

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

DEPARTAMENTO ACADÊMICO DE MECÂNICA

CURSO DE ENGENHARIA MECÂNICA

FABRICIO NORIO FUJIMURA MATHEUS ANDRADE SANCHES DA CUNHA

DIAGNÓSTICO DO PLASMA POR ESPECTROSCOPIA ÓTICA E NITRETAÇÃO A PLASMA A ALTA TEMPERATURA DE AÇO INOXIDÁVEL ISO 5832-1

TRABALHO DE CONCLUSÃO DE CURSO

CURITIBA

2016

FABRICIO NORIO FUJIMURA MATHEUS ANDRADE SANCHES DA CUNHA

DIAGNÓSTICO DO PLASMA POR ESPECTROMETRIA ÓTICA E NITRETAÇÃO A PLASMA A ALTA TEMPERATURA DE AÇO INOXIDÁVEL ISO 5832-1

Monografia do Projeto de Pesquisa apresentado à disciplina de Trabalho de Conclusão de Curso 2 do curso de Engenharia Mecânica da Universidade Tecnológica Federal do Paraná, como requisito parcial para aprovação na disciplina.

Orientador: Prof. Dr. Euclides Alexandre Bernardelli Co-orientador: Prof. Dr. Ricardo Fernando dos Reis

CURITIBA 2016

TERMO DE ENCAMINHAMENTO

Venho, por meio deste termo, encaminhar para apresentação a monografia do Projeto de Pesquisa "DIAGNÓSTICO DO PLASMA POR ESPECTROMETRIA ÓTICA E NITRETAÇÃO A PLASMA A ALTA TEMPERATURA DE AÇO INOXIDÁVEL ISO 5832-1", realizada pelos alunos FABRICIO NORIO FUJIMURA e MATHEUS ANDRADE SANCHES DA CUNHA, como requisito parcial para aprovação na disciplina de Trabalho de Conclusão de Curso 2 – Tcc2 do curso de Engenharia Mecânica da Universidade Tecnológica Federal do Paraná.

> Orientador: Prof. Dr. Euclides Alexandre Bernardelli Co-orientador: Prof. Dr. Ricardo Fernando dos Reis UTFPR - Damec

> > Curitiba, 11 de Novembro de 2016

RESUMO

CUNHA, Matheus; FUJIMURA, Fabricio. **Diagnóstico do plasma por** espectrometria ótica e nitretação a plasma a alta temperatura de aço inoxidável ISO 5832-1. Monografia, UTFPR, Curitiba, 2016.

A nitretação a plasma está sendo cada vez mais utilizada como processo de tratamento de superfície, com o objetivo de melhorar as propriedades de resistência mecânica, desgaste e resistência a corrosão. Trabalhos anteriores mostraram que tal tratamento pode ser realizado tanto em baixa (<400°C), quanto em alta temperatura (>1000°C). Entretanto, a nitretação a plasma acima de 1000°C apresenta dificuldade em formar uma camada nitretada. Com isto, o objetivo deste trabalho foi realizar um diagnóstico do plasma por Espectroscopia Ótica (EO) em baixa e em alta temperatura e correlacionar estes resultados com a nitretação do aço ISO-5832-1. Para tanto foram realizadas análises de OES à temperatura de 400, 600, 800 e 1000°C e a pressão de 3, 4, 5, 10, 15, 20 e 30 torr, sendo os demais parâmetros mantidos constantes. Os resultados mostram que o aumento da temperatura tem influência direta na formação das espécies presentes em plasma, sendo que quanto maior a temperatura, maior a formação de tais espécies. A pressão exerceu influência não linear, pois em alguns casos tem-se um aumento das espécies e em outros há uma diminuição na intensidade das espécies com o aumento da pressão. Após o diagnóstico do plasma em todas as condições acima mencionadas, foram realizadas duas nitretações a 1000°C, uma a 10 torr e outra a 30torr. As análises por Microscopia Ótica mostram que utilizando uma pressão de 30 torr obteve-se a formação de uma camada nitretada, enquanto que a 10 torr nenhuma camada se formou.

Palavras-chave: Nitretação a plasma; Espectrometria ótica; Temperatura.

ABSTRACT

CUNHA, Matheus; FUJIMURA, Fabricio. **Plasma Diagnose by optical spectrometry and high temperature plasma nitriding of stainless steel ISO 5832-1**. Monografia, UTFPR, Curitiba, 2016.

Plasma nitriding is increasingly used as a surface treatment process in order to improve strength properties, wear and corrosion resistence. Some studies show that this treatment can be performed at low (<400°C) and high temperatures (> 1000°C). However, plasma nitriding above 1000°C presents difficulty in forming a nitrided layer. With this, the objective of this study was to perform a diagnosis of Optical Emission Spectroscopy (OES) in low and high temperatures and correlate these results with the nitriding of ISO-5832-1 steel. For both, analyzes were carried out at a temperature of 400, 600, 800 and 1000 ° C and pressure of 3, 4, 5, 10, 15, 20 and 30 torr, where the other parameters remained constant. The results show that the temperature increase has a direct influence on the formation of species present in the plasma, and the higher the temperature, the higher the formation of such species. The pressure exerted nonlinear effect, because in some cases has increased intensity of species and in others a decrease. After diagnosis the plasma in all the above-mentioned conditions, two nitriding at 1000 °C, at 10 torr and 30 torr. Analysis by optical microscopy show that using a pressure of 30 torr was obtained a nitrided layer, while no layer was formed at 10 torr.

Key-words: Plasma nitriding; Optical spectrometry; Temperature.

