Work Completion of Course (Graduate in Mechanical Engineering) - Federal Technological University of Paraná. Ponta Grossa, 2015.

Loop-seal type valves are devices used in the recycling of solids in circulating fluidized bed systems. These valves are absent moving parts and driven by the injection of air (aeration) at appropriate locations, adjusting the outer recirculation rate of solids values required for stable operation of the fluidizing system. The loopseal are attached to circulating fluidized bed systems type valves (LFC) and used to generate thermal energy in combustion and gasification processes and the petrochemical industry applications. The fluid dynamic characteristics of the gassolid contact in the loop-seal valve and the system in general depend on the operating conditions imposed on the fluidization circuit. In view of the importance that is the solids recirculation valve for LFC system, this work study the effect produced by the variance of the fluidization velocity and bed solids inventory of the static pressure behavior of the gas-solid flow in with in the riser and recycling valve. Experimental tests followed a factorial design with three replications 2², a total of 12 experimental tests, changing the fluidizing velocity between 3,5 and 4,5 m/s and solids inventory between 3,5 and 5 kg, using in all tests, guartz sand particles with an average diameter of 180 µm and the fixed aeration rate of 0,4 Nm³/h. A discussion of the data was based on analysis of axial profiles obtained and pressure drops in analysis of variance ANOVA and graphic Pareto. The results showed that the riser components cyclone chamber standpipe and recycling the solids inventory showed significant variation in the pressure with directly proportional effect. The fluidization velocity presented significant influence in the cyclone and standpipe with directly proportional effect too. Additionally neither analyzed parameters significantly influence the feed chamber and the height or the horizontal passage valve. In the feed chamber stagnation region was observed, suggesting the possibility of improving the geometry of the loop-seal valve. Additionally, it was observed in experiments a preferred way of gas-solid flow in the recirculation valve, as expected only in case of recycling aeration chamber.

Keywords: Loop-seal valve. Circulating fluidized bed. Solids inventory. Fluidizing velocity.

LISTA DE ILUSTRAÇÕES

Figura 1 - Regimes de fluidização em leitos contendo partículas 19
Figura 2 - Comportamento da curva ΔP versus U_0 para um leito com partículas
médias e de tamanho uniforme20
Figura 3 - Exemplo de leito fluidizado circulante
Figura 4 - Desenho esquemático do sistema de funcionamento de um LFC23
Figura 5 - Perfil axial da porosidade do leito operando com partículas
Figura 6 - Estrutura núcleo-anular de um LFC25
Figura 7 - Classificação das partículas de acordo com o seu tamanho e a densidade
do meio gás-sólido onde se encontra27
Figura 8 - Modelo de uma válvula Loop-seal
Figura 9 - Mudança na taxa de circulação de sólidos pela taxa de aeração e
comprimento da passagem horizontal
Figura 10 - Efeito da taxa de aeração na taxa de circulação de sólidos
Figura 11 - Efeito no fluxo de sólidos na pressão na região da câmara de
alimentação (a) e na região da barragem (b)
Figura 12 - Perfil de pressão característico de um LFC
Figura 13 - Vista Geral da UFRAF
Figura 14 - Válvula loop- seal utilizada nos testes experimentais
Figura 15 - Representação esquemática dos pontos de tomada de pressão42
Figura 16 - Sistema de fornecimento de ar de fluidização43
Figura 17 - Linha de ar de aeração 44
Figura 18 - Painel dos manômetros em "U" com o sistema de aeração

LISTA DE TABELAS

Tabela 1 – Matriz de planejamento adotada para realização dos testes	
experimentais	46
Tabela 2 - Tabela ANOVA para um Fatorial com Dois Fatores, Modelo de Efeitos	
Fixos	48

LISTA DE GRÁFICOS

Gráfico 1 - Gráfico com efeito da mudança na velocidade do gás (nível baixo de
inventário)
Gráfico 2 - Gráfico com efeito da mudança na velocidade do gás (nível alto de
inventário)
Gráfico 3 - Gráfico com efeito da mudança no inventário de partículas (nível baixo
de Uf)
Gráfico 4 - Gráfico com efeito da mudança no inventário de partículas (nível alto de
Uf)
Gráfico 5 - Queda de pressão para inventário de sólidos de 3,5 kg e velocidade de
fluidização variável
Gráfico 6 - Queda de pressão para inventário de sólidos de 5 kg e velocidade de
fluidização variável
Gráfico 7 - Queda de pressão para velocidade do gás de 3,5 m/s e inventário de
sólidos da válvula loop-seal variável
Gráfico 8 - Queda de pressão para velocidade do gás de 4,5 m/s e inventário de
sólidos da válvula loop-seal variável 58
Gráfico 9 - Gráficos Pareto para o efeito sobre a perda de carga no riser e na
câmara de reciclagem 59
Gráfico 10 - Gráfico Pareto para o efeito sobre a perda de carga no ciclone61
Gráfico 11 - Gráfico Pareto para o efeito sobre a perda de carga no standpipe 62
Gráfico 12 - Gráfico Pareto para o efeito sobre a perda de carga na câmara de
reciclagem63
Gráfico 13 - Gráfico Pareto para o efeito sobre a perda de carga na câmara de
alimentação64
Gráfico 14 - Gráfico Pareto para o efeito sobre a perda de carga na altura da
passagem horizontal na válvula loop-seal64

LISTA DE SIGLAS

EES	Engineering Equation Solver
LFB	Leito Fluidizado Borbulhante
LFC	Leito Fluidizado Circulante
UFRAF	Unidade de Fluidização Rápida a Frio

LISTA DE SÍMBOLOS

A	Área da secção transversal do leito [m ²]
D	Diâmetro interno do leito [m]
Ds	Diâmetro médio de Sauter da partícula [m]
d_{eq}	Diâmetro equivalente ao volume da esfera [m]
d _{or}	Diâmetro do orifício [m]
d_m	Diâmetro médio da partícula [m]
di	Diâmetro inscrito [m]
d _c	Diâmetro circunscrito [m]
d_m	Diâmetro médio [m]
Gs	Fluxo de recirculação de sólidos [kg/m ² s]
Н	Altura do leito [m]
Inv	Inventário de sólidos [Kg]
Q	Vazão volumétrica de gás que atravessa o distribuidor [m ³ /s]
q	Vazão volumétrica de gás que passa através do orifício [m ³ /s]
<i>u</i> ₀	Velocidade superficial do gás [m/s]
Uf	Velocidade de fluidização [m/s]
U _{mf}	Velocidade mínima de fluidização [m/s]
Ut	Velocidade terminal das partículas [m/s]
U _{tr}	Velocidade de transporte das partículas [m/s]

x_i	Fração mássica	das partículas	retida em	cada peneira;
L	3	•		

- ΔP_b Perda de pressão no leito [Pa]
- ΔP_c Perda de pressão no ciclone [Pa]
- ΔP_d Perda de pressão no distribuidor [Pa]
- ρ_g Massa específica do fluido [kg/m³]
- ρ_g Massa específica do gás fluidizante [kg/m³]
- ρ_{p} Densidade da partícula [kg/m³]
- ρ_s Densidade das partículas sólidas [kg/m³]
- ρ_{ap} Densidade aparente [kg/m³]
- ρ_{rp} Densidade real [kg/m³]
- *m*_p Massa da partícula sólida [kg]
- μ_g Viscosidade dinâmica do gás fluidizante [kg/m.s]
- Φ Esfericidade do sólido [-]
- α Fator de correlação [-]

SUMÁRIO

1. INTRODUÇÃO	. 14
1.1 PROBLEMA	. 15
1.2 JUSTIFICATIVA	. 15
1.3 OBJETIVO E METAS	. 16
1.3.1 Objetivo Geral	. 16
1.3.2 Objetivos Específicos	. 16
2. REFERENCIAL TEÓRICO	. 17
2.1 FLUIDIZAÇÃO	. 17
2.2 REGIMES DE FLUIDIZAÇÃO	. 19
2.3 LEITO FLUIDIZADO CIRCULANTE (LFC)	. 22
2.4 CARACTERIZAÇÃO DAS PARTÍCULAS	. 25
2.5 PROPRIEDADES FLUIDODINÂMICAS DO LEITO FLUIDIZADO	. 28
2.6 VÁLVULA LOOP-SEAL	. 31
2.7 PERFIL DE PRESSÃO DE UM LFC COM VÁLVULA LOOP-SEAL	. 36
3 METODOLOGIA	. 38
3.1 DESCRIÇÃO DO EQUIPAMENTO EXPERIMENTAL	. 38
3.2 PROCEDIMENTO EXPERIMENTAL	. 46
3.3 TRATAMENTO DOS DADOS	. 47
Determinação da ANOVA	. 48
4 RESULTADOS E DISCUSSÃO	. 50
4.1 PERFIL AXIAL DE PRESSÃO ESTÁTICA	. 50
4.1.1 Efeito da Velocidade de Fluidização no Perfil Axial de Press Estática	são . 50
4.1.2 Efeito do Inventário de Sólidos dentro do sistema no Perfil Axial Pressão Estática	de . 52

4.2 QUEDA DE	PRESSÃO N	NOS COM	PONENTES	DO CIR	CUITO	DE
FLUIDIZAÇÃO						. 54
4.2.1 Efeito da V	elocidade do G	Sás na Quec	la de Pressão	dos Com	ponentes	s do
Leito						. 54
4.2.2 Efeito do Ir	ventário de So	ólidos na Qu	ueda de Pres	são dos C	omponer	ntes
do Leito	······				<i>,</i>	. 57
4.3 ANÁLISE E	ESTATÍSTICA	DOS	EFEITOS	DAS	VARIÁV	EIS
CONTROLADAS						. 59
5 CONCLUSOES E	SUGESTOES	S PARA TRA	ABALHOS FU	TUROS		. 66
REFERÊNCIAS BIBL	IOGRÁFICAS.					. 67
APÊNDICE A – Teste	es experiment	ais				. 70

1. INTRODUÇÃO

Leitos fluidizados circulantes (LFC) são sistemas utilizados na combustão, gaseificação, reações catalíticas e em muitos outros processos de contato gássólido. Em aplicações que envolvam operações termoquímicas, os sistemas de LFC têm mostrado vantagens em termos de eficiência de conversão de energia e impacto ambiental, devido às altas taxas de transferência de calor e de massa que eles promovem.

Uma caldeira de leito fluidizado circulante normalmente queima combustíveis em um regime de leito fluidizado rápido, onde as partículas se encontram acima da velocidade terminal, e a velocidade do gás injetado em uma passagem vertical é suficientemente rápida para o arraste líquido de sólidos.

Geralmente, um LFC é composto por um circuito de fluidização que inclui um tubo de ascensão de sólidos (*riser*), ciclone, um tubo de descida de sólidos (*standpipe*) e uma válvula que controla a circulação de partículas, usando peças mecânicas ou não-mecânicas. Em particular, a válvula *loop-seal* é uma válvula de controle não-mecânica, composta por uma câmara de fornecimento ou abastecimento, uma câmara de reciclagem, abertura entre as duas câmaras, distribuidor de gás e um tubo de descarga de sólidos conectando o *riser*.

Após a passagem do sólido pelo *riser*, ele é separado do gás no separador gás-sólido, normalmente efetuado por um ciclone, onde as partículas sólidas entram no circuito externo do sistema LFC. Conforme os sólidos são separados no ciclone, estes caem e são acumulados no *standpipe*. O regime de fluidização do *standpipe* varia muito com os parâmetros de operação do sistema, podendo trabalhar desde um regime de um leito fixo ou um regime de leito fluidizado borbulhante (LFB) até um regime de leito fluidizado circulante. Outra característica importante do *standpipe*, é que este é o responsável por regular as variações de pressão que ocorrem no sistema, garantindo o correto funcionamento do mesmo.

Com a construção recente de uma unidade a frio de LFC na UTFPR/Ponta Grossa em escala de laboratório, abre-se a possibilidade da realização de estudos direcionados à caracterização do comportamento de sistemas de LFC de pequeno porte com uma válvula *loop-seal*. Assim, tendo em vista a necessidade de futuros desenvolvimentos de reatores de LFC em escala de laboratório, o presente projeto visa contribuir com a ampliação de conhecimento na caracterização do comportamento operacional de um sistema de LFC ao incluir a válvula como componente em configurações de pequena escala.

A literatura envolvendo dispositivos de reciclagem de partículas em equipamentos de LFC em escala de laboratório reporta, principalmente, informações sobre válvulas L, e em menor quantidade, sobre válvulas tipo *loop-seal*. Assim, a intensificação dos estudos sobre a operação deste tipo de válvulas se faz necessária, tendo em vista a sua larga utilização em reatores para geração de energia térmica. Diante da deficiência na literatura sobre estudos experimentais de válvulas *loop-seal*, o presente trabalho visa determinar condições apropriadas para o funcionamento estável de uma válvula desse tipo utilizando-se de parâmetros diferentes de velocidade fluidização e inventário de sólidos em material inerte alimentados a um sistema de leito fluidizado circulante a frio em escala de laboratório.

1.1 PROBLEMA

O perfil de pressão estática do escoamento gás-sólido no *riser* e na válvula de recirculação de sólidos é modificado por mudanças no nível do inventário de partículas e da velocidade do gás de fluidização em condições a frio?

1.2 JUSTIFICATIVA

Estudos experimentais de fluidodinâmica em LFC são ainda escassos no Brasil. Poucos estudos têm sido realizados procurando fornecer informações do comportamento gás-sólido num sistema de LFC, tanto em escala de laboratório quanto em unidades pilotos ou comerciais. Até onde foi possível conhecer, nenhum trabalho tem sido reportado com estudos de parâmetros operacionais de unidades pequenas de LFC direcionadas a determinar o efeito simultâneo produzido pelas variáveis inventário de sólidos e velocidade de fluidização na válvula *loop-seal.*

Com a projeção futura da construção de uma fornalha de LFC de pequeno porte para fornecer dados de rendimento de combustão de diversos combustíveis disponíveis no Brasil, um estudo do comportamento fluidodinâmico de um equipamento similar ao LFC, contendo uma válvula *loop-seal*, se faz necessário, a fim de confirmar a presença ou não de dificuldades ou vantagens que possam comprometer o desenvolvimento do novo sistema de combustão.

1.3 OBJETIVO E METAS

1.3.1 Objetivo Geral

Este trabalho tem como objetivo principal avaliar experimentalmente o efeito do inventário de sólidos e da velocidade de fluidização no perfil de pressão em uma válvula *loop-seal* acoplada a um sistema de leito fluidizado circulante a frio.

1.3.2 Objetivos Específicos

Os objetivos específicos deste projeto são:

 Verificar a operação estável e as condições apropriadas para medição de perfil de pressão numa válvula *loop-seal* em níveis definidos de inventário de sólidos e velocidade de fluidização;

 Executar testes operacionais com aeração exclusiva na câmara de reciclagem, analisando o efeito da velocidade de fluidização e inventário de sólidos sobre o perfil axial de pressão estática no sistema e na seção de aeração da válvula *loop-seal*;

• Comparar os resultados obtidos com os reportados na literatura.

2. REFERENCIAL TEÓRICO

Neste capítulo, são discutidos aspectos, características, definições, conceitos, entre outros, a respeito de Fluidização, Leito Fluidizado Circulante e válvula *loop-seal*.

2.1 FLUIDIZAÇÃO

A fluidização é o fenômeno pelo qual um gás ou um líquido, ao realizar uma passagem ascendente por uma coluna contendo partículas sólidas (leito), faz com que essas fiquem em suspensão, com o conjunto passando a se comportar de maneira semelhante a um fluído. (KUNII LEVENSPIEL, 1991, p. 1). Quando um fluido passa através de um leito de partículas, e essas fluidizam, o sistema sólido-fluido atinge regimes de fluidização dependentes das propriedades das partículas e da velocidade do fluido que escoa através do leito.

De acordo com Kunii e Levenspiel (1991, p. 10), a fluidização usada em leitos para operações industriais possui algumas vantagens e desvantagens. As vantagens são:

 Adequada para operações que necessitam de uma alta eficiência na conversão de combustíveis para geração de energia;

• Alta transferência de calor entre o gás, as partículas e qualquer objeto imerso (trocadores de calor). Assim sendo, a área necessária para a troca de calor pode ser relativamente pequena.

 As operações podem ser controladas de maneira contínua e com facilidade de manuseio, devido à presença de um escoamento uniforme de partícula e fluido.

• Em virtude da fácil mistura dos sólidos, as condições geralmente são isotérmicas.

Entretanto, as desvantagens segundo Kunii e Levenspiel (1991, p. 10) são:

 Erosão de orifícios, colunas e tubos imersos devido à abrasão ocasionada pelos sólidos. • A uniformidade na temperatura e no rendimento é comprometida quando a rápida mistura de sólidos gera tempos de residência variáveis no leito.

• Em leitos fluidizado borbulhantes com partículas muito finas torna-se difícil descrever o escoamento do fluido.

• É necessário realizar a reciclagem de sólidos friáveis que são pulverizados e arrastados.

Na década de 20, o alemão Fritz Winkler percebeu, através de experimentos, que ao colocar gases provenientes de combustão dentro de um compartimento no qual continha partículas de coque, ocorria a fluidização, criando assim a primeira demonstração da gaseificação de carvão em um leito fluidizado (BASU, 2006, p. 1). Sabe-se que a partir dessa época, a tecnologia de leito fluidizado foi utilizada de maneira mais expressiva na indústria química e de petróleo. Porém, somente a partir da década de 70 ela passou a ter um reconhecimento mais significativo, e posteriormente, nas décadas de 80 e 90, surgiu um interesse maior na utilização de leito fluidizado em instalações que necessitassem de geração de energia, por ser uma tecnologia mais limpa que as convencionais da época, e por possuir uma alta flexibilidade na utilização de diversos tipos de combustíveis. Nos últimos anos, o Brasil tem tido problemas relacionados à concentração da geração de energia elétrica a partir das usinas hidrelétricas na matriz energética. Isto abre possibilidades para a implementação de novas tecnologias de geração de energia térmica e elétrica, através do uso de reatores de leito fluidizado, a qual ainda tem sido pouco difundida no território nacional. Esta tecnologia apresenta alto potencial para o melhor uso do carvão mineral disponível no Brasil, considerado de baixa qualidade (RAMIREZ -BEHAINNE, 2007).

A tecnologia da fluidização tem sido amplamente utilizada, tendo como destaque o seu uso em caldeiras. No processo de combustão em leito fluidizado, o combustível é queimado em ambiente com intenso contato gás-sólido, gerando calor útil. A fornalha da caldeira operada com leito fluidizado contém uma massa granular de sólidos constituído por partículas que geralmente variam de tamanho na faixa de 100 a 1000 µm (BASU, 2006, p.6).

2.2 REGIMES DE FLUIDIZAÇÃO

As diferentes características dos regimes de fluidização existentes são essencialmente dependentes da velocidade do gás que passa pelos sólidos através do leito (FONSECA, 2009). Os regimes de fluidização podem ser visualizados na Figura 1, a qual mostra cada tipo de regime de acordo com a velocidade do fluido que passa pelas partículas através do leito.

Segundo Kunii e Levenspiel (1991), quando as partículas são relativamente pequenas e uma baixa vazão de gás ou líquido passa através dos espaços entre os sólidos, fazendo com que ainda permaneçam estacionárias, o regime é denominado **leito fixo** (Figura 1(a)).

Figura 1 - Regimes de fluidização em leitos contendo partículas. Fonte: Adaptado de Kunii e Levenspiel (1991)

Uma característica do leito fixo, é que a velocidade superficial do gás é função linear crescente da perda de pressão através do leito, isso ocorre devido uma aglomeração de partículas causada no fundo da coluna principal. Com o constante aumento da velocidade, a queda de pressão atinge um valor máximo e posteriormente tem uma leve redução, atingindo um ponto em que a perda de pressão permanece constante e todos os sólidos ficam suspensos pelo fluxo de ar. É nesse ponto (transição entre regime fixo e fluidizado) que as forças de atrito entre o ar e as partículas iguala-se à força gravitacional incidente sobre os sólidos gerando um equilíbrio de forças (BASU, 2006, p. 29). Assim, chega-se a um valor de

queda de pressão, em um certo volume, que corresponde ao peso das partículas naquela determinada área do leito. Dessa maneira, inicia-se o processo de fluidização, sendo caracterizada por uma velocidade mínima de fluidização, u_{mf} , denominando assim o regime de fluidização mínima (Figura 1 (b)). A grande diferença do leito fixo e do leito fluidizado é que ao atingir a velocidade mínima de fluidização a queda de pressão, medida sempre nos mesmos pontos, torna-se constante, uma característica predominante do regime de fluidização mínima e turbulenta, e se a velocidade ultrapassar a velocidade de transporte, u_{tr} , a queda de pressão passa a diminuir com o acréscimo da velocidade (Figura 2), caracterizando o leito rápido ou leito fluidizado circulante (RHODES, 1998).

A **fluidização particulada** (Figura 1(c)), é também chamada de homogênea, devido à presença de uma velocidade ligeiramente superior à velocidade mínima de fluidização, onde não ocorre ainda a formação de bolhas, mantendo uma distribuição uniforme das partículas expandidas. Porém, isso só é válido quando utiliza-se fluido no estado líquido. Ao realizar a passagem de um gás através das partículas com velocidade acima da mínima de fluidização, instabilidades são geradas e consequentemente o aparecimento de bolhas, denominando assim a **fluidização borbulhante** (Figura 1(d)). Mesmo assim, vale ressaltar que quando utiliza-se partículas muito pequenas existe a possibilidade da não ocorrência de bolhas e ocorrência de fluidização homogênea (KUNII; LEVENSPIEL, 1991).

Figura 2 - Comportamento da curva ∆P versus U₀ para um leito com partículas médias e de tamanho uniforme.
Fonte: Adaptado Rhodes (1998).

Ao aumentar a velocidade do fluido, chega-se a um determinado ponto em que a força de arraste do gás é superior ao peso das partículas gerando assim um movimento turbulento dos sólidos e diferentes bolhas de gás com vários tamanhos, esse regime é conhecido como **fluidização turbulenta**, que é encontrado em sistemas de leito fluidizado turbulento. O regime de **fluidização rápida** é conhecido quando a velocidade do gás atinge ou supera a velocidade de transporte das partículas, *u*_{tr}, onde o regime possui uma característica dispersa, desorganizada, fazendo com que os sólidos sejam lançados fora do leito (KUNII; LEVENSPIEL, 1991).

O leito fluidizado é denominado circulante quando opera em regime de fluidização rápida (SÁNCHEZ et al., 2010), e geralmente um ciclone é acoplado, externamente, com a função de recuperar, de forma contínua, as partículas que são arrastadas, e retorná-las ao leito, através da força centrífuga. Outra função dos ciclones em leito fluidizado é separar os gases provenientes da combustão e partículas muito finas das partículas que ainda podem ser aproveitadas no processo. Como no leito fluidizado rápido, o arraste de sólido é consideravelmente alto, há a necessidade de utilizar um ciclone externo e, consequentemente, uma válvula de recirculação (L, J ou *Loop-seal*), as quais tem por função promover o retorno das partículas ao *riser*.

A Figura 3 apresenta as fronteiras em que o regime de rápida fluidização esta submetido. Na parte inferior, ele está delimitado pela velocidade de transporte (u_{tr}), que é a velocidade onde as partículas começam a ser transportadas. A linha A-B marca a região de velocidade de *choking*, e consequentemente o início do leito rápido. Outra característica apresentada no diagrama, é que para altas taxas de circulação de sólido, a transição para o regime de rápida fluidização ocorre a altas velocidades do gás (Basu, 2006).

Figura 3 - Diagrama das fronteiras dos regimes de fluidização. Fonte: Adaptado de Basu (2006).

2.3 LEITO FLUIDIZADO CIRCULANTE (LFC)

Basu (2006) define uma caldeira de leito fluidizado circulante (LFC) como aquela na qual a queima de combustível acontece sob o regime de fluidização rápida, isto é, numa condição que apresenta duas características fundamentais: a presença de alta velocidade relativa entre o gás e os sólidos suspensos dentro da câmara de combustão e o arraste considerável de partículas para fora da zona de queima ou fornalha.

O circuito de fluidização de uma LFC é dividido em quatro componentes principais: o *riser*, que consiste numa coluna ascendente, onde o gás é injetado no fundo da coluna e ocorre a fluidização do sistema; o ciclone, que tem a função de separar partículas do escoamento gás-sólido; o *standpipe*, onde os sólidos coletados no ciclone descem através dele, e um sistema de reciclagem de sólidos que normalmente é composto por uma válvula do tipo não mecânica.

Existem algumas condições fluidodinâmicas importantes para o bom funcionamento de um sistema de leito fluidizado circulante. Uma dessas condições é a porosidade do leito. A concentração de sólidos é diferente ao longo da altura do leito, existindo uma maior concentração de sólidos no fundo do que no topo da coluna. Weinstein *et al.* (1983) mostraram esse fenômeno com dados da variação no perfil axial de concentração de partículas, apresentando uma região densa na base do *riser* e outra diluída no topo, como ilustrado na Figura 4. A transição de leito mais denso para menos denso depende de alguns parâmetros de operação que influenciam diretamente no perfil da porosidade do leito, tais como, a velocidade do gás, inventário de sólidos, taxa de circulação de sólidos e geometria do leito.

Figura 4 - Desenho esquemático do sistema de funcionamento de um LFC Fonte: Adaptado de Yang (2003)

Basu (2006) confirmou em seus estudos a tendência de um perfil assintótico no topo do *riser*, com o ponto de inflexão da curva se deslocando para cima ao se incrementar o inventário de sólidos. A Figura 5 ilustra o perfil de porosidade média típica numa coluna ascendente de um sistema LFC em função do inventário de partículas, isto é, da massa total de sólidos presente dentro do sistema circulante.

Figura 5 - Perfil axial da porosidade do leito operando com partículas Fonte: Adaptado de Basu (2006)

Alguns pesquisadores encontraram que também existe uma distribuição lateral de porosidade no leito. Basu (2006) descreve que a seção transversal do *riser* pode ser dividida em duas regiões, composta por um núcleo central e uma região anular. A velocidade do gás na região anular é muito baixa ou, em alguns casos, dirigida no sentido da base do *riser* devido ao efeito dos sólidos na parede da coluna. Nestas condições, é normal que os sólidos decresçam ou retornem pela região anular. Os sólidos se movem para cima e para baixo na forma de *clusters*, que são pequenos aglomerados de sólidos. Os clusters são lançados para a parede devido a interações fluidodinâmicas gás-sólido, registrando pequenas velocidades (ao redor de 0,5 a 1,0 m/s) durante a sua descida pela região anular. Quando os sólidos estão caindo na região anular, eles derivam novamente para o núcleo, onde os *clusters* desintegram e partículas começam a ascender novamente devido às altas velocidades, iniciando um novo ciclo de formação e quebra.

WEINSTEIN et al. (1984) mostraram que a distribuição de sólidos na direção radial possui um perfil parabólico, como mostrado pela Figura 6. Conforme mostra a figura, existe uma maior concentração de sólidos na região anular ou perto da parede da coluna vertical, e uma menor concentração de sólidos no núcleo, onde ocorre um maior escoamento gás-sólido. Segundo Basu (2006), a espessura de sólidos na zona anular também aumenta do topo para o fundo da coluna vertical. A espessura de sólidos na zona anular depende da velocidade superficial do gás e da taxa de recirculação de sólidos.

Figura 6 - Estrutura núcleo-anular de um LFC. Fonte: Adaptado de Basu (2006).

As regiões do leito mais densas são mais carregadas, e assim encontramse zonas onde a pressão estática é maior. Devido à altura de sólidos no *standpipe* da válvula *loop-seal*, ela apresenta um dos pontos de maior pressão estática do sistema, além de ser responsável por regular a pressão no circuito de fluidização.

2.4 CARACTERIZAÇÃO DAS PARTÍCULAS

Para compreender a fluidodinâmica das partículas em um leito fluidizado, é necessário conhecer as principais características das partículas, tais como: densidade, esfericidade, distribuição granulométrica, diâmetro médio (FONSECA; LEONARDO, 2009, p. 7).

De acordo com Geldart (1986), existem dois tipos de densidade das partículas em um leito fluidizado: a densidade aparente (ρ_{ap}) e a densidade real (ρ_{rp}). A densidade aparente das partículas sólidas (ρ_{ap}) é definida segundo Rhodes

(1998) como a razão entre a massa da partícula sólida (m_p) e o seu volume hidrodinâmico (com poros):

$$\rho_{ap} = \frac{m_p}{Volume \, da \, partícula \, (com \, poros)} \tag{1}$$

A densidade real das partículas sólidas (ρ_{rp}) é definida como a razão entre a massa da partícula sólida (m_p) e o seu volume real (sem poros):

$$\rho_{rp} = \frac{m_p}{Volume \, real \, da \, partícula \, (sem \, poros)} \tag{2}$$

Existe uma certa dificuldade em se medir a esfericidade de uma partícula irregular, necessitando ser estimada na maioria das vezes (FONSECA; LEONARDO, 2009, p. 9). A esfericidade do sólido (\emptyset) pode ser calculada, segundo Peçanha e Massarani (1986), mediante da razão entre o diâmetro inscrito (d_i) e o diâmetro circunscrito do sólido (d_c):

$$\phi = \frac{d_i}{d_c} \tag{3}$$

A máxima esfericidade configura-se quando o diâmetro inscrito é igual ao diâmetro circunscrito, ou seja, esfericidade igual a 1, caracterizando uma esfera perfeita. Dessa maneira, partículas irregulares apresentam esfericidade menor que 1.

Quando se retira uma amostra de um material sólido distribuído em partículas, normalmente elas não apresentam o mesmo tamanho. Existem três formas de separar partículas com o fim de determinar o tamanho dessas: utilizar a sedimentação, onde as partículas maiores são separadas das menores por ação da gravidade. Outra maneira é mediante a microscopia eletrônica, sendo necessário realizar a contagem de partículas com diferentes tamanhos e, posteriormente, encontrar o tamanho médio. A última maneira é usando peneiras padronizadas para reter partículas conforme seu tamanho (CORTEZ *et al.* 2008).

Segundo Cortez et al. (2008) o método de peneiramento é realizado com ajuda de peneiras de diferentes tamanhos de abertura padronizadas, dispostas uma

acima da outra em ordem crescente de abertura de furos, de baixo para cima. O processo inicia-se com o despejo do material na peneira superior, após inicia-se o processo de vibração durante um tempo determinado. Assim, retêm-se nas peneiras os diferentes tamanhos de partículas contidos na amostra. Posteriormente, essas diferentes massas já separadas são pesadas para, finalmente, determinar o diâmetro médio das partículas, também conhecido como diâmetro de *Sauter*.

Segundo Kunii e Levenspiel (1991) o diâmetro médio das partículas pode ser calculado por meio da equação (4):

$$d_m = \frac{1}{\sum_{i=1}^{x_i} x_i / d_i} \tag{4}$$

sendo que,

 x_i : fração mássica das partículas retida em cada peneira;

 d_i : abertura de cada peneira.

Para um melhor entendimento dos diferentes tipos de partículas existentes, Geldart (1985) classificou-as em quatro grupos (A, B, C e D) de acordo com suas diferentes propriedades de fluidização no mesmo ambiente. A Figura 7 mostra com detalhe algumas diferenças entre esses grupos.

Figura 7 - Classificação das partículas de acordo com o seu tamanho e a densidade do meio gás-sólido onde se encontra Fonte: Adaptado de Geldart (1985).

Partículas entre 20 e 90 µm compreendem o grupo A, possuem boa fluidização apresentando pequenos tamanhos de bolhas, devido a isso as forças entre os sólidos são fracas (BASU, 2006).

No grupo B o tamanho das partículas variam entre 90 e 650 µm. De acordo com Kunii e Levenspiel (1991) esses sólidos também possuem boa fluidização e produzem leitos com ótima recirculação e bolhas grandes, as quais surgem após a velocidade mínima de fluidização (BASU, 2006).

Os menores sólidos compõem o grupo C, com tamanho de partículas inferior a 20 µm, são partículas muito finas e possuem dificuldade em fluidizar devido à alta coesão entre elas e, consequentemente, a formação de canais preferenciais por onde circula o gás.

As partículas do tipo D possuem tamanho médio superior a 650 µm com alta densidade. Por serem constituídas por bolhas grandes a fluidização dessas torna-se lenta, sendo requerido uma alta velocidade de fluidização (BASU, 2006).

2.5 PROPRIEDADES FLUIDODINÂMICAS DO LEITO FLUIDIZADO

Os sólidos inseridos em um leito fluidizado possuem um comportamento fluidodinâmico semelhante ao de um fluido confinado num recipiente. Para uma melhor compreensão do comportamento dos sólidos algumas propriedades fluidodinâmicas devem ser determinadas, tais como: velocidade mínima de fluidização (u_{mf}), velocidade terminal da partícula (u_t), velocidade de transporte das partículas (u_{tr}) e o coeficiente de arrasto (C_d).

Quando o fluido de trabalho ocasiona a separação das partículas, mantendo-as individualmente em suspensão, atinge-se a velocidade mínima de fluidização (u_{mf}). Nessa velocidade a força ascendente do fluido iguala-se ao peso das partículas (CARDENAS, 2009, p. 13).

Segundo Kunii e Levenspiel (1991), a velocidade mínima de fluidização (u_{mf}) pode ser obtida utilizando as equações (5), (6), (7) e (8).

$$Ar = 150 \frac{\left(1 - \varepsilon_{mf}\right)}{\emptyset^2 \varepsilon_{mf}^3} Re_{mf} + 1,75 \frac{1}{\emptyset \varepsilon_{mf}^3} Re_{mf}^2$$
(5)

Onde o número de Arquimedes (Ar) é definido como:

$$Ar = \frac{d_p^3 \rho_f (\rho_p - \rho_f) g}{\mu^2} \tag{6}$$

A porosidade mínima de fluidização (ε_{mf}) é conhecida como:

$$\varepsilon_{mf} = 1 - \frac{m_p / \rho_p}{V} \tag{7}$$

O número de Reynolds baseado na partícula com velocidade mínima de fluidização (Re_{mf}), é descrito na equação (8)

$$Re_{mf} = \frac{\rho_f u_{mf} d_p}{\mu_g} \tag{8}$$

sendo que,

- d_p : diâmetro médio da partícula (m);
- ho_p : densidade da partícula (kg/m³);
- ρ_{f} : densidade do fluído (kg/m³);
- *m*_p: massa das partículas (kg);
- V: volume do leito (m³);
- μ: viscosidade dinâmica do fluido (kg/m.s)
- Φ : Esfericidade da partícula (-).

Segundo Kunii e Levenspiel (1991), para partículas muito pequenas e Re_{mf} < 20, o segundo termo da equação (5) é desprezível e u_{mf} pode ser calculada pela equação (9):

$$u_{mf} = \frac{(\emptyset d_p)^2 (\rho_p - \rho_f) g}{150\mu} \left[\frac{\varepsilon_{mf}^3}{(1 - \varepsilon_{mf})} \right]$$
(9)

Já para partículas grande e Re_{mf} >1000, despreza-se o primeiro termo da equação (5) e u_{mf} passa a ser calculada por meio da equação (10):

$$u_{mf} = \sqrt{\frac{(\emptyset d_p)(\rho_p - \rho_f)g}{1,75\rho_f}} \varepsilon_{mf}^3$$
(10)

Se a porosidade do leito na condição de mínima fluidização (ε_{mf}) e a esfericidade das partículas (\emptyset) forem desconhecidas, a velocidade mínima de fluidização (u_{mf}) pode ser calculada pela equação (11).

$$u_{mf} = \frac{\mu}{\rho_f d_p} \left(\sqrt{33,7^2 + 0,0408 \, Ar} - 33,7 \right) \tag{11}$$

A velocidade terminal (u_t) , também conhecida como a máxima de fluidização sem arrasto para fora do recipiente, é determinada quando a força de arraste do gás corresponde ao peso dos sólidos suspensos no leito, configurando a velocidade de queda livre da partícula. Segundo Kunii e Levenspiel (1991), a u_t é calculada pela equação (12).

$$u_t = \sqrt{\frac{4d_p(\rho_s - \rho_g)g}{3\rho_g C_D}}$$
(12)

Sendo C_D o coeficiente de arrasto e definido pela equação (13):

$$C_D = \frac{24}{Re_p} \left[1 + \left(8,171e^{-4,0655\emptyset} \right) Re_p^{0,0964+0,5565\emptyset} \right] + \frac{73,69(e^{-5,0748\emptyset}) Re_p}{Re_p + 5,378e^{6,2122\emptyset}}$$
(13)

Onde Re_p é o número de Reynolds. Sendo ele desconhecido, é necessário calcular a velocidade terminal através de processo iterativo, pois C_D é em função do Re_p .

Quando a velocidade superficial do gás é aumentada atinge-se a velocidade de transporte das partículas (u_{tr}) e ocorre a transição do regime borbulhante para o turbulento, havendo assim um aumento significativo no transporte das partículas

(MELO, 2008). Uma equação para o cálculo dessa velocidade restrita a escoamentos com número de Arquimedes (Ar) foi compreendido entre 20 e 50.000:

$$u_{tr} = 1,415 \ \frac{\mu}{\rho_g d_p} A_r^{0,484} \tag{14}$$

2.6 VÁLVULA LOOP-SEAL

A válvula *loop-seal* exerce um papel importante no sistema. Esta válvula é responsável pelo retorno dos sólidos coletados no separador gás-sólido à base do *riser*. Além disto, o mau funcionamento da *loop-seal* pode causar uma falha ou simplesmente cessar a operação do leito. Algumas condições operacionais como baixo inventário ou aeração insuficiente podem causar problemas de instabilidade.

A válvula *loop-seal* é dividida em duas seções, o *supply chamber* e o *recycle chamber*, onde essas seções são conectadas por uma passagem horizontal, como ilustrado na Figura 8. Pelo menos um lado da câmara de alimentação é aberto e conectado a câmara de reciclagem, mas em sistemas de grande porte, como caldeiras, esta passagem pode ser aberta dos dois lados, sendo conectados a duas câmaras de reciclagem.

Figura 8 - Modelo de uma válvula *Loop-seal* Fonte: Adaptado de Basu e Butler (2009).

A câmara de reciclagem funciona como uma represa. Quando sólidos excedem esta barragem, conhecida como *Weir*, eles caem no tubo de reciclagem e fluem para o fundo do *riser*. Os sólidos fluem pela passagem horizontal e sobem pela câmara de reciclagem devido à injeção de ar na parte inferior da válvula *loopseal*. Esta injeção de gás na válvula recebe o nome de aeração e é responsável por diminuir o atrito na passagem horizontal, expandindo o leito na câmara de reciclagem para que os sólidos transbordem pela barragem. Normalmente, o leito se expande em um regime fluidizado borbulhante através da câmara de reciclagem.

Segundo Basu e Butler (2009), o aumento do comprimento da passagem horizontal localizada entre a câmara de alimentação e a câmara de reciclagem causa uma perda de pressão adicional nesta, requerendo-se uma aeração maior (Basu e Butler, 2009). Quanto maior a altura da passagem, maior a aeração necessária para que ocorra a movimentação dos sólidos. Em grandes comprimentos, se forma uma área morta, onde não há movimentação de sólidos. Esta zona morta situa-se na parte inferior da passagem, havendo a movimentação de partículas apenas pela parte superior do duto.

Outra característica da válvula encontrada por Basu e Butler (2009) é que a taxa de fluxo de sólidos torna-se limitada sob certas condições operacionais. A partir de uma condição de leito fixo, ao aumentar a taxa de aeração da *loop-seal*, a taxa de sólidos também é incrementa. No entanto, quando a aeração ultrapassa certa quantidade, o fluxo de sólidos estabiliza e não aumenta mais. Essa condição de estabilização foi avaliada para diversos tamanhos de comprimento da passagem horizontal, sendo determinado que o valor efetivo no qual o fluxo de sólidos se estabiliza diminui com o aumento do comprimento da passagem horizontal. Os autores atribuíram este fato às alterações na resistência ao fluxo gás-sólido que a passagem oferece, e que em certas condições de aeração tornasse alta demais. O comportamento da variação da aeração necessária com o comprimento da passagem horizontal apresenta-se na Figura 9.

Figura 9 - Mudança da taxa de circulação de sólidos pela taxa de aeração e comprimento da passagem horizontal. Fonte: Adaptado de Basu e Butler (2009).

Li Hai-Guang et al (2011) realizaram experimentos em uma válvula *loop-seal* acoplada a um sistema de leito fluidizado circulante com partículas de vidro do grupo B (classificação de Geldart) em que a taxa de ar para fluidização na coluna *riser* foi mantida constante e variou-se a taxa de aeração na *loop-seal*. Ao aumentar gradativamente de baixa para alta aeração, a *loop-seal* apresentou a sequencia de três estados de operação: a não operação, operação com altura de sólidos no *standpipe*, e operação sem altura de sólidos no *standpipe*.

Quando a aeração na *loop-seal* é muito baixa, o leito na câmara de reciclagem não fluidiza, permanecendo constante a altura da superfície do leito. Normalmente, encontra-se um leito fixo nessa região, mas algumas bolhas podem se formar, com parte da vazão da aeração podendo ser dirigida ao *standpipe* caso a coluna de sólidos for pequena. Em consequência disto, as partículas não circulam e o sistema entra em colapso com a não operação da válvula.

Com o aumento da aeração, o leito se expande na câmara de reciclagem e começa a fluidizar, normalmente em regime de leito borbulhante. Assim, os sólidos se expandem até o topo da barragem, onde caem para o tubo de reciclagem e a circulação dos sólidos inicia. Nesta condição, a altura de sólidos no *standpipe* começa a variar com a taxa da aeração. Dessa maneira, a altura dos sólidos no *standpipe* aumenta com a diminuição da taxa de aeração e vice-versa, devido às

variações na taxa de recirculação do sistema e pelo balanço de pressão no circuito de fluidização, comandado principalmente pela distribuição do inventário de partículas nos componentes do LFC. Portanto, se a taxa de aeração é aumentada continuamente é possível atingir uma condição na qual a altura de sólidos no *standpipe* é muito baixa para manter o equilíbrio de pressões no circuito de fluidização, estabelecendo-se o limite superior do fluxo de sólidos (G_s).

Yang et al. (2003) estudaram as características do fluxo gás-sólido numa válvula *loop- seal* acoplada a um sistema de leito fluidizado circulante a frio. Em seus experimentos realizados com areia de diâmetro médio de 157 µm, os autores perceberam que a aeração modifica o rendimento da válvula. De acordo com os autores, o aumento da aeração realizada na câmara de alimentação indicou que o aumento do fluxo de sólidos acontece mais rápido neste local do que na câmara de reciclagem, conforme mostrado na Figura 10. Assim, o controle da aeração num local perto da câmara de alimentação é mais efetivo para o ajuste do fluxo de sólidos.

Figura 10 - Efeito da taxa de aeração na taxa de circulação de sólidos Fonte: Yang et al. (2009).

Kim e Kim (2011) analisaram o comportamento da pressão estática em torno da *loop-seal*. No estudo foi determinado o perfil de pressão nas duas câmaras da *loop-seal* separadamente, na câmara de alimentação e na câmara de reciclagem. Na câmara de alimentação foi verificado um aumento da queda de pressão ao incrementar o fluxo de sólidos ou ao diminuir o diâmetro médio das partículas, como apresentado na Figura 11(a). Já na região do *Weir* (Figura 11 (b)), a queda de pressão aumenta ao aumentar o diâmetro médio das partículas a um dado fluxo de sólidos, desde que a porosidade de mínima fluidização do leito diminua com o aumento da densidade.

Figura 11 - Efeito no fluxo de sólidos na pressão na região da câmara de alimentação (a) e na região da barragem (b). Fonte: Kim e Kim (2002)

Li *et al.* (2014) fizeram um estudo semelhante ao de Yang et al. (2009) e Kim e Kim (2002), porém foi utilizado aeração apenas na câmara de reciclagem, e analisado a queda de pressão nesta região. Foi observado que a taxa de fluxo de sólidos aumenta com o aumento da aeração na reciclagem a uma velocidade do gás constante no *riser*, porém a queda de pressão diminui efeito atribuído à porosidade da região que aumenta pela expansão do leito. Quando a aeração na câmara de reciclagem é mantida constante, e tem-se um aumento da velocidade do gás de fluidização no fundo do *riser*, a taxa de fluxo de sólidos aumenta, mas a queda de pressão na câmara permanece constante. Isto acontece porque a aeração permanece constante, assim a porosidade também permanece constante.

2.7 PERFIL DE PRESSÃO DE UM LFC COM VÁLVULA LOOP-SEAL

Um sistema de LFC apresenta pontos de maior ou menor densidade de sólidos de acordo com a altura do leito. A região inferior do leito apresenta uma região mais densa do que o topo, de acordo com as características fluidodinâmicas comentadas anteriormente, criando um perfil de porosidade. Isto gera um diferencial de pressão de acordo com a altura do leito (Morita, 2009).

O sistema de LFC forma um circuito fechado, assim todos os componentes são interligados entre si. Por algum fator, se a perda de carga de algum componente for alterada, a tendência é que os outros componentes se ajustem automaticamente (RAMIREZ – BEHAINNE, 2007).

De acordo com Kim et al. (2002), em uma operação estável, o balanço de pressão envolvendo o *riser*, ciclone, *standpipe* e válvula *loop-seal* pode ser descrita como:

$$\Delta P_{st} = \Delta P_r + \Delta P_c + \Delta P_{ls}$$
(15)

 $\label{eq:onde_st} \mbox{Onde}\ \Delta P_{st} = P_D - P_C, \ \Delta P_r = P_A - P_B, \ \Delta P_c = P_B - P_c \ e \ \Delta P_{ls} = P_D - P_A \mbox{(Figura 12)}.$
O perfil de pressão típico de um leito fluidizado circulante também é mostrado na Figura 12.

Figura 12 - Perfil de pressão característico de um LFC. Fonte: Adaptado de Basu (2006) e Ramirez – Behainne (2007).

O perfil de pressão não depende exclusivamente da densidade dos sólidos, ou da altura da coluna de sólidos, mas também é afetada por outras características fluidodinâmicas, como fluxo de sólidos ou pela velocidade de escoamento, que implica num maior arrasto, aumentando a queda de pressão (RAMIREZ – BEHAINNE, 2007).

3 METODOLOGIA

Neste capítulo são descritos os equipamentos e seus componentes, os materiais e o procedimento experimental utilizado neste trabalho. Também descrevem-se as etapas para a execução dos testes experimentais e detalhes relacionados ao tratamento dos resultados obtidos.

3.1 DESCRIÇÃO DO EQUIPAMENTO EXPERIMENTAL

Neste estudo serão realizados experimentos na Unidade de Fluidização Rápida a Frio (UFRAF), localizada no Laboratório de Processos Termoquímicos (TPLab) da UTFPR/Câmpus Ponta Grossa. O equipamento experimental deste estudo corresponde a uma Unidade de Fluidização Rápida a Frio, como ilustrado na Figura 13. O circuito de fluidização foi construído de aço carbono e acrílico, e é composto de duas colunas, o *riser* e o *standpipe*. Na parte superior, o *riser* é conectado ao *standpipe* por meio de um ciclone, que separa o gás do sólido. Na parte inferior do *standpipe* existe uma válvula de reciclagem de sólidos do tipo *loopseal*, que realimenta o material do leito na base do *riser*.

Figura 13 - Vista Geral da UFRAF Fonte: Autoria própria.

Na parte superior do ciclone existe um desvio em formato "T" de PVC, onde a saída horizontal é conectada uma mangueira flexível. Esta mangueira é responsável por direcionar o ar coletado do ciclone a um filtro de mangas que retém partículas finas que o ciclone não consegue separar. A conexão axial deste "T" é usada para alimentar o material do leito antes de começar o teste. Na parte inferior do *riser* existe uma placa distribuidora, com sete *tuyeres* perfurados por onde o ar de fluidização passa, evitando que o material do leito caia na parte inferior, que possui um formato cônico. O ar de fluidização para que o sistema se fluidize é fornecido na peça cônica que se encontra também na parte inferior do *riser*.

O riser possui diâmetro interno de 0,078 m e altura de 2,7 m. Ao longo do riser existem 02 tomadas de pressão (RS-01 e RS-06). O *standpipe* possui diâmetro interno de 0,059 m, e nele existem duas tomadas de pressão (SP-01 e SP-02). Abaixo do *standpipe* situa-se a válvula *loop-seal*, com seção quadrada interna de 0,059 m de lado. Na *loop-seal* existe uma tomada de pressão (LS-R), que mede a pressão no *recycle chamber*, sendo esta a única câmara alimentada pelo gás da aeração na válvula. A altura da barragem na câmara de reciclagem foi de 0,11 m.

A Figura 14 ilustra a válvula *loop-seal*, em acrilico, utilizada nos experimentos. Nela existem quatro tomadas de pressão estática (LS-A à LS-D), além de bicos que são responsáveis pelo recebimento do ar de aeração, localizado na base da válvula, que direcionam este ar para as câmaras de alimentação e reciclagem separadamente. Esta base é desmontável e foi construída de aço carbono. A altura da barragem na câmara de reciclagem foi construída com 0,11 m. Para evitar o retorno de sólidos, nas bases das câmaras de alimentação e reciclagem existe uma placa perfurada e uma malha sobre esta placa, evitando que os sólidos caiam na base de aço carbono.

Figura 14 - Válvula loop- seal utilizada nos testes experimentais Fonte: Autoria própria.

Na Figura 15 é possível visualizar todos os pontos esquemáticos das tomadas de pressão no circuito de fluidização. Assim, além de obter o perfil de pressão axial pela altura do leito, é possível determinar as quedas de pressão em cada componente do circuito A queda de pressão no *riser* é determinada pela diferença entre os pontos RS-01 e RS-06, no ciclone pelos pontos RS-06 e SP-01, no *standpipe* pelos pontos SP-01 e LS-A, na câmara de reciclagem pelos pontos LS-A e LS-B, na passagem horizontal da válvula pelos pontos LS-B e LS-C, na câmara de reciclagem pelos pontos LS-C e LS-D, e finalmente no tubo de reciclagem pelos pontos LS-D e RS-01.

Figura 15 - Representação esquemática dos pontos de tomada de pressão. Fonte: Modificado de Boró (2015).

Existem ainda três sistemas auxiliares: um sistema de fornecimento de ar de fluidização, outro sistema para fornecimento de ar de aeração da válvula de reciclagem e um sistema com instrumentação para aquisição dos dados do processo.

O ar utilizado na fluidização das partículas é inserido no cone localizado na base do *riser*, o qual garante velocidades superficiais de fluidização suficientemente elevadas dentro do regime de fluidização rápida. Esse ar procede de um soprador tipo radial (SO-1), marca AEROMACK, modelo CRE-04, que é alimentado por um motor elétrico de 4 cv de potência, conforme ilustrado na Figura 16. A fim de auxiliar no controle da vazão e da pressão do ar de fluidização foi utilizada uma válvula esfera (VA-MANGUEIRA DN25, PN10 de uma polegada, ligada a uma redução conectada à perna lateral de uma conexão "T" de duas polegadas, posicionada logo após a saída do soprador. Esta configuração funciona como válvula de alívio, permitindo uma passagem secundária do ar de fluidização quando o mesmo não precisa ser totalmente aproveitado pelo circuito de LFC. A configuração adotada pode ser visualizada na Figura 16.

Figura 16 - Sistema de fornecimento de ar de fluidização. Fonte: Adaptado de Valaszek e Marin (2013).

Na continuidade da linha de fornecimento de ar tem-se uma conexão com rosca interna de duas polegadas, na qual foi aberto um orifício para ligação de um bico de ¼ de polegada com engate rápido, que permite a ligação do sensor de temperatura tipo PT-100, que fornece a leitura da temperatura do fluxo de ar. Logo em seguida há ainda uma luva, que possibilita a rápida instalação ou retirada do soprador. Uma válvula gaveta (VA-G) de duas polegadas, da marca DOCOL, modelo DN50, confeccionada em latão, está posicionada ao fim deste conjunto, controlando diretamente a vazão do ar proveniente do soprador.

A vazão de ar de fluidização é medida por uma placa de orifício posicionada a jusante da válvula gaveta a uma distância de 20 vezes o diâmetro interno da tubulação de conexão, medida a partir da saída da válvula tipo gaveta

O sistema de fornecimento de ar de aeração é ilustrado na Figura 17. O ar injetado apenas na câmara de reciclagem da válvula *Loop-Seal* tem a finalidade de arejar as partículas de sólido acumuladas nesta região até uma condição próxima à de mínima fluidização. Nesta condição, a pressão na válvula *Loop-Seal* aumenta ao ponto de permitir o retorno dos sólidos à seção inferior do *riser*. O ar de aeração é proveniente de um compressor de ar (CO-1) de tipo alternativo, marca Shultz, modelo CSA 8,2/30 - PRATIC AIR – monofásico, com um motor elétrico de 2cv de

potência. Este sistema possui uma válvula reguladora de pressão e um rotâmetro, a fim de medir e controlar a vazão do ar de aeração.

Figura 17 - Linha de ar de aeração. Fonte: Adaptado de Valaszek e Marin (2013).

Os dados experimentais extraídos durante os testes consistem de medidas de pressão e de temperatura. Para tanto, foi construído e acoplado à UFRAF um sistema de medição de pressão manométrica composto por medidores de pressão em "U", preenchidos com água destilada, onde a unidade de medida é milímetros de coluna d'água. Os manômetros estão configurados lado a lado em um painel (Figura 18) e cada um deles possui suas respectivas mangueiras que realizam a medida das pressões em cada ponto específico do leito, conforme a Figura 18. No total, são 12 manômetros com suas respectivas tomadas de pressão, sendo estas: RS-01, LS-A, LS-B, LS-C, LS-D, RS-06, SP-01, SP-02, VAL-L, PO-M, PO-D (diferença entre a pressão a jusante e a montante da placa de orifício).

Figura 18 - Painel dos manômetros em "U" com o sistema de aeração. Fonte: Valaszek e Marin (2013).

CARACTERÍSTICAS DO MATERIAL CONSTITUINTE DO LEITO

O material a ser utilizado para a realização dos experimentos será a areia quartzosa usada no trabalho de Valaszek e Marin (2013) com esfericidade de 0,69, medida utilizando o método proposto por Peçanha e Massarani (1989) apud Cortez et al. (2008), onde as medidas de diâmetro inscrito e de diâmetro circunscrito da partícula são necessárias e obtidas com a ajuda de microscópio ótico do laboratório de Caracterização de Materiais da UTFPR- Campus Ponta Grossa. A densidade da areia é de 2523 kg/m³ e foi medida por picnometria no laboratório da Coordenação do curso de Engenharia Química da UTFPR, campus Ponta Grossa.

Os experimentos serão feitos com granulometria de areia no valor de 181 µm, obtidas pelo método de peneiramento, sendo que o valor desta granulometria foi obtida pelo peneirador industrial do SENAI – Ponta Grossa, através de peneiras com abertura de 150 e 212 µm.

3.2 PROCEDIMENTO EXPERIMENTAL

Os testes realizados neste estudo foram programados de acordo com a técnica de planejamento fatorial. Para o caso, foi proposto um planejamento fatorial 2², no qual 2 fatores controláveis são estudados em dois níveis (alto e baixo). Para a estimativa da significância dos efeitos das variáveis ou fatores controlados, serão consideradas triplicatas dos testes. Assim, serão realizados no total 12 testes, 4 testes pelo planejamento fatorial e suas repetições. Na matriz de planejamento pode-se visualizar melhor as combinações do planejamento. As variáveis escolhidas como fatores controláveis serão: velocidade de fluidização (m/s) e o inventário de sólidos (kg). Os níveis baixos e altos escolhidos serão 3,5 e 4,5 m/s para a relação de velocidade e 3,5 e 5 (kg) para o inventário de sólidos, como indicado na Tabela 1.

Tabela 1 – Matriz de planejamento adotada para realização dos testes experimentais Fonte: Autoria própria

	Variável controlada (fator)										
Teste	Inventário de Sólidos (kg)	Velocidade de fluidização(m/s)									
1	3,5 (-)	3,5 (-)									
2	3,5 (-)	4,5 (+)									
3	5,0 (+)	3,5 (-)									
4	5,0 (+)	4,5 (+)									
1*	3,5 (-)	3,5 (-)									
2*	3,5 (-)	4,5 (+)									
3*	5,0 (+)	3,5 (-)									
4*	5,0 (+)	4,5 (+)									
1**	3,5(-)	3,5(-)									
2**	3,5(-)	4,5(+)									
3**	5,0(+)	3,5(-)									
4**	5,0(+)	4,5(+)									

*Duplicata **Triplicata

Antes da realização de cada teste serão realizados dois procedimentos: O preparo da UFRAF e o preparo do combustível. Para o preparo da UFRAF, inicia-se verificando o funcionamento do compressor e conectando a mangueira deste na válvula reguladora de pressão. Seguidamente, realizam-se as conexões do termômetro digital e o computador com *software* para indicação da vazão de ar na

placa de orifício. Na sequência, realiza-se a limpeza das tomadas de pressão passando ar comprimido reverso em cada tomada. O nível de água nos manômetros é logo verificado e corrigido se for o caso. Por último pesa-se o filtro vazio para determinação posterior de areia coletada por este e é instalado nos extremos final da mangueira flexível conectada ao ciclone.

Para o preparo do combustível, pesa-se a massa de areia em uma balança digital. O material é introduzido com o auxilio de um funil na parte superior do ciclone e fica acumulado na válvula *loop-seal* e parte do *standpipe*.

Depois de tudo verificado e instalado, liga-se o soprador e aguarda-se que a temperatura do ar de fluidização entre em regime permanente. Para que o material do leito circule, regula-se a vazão do ar de aeração até o valor de 0,4 $\left(\frac{Nm^3}{h}\right)$ definido anteriormente. A aeração foi inserida apenas na câmara de reciclagem, a fim de poder comparar com os resultados obtidos por Li, *et al.* (2014).

Após isso, espera-se a temperatura estabilizar novamente. Após este procedimento, regula-se a velocidade do ar de fluidização para o comportamento estudado e parâmetro proposto para aquele teste. Para adequar esta velocidade, utiliza-se a válvula tipo gaveta, conforme os valores calculados com o modelo matemático desenvolvido por estudos anteriores através do *software* EES (*Engineering Equation Solver*).^{*TM*}

Com a velocidade ajustada, e o sistema estabilizado, inicia-se a leitura dos manômetros. São realizadas quatro leituras por teste, uma a cada cinco minutos. Ao finalizar os testes, retira-se a areia com o auxilio de um aspirador de pó. Posteriormente, desliga-se o soprador e a aeração. Finalmente, pesa-se a areia contida no filtro de mangas.

3.3 TRATAMENTO DOS DADOS

Neste item é explicado o tratamento dos dados experimentais, visando determinar os efeitos das variáveis estudadas sobre a perda de pressão no *riser*. As informações e dados obtidos nos experimentos foram organizados em gráficos e tabelas, contendo, por exemplo, informações sobre o perfil de pressão em função da altura do *riser*, efeitos das variáveis estudadas sobre o perfil de pressão e comparação dos resultados obtidos com os de literatura já existentes.

Uma análise estatística também será feita para saber a significância do efeito ou da resposta que a variação dos fatores controlados impõe no sistema. A Análise de Variância (ANOVA) como é chamada, foi realizada por meio do *software* STATISTICA 7[®], onde foram gerados diagramas de Pareto que mostram o efeito da mudança de nível dos fatores controlados e a significância deles.

No presente trabalho foi suposto dois fatores fixos. Para explicar a ANOVA supõe-se que A e B sejam esses dois fatores. Ou seja, os *a* níveis do fator A e os *b* níveis do fator B são especificamente escolhidos pelo experimentalista e inferências estão restritas somente a estes níveis.

A **análise de variância** pode ser usada para testar hipóteses sobre os efeitos principais dos fatores *A* e *B* e a interação *AB*. A Tabela 3 mostra uma ANOVA para um Fatorial com Dois Fatores, Modelo de Efeitos Fixos.

Fonte de	Soma dos	Graus de	Média Quadrática	Fo
Variação	Quadrados	Liberdade		10
Tratamentos A	SQ_A	(a – 1)	$MQ_A = \frac{SQ_A}{a-1}$	$\frac{MQ_A}{MQ_E}$
Tratamentos B	SQ_B	(<i>b</i> – 1)	$MQ_B = \frac{SQ_B}{b-1}$	$\frac{MQ_B}{MQ_E}$
Interação	SQ _{AB}	(a-1)(b-1)	$MQ_{AB} = \frac{SQ_{AB}}{(a-1)(b-1)}$	$\frac{MQ_{AB}}{MQ_E}$
Erro	SQ_E	ab(n-1)		
Total	SQ_T	abn(-1)	$MQ_E = \frac{SQ_E}{ab(n-1)}$	

Tabela 2 - Tabela ANOVA para um Fatorial com Dois Fatores, Modelo de Efeitos Fixos Fonte: Autoria Própria

O tipo mais simples de planejamento 2^k é o 2^2 – ou seja, dois fatores A e B, cada um com dois níveis. Neste trabalho foi-se pensado em níveis como sendo baixo e alto do fator. No planejamento 2^2 , é costume denotar os níveis baixo e alto dos fatores A e B pelos sinais – e +, respectivamente. Isso é algumas vezes

denominado **notação geométrica** para o planejamento. (MONTGOMERY – Douglas C., 2013)

Os efeitos de interesse no planejamento 2^2 são os efeitos principais A e B e o fator de interação de segunda ordem AB. Sejam as letras (1), *a, b,* e *ab* os totais de todas as *n* observações tomadas nesses pontos dos planejamentos o Efeito Principal do Fator A é obtido pela equação (16):

$$A = \bar{y}_{A+} - \bar{y}_{A-} = \frac{a+ab}{2n} - \frac{b+(1)}{2n} = \frac{1}{2n} [a+ab-b-(1)]$$
(16)

Similarmente, o efeito principal de B é encontrado a partir da equação (17):

$$B = \bar{y}_{B+} - \bar{y}_{B-} = \frac{b+ab}{2n} - \frac{a+(1)}{2n} = \frac{1}{2n} [b+ab-a-(1)]$$
(17)

Finalmente, a interação AB é estimada pela equação (18):

$$AB = \frac{ab+(1)}{2n} - \frac{a+b}{2n} = \frac{1}{2n} [ab+(1)-a-b]$$
(18)

As grandezas entre colchetes nas equações 17, 18 e 19 são chamadas de **contrastes.**

Os diagramas de Pareto demonstram uma linha de significância ao nível de 95% de confiança (p=0,05). Este valor p, também conhecido como valor descritivo deve ser menor que 0,05, assim a hipótese é rejeitada de que o efeito não é significativo, e ele se torna significativo. Portanto, no diagrama de Pareto, as alturas das barras demonstram os efeitos das variáveis (resposta pelo erro experimental), e se este efeito ultrapassa a linha do qual os efeitos se tornam significativos (p=0,05), ele é significativo ao nível de 95% de confiabilidade.

4 RESULTADOS E DISCUSSÃO

Neste capítulo são apresentados os resultados obtidos durante os 12 experimentos realizados. Primeiramente foi feito uma análise separada do sistema LFC a fim de conhecer quais os efeitos, como e quanto os parâmetros de entrada influenciam na resposta, que é a perda de pressão no *riser*. Nessa primeira parte os resultados são analisados qualitativamente, por intermédio de gráficos que ditam o perfil axial de pressão para cada experimento. Uma análise estatística também é feita, com auxílio de algumas ferramentas do *software* STATISTICA 7[®], como o gráfico de Pareto e os coeficientes de regressão para a formulação do modelo estimativo estatístico.

4.1 PERFIL AXIAL DE PRESSÃO ESTÁTICA

Neste item são feitas as análises dos resultados obtidos durante os experimentos realizado variando a velocidade de fluidização do ar e o inventário de sólidos.

4.1.1 Efeito da Velocidade de Fluidização no Perfil Axial de Pressão Estática

Os valores de pressão estática, obtidos durante os experimentos, foram representados nos Gráficos seguintes em função da altura medida desde a base do *riser*. Este gráfico é conhecido como Perfil de pressão axial e reflete o balanço de pressão ao longo do circuito de fluidização. Os pontos marcados nas curvas dos gráficos representam o valor médio das oito leituras de pressão obtidas em cada tomada para o teste correspondente. As condições e registros dos ensaios estão disponíveis no Apêndice A juntamente com outras informações pertinentes.

O Gráfico 1 e o Gráfico 2 apresentam os dados para analisar o efeito da velocidade de fluidização no perfil axial de pressão estática, o inventário de sólidos foi mantido fixo, variando apenas a velocidade de fluidização.

Gráfico 1 - Gráfico com efeito da mudança na velocidade do gás (nível baixo de inventário) Fonte: Autoria Própria

Gráfico 2 - Gráfico com efeito da mudança na velocidade do gás (nível alto de inventário) Fonte: Autoria Própria

Pode-se observar por meio dos Gráficos 1 e 2, que para valores de inventários diferentes (*Inv*), e variando a velocidade de fluidização (U_f), os valores de pressão estática aumentam quando o valor da velocidade de fluidização é maior. Tanto no Gráfico 1 quanto para o Gráfico 2 esse efeito é observado. Isso é explicado pelo fato de que, o incremento da velocidade de fluidização gera maiores forças de atrito da suspensão gás-sólido com as paredes da tubulação. De acordo com Basu (2006), esta perda pode se tornar importante sob algumas situações operacionais e de escala do sistema, principalmente envolvendo densidades de suspensão relativamente baixas e colunas de fluidização com diâmetro reduzido.

A velocidade relativa entre o gás e os sólidos fica menor quando a velocidade de fluidização aumenta resultando na diminuição da taxa de circulação externa dos sólidos e na consequente promoção de maior aglomeração de partículas na base do *riser*. O mesmo comportamento foi observado no trabalho de Kim e Kim (2002), onde ao aumentar a velocidade de fluidização percebeu-se que os valores de pressão estática aumentam, movendo o gráfico para a direita.

4.1.2 Efeito do Inventário de Sólidos dentro do sistema no Perfil Axial de Pressão Estática

Os Gráficos 3 e 4 mostram o efeito da variação do Inventário de sólidos (*Inv*) sobre o perfil de pressão estática com a velocidade de fluidização.

Gráfico 3 - Gráfico com efeito da mudança no inventário de partículas (nível baixo de Uf) Fonte: Autoria Própria

Gráfico 4 - Gráfico com efeito da mudança no inventário de partículas (nível alto de Uf) Fonte: Autoria Própria

Por meio destes gráficos pode-se constatar a mesma evidência observada nos Gráficos 1 e 2; isto é, ao aumentar o inventário de sólidos observa-se uma tendência para maiores valores de pressão estática. A mesma situação foi observada nos experimentos de Kim *et. al* (2002). A razão desse acontecimento é explicada pela diminuição na porosidade média do leito com o aumento do inventário de sólidos. Dessa maneira, o balanço de pressão é mantido, corrigindo-se automaticamente para valores mais altos de pressão estática.

Deve-se ressaltar que a perda de pressão no *riser* é dependente não só dos efeitos principais de cada variável, mas também dos efeitos combinados entre duas variáveis e entre as três variáveis. Alguns trabalhos relatam que, para leitos fluidizados circulantes em pequena escala, a perda de pressão no *riser* não depende apenas do peso das partículas, mas também do atrito entre o gás e as partículas, do atrito entre as partículas e a parede do *riser* e, adicionalmente, da aceleração das partículas (LOUGE e CHANG, 1990; ISSANGYA 1999; RAUTIAINEN *et al.*, 1999).

4.2 QUEDA DE PRESSÃO NOS COMPONENTES DO CIRCUITO DE FLUIDIZAÇÃO

Nesta seção serão apresentados gráficos da perda ou queda de pressão em cada componente do circuito de fluidização e da válvula *loop-seal*. Esta queda de pressão é obtida pela diferença das pressões estáticas obtidas nas tomadas de pressões que delimitam cada componente, como mostrado na seção da metodologia (item 2.7). Estes gráficos também mostram a queda de pressão nos componentes por efeito de variável controlada.

4.2.1 Efeito da Velocidade do Gás na Queda de Pressão dos Componentes do Leito

O Gráfico 5 mostra o efeito da velocidade do gás para o nível baixo de inventário de sólidos (3,5 kg) na queda de pressão dos componentes do circuito de fluidização e da válvula *loop-seal*.

Gráfico 5 - Queda de pressão para inventário de sólidos de 3,5 kg e velocidade de fluidização variável. Fonte: Autoria própria.

É possível ver que na maioria dos componentes. A perda de pressão no *standpipe* é muito superior aos outros componentes do circuito, a tendência é ter um aumento na queda de pressão com o aumento da velocidade do gás, pois a velocidade de fluidização impacta em um aumento no fluxo de circulação de sólidos. Este fenômeno só não foi observado na passagem horizontal e na câmara de reciclagem, já que nessas regiões houve uma diminuição na queda de pressão com o aumento da aeração. O Gráfico 6 traz o comportamento da velocidade do gás para o nível alto do inventário de sólidos (5 kg).

Gráfico 6 - Queda de pressão para inventário de sólidos de 5 kg e velocidade de fluidização variável. Fonte: Autoria Própria

O efeito da velocidade do gás para o nível alto do inventário de sólidos apresentou um comportamento parecido com o do nível baixo, mas na região da passagem horizontal não houve alteração da queda de pressão, em contra partida da diminuição na queda de pressão no caso do nível baixo do inventário de sólidos no Gráfico 5. Na câmara de alimentação houve uma redução da queda de pressão em contra partida do efeito apresentado para o nível baixo de inventário de sólidos. Já os demais componentes apresentaram aumento na queda de pressão.

4.2.2 Efeito do Inventário de Sólidos na Queda de Pressão dos Componentes do Leito

O Gráfico 7 mostra o comportamento da queda de pressão dos componentes do circuito de fluidização e da válvula *loop-seal* em relação ao inventário de sólidos para o nível baixo da velocidade do gás (3,5 m/s)

Gráfico 7 - Queda de pressão para velocidade do gás de 3,5 m/s e inventário de sólidos da válvula loop-seal variável. Fonte: Autoria própria.

No gráfico 7 observa-se que a queda de pressão aumentou na maioria dos componentes do leito em relação ao inventário de sólidos sobre a velocidade do gás no nível baixo, algumas mais expressivas como no *riser* e *standpipe*, e outras menos como no ciclone e câmara de reciclagem. Entretanto os componentes câmara de alimentação, altura da passagem horizontal e na válvula *loop-seal* em geral a queda de pressão diminuiu com diminuição quando o inventário de sólidos foi aumentado sobre a velocidade do gás no nível baixo.

O Gráfico 8 traz o efeito do inventário de sólidos para o nível alto da velocidade do gás (4,5 m/s).

Gráfico 8 - Queda de pressão para velocidade do gás de 4,5 m/s e inventário de sólidos da válvula loop-seal variável. Fonte: Autoria própria.

O efeito apresentado no Gráfico 8 foi praticamente igual em todos os componentes do circuito de fluidização. A única mudança que pode ser observada está na queda de pressão na válvula *loop-seal* em geral. Ao contrário do que foi visto no gráfico anterior, com um aumento no inventário de sólidos sobre o nível alto da velocidade do gás, a queda de pressão aumentou também na válvula, intensificando assim a maior mudança observada quando o nível foi mudado da velocidade do gás.

4.3 ANÁLISE ESTATÍSTICA DOS EFEITOS DAS VARIÁVEIS CONTROLADAS

Para determinar a significância dos efeitos produzidos pelos fatores controlados sobre o perfil axial de pressão e as quedas de pressões nos componentes do leito, foi realizada uma análise de variância (ANOVA) apresentada na forma de gráficos de Pareto. Para cada componente do leito foi realizado uma análise ANOVA para determinar o efeito de cada variável controlada, e em seguida foi feita uma busca na literatura que comprove a resposta do sistema pela variável estudada e sua possível significância nos componentes do leito.

No Gráfico 9 apresenta-se um gráfico de Pareto para o efeito da velocidade de fluidização e do inventário de sólidos sobre a queda de pressão no componente do *riser*. De acordo com o gráfico, a variável controlada inventário de sólidos, para o nível de confiança de 95%, possui influência significativa sobre a queda de pressão, pois ultrapassa a linha de significância (p=0,05).

Gráfico 9 - Gráficos Pareto para o efeito sobre a perda de carga no *riser* e na câmara de reciclagem. Fonte: Autoria Própria

O resultado mostra que, como esperado, o inventário de sólidos tem influência significativa sobre a perda de pressão estática no *riser* ao nível de confiança de 95%, e esta influência é diretamente proporcional. De acordo com a análise estatística, a velocidade de fluidização tem uma influência menor do que o de inventário de sólidos, não representado o nível de 95% de confiança. Este aumento na queda de pressão no *riser* é devido ao fato de quando se tem um aumento no inventário na válvula *loop-seal*, mais sólidos são transferidos ao *riser*, e consequentemente se tem um aumento da taxa de recirculação no sistema.

Este aumento de sólidos no *riser* incrementa a queda de pressão, pela mudança na porosidade. Segundo Bidwe *et. al* (2009), a queda de pressão total é influenciada por mais fatores além da pressão estástica (criada pelo peso das partículas, ou força gravitacional sobre as partículas). Mas também pelo atrito entre os sólidos e a parede, pela aceleração das partículas e pelo atrito entre partículas e gás.

Segundo Base e Cheng (2000), a queda de pressão no *riser* pode ser dividida entre as duas regiões do perfil axial de porosidade, a região densa e a diluída, que levam em conta justamente a porosidade e a altura dessa região, além de incluir uma parcela da perda por atrito e perda pela aceleração das partículas. Assim, alterando a porosidade como conseqüência do aumento do fluxo de sólidos, a queda de pressão tende a aumentar, além das perdas por atrito já mencionado por Bidwe *et al* (2009).

O Gráfico 10 apresenta a significância dos efeitos sobre a queda de pressão no ciclone. Por meio dele, percebe-se, para um nível de confiança de 95%, que todas as mudanças das variáveis, separadas e combinadas entre si ultrapassam o valor marcado pela linha de significância com p=0,05, sugerindo que elas possuem influência significativa sobre a resposta.

Gráfico 10 - Gráfico Pareto para o efeito sobre a perda de carga no ciclone Fonte: Autoria Própria

O Gráfico 10 mostra que os fatores controlados têm influência significativa sobre a perda de pressão estática no ciclone, ao nível de significância de 95% (p<0,05). Na literatura encontram-se alguns equacionamentos da queda de pressão no ciclone que só levam em conta a velocidade do gás, como mostrado por Kim e Kim (2002), por exemplo, confirmando assim o resultado obtido pelo gráfico de Pareto. No presente estudo, a velocidade do gás foi alterada, e como o fluxo de sólidos aumenta pela mudança de nível dos fatores, acredita-se que como no *riser*, o aumento da queda de pressão em decorrência das parcelas por atrito descritas por Bidwe *et al.* também estão presentes no ciclone.

O Gráfico 11 traz o gráfico de Pareto dos efeitos produzidos na queda de pressão no *standpipe*.

Gráfico 11 - Gráfico Pareto para o efeito sobre a perda de carga no standpipe Fonte: Autoria Própria

No standpipe pode-se visualizar que as variáveis controladas tiveram influencia significativa ao nível de 95% de confiança sobre a queda de pressão, pois as duas variáveis ultrapassaram a linha de significância (p=0,05). Acredita-se que a mudança na altura da coluna de sólidos criada pela maior massa do inventário no fluxo de sólidos foi enfatizada pelos fatores de atrito em decorrência dessa mudança no escoamento, maximizando assim o efeito das variáveis. Com o aumento do inventário de sólidos no sistema, o resultado sobre o perfil de pressão axial na "coluna de retorno" era realmente o esperado, o aumento na perda de carga como visto é explicado pela maior aglomeração de sólidos e escoamento mais denso na região onde os pontos foram estudados da coluna.

O Gráfico 12 apresenta a significância dos efeitos sobre a queda de pressão na câmara de reciclagem da válvula *loop-seal*.

Gráfico 12 - Gráfico Pareto para o efeito sobre a perda de carga na câmara de reciclagem Fonte: Autoria Própria

Na câmara de reciclagem apenas o inventário de sólidos teve influência significativa sobre a queda de pressão, e esta influência teve efeito diretamente proporcional. Segundo Kim e Kim (2002) a queda de pressão na câmara da reciclagem depende apenas da porosidade. Já Li *et al.* (2014), cujo em seu trabalho utilizou aeração apenas na câmara de reciclagem, propôs que a queda da pressão é dependente da porosidade, mas a porosidade além de depender da velocidade de deslizamento gás-sólido, inclui forças gravitacionais sobre os sólidos, atrito entre parede e sólidos e aceleração das partículas. Assim, com base nos resultados encontrados na literatura, podemos dizer que o aumento do inventário de sólidos impacta em um aumento da porosidade na câmara de reciclagem, diminuindo a pressão estática diferencial.

Os Gráficos 13 e 14 apresentam a significância dos efeitos sobre a queda de pressão na câmara de alimentação e na altura da passagem horizontal da válvula *loop-seal.*

Gráfico 13 - Gráfico Pareto para o efeito sobre a perda de carga na câmara de alimentação Fonte: Autoria Própria

Gráfico 14 - Gráfico Pareto para o efeito sobre a perda de carga na altura da passagem horizontal na válvula *loop-seal* Fonte: Autoria Própria

Os resultados dos gráficos mostram que, neste caso, nenhum dos fatores controlados influencia significativamente a perda de pressão estática. Isto pode ser explicado porque de acordo com as observações experimentais uma característica fluidodinâmica foi encontrada nos experimentos, em que o escoamento de sólidos entre a câmara de alimentação e de reciclagem se apresenta com caminho preferencial na parte superior da passagem horizontal, deixando uma zona morta de sólido localizada na parte inferior da câmara de alimentação.

5 CONCLUSÕES E SUGESTÕES PARA TRABALHOS FUTUROS

Este trabalho mostrou que uma válvula *loop-seal* alimentada com areia material inerte pode operar de maneira estável com aeração fixa de 0,4 $\left(\frac{Nm^3}{h}\right)$ e variando a relação de velocidade de fluidização com o inventário de sólidos dentro dos valores indicados. A análise estatística mostrou que o inventário de sólidos tem influencia significativa sobre a perda de pressão no *riser* e da câmara de reciclagem a um nível de confiança de 95%. Dessa maneira, com o acréscimo dos valores dos fatores controlados no inventário de sólidos, também ocorreu um aumento da perda de carga.

Por outro lado, foi encontrado que ambos, a velocidade de fluidização e o inventário de sólidos têm um efeito significativo sobre a perda de pressão no ciclone e na coluna de retorno (*standpipe*) para válvula. Isso porque, as regiões do leito mais densas (com menor fração de vazio), promovem zonas com pressão estática maior. Devido à altura de sólidos no *standpipe* da válvula *loop-seal*, este local apresenta um dos pontos de maior pressão estática do sistema, sendo o principal responsável por regular a pressão no circuito de fluidização.

A análise da fluidodinâmica na válvula também indicou que, sob aeração fornecida apenas na câmara de reciclagem, aparece um caminho preferencial de movimentação de sólidos e uma zona de estagnação na parte inferior dela. Mais estudos são requeridos para estudar melhor este fenômeno observado no interior de uma válvula *loop-seal* com aeração exclusiva na câmara de reciclagem.

É importante ressaltar que os resultados obtidos neste trabalham só são válidos para a faixa de operação estudada.

A seguir apresenta-se uma lista de sugestões para trabalhos futuros que podem complementar ou aprimorar os resultados obtidos neste presente estudo:

Realizar estudos com aeração nas duas câmaras da válvula loop-seal;

 Instalar um sistema para obtenção do fluxo de sólidos no circuito de fluidização;

• Automatizar o sistema de coleta de dados, a fim de melhorar a confiabilidade das leituras;

Realizar estudos com mistura de areia com carvão e/ou biomassa;

• Realizar estudos com partículas maiores.

REFERÊNCIAS BIBLIOGRÁFICAS

BASU, P.; CHENG, L.. An Analysis Of Loop Seal Operations In a Circulating Fluidized Bed. Instituto Of Chemical Engineers, China, v. 78, p.991-999, out. 2000.

BASU, Prabir. **Combustion and gasification in fluidized beds**. New York: Taylor e Francis, 2006. 437 p.

Basu, P.; Butler, J. Studies on the operation of loop-seal in circulating fluidized bed boilers. Applied Energy 86 (2009) 1723–1731.

BORÓ, Breno. ESTUDO EXPERIMENTAL DA OPERAÇÃO DE UM SISTEMA DE LFC COM VÁLVULA LOOP-SEAL COM GEOMETRIA E TAXA DE AERAÇÃO VARIÁVEIS. 2015. 85f. TCC (Graduação) - Curso de Engenharia Mecânica, Universidade Tecnológica Federal do Paraná, Ponta Grossa, 2015.

CARDENAS. F.; OSCAR L. Estudo preliminar da fluidodinâmica do escoamento gás-sólido de um leito fluidizado circulante através da análise dos sinais dinâmicos de pressão.2009.120 p. Dissertação (Mestrado) - Faculdade de Engenharia Mecânica, Universidade Estadual de Campinas, 2009.

CORTEZ, L. A. B.; LORA, E. E. S.; GÓMEZ, E. O. Caracterização da Biomassa. In: _____ (Orgs.). **Biomassa para Energia**. Campinas: Unicamp, 2008. p. 32-62.

FONSECA, O.; LEONARDO, C. Estudo Preliminar da Fluidodinâmica do Escoamento Gás-Sólido de um Leito Fluidizado Circulante Através da Análise dos Sinais Dinâmicos de Pressão. 2009. 157 f. Dissertação (Mestrado) - Universidade Estadual de Campinas, Campinas, 2009.

GELDART, D.; BAEYENS J. The Design of Distributors for Gas-Fluidized Beds. **Powder Technology**, v. 42, p. 67-78, 1985.

HAI-GUANG, Li et al. Experimental investigation of the loop seal operation status and its judgment in circulating fluidized bed. In: INTERNATIONAL CONFERENCE ON MEASURING TECHNOLOGY AND MECHATRONICS AUTOMATION, 3., 2011.

ISSANGYA, A. S.; BAI, D., BI, H. T.; LIM, K. S.; ZHU, J.; GRACE, J. R. **Suspension densities in a high-density circulating fluidized bed riser**. Chemical Engineering Science, v. 54, n. 22, p. 5451-5460, 1999.

KIM, S. W.; KIM, S. D.; LEE, D. H. Pressure Balance Model for Circulating Fluidized Beds with a Loop-seal. Ind. Eng. Chem. Res., v.41, p. 4949-4956, 2002.

KUNII, D.; LEVENSPIEL, O. Fluidization Engineering.2. ed. USA: Butterworth-Heinemann, 1991. 491 p.

LI, Changjin; LI, Hongzhong; ZHU, Qingshan. A HYDRODYNAMIC MODEL OF LOOP-SEAL FOR A CIRCULATING FLUIDIZED BED. **Powder Technology,** China, n. 252, p.14-19, 2014.

LOUGE, M.; CHANG, H. **Pressure and voidage gradients in vertical gas-solid risers.** Powder Technology, v. 60, n. 2, p. 197-201, 1990.

MONTGOMERY, Douglas C.; RUNGER, George C. Estatística aplicada e probabilidade para Engenheiros. 5. ed. Rio de Janeiro: Gen Grupo Editorial Nacional, 2013. 525 p. Tradução de Verônica Calado.

PEÇANHA, R.P.; MASSARANI, G., **Dimensão característica e forma de partículas**, XIV Encontro Nacional de Escoamento em Meios Porosos, ENEMP, 1986.

PECETE, Andrel de Souza. **ESTUDO EXPERIMENTAL DO PERFIL AXIAL DE PRESSÃO A FRIO DE UM LEITO FLUIDIZADO CIRCULANTE COM DISTRIBUIDOR DE AR.** 2014. 103 f. TCC (Graduação) - Curso de Engenharia Mecânica, Universidade Tecnológica Federal do Paraná, Ponta Grossa, 2014.

QUERESHI, A. E.; CREASY, D. E.. Fluidised Bed Gas Distributors. **Powder Technology**, v. 22, p. 113-119, 1979.

RAMIREZ-BEHAINNE, J.J. **Estudo das Emissões de Mercúrio na Combustão de Carvão Mineral Brasileiro em Leito Fluidizado Rápido.** 2007. 234 p. Tese (Doutorado) – Faculdade de Engenharia Mecânica, Universidade Estadual de Campinas. Campinas, 2007.

RHODES, M. J. (1998) - Introduction to Particle Technology (Wiley, Chichester, England).

VALASZEK, Adinaldo.; MARIN, Bianca. Estudo experimental da perda de pressão em sistema de leito fluidizado circulante a frio alimentado com misturas de areia, carvão mineral e serragem de madeira. 2013. 144f. Trabalho de Conclusão de Curso (Bacharelado Engenharia Mecânica) - Universidade Tecnológica Federal do Paraná. Ponta Grossa, 2013.

YANG, W. C. Handbook of Fluidization and Fluid-Particle Systems. Marcel Dekker: New York, 2003.

YERUSHALMI, J., TURNER, D. H., SQUIRES, A. M. **The fast fluidized bed.** Industr. Eng. Chem., Process Design and Development, v. 15, p. 47-73, 1976.

APÊNDICE A – Testes experimentais

OBS: O * e ** indica a repetição do experimento.

			TESTE										F		
Teste nº: 1	Data: 14/04/	2015		Hora início	17:10	Hora fim: 17	:55	Operadores: B	reno e Guet	avo		31 I.A			
Material: Are	ia							VAR	IÁVEIS CO		DAS	_		_	
0.: 2523 kg/n	n ³	Φ.: 0.69		Inventário:	3.5 kg		Tamanho da	partícula (d _e): 1	80 um		Vel. de flui	idização: 3.	5 m/s	Altura pas	sagem horizontal: -
P3				1	-,						1				
Madida	Here	DE 01	18.4	LOD	180				NJ. 80.02	LOD	BO M	BO D	Th	Та	Vazão lida (Nm ³ /b)
1	17:30	194	233	312	319	185	75	51	120	376	611	19	45.3	24.5	
2	17:34	194	200	312	319	185	76	53	120	376	611	19	45.4	24.5	0,4
3	17:38	199	239	315	320	187	78	55	125	376	610	19	45.4	24.5	0.4
4	17:43	200	240	313	323	188	79	56	125	379	615	19	45.5	24.5	0.4
Média		197,75	238	313	320,25	186,25	77	53,75	123	376,75	611,75	19	45,4	24,5	0,4
Massa do filt	ro no início do	teste: 343.8	6 a			Massa do fil	tro no fim do 1	teste: 345.09 a							· · · ·
								j							
			TESTES	SEPER	MENTA	IS EM UN		DE FLUIDIZ	ACÃO F	RÁPIDA A		- UFRA	F		
Teste nº: 1*	Data: 22/04/	2015		Hora início	10:25	Hora fim: 11	:00	Operadores: B	reno e Gust	avo					
Material: Are	ia					1		VAR	IÁVEIS CO		DAS				
0.: 2523 kg/n	n ³	Φ.: 0.69		Inventário:	3.5 kg		Tamanho da	partícula (d _a): 1	80 um		Vel. de flui	idização: 3.	5 m/s	Altura pas	sagem horizontal: -
pg. 2020 Ng/1		+ g. 0,00		internatio.	0,0 Ng	VAP					Tron do na	uização. o,	0 11/0		
Madida	Here	DE 01	18.4	LCB	18.0				NO. 60.02	LOD	BO M	BO D	Th	Та	Vazão lida (Nm ³ /b)
Medida	10:40	85-01	240	L3-B	242	207	KS-U6	5P-01	5P-02	206	PO-IVI	PO-D	10.2	10 F	
2	10:40	220	249	330	342	207	74	49	113	396	626	19	40,2	19,5	0,4
2	10:45	215	247	337	342	208	74	53	113	208	625	19	40,8	19,5	0,4
3	10:55	217	251	333	342	208	79	55	115	398	620	19	40,8	19,5	0,4
Mádia	10.55	217 75	250 25	336 25	342 75	205	75 25	52 25	112 75	398	627	19	40 675	19,5	0,4
Massa do filt	ro no início de	teste: 346 9	6 a	000,20	0.12,10	Massa do fil	tro no fim do t	este: 347 17 a		000	02.		-10,010	,.	0,1
1012332 00 111		10310. 040,0	log		[1112332 00 11		iesie: 047,17 g		[
		1	TESTES	SEPER	MENTA								F		
Teste nº: 1**	Data: 28/04/	2015		Hora início	16.20	Hora fim: 16	·55	Operadores: B	reno e Gust			01104			
Material: Are	ia	2013			10.20			VAR	IÁVEIS CO		DAS				
0.: 2523 kg/n	n ³	Φ.: 0.69		Inventário:	3.5 kg		Tamanho da	partícula (d _a): 1	80 um		Vel. de flui	idização: 3.	5 m/s	Altura pas	sagem horizontal: -
P3				1	-,						1				
Modida	Hora	PS-01	18-4	IS-B	18-0				SP-02	IS-P	BO-M	BO-D	ть	Та	Vazão lida (Nm ³ /b)
1	16:36	208	239	324	339	195	68	44	100	382	612	19	44.6	23.7	
2	16:41	200	235	330	337	195	71	44	100	386	616	19	44,0	23,7	0,4
3	16:46	214	244	329	339	197	72	50	100	388	617	19	44.9	23,7	0,4
4	16:50	215	241	330	337	194	75	51	103	384	616	19	44.9	23.7	0.4
Média	10.00	212,75	241,25	328,25	338	194,25	71,5	48	101	385	615,25	19	44,8	23,7	0,4
Massa do filt	ro no início do	teste: 342,7	7 g			Massa do fil	tro no fim do 1	teste: 343,44 g							· · · ·
	ΔP riser	ΔP ciclone	ΔP standpipe	ΔP LS-CA	ΔP LS-PH	ΔP LS-CR	ΔP LS-TR	ΔP LS-GERAL							
1	1184,07	227,99	1806,76	735,45	71,09	1314,00	112,77	394,69							
1*	1397,36	225,54	1941,59	843,32	63,74	1336,07	110,32	318,70							
1**	1385,10	230,44	1895,01	853,12	95,61	1409,61	181,41	279,47							
média	1322,18	227,99	1881,12	810,63	76,81	1353,23	134,83	330,95							
		RS-01	RS-06	SP-01	SP-02	LS-A	LS-B	LS-C	LS-D	RS-01					
	1	1939,14	755,06	527,07	1206,14	2333,83	3069,28	3140,37	1826,37	1939,14					
	Altura [m]	0,036	2,704	2,126	1,050	0,840	0,680	0,680	0,850	0,036					
	Altura [m]	0,036	2,704	2,126	1,050	0,840	0,680	0,680	0,850	0,036					
	Altura (m) 1*	0,036	2,704 737,90	2,126 512,36	1,050 1105,63	0,840 2453,95	0,680 3297,27	0,680	0,850 2024,94	0,036 2135,26					
	Altura [m] 1* Altura [m]	0,036 2135,26 0,036	2,704 737,90 2,704	2,126 512,36 2,126	1,050 1105,63 1,050	0,840 2453,95 0,840	0,680 3297,27 0,680	0,680 3361,01 0,680	0,850 2024,94 0,850	0,036 2135,26 0,036					
	Altura [m] 1* Altura [m]	0,036 2135,26 0,036	2,704 737,90 2,704	2,126 512,36 2,126	1,050 1105,63 1,050	0,840 2453,95 0,840	0,680 3297,27 0,680	0,680 3361,01 0,680	0,850 2024,94 0,850	0,036 2135,26 0,036					
	Altura [m] 1* Altura [m] 1**	0,036 2135,26 0,036 2086,23	2,704 737,90 2,704 701,13	2,126 512,36 2,126 470,69	1,050 1105,63 1,050 990,41	0,840 2453,95 0,840 2365,70	0,680 3297,27 0,680 3218,82	0,680 3361,01 0,680 3314,43	0,850 2024,94 0,850 1904,82	0,036 2135,26 0,036 2086,23					

		т							IZACÃO							
Teste nº: 2	Data: 02/06/2	015			10:52								NAF			
	Data. 02/06/2	2015		Hora micic	. 10.52		1.55	Operadores. E	BIÁVEIS							
Naterial: Are	a_3	★ : 0.60		Inventório:	2.5.kg		Tomonho	VA		CONTR		dizooão: 4	E m/o	Altura pas	sagem borizontal:	
ρ _s : 2523 kg/n	n	$\Psi_{s}: 0,69$		inventano. 5,5 kg Tamanno da particula (g.). 100 µm Vel. de fluidização: 4,5 m/s Altura passagem nonzontal: -												
		I				VARI	AVEIS E.	XPERIMEN [®]	TAIS:							
Medida	Hora	RS-01	LS-A	LS-B	LS-C	LS-D	RS-06	SP-01	SP-02	LS-R	PO-M	PO-D	ТЬ	Та	Vazao lida (Nm ^o /h)	
1	11:13	262	288	393	400	258	103	66	122	446	958	33	41,9	17	0,4	
2	11:18	267	291	398	404	264	111	72	127	454	959	33	42,3	17	0,4	
3	11:23	269	298	402	405	265	110	75	132	450	959	32	42,7	17	0,4	
4	11:28	274	300	400 208.25	405	207 262 E	116	79	134	458	960	32	42,7	17	0,4	
Media		200	294,25	396,25	403,5	203,5	110 Elémente d'are	13	120,75	452	959	32,5	42,4	17	0,4	
wassa uo inti		teste. 342,7	6 g	1		wassa uo		do leste. 343,	52 g	i i			i	1		
		_											DAE			
Tasta all Ot	D 1 00/04/	•	ESTES EF						IZAÇA				КАГ			
Teste nº: 2º	Data: 22/04/2	2015		Hora inicio	0: 11:25	Hora fim: 1	2:05	Operadores: E	sreno e Gu							
Material: Are	-3			las and fairs	0.5.1.2		Terreter	VA		CONTR			F === (=	Altura pag	agam barizantali	
ρ _s : 2523 kg/n	n ·	$\Psi_{s}: 0,69$		inventario:	з,5 кд		famanno d	a particula (d _r	5): 180 µm		vel. de liui	dizaçao: 4,	5 m/s	Altura pas	sagem nonzontal	
		1	1			VARI	AVEIS E	XPERIMEN'	I AIS:							
Medida	Hora	RS-01	LS-A	LS-B	LS-C	LS-D	RS-06	SP-01	SP-02	LS-R	PO-M	PO-D	Tb	Та	Vazão lida (Nm³/h)	
1	11:40	246	283	360	374	233	108	73	146	430	929	32	42,7	20,7	0,4	
2	11:44	247	286	374	382	240	116	78	152	436	927	32	43,2	20,7	0,4	
3	11:50	254	292	380	386	247	117	81	149	440	930	31	43,5	20,7	0,4	
4	11:56	256	295	382	388	253	122	86	160	440	958	32	44,4	20,7	0,4	
Media		250,75	289	374	382,5	243,25	115,75	79,5	151,75	436,5	936	31,75	43,45	20,7	0,4	
Massa do Int	ro no inicio do	teste: 345,3	U g			Massa do	liitro no iim	do teste: 347,	67 g							
Taata a9. 0**	D 1 00/04/		<u>E91 E9 Er</u>						IZAÇAU	JRAPIL			КАГ			
Teste nº: Zº	Data: 28/04/2	2015		Hora inicic	5: 17:13	Hora fim: 1	7:50	Operadores: E	sreno e Gu	istavo						
									DIÁVEIC	CONTR						
Material: Are	ia - ³	★ + 0.00		les está des	2.5.1.5		T	VA		CONTR			5 mm /m	Alturo poo	aagam barizantalı	
Material: Arei ρ _s : 2523 kg/n	ia n ³	Φ _s : 0,69		Inventário:	3,5 kg		Tamanho d	VA la partícula (d _r	RIÁVEIS ₃): 180 μm	CONTR	OLADAS Vel. de flui	dização: 4,	5 m/s	Altura pas	sagem horizontal: -	
Material: Arei ρ _s : 2523 kg/n	ia n ³	Φ _s : 0,69		Inventário:	3,5 kg	VARI	Tamanho d ÁVEIS E	VA la partícula (d _r XPERIMEN	RIÁVEIS δ): 180 μm TAIS:	CONTR	OLADAS Vel. de flui	dização: 4,	5 m/s	Altura pas	sagem horizontal: -	
Material: Arei ρ _s : 2523 kg/n Medida	n ³ Hora	⊅ ₅: 0,69 RS-01	LS-A	Inventário:	3,5 kg	VARI LS-D	Tamanho d ÁVEIS E RS-06	VA la partícula (d _r XPERIMEN SP-01	RIÁVEIS ₅): 180 μm TAIS: SP-02	CONTRO	OLADAS Vel. de flui PO-M	dização: 4, PO-D	5 m/s	Altura pas	sagem horizontal: - Vazão lida (Nm ³ /h)	
Material: Arei ρ _s : 2523 kg/n Medida	ia n ³ Hora 17:27	𝒫 ₅: 0,69 RS-01 246	LS-A 286	Inventário: LS-B 365	3,5 kg LS-C 382	VARI LS-D 239	Tamanho d ÁVEIS E RS-06 107	VA la partícula (d _r XPERIMEN SP-01 71	RIÁVEIS ₅): 180 μm TAIS: SP-02 145	LS-R 430	OLADAS Vel. de flui PO-M 945	dização: 4, PO-D 32	5 m/s Tb 45,9	Altura pas	sagem horizontal: - Vazão lida (Nm ³ /h) 0,4	
Material: Arei ρ _s : 2523 kg/n Medida 1 2	ia n ³ Hora 17:27 17:32	Φ _s : 0,69 RS-01 246 252	LS-A 286 289	Inventário: LS-B 365 375	3,5 kg LS-C 382 382	VARI LS-D 239 248	Tamanho d ÁVEIS E RS-06 107 111	VA da partícula (d _r XPERIMEN SP-01 71 76	RIÁVEIS): 180 μm TAIS: SP-02 145 149 145	CONTR LS-R 430 438	PO-M 945 942	dização: 4, PO-D 32 32	5 m/s Tb 45,9 45,9	Altura pas Ta 23,5 23,5	sagem horizontal: - Vazão lida (Nm ³ /h) 0,4 0,4	
Material: Arei ρ _s : 2523 kg/n Medida 1 2 3	ia h ³ Hora 17:27 17:32 17:37 17:37	 𝕏_s: 0,69 RS-01 246 252 256 	LS-A 286 289 295	Inventário: LS-B 365 375 383	3,5 kg LS-C 382 382 384 289	VARI 239 248 244	Tamanho d ÁVEIS E RS-06 107 111 117	VA la partícula (d _r XPERIMEN SP-01 71 76 79	RIÁVEIS ₅): 180 μm TAIS: SP-02 145 149 152 450	CONTR LS-R 430 438 435	OLADAS Vel. de flui PO-M 945 942 940	dização: 4, PO-D 32 32 32 32	5 m/s Tb 45,9 45,9 45,9	Altura pas Ta 23,5 23,5 23,5 23,5	sagem horizontal: - Vazão lida (Nm ³ /h) 0,4 0,4 0,4	
Material: Arei ρ _s : 2523 kg/n Medida 1 2 3 4 Μάdia	ia h ³ Hora 17:27 17:32 17:37 17:41	Φ _s : 0,69 RS-01 246 252 256 258	LS-A 286 289 295 296 296	Inventário: LS-B 365 375 383 385 377	3,5 kg LS-C 382 382 384 389 384	VARI 239 248 244 251 245 5	Tamanho d ÁVEIS E RS-06 107 111 117 116 112 75	VA la partícula (d _r XPERIMEN 71 76 79 81 76 75	RIÁVEIS ₅): 180 μm TAIS: SP-02 145 149 152 152 149 5	LS-R 430 438 435 443 443	PO-M 945 942 940 940 940	dização: 4, PO-D 32 32 32 32 32	5 m/s Tb 45,9 45,9 45,9 45,9 45,9	Altura pas Ta 23,5 23,5 23,5 23,5 23,5	sagem horizontal: - Vazão lida (Nm ³ /h) 0,4 0,4 0,4 0,4 0,4	
Material: Arei ρ ₈ : 2523 kg/n Medida 1 2 3 4 Média Massa da filt	ia Mora 17:27 17:32 17:37 17:41	Φ _s : 0,69 RS-01 246 252 256 258 258 253 totto: 341 8	LS-A 286 289 295 296 291,5 20	Inventário: LS-B 365 375 383 385 377	3,5 kg LS-C 382 382 384 389 384,25	VARI 239 248 244 251 245,5 Massa da	Tamanho o ÁVEIS E RS-06 107 111 117 116 112,75	VA da partícula (d _r XPERIMEN 71 76 79 81 76,75 76,75	RIÁVEIS 	LS-R 430 438 435 443 436,5	OLADAS Vel. de flui 945 942 940 940 941,75	dização: 4, PO-D 32 32 32 32 32 32 32	5 m/s Tb 45,9 45,9 45,9 45,9 45,9 45,9	Altura pas Ta 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5	sagem horizontal: - Vazão lida (Nm ³ /h) 0,4 0,4 0,4 0,4 0,4 0,4	
Material: Arei ρ ₈ : 2523 kg/n Medida 1 2 3 4 Média Massa do filt	ia Hora 17:27 17:32 17:37 17:41 ro no início do	Φ _s : 0,69 RS-01 246 252 256 258 253 teste: 341,8	LS-A 286 289 295 296 291,5 2 g	Inventário: LS-B 365 375 383 385 385 377	3,5 kg LS-C 382 382 384 389 384,25	VARI LS-D 239 248 244 251 245,5 Massa do	Tamanho o ÁVEIS E RS-06 107 111 117 116 112,75 filtro no fim	VA da partícula (dp XPERIMEN SP-01 71 76 79 81 76,75 do teste: 343,4	RIÁVEIS ₃): 180 μm TAIS: SP-02 145 149 152 152 149,5 47 g	LS-R 430 438 435 443 436,5	OLADAS Vel. de fluid 945 942 940 940 940 941,75	dização: 4, PO-D 32 32 32 32 32 32 32 32	5 m/s Tb 45,9 45,9 45,9 45,9 45,9 45,9	Altura pas Ta 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 2 ,5 2 ,	sagem horizontal: - Vazão lida (Nm ³ /h) 0,4 0,4 0,4 0,4 0,4 0,4	
Material: Arei p _s : 2523 kg/n Medida 1 2 3 4 Média Massa do filt	ia n ³ 17:27 17:32 17:37 17:41 ro no início do	 Φ_s: 0,69 RS-01 246 252 256 258 253 teste: 341,8 	LS-A 286 289 295 296 291,5 2 g	Inventário: LS-B 365 375 383 385 377	3,5 kg LS-C 382 382 384 389 384,25	VARI LS-D 239 248 244 251 245,5 Massa do	Tamanho o ÁVEIS E RS-06 107 111 117 116 112,75 filtro no fim	VA da partícula (dp. XPERIMEN SP-01 71 76 79 81 76,75 do teste: 343,4	RIÁVEIS ₃): 180 μm TAIS: SP-02 145 149 152 152 149,5 47 g	CONTR LS-R 430 438 435 443 436,5	PO-M 945 942 940 940 941,75	dização: 4, PO-D 32 32 32 32 32 32 32 32 32	5 m/s Tb 45,9 45,9 45,9 45 ,9 45 ,9 45 ,9 45 ,9 45 ,9	Altura pas Ta 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23 3 3 3 3 3 3 3	sagem horizontal: - Vazão lida (Nm ³ /h) 0,4 0,4 0,4 0,4 0,4 0,4	
Material: Arei ρ _s : 2523 kg/n Medida 1 2 3 4 Média Massa do filt	ia hora 17:27 17:32 17:37 17:41 ro no início do ΔP riser	Φ _s : 0,69 RS-01 246 252 256 258 253 teste: 341,8 ΔP ciclore	LS-A 286 289 295 296 291,5 2 g	Inventário: LS-B 365 375 383 385 377	3,5 kg LS-C 382 382 384 389 384,25 AP LS-PH	VARI LS-D 239 248 244 251 245,5 Massa do	Tamanho o ÁVEIS E RS-06 107 111 117 116 112,75 filtro no fim AP LS-TR	VA da partícula (d _r XPERIMEN' SP-01 71 76 79 81 76,75 do teste: 343,4	RIÁVEIS): 180 μm TAIS: <u>SP-02</u> 145 149 152 152 149,5 47 g	LS-R 430 438 435 443 436 ,5	PO-M 945 942 940 940 941,75	dização: 4, PO-D 32 32 32 32 32 32 32 32	5 m/s Tb 45,9 45,9 45,9 45 ,9 45 ,9 45 ,9	Altura pas Ta 23,5 23,5 23,5 23,5 23,5 23,5 23,5	sagem horizontal: - Vazão lida (Nm ³ /h) 0,4 0,4 0,4 0,4 0,4 0,4	
Material: Arei ρ _s : 2523 kg/n Medida 1 2 3 4 Média Massa do filt	ia h ³ Hora 17:27 17:32 17:37 17:41 ro no início do ΔP riser 1549.35	$Φ_{s}: 0,69$ RS-01 246 252 256 258 253 teste: 341,8 ΔP ciclone 362,82	LS-A 286 289 295 296 291,5 2 g ΔP standpipe 2169,58	Inventário: LS-B 365 375 383 385 377 ΔP LS-CA 1019,82	3,5 kg LS-C 382 382 384 389 384,25 384,25 AP LS-PH 51.48	VARI LS-D 239 248 244 251 245,5 Massa do AP LS-CR 1372,84	Tamanho o ÁVEIS E RS-06 107 111 117 116 112,75 filtro no fim AP LS-TR 44.13	VA da partícula (d _f XPERIMEN' SP-01 71 76 79 81 76,75 do teste: 343,4 ΔP LS-GERAL 257.41	RIÁVEIS ₅): 180 μm TAIS: SP-02 145 149 152 152 149,5 47 g	LS-R 430 438 435 443 436 ,5	OLADAS Vel. de flui 945 942 940 940 940 941,75	dização: 4, PO-D 32 32 32 32 32 32 32	5 m/s Tb 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 	Altura pas Ta 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23 ,5 3 ,5 3 ,	sagem horizontal: - Vazão lida (Nm ³ /h) 0,4 0,4 0,4 0,4 0,4 0,4	
Material: Arei ρ _s : 2523 kg/n Medida 1 2 3 4 Média Massa do filt 2 2 2*	ia Hora 17:27 17:32 17:37 17:41 ro no início do ΔP riser 1549,35 1323,81	Φ _s : 0,69 RS-01 246 252 256 253 teste: 341,8 ΔP ciclone 362,82 355,47	LS-A 286 289 295 296 291,5 2 g ΔP standpipe 2169,58 2054,36	Inventário: LS-B 365 375 383 385 377 ΔP LS-CA 1019,82 833,51	3,5 kg LS-C 382 382 384 389 384,25 ΔP LS-PH 51,48 83,35	VARI LS-D 239 248 244 251 245,5 Massa do ΔP LS-CR 1372,84 1365,49	Tamanho α ÁVEIS E RS-06 107 111 117 116 112,75 filtro no fim ΔP LS-TR 44,13 73,55	VA da partícula (d, KPERIMEN SP-01 71 76 79 81 76,75 do teste: 343,4 AP LS-GERAL 257,41 375,08	RIÁVEIS ₃): 180 μm TAIS: SP-02 145 145 149 152 152 149,5 47 g	LS-R 430 438 435 443 436,5	OLADAS Vel. de flui 945 942 940 940 940 941,75	dização: 4, PO-D 32 32 32 32 32 32 32 32	5 m/s Tb 45,9 45,9 45,9 45 ,9 45 ,9 45 ,9 45 ,9	Altura pas Ta 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 3 ,5 3	sagem horizontal: - Vazão lida (Nm ³ /h) 0,4 0,4 0,4 0,4 0,4 0,4	
Material: Arei ρ _s : 2523 kg/n Medida 1 2 3 4 Média Massa do filt 2 2* 2* 2*	ia hora 17:27 17:32 17:37 17:41 ro no início do ΔP riser 1549,35 1323,81 1375,29	Φ _s : 0,69 RS-01 246 252 256 253 teste: 341,8 ΔP ciclone 362,82 355,47 353,02	LS-A 286 289 295 296 291,5 2 g ΔP standpipe 2169,58 2054,36 2105,84	Inventário: LS-B 365 375 383 385 377 ΔP LS-CA 1019,82 833,51 838,41	3,5 kg LS-C 382 384 389 384,25 ΔP LS-PH 51,48 83,35 71,09	VARI LS-D 239 248 244 251 245,5 Massa do AP LS-CR 1372,84 1365,49 1360,58	Татальо о ÁVEIS E RS-06 107 111 117 116 112,75 filtro no fim AP LS-TR 44,13 73,55 73,55	VA da partícula (d, KPER IMEN SP-01 71 76 79 81 76,75 do teste: 343,4 ΔP LS-GERAL 257,41 375,08 377,53	RIÁVEIS): 180 μm TAIS: SP-02 145 145 149 152 152 149,5 47 g	LS-R 430 438 435 443 436,5	OLADAS Vel. de flui 945 942 940 940 940 941,75	dização: 4, PO-D 32 32 32 32 32 32 32	5 m/s Tb 45,9 45,9 45,9 45,9 45,9 45,9	Altura pas Ta 23,5 23,5 23,5 23,5 23,5 23,5 23,5	sagem horizontal: - Vazão lida (Nm ³ /h) 0,4 0,4 0,4 0,4 0,4	
Material: Arei ρ _s : 2523 kg/n Medida 1 2 3 4 Média Massa do filti 2 2* 2** média	ia hora 17:27 17:32 17:37 17:41 ro no início do ΔP riser 1549,35 1323,81 1375,29 1416,15	 Φ_s: 0,69 RS-01 246 252 256 253 teste: 341,8 ΔP ciclone 362,82 355,47 353,02 357,10 	LS-A 286 289 295 296 291,5 2 g ΔP standpipe 2169,58 2054,36 2105,84 2105,84 2109,92	LS-B 365 375 383 385 377 ΔP LS-CA 1019,82 833,51 838,41 897,25 1019,25	3,5 kg LS-C 382 384 389 384,25 384,25 ΔP LS-PH 51,48 83,35 71,09 68,64	VARI LS-D 239 248 244 251 245,5 Massa do ΔP LS-CR 1372,84 1360,58 1366,30	Tamanho α ÁVEIS E RS-06 107 111 117 116 112,75 filtro no fim ΔP LS-TR 44,13 73,55 63,74	VA da partícula (d _r XPERIMENT SP-01 71 76 79 81 76,75 do teste: 343,4 AP LS-GERAL 257,41 375,08 377,53 336,67	RIÁVEIS .): 180 μm TAIS: SP-02 145 149 152 152 149,5 47 g	LS-R 430 438 435 443 436,5	OLADAS Vel. de flui 945 942 940 940 940 941,75	dização: 4, PO-D 32 32 32 32 32 32 32	5 m/s Tb 45,9 45,9 45,9 45 ,9 45 ,9 45 ,9 45 ,9	Altura pas Ta 23,5 23,5 23,5 23,5 23,5 23,5 23,5	sagem horizontal: - Vazão lida (Nm ³ /h) 0,4 0,4 0,4 0,4 0,4	
Material: Arei p _s : 2523 kg/n Medida 1 2 3 4 Média Massa do filt 2 2* 2** média	ia h ³ Hora 17:27 17:32 17:37 17:41 ro no início do ΔP riser 1549,35 1323,81 1375,29 1416,15	$Φ_{s}: 0,69$ RS-01 246 252 256 258 253 teste: 341,8 ΔP ciclone 362,82 355,47 353,02 357,10	LS-A 286 289 295 296 291,5 2 g ΔP standpipe 2169,58 2054,36 2105,84 2109,92	LS-B 365 375 383 385 377	3,5 kg LS-C 382 384 389 389 384,25 384,25 384,25 384,25 384,25 385 385 385 385 385 385 385 38	VARI LS-D 239 248 244 251 245,5 Massa do AP LS-CR 1372,84 1365,49 1360,58 1366,30	Tamanho α ÁVEIS E RS-06 107 111 117 116 112,75 filtro no fim ΔP LS-TR 44,13 73,55 63,74	VA la partícula (d, XPERIMEN' SP-01 76 79 81 76,75 do teste: 343,4 0 teste: 343,4 40 teste: 343,4 257,41 375,08 377,53 336,67	RIÁVEIS ₃): 180 μm TAIS: <u>SP-02</u> 145 149 152 152 149,5 47 g	CONTR LS-R 430 438 435 443 436,5	OLADAS Vel. de flui 945 942 940 940 940 941,75	dização: 4, PO-D 32 32 32 32 32 32 32	5 m/s Tb 45,9 45,9 45,9 45 ,9 45 ,9 45 ,9 45 ,9 45 ,9	Altura pas Ta 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 2	sagem horizontal: - Vazão lida (Nm ³ /h) 0,4 0,4 0,4 0,4 0,4	
Material: Arei ρ _s : 2523 kg/n Medida 1 2 3 4 Média Massa do filt 2 2* 2** média	ia hora 17:27 17:32 17:37 17:41 ro no início do ΔP riser 1549,35 1323,81 1375,29 1416,15	Φ _s : 0,69 RS-01 246 252 256 253 teste: 341,8 ΔP ciclone 362,82 355,47 353,02 357,10	LS-A 286 289 295 296 291,5 2 g ΔP standpipe 2169,58 2054,36 2105,84 2109,92	LS-B 365 375 383 385 377 AP LS-CA 1019,82 833,51 838,41 897,25	3,5 kg LS-C 382 384 389 384,25 ΔP LS-PH 51,48 83,35 71,09 68,64	VARI LS-D 239 248 251 245,5 Massa do ΔP LS-CR 1372,84 1365,49 1366,30	Tamanho c ÁVEIS E RS-06 107 111 117 116 112,75 filtro no fim ΔP LS-TR 44,13 73,55 73,55 63,74	VA da partícula (d, KPERIMEN XPERIMEN 71 76 79 81 76,75 do teste: 343,4 ΔP LS-GERAL 257,41 375,08 377,53 336,67	RIÁVEIS ₃): 180 μm TAIS: SP-02 145 149 152 152 149,5 47 g	LS-R 430 438 435 443 436,5	OLADAS Vel. de flui 945 942 940 940 940 941,75	dização: 4, PO-D 32 32 32 32 32 32 32 32	5 m/s Tb 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9	Altura pas Ta 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 3	sagem horizontal: - Vazão lida (Nm ³ /h) 0,4 0,4 0,4 0,4 0,4	
Material: Arei ρ _s : 2523 kg/n Medida 1 2 3 4 Média Massa do filti 2 2* 2* 2* 2** média	ia hora 17:27 17:32 17:37 17:41 ro no início do ΔP riser 1549,35 1323,81 1375,29 1416,15	 Φ_s: 0,69 RS-01 246 252 256 258 253 teste: 341,8 ΔP ciclone 362,82 355,47 353,02 357,10 RS-01 	LS-A 286 289 295 296 291,5 2 g ΔP standpipe 2169,58 2054,36 2105,84 2109,92 RS-06	Inventário: LS-B 365 375 383 385 377 AP LS-CA 1019,82 833,51 838,41 897,25 SP-01	3,5 kg LS-C 382 384 389 384,25 ΔP LS-PH 51,48 83,35 71,09 68,64 SP-02	VARI LS-D 239 248 244 251 245,5 Massa do AP LS-CR 1372,84 1365,49 1360,58 1366,30 LS-A	Tamanho o ÁVEIS E RS-06 107 111 117 116 112,75 filtro no fim ΔP LS-TR 44,13 73,55 73,55 63,74 LS-B	VA da partícula (d, KPER IMEM SP-01 71 76 79 81 76,75 do teste: 343,4 ΔP LS-GERAL 257,41 375,08 3376,67 LS-C	RIÁVEIS ₃): 180 μm TAIS: SP-02 145 145 149 152 152 149,5 47 g LS-D	CONTR 430 438 435 443 436,5	OLADAS Vel. de flui 945 942 940 940 940 941,75	dização: 4, PO-D 32 32 32 32 32 32 32	5 m/s Tb 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9	Altura pas Ta 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 23,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 35,5 3	sagem horizontal: - Vazão lida (Nm ³ /h) 0,4 0,4 0,4 0,4 0,4	
Material: Arei ρ _s : 2523 kg/n Medida 1 2 3 4 Média Massa do filt 2 2* 2** 2** média	ia hora 17:27 17:32 17:37 17:41 ro no início do ΔP riser 1549,35 1323,81 1375,29 1416,15 2	 Φ_s: 0,69 RS-01 246 252 256 253 teste: 341,8 ΔP ciclone 362,82 355,47 353,02 357,10 RS-01 2628,01 	LS-A 286 289 296 296 291,5 2 g ΔP standpipe 2169,58 2054,36 2105,84 2109,92 RS-06 1078,66	LS-B 365 375 383 385 377 ΔΡ LS-CA 1019,82 833,51 838,41 897,25 SP-01 715,84	3,5 kg LS-C 382 384 389 384,25 0	VARI LS-D 239 248 244 251 245,5 Massa do AP LS-CR 1372,84 1360,58 1366,30 LS-A 2885,42	Tamanho α ÁVEIS E RS-06 107 111 117 116 112,75 filtro no fim ΔP LS-TR 44,13 73,55 63,74 LS-B 3905,24	VA da partícula (d, XPERIMENT SP-01 71 76 79 81 76,75 do teste: 343,4 AP LS-GERAL 257,41 375,08 336,67 LS-C 3956,72	RIÁVEIS .): 180 μm TAIS: SP-02 145 149 152 149,5 47 g LS-D 2583,88	CONTR 430 438 435 443 436,5 443 436,5 8 8 8 8 8 9 1 2628,01	OLADAS Vel. de flui 945 942 940 940 941,75	dização: 4, PO-D 32 32 32 32 32 32	5 m/s Tb 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9	Altura pas Ta 23,5 23,5 23,5 23,5 23,5 23,5 23,5	sagem horizontal: - Vazão lida (Nm ³ /h) 0,4 0,4 0,4 0,4 0,4	
Material: Arei p _s : 2523 kg/n Medida 1 2 3 4 Média Massa do filti 2 2* 2** média	ia h ³ Hora 17:27 17:32 17:37 17:41 ro no início do ΔP riser 1549,35 1323,81 1375,29 1416,15 2 Altura [m]	Φ _s : 0,69 RS-01 246 252 258 253 teste: 341,8 ΔP ciclone 362,82 355,47 353,02 357,10 RS-01 2628,01 0,036	LS-A 286 289 295 296 291,5 2 g ΔP standpipe 2169,58 2054,36 2105,84 2109,92 RS-06 1078,66 2,704	LS-B 365 375 383 385 377 ΔΡ LS-CA 1019,82 833,51 838,41 897,25 SP-01 715,84 2,126	3,5 kg LS-C 382 384 389 384,25 ΔP LS-PH 51,48 83,35 71,09 68,64 SP-02 1262,52 1,050	VARI LS-D 239 248 244 251 245,5 Massa do AP LS-CR 1372,84 1365,49 1366,30 LS-A 2885,42 0,840	Tamanho α ÁVEIS E RS-06 107 111 117 116 112,75 filtro no fim ΔP LS-TR 44,13 73,55 63,74 LS-B 3905,24 0,680	VA la partícula (d _r XPERIMEN) SP-01 71 76 79 81 76,75 do teste: 343,4 ΔP LS-GERAL 257,41 375,08 377,53 336,67 LS-C 3956,72 0,680	RIÁVEIS .): 180 μm TAIS: SP-02 145 149 152 149 152 149,5 47 g LS-D 2583,88 0,850	CONTR 430 438 435 443 436,5 88-01 2628,01 0,036	OLADAS Vel. de flui 945 942 940 940 941,75	dização: 4, PO-D 32 32 32 32 32 32 32	5 m/s Tb 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9	Altura pas	sagem horizontal: - Vazão lida (Nm ³ /h) 0,4 0,4 0,4 0,4 0,4	
Material: Arei ρ _s : 2523 kg/n Medida 1 2 3 4 Média Massa do filt 2 2* 2** média	ia hora 17:27 17:32 17:37 17:41 ro no início do ΔP riser 1549,35 1323,81 1375,29 1416,15 2 Altura [m]	 Φ_s: 0,69 RS-01 246 252 256 253 teste: 341,8 ΔP ciclone 362,82 355,47 353,02 357,10 RS-01 2628,01 0,036 	LS-A 286 289 295 296 291,5 2 g ΔP standpipe 2169,58 2054,36 2105,84 2109,92 RS-06 1078,66 2,704	Inventário: LS-B 365 375 383 385 377 ΔP LS-CA 1019,82 833,51 838,41 897,25 SP-01 715,84 2,126	3,5 kg LS-C 382 384 389 384,25 ΔP LS-PH 51,48 83,35 71,09 68,64 SP-02 1262,52 1,050	VARI LS-D 239 248 251 245,5 Massa do AP LS-CR 1372,84 1365,49 1366,30 LS-A 2885,42 0,840	Tamanho o ÁVEIS E RS-06 107 111 117 116 112,75 filtro no fim ΔP LS-TR 44,13 73,55 73,55 63,74 LS-B 3905,24 0,680	VA da partícula (d KPERIMEN SP-01 71 76 79 81 76,75 do teste: 343,4 ΔP LS-GERAL 257,41 375,08 377,53 336,67 LS-C 3956,72 0,680	RIÁVEIS ₃): 180 μm TAIS: SP-02 145 149 152 152 149,5 47 g LS-D 2583,88 0,850	CONTR 430 438 435 443 436,5 RS-01 2628,01 0,036	OLADAS Vel. de flui 945 942 940 940 940 941,75	dização: 4, PO-D 32 32 32 32 32 32 32	5 m/s Tb 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9	Altura pas	sagem horizontal: - Vazão lida (Nm ³ /h) 0,4 0,4 0,4 0,4 0,4	
Material: Arei ρ _s : 2523 kg/n Medida 1 2 3 4 Média Massa do filti 2 2* 2* 2** média	ia hora 17:27 17:32 17:37 17:41 ro no início do ΔP riser 1549,35 1323,81 1375,29 1416,15 2 Altura [m] 2*	 Φ_s: 0,69 RS-01 246 252 256 253 teste: 341,8 AP ciclone	LS-A 286 289 295 296 291,5 2 g ΔP standpipe 2169,58 2054,36 2105,84 2109,92 RS-06 1078,66 2,704 1135,04	Inventário: LS-B 365 375 383 385 377 AP LS-CA 1019,82 833,51 838,41 897,25 SP-01 715,84 2,126 779,58	3,5 kg LS-C 382 384 389 384,25 ΔP LS-PH 51,48 83,35 71,09 68,64 SP-02 1262,52 1,050 1488,06	VARI LS-D 239 248 244 251 245,5 Massa do AP LS-CR 1372,84 1365,49 1360,58 1366,30 LS-A 2885,42 0,840 2833,93	Tamanho c ÁVEIS E RS-06 107 111 117 116 112,75 filtro no fim ΔP LS-TR 44,13 73,55 73,55 63,74 LS-B 3905,24 0,680 3667,44	VA da partícula (d, KPERIMEN SP-01 71 76 79 81 76,75 do teste: 343,4 ΔP LS-GERAL 257,41 375,08 3376,67 LS-C 3956,72 0,680 3750,80	RIÁVEIS): 180 μm TAIS: SP-02 145 149 152 152 149,5 47 g LS-D 2583,88 0,850 2385,31	CONTR 430 438 435 443 436,5 RS-01 2628,01 0,036 2458,85	OLADAS Vel. de flui 945 942 940 940 940 941,75	dização: 4, PO-D 32 32 32 32 32 32 32	5 m/s Tb 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9	Altura pas	sagem horizontal: - Vazão lida (Nm ³ /h) 0,4 0,4 0,4 0,4 0,4	
Material: Arei ρ _s : 2523 kg/n Medida 1 2 3 4 Média Massa do filt 2 2* 2* 2* 2* 2*	ia hora 17:27 17:32 17:37 17:41 ro no início do ΔP riser 1549,35 1323,81 1375,29 1416,15 2 Altura [m] 2* Altura [m]	 Φ_s: 0,69 RS-01 246 252 256 253 teste: 341,8 AP ciclone 362,82 355,47 353,02 357,10 RS-01 2628,01 0,036 2458,85 0,036 	LS-A 286 289 296 291,5 2 g ΔP standpipe 2169,58 2054,36 2105,84 2109,92 RS-06 1078,66 2,704 1135,04 2,704	Inventário: LS-B 365 375 383 385 377 ΔΡ LS-CA 1019,82 833,51 838,41 897,25 SP-01 715,84 2,126 779,58 2,126	3,5 kg LS-C 382 384 389 384,25 ΔP LS-PH 51,48 83,35 71,09 68,64 SP-02 1262,52 1,050 1488,06 1,050	VARI LS-D 239 248 244 251 245,5 Massa do AP LS-CR 1372,84 1365,49 1360,58 1366,30 LS-A 2885,42 0,840 2833,93 0,840	Tamanho α ÁVEIS E. RS-06 107 111 117 116 112,75 filtro no fim ΔP LS-TR 44,13 73,55 63,74 LS-B 3905,24 0,680 3667,44 0,680	VA la partícula (d, XPERIMENT SP-01 71 76 79 81 76,75 do teste: 343,4 257,41 375,08 336,67 LS-C 3956,72 0,680 3750,80 0,680	RIÁVEIS): 180 μm TAIS: SP-02 145 149 152 149 152 149 152 149 5 2 2 2 2 2 2 2 5 2 2 3 5 2 3 5 5 1 4 5 1 1 1 5 1 1 1 1 1 1 1 1	CONTR 430 438 435 443 436,5 88-01 2628,01 0,036 2458,85 0,036	OLADAS Vel. de flui 945 942 940 940 941,75	dização: 4, PO-D 32 32 32 32 32 32 32	5 m/s Tb 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9	Altura pas	sagem horizontal: - Vazão lida (Nm ³ /h) 0,4 0,4 0,4 0,4 0,4	
Material: Arei ps: 2523 kg/n Medida 1 2 3 4 Média Massa do filti 2 2* 2* 2** média	ia hora 17:27 17:32 17:37 17:41 ro no início do ΔP riser 1549,35 1323,81 1375,29 1416,15 2 Altura [m] 2* Altura [m]	 Φ_s: 0,69 RS-01 246 252 256 253 teste: 341,8 ΔP ciclone 362,82 355,47 353,02 353,710 RS-01 2628,01 0,036 2458,85 0,036 	LS-A 286 289 295 296 291,5 2 g ΔP standpipe 2169,58 2054,36 2105,84 2109,92 RS-06 1078,66 2,704 1135,04 2,704	LS-B 365 375 383 385 377 ΔP LS-CA 1019,82 833,51 838,41 897,25 SP-01 715,84 2,126	3,5 kg LS-C 382 384 389 384,25 384,25 384,25 384,25 71,09 68,64 SP-02 1262,52 1,050 1488,06 1,050	VARI LS-D 239 248 244 251 245,5 Massa do AP LS-CR 1372,84 1360,58 1366,30 LS-A 2885,42 0,840	Tamanho α ÁVEIS E RS-06 107 111 117 116 112,75 filtro no fim ΔP LS-TR 44,13 73,55 63,74 3905,24 0,680 3667,44 0,680	VA da partícula (dp. XPERIMENT SP-01 71 76 79 81 76,75 do teste: 343,4 AP LS-GERAL 257,41 375,08 377,53 336,67 LS-C 3956,72 0,680 3750,80 0,680	RIÁVEIS .): 180 μm TAIS: SP-02 145 149 152 149,5 47 g LS-D 2583,88 0,850 2385,31 0,850	CONTR 430 438 435 443 436,5 88-01 2628,01 0,036 2458,85 0,036	OLADAS Vel. de flui 945 942 940 940 941,75	dização: 4, PO-D 32 32 32 32 32 32	5 m/s Tb 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9	Altura pas	sagem horizontal: - Vazão lida (Nm ³ /h) 0,4 0,4 0,4 0,4 0,4	
Material: Arei ρ _s : 2523 kg/n Medida 1 2 3 4 Média Massa do filt 2 2* 2** média	ia h ³ Hora 17:27 17:32 17:37 17:41 ro no início do ΔP riser 1549,35 1323,81 1375,29 1416,15 2 Altura [m] 2**	 <i>Φ</i>_s: 0,69	LS-A 286 289 295 296 291,5 2 g ΔP standpipe 2169,58 2054,36 2105,84 2105,84 2109,92 RS-06 1078,66 2,704 1135,04 2,704 1105,63	Inventário: LS-B 365 375 383 385 377 ΔP LS-CA 1019,82 833,51 838,41 897,25 SP-01 715,84 2,126 779,58 2,126 752,61	3,5 kg LS-C 382 384 389 384,25 ΔP LS-PH 51,48 83,35 71,09 68,64 SP-02 1262,52 1,050 1488,06 1,050 1466,00	VARI LS-D 239 248 251 245,5 Massa do AP LS-CR 1372,84 1365,49 1366,30 LS-A 2885,42 0,840 2833,93 0,840 2858,45	Tamanho o ÁVEIS E RS-06 107 111 117 116 112,75 filtro no fim ΔP LS-TR 44,13 73,55 73,55 63,74 LS-B 3905,24 0,680 3667,44 0,680 3696,86	VA da partícula (d) KPERIMEN XPERIMEN 71 76 79 81 76,75 do teste: 343,4 ΔP LS-GERAL 257,41 375,08 377,53 336,67 LS-C 3956,72 0,680 3750,80 0,680 3767,96	RIÁVEIS): 180 μm TAIS: SP-02 145 149 152 152 149,5 47 g LS-D 2583,88 0,850 2385,31 0,850 2407,37	CONTR 430 438 435 443 436,5 RS-01 2628,01 0,036 2458,85 0,036 2458,85 0,036	OLADAS Vel. de flui 945 942 940 940 940 941,75	dização: 4, PO-D 32 32 32 32 32 32 32	5 m/s Tb 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9	Altura pas	sagem horizontal: - Vazão lida (Nm ³ /h) 0,4 0,4 0,4 0,4 0,4 	
Material: Arei ρ _s : 2523 kg/n Medida 1 2 3 4 Média Massa do filt 2 2* 2* 2** média	ia hora 17:27 17:32 17:37 17:41 ro no início do ΔP riser 1549,35 1323,81 1375,29 1416,15 2 Altura [m] 2** Altura [m]	 Φ_s: 0,69 RS-01 246 252 256 253 teste: 341,8 AP ciclone	LS-A 286 289 295 296 291,5 2 g ΔP standpipe 2169,58 2054,36 2105,84 2109,92 RS-06 1078,66 2,704 1135,04 2,704 1105,63 2,704	Inventário: LS-B 365 375 383 385 377 ΔP LS-CA 1019,82 833,51 838,51 384 97,25 SP-01 715,84 2,126 752,61 2,126	3,5 kg LS-C 382 384 389 384,25 ▲P LS-PH 51,48 83,35 71,09 68,64 ■ SP-02 1262,52 1,050 1488,06 1,050	VARI LS-D 239 248 244 251 245,5 Massa do AP LS-CR 1372,84 1365,49 1360,58 1366,30 LS-A 2885,42 0,840 2833,93 0,840	Tamanho o ÁVEIS E RS-06 107 111 117 116 112,75 filtro no fim ΔP LS-TR 44,13 73,55 63,74 LS-B 3905,24 0,680 3667,44 0,680 3696,86 0,680	VA da partícula (d, KPERIMEN SP-01 71 76 79 81 76,75 do teste: 343,4 ΔP LS-GERAL 257,41 375,08 337,53 336,67 LS-C 3956,72 0,680 3750,80 0,680 3767,96 0,680	RIÁVEIS): 180 μm TAIS: SP-02 145 149 152 152 149,5 47 g LS-D 2583,88 0,850 2385,31 0,850 2407,37 0,850	CONTR 430 438 435 443 436,5 RS-01 2628,01 0,036 2458,85 0,036 2480,92 0,036	OLADAS Vel. de flui 945 942 940 940 940 941,75	dização: 4, PO-D 32 32 32 32 32 32 32	5 m/s Tb 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9	Altura pas	sagem horizontal: - Vazão lida (Nm ³ /h) 0,4 0,4 0,4 0,4 - 0,4	
Material: Arei p _s : 2523 kg/n Medida 1 2 3 4 Média Massa do filti 2 2* 2* 2* 2* 2* média	ia m ³ Hora 17:27 17:32 17:37 17:41 ro no início do ΔP riser 1549,35 1323,81 1375,29 1416,15 2 Altura [m] 2** Altura [m]	 Φ_s: 0,69 RS-01 246 252 256 253 teste: 341,8 AP ciclone 362,82 355,47 353,02 357,10 RS-01 2628,01 0,036 2458,85 0,036 2480,92 0,036 	LS-A 286 289 295 296 291,5 2 g ΔP standpipe 2169,58 2054,36 2105,84 2109,92 RS-06 1078,66 2,704 1135,04 2,704 1105,63 2,704	Inventário: LS-B 365 375 383 385 377 AP LS-CA 1019,82 833,51 838,41 897,25 SP-01 715,84 2,126 779,58 2,126 752,61 2,126	3,5 kg LS-C 382 384 389 384,25 ΔP LS-PH 51,48 83,35 71,09 68,64 SP-02 1262,52 1,050 1488,06 1,050 1466,00 1,050	VARI LS-D 239 248 244 251 245,5 Massa do AP LS-CR 1372,84 1366,30 1366,30 LS-A 2885,42 0,840 2833,93 0,840	Tamanho c ÁVEIS E RS-06 107 111 117 116 112,75 filtro no fim ΔP LS-TR 44,13 73,55 63,74 LS-B 3905,24 0,680 3667,44 0,680 3696,86 0,680	VA da partícula (d, XPERIMENT SP-01 71 76 79 81 76,75 do teste: 343,4 ΔP LS-GERAL 257,41 375,08 377,53 336,67 LS-C 3956,72 0,680 3750,80 0,680 3767,96 0,680	RIÁVEIS .): 180 μm TAIS: SP-02 145 149 152 149,5 47 g LS-D 2583,88 0,850 2407,37 0,850	CONTR 430 438 435 443 436,5 443 436,5 443 436,5 443 436,5 2438,5 0,036 2458,85 0,036 2480,92 0,036	OLADAS Vel. de flui 945 942 940 940 940 941,75	dização: 4, PO-D 32 32 32 32 32 32	5 m/s Tb 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9 45,9	Altura pas	sagem horizontal: - Vazão lida (Nm ³ /h) 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4	
		т	ESTES EF							יים אם ר			DAE			
----------------------------	--	-----------------------	---	---	---------------------	---------------------------	---------------	-----------------	------------------------	----------------	-------------------	------------------	---------------------	----------------------------	---------------------------------	--
Teste nº: 3	Data: 02/06/3	LJIEJEF	Hora Inicial 13:12 Hora Imi 14:08 Operatores: Brano e Gustavo													
Material: Aro	10ala. 02/06/2															
0: 2523 kg/n	n ³	Inventário:	5 kg		Tamanho	da partícula (d.): 180 um					5 m/s	Altura pas	sagem horizontal: -			
ps. 2020 kg/1		Ψ s. 0,05		VADIÁVER E V DE DIAREDIA (4), TO PRI VEL CE INICIZAÇÃO, O,O 11/3 PARCIA PASSAGENT NOIZONTAL												
Medida	Hora	RS-01	1.5-4	LS-B	LS-C	LS-D	RS-06	SP-01	SP-02	IS-R	PO-M	PO-D	ть	Та	Vazão lida (Nm ³ /h)	
1	13:41	296	317	396	404	261	86	57	199	453	710	19	40.5	18.8	0.4	
2	13:46	299	319	396	402	260	91	57	202	453	709	19	40,6	18,8	0,4	
3	13:51	298	320	391	399	260	89	57	202	454	710	19	40,7	18,8	0,4	
4	13:56	300	319	393	403	264	89	58	205	453	715	19	40,6	18,8	0,4	
Média		298,25	318,75	394	402	261,25	88,75	57,25	202	453,25	711	19	40,6	18,8	0,4	
Massa do filt	ro no início do	teste: 343,9	0 g			Massa do	filtro no fim	do teste: 344,	06 g							
			ESTESER	PERIME	INTAIS	EM UN	IDADE		DIZAÇAC) RAPIL		KIO - UF	RAF			
Teste nº: 3*	Hora inicio: 15:50 Hora fim: 16:40 Operadores: Breno e Gustavo															
Material: Are	ia - ³	A . 0.00			C 1 m				RIAVEIS	CONTR	oogom harizontoli					
р _s : 2523 кg/п	n	$\Psi_{\rm s}$: 0,69		inventario:	5 кд		Tamanno d	a particula (d	_p): 180 μm		vei. de fiui	dização: 3,	5 m/s	Altura passagem nonzonitai		
	1	I ==	1	I	1	VARI	AVEIS E	XPERIMEN	TAIS:	1			I	1 -		
Medida	Hora	RS-01	LS-A	LS-B	LS-C	LS-D	RS-06	SP-01	SP-02	LS-R	PO-M	PO-D	16.2	1a		
1	15:28	318	341	416	421	279	95	61	104	476	730	19	46,3	24	0,4	
2	15:32	319	342	416	423	274	93	64	229	465	735	10	46,4	24	0,4	
4	15:42	335	347	415	428	203	99	65	232	476	740	19	46.4	24	0.4	
Média		327,25	343,5	416,75	424,25	284	96,25	62,75	219,25	473,75	741	18,75	46,375	24	0,4	
Massa do filt	ro no início do	teste: 343,1	2 g		•	Massa do	filtro no fim	do teste: 345,	93 g							
		т	ESTES EF	PERIME	INTAIS	EM UN	IDADE	DE FLUID	IZAÇÃO	<u>D RÁPIE</u>	DA A FR	<u> RIO - UF</u>	RAF			
Teste nº: 3**	Data: 29/04/2	2015		Hora início	: 10:30	Hora fim: 1	11:17	Operadores:	Breno e Gu	istavo						
Material: Are	ia			-			T	AV	RIAVEIS	CONTR	OLADAS	i.		-		
ρ _s : 2523 kg/n	n ³	Φ _s : 0,69		Inventário:	5 kg		Tamanho d	da partícula (d	_P): 180 µm		Vel. de flui	dização: 3,	5 m/s	Altura pas	sagem horizontal: -	
	•		-			VARI	ÁVEIS E	XPERIMEN	TAIS:		-	-	-	-		
Medida	Hora	RS-01	LS-A	LS-B	LS-C	LS-D	RS-06	SP-01	SP-02	LS-R	PO-M	PO-D	ТЬ	Та	Vazão lida (Nm ³ /h)	
1	10:53	313	325	414	422	275	80	47	183	460	768	18	43,4	21,2	0,4	
2	10:58	307	325	418	427	278	84	51	213	467	742	19	43,4	21,2	0,4	
3	11:03	315	338	422	422	275	79	51	175	465	775	18	43,4	21,2	0,4	
Mádia	11.09	316 25	340	419 75	425.5	279.5	82 75	52	195 75	467.5	760 75	18.5	43.35	21,2	0,4	
Massa do filt	ro no início do	teste: 341.7	3 a	4.0,10	-120,0	Massa do	filtro no fim	do teste: 345.	25 a	-101,0	100,10	.0,0	-10,00	,_		
									_ · J							
	ΔP riser	ΔP ciclone	ΔP standpipe	ΔP LS-CA	ΔP LS-PH	ΔP LS-CR	ΔP LS-TR	ΔP LS-GERAL								
3	2054,36	308,89	2564,27	737,90	78,45	1380,19	362,82	201,02								
3*	2265,19	328,50	2753,03	718,29	73,55	1375,29	424,11	159,35								
3**	2289,70	301,53	2745,68	860,48	56,38	1431,68	360,37	154,44								
média	2203,08	312,97	2687,66	772,22	69,46	1395,72	382,43	171,61								
		RS-01	RS-06	SP-01	SP-02	IS-A	IS-B	1.5-0	IS-D	RS-01						
	3	2924.64	870.28	561.39	1980.81	3125.66	3863.56	3942.01	2561.82	2921.64						
	Altura [m]	0,036	2,704	2,126	1,050	0,840	0,680	0,680	0,850	0,036						
	3*	3209,01	943,83	615,33	2149,97	3368,36	4086,65	4160,20	2784,90	3209,01						
	Altura [m]	0,036	2,704	2,126	1,050	0,840	0,680	0,680	0,850	0,036						
	3**	3101,15	811,45	509,91	1919,52	3255,59	4116,07	4172,45	2740,78	3101,15						

			TEOTE										-			
	T		TESTES	EPERIMENTAIS EM UNIDADE DE FLUIDIZAÇÃO RAPIDA A FRIO - UFRAF												
reste nº: 4	Data: 16/04/	2015		Hora início:	Iora inicio: 19:15 Hora fim: 20:05 Operadores: Breno e Gustavo											
Material: Are	a	L					VARIAVEIS CONTROLADAS									
ρ _s : 2523 kg/n	n°	Φ _s : 0,69		Inventário: 5 kg Tamanho da partícula (d _p): 180 µm Vel. de fluidização: 4,5 m/s Altura passagem horizontal: -											sagem horizontal: -	
		-	-	-	-	VAR	IÁVEIS EX	PERIMENT	AIS:	-		-	-	-		
Medida	Hora	RS-01	LS-A	LS-B	LS-C	LS-D	RS-06	SP-01	SP-02	LS-R	PO-M	PO-D	ТЬ	Та	Vazão lida (Nm³/h)	
1	19:31	342	395	465	476	330	120	80	275	534	1300	32	47,8	23,3	0,4	
2	19:35	347	393	472	478	326	128	81	276	534	1250	31	47,9	23,3	0,4	
3	19:41	347	401	475	482	331	130	86	281	538	1350	32	48	23,3	0,4	
4	19:47	350	400	471	481	337	131	88	282	538	1300	32	48	23,3	0,4	
Média		346,5	397,25	470,75	479,25	331	127,25	83,75	278,5	536	1300	31,75	47,925	23,3	0,4	
Massa do filt	ro no início do	teste: 344,1	8 g			Massa do fil	tro no fim do t	teste: 348,06 g								
			TESTES	S EPER	MENTA	IS EM UN		DE FLUIDIZ	AÇÃO F	RÁPIDA	A FRIO	- UFRAI	F			
Teste nº: 4*	Data: 27/04/	2015		Hora início: 16:25 Hora fim: 17:10 Operadores: Breno e Gustavo												
Material: Are	ia							VAR	IÁVEIS CO	ONTROLA	DAS					
ρ _s : 2523 kg/n	n ³	Φ _s : 0,69		Inventário:	5 kg		Tamanho da	partícula (d _p): 1	80 µm		Vel. de flu	idização: 4,	5 m/s	Altura pas	sagem horizontal: -	
					-	VAR	IÁVEIS EX		NS:					•		
Medida	Hora	RS-01	LS-A	LS-B	LS-C	LS-D	RS-06	SP-01	SP-02	LS-R	PO-M	PO-D	Th	Та	Vazão lida (Nm ³ /h)	
1	16:40	330	380	461	465	326	133		261	516	1350	32	49.3	25.8	0.4	
2	16:46	335	382	461	465	324	135	90	264	512	1300	32	49,5	25.8	0,4	
	16:52	335	380	462	471	327	138	97	268	512	1340	32	49.7	25.8	0.4	
3	16:57	333	380	402	471	327	140	97	200	513	1340	32	49,7	25,8	0,4	
4 Módia	10.57	334 75	382 75	403	469 75	327.5	136 75	94 75	264.5	518.5	1330	32	49,7	25,8	0,4	
Massa do filt	ro no início de	teste: 342 5	7.0	400	403,13	Massa do fil	tro no fim do t	teste: 346.09 d	204,0	510,5	1000	52	43,0	23,0	0,4	
Massa do Int		16316. 342,3	/ y			wassa uo iii		iesie. 340,09 g			1			1		
			TESTES										=			
Tooto pº 4**	Data: 00/04/	2045	TESTES													
Teste II. 4	Data: 29/04/	2015		Hora Inicio	13:20	Hora fim: 14	:08	Operadores: B	INCLOSE		DAC					
Material: Are	3	+ 0.00														
ρ _s : 2523 kg/n	n-	$\varphi_{s}: 0,69$		Inventario:	5 кд		Tamanno da	particula (d _p): 1	80 µm		vel. de flu	idizaçao: 4,	5 m/s	Altura pas	sagem nonzontal: -	
	•	1	r	r	r	VAR	IAVEIS EX	PERIMENT	AIS:	r	·			i		
Medida	Hora	RS-01	LS-A	LS-B	LS-C	LS-D	RS-06	SP-01	SP-02	LS-R	PO-M	PO-D	ТЬ	Та	Vazão lida (Nm³/h)	
1	13:41	305	362	435	447	303	114	71	253	500	1300	32	46,5	22,7	0,4	
2	13:45	324	378	450	462	315	120	77	256	505	1330	32	46,9	22,7	0,4	
3	13:49	330	378	453	460	320	122	81	260	515	1320	32	47,4	22,7	0,4	
4	13:54	335	385	460	468	326	124	82	262	518	1300	32	47,4	22,7	0,4	
Média		323,5	375,75	449,5	459,25	316	120	77,75	257,75	509,5	1312,5	32	47,05	22,7	0,4	
Massa do filt	ro no início do	teste: 342,0	8 g			Massa do fil	tro no fim do t	teste: 344,34 g								
	ΔP riser	ΔP ciclone	ΔP standpipe	ΔP LS-CA	ΔP LS-PH	ΔP LS-CR	ΔP LS-TR	ΔP LS-GERAL								
4	2149,97	426,56	3074,18	720,74	83,35	1453,74	151,99	497,65								
4*	1941,59	411,85	2824,13	786,93	66,19	1394,90	71,09	470,69								
4**	1995,52	414,30	2922,19	723,19	95,61	1404,71	73,55	512,36								
média	2029,02	417,57	2940,17	743,62	81,72	1417,78	98,88	493,57								
		RS-01	RS-06	SP-01	SP-02	LS-A	LS-B	LS-C	LS-D	RS-01						
	4	3397,78	1247,81	821,25	2730,97	3895,43	4616,17	4699,53	3245,79	3397,78						
	Altura [m]	0,036	2,704	2,126	1,050	0,840	0,680	0,680	0,850	0,036						
	4*	3282,56	1340,97	929,12	2593,69	3753,25	4540,18	4606,37	3211,47	3282,56						
	Altura [m]	0,036	2,704	2,126	1,050	0,840	0,680	0,680	0,850	0,036						
	4**	3172,24	1176,72	762,42	2527,50	3684,60	4407,80	4503,41	3098,70	3172,24						
	Altura [m]	0,036	2,704	2,126	1,050	0,840	0,680	0,680	0,850	0,036						