LISTA DE ILUSTRAÇÕES

Figura 1 - Representação esquemática de um reator típico usado no tratamento termoquímico de nitretação a plasma
Figura 2 - Curva característica tensão vs Corrente de uma descarga luminescente 14
Figura 3 - Regiões de uma descarga luminescente anormal e distribuição do potencial entre os eletrodos cátodo-ânodo, adaptado de (CHAPMAN, 1980)15
Figura 4 - Interações que podem ocorrer durante o processo de bombardeamento iônico
Figura 5 - Formação da camada branca e zona de difusão no aço 414017
Figura 6 – Espessura de camada nitretada em função da temperatura de tratamento. 19
Figura 7 – a) Formação da martensita no aço martensitico-ferritico20
Figura 8 - Imagens de MO da microestrutura obtida após a nitretação das amostras de AISI 1004 nas condições (a) 20 torr, (b) 30 torr, (c) 40 torr, (d) 50 torr. Aumento 500x
Figura 9 - a) Efeito da pressão na emissão do N ₂ ⁺ em 427,81nm b) Efeito da pressão na emissão do N ₂ ⁺ em 391,4 nm22
Figura 10 - Efeito da pressão na emissão do N ₂ + em 391,44 nm e N ₂ em 357,69 nm. 23
Figura 11 – Intensidade da espécie N ₂ +-391,4 nm; N ₂ 380,4 nm em relação a concentração de H ₂ 23
Figura 12 – Evolução dos Perfis das espécies estudadas por espectroscopia ótica em função da variação da temperatura24
Figura 13 – Densidade do fluxo de íons e intensidade da emissão das espécies N_{2} + e N_{2} * em diferentes tensões
Figura 14- Efeito da temperatura da intensidade de razão de N2+/N226
Figura 15 - Micrografia da secção transversal da camada de composto e a zona de difusão (20% H ₂ + 80% N ₂ a 5 torr durante 5 horas) a) 500°C e b) 570°C26

Figura 16 - Fluxograma de cada etapa do trabalho27 Figura 17 - Representação do reator a ser utilizado com seus equipamentos.29 Figura 24 – Comparativo de intensidade de emissão das espécies a 15 torr.41 Figura 30 – Comparativo de intensidade de emissão das espécies a 30 torr.......44 Figura 36 – Comparativo de intensidade de emissão das espécies a 600°C.47 Figura 37 – Comparativo de intensidade/dc das espécies a 600°C......48 Figura 38 - – Comparativo de intensidade/potência das espécies a 600°C......48 Figura 41 - Comparativo de intensidade/potência das espécies a 800°C......50 Figura 42 – Comparativo de intensidade de emissão das espécies a 1000°C.50 Figura 43 – Comparativo de intensidade/dc das espécies a 1000°C......51 Figura 44 – Comparativo de intensidade/potência das espécies a 1000°C.51 Figura 45 – (a) Metalografia da amostra nitretada a 1000°C e 10 torr. (b)Metalografia da amostra nitretada a 1000°C e 30 torr.....52 Figura 46 – (a) MEV da amostra nitretada a 1000°C e 30 torr com aumento de 4.5 K X. (b) MEV da amostra nitretada a 1000°C e 30 torr com aumento de 2.0 K X53 Figura 47 – Razão de intensidades N_2^+/N_2 a) 5 torr; b) 10 torr; c) 15 torr; d) 20 torr e Figura 48 - Espectro de emissão a 400°C e 3 torr a) entre 300 e 400°C; b) entre 400 e 500°C; c) entre 500 e 600°C; d) entre 600 e 700°C; e) entre 700 e 800°C e f) entre 800 e 900°C......62 Figura 49 - Espectro de emissão a 400°C e 4 torr a) entre 300 e 400°C; b) entre 400 e 500°C; c) entre 500 e 600°C; d) entre 600 e 700°C; e) entre 700 e 800°C e f) entre 800 e 900°C......63 Figura 50 - Espectro de emissão a 400°C e 5 torr a) entre 300 e 400°C; b) entre 400 e 500°C; c) entre 500 e 600°C; d) entre 600 e 700°C; e) entre 700 e 800°C e f) entre 800 e 900°C.....64 Figura 51 - Espectro de emissão a 600°C e 5 torr a) entre 300 e 400°C; b) entre 400 e 500°C; c) entre 500 e 600°C; d) entre 600 e 700°C; e) entre 700 e 800°C e f) entre 800 e 900°C......65 Figura 52 - Espectro de emissão a 600°C e 10 torr a) entre 300 e 400°C; b) entre 400 e 500°C; c) entre 500 e 600°C; d) entre 600 e 700°C; e) entre 700 e 800°C e f) entre 800 e 900°C......66 Figura 53 - Espectro de emissão a 600°C e 15 torr a) entre 300 e 400°C; b) entre 400 e 500°C; c) entre 500 e 600°C; d) entre 600 e 700°C; e) entre 700 e 800°C e f) entre 800 e 900°C.....67 Figura 54 - Espectro de emissão a 800°C e 5 torr a) entre 300 e 400°C; b) entre 400 e 500°C; c) entre 500 e 600°C; d) entre 600 e 700°C; e) entre 700 e 800°C e f) entre

LISTA DE TABELAS

Fabela 1 - Composição química do aço inoxidável austenítico ISO 5832-1 (%peso)28											
abela 2 - Parâmetros do processo da análise do plasma											
Tabela 3 – Concentração gasosa (mol) em função da pressão e temperatura30											
Tabela 4 – Comprimentos de onda utilizados nos comparativos											
Tabela 5 – Espécies presentes nas condições experimentais estudadas											
Tabela 6 – Dados experimentais34											
Tabela 7 – Razão de intensidade das espécies presentes nas condições experimentais estudadas sobre duty cycle											
Tabela 8 – Razão de intensidade das espécies presentes nas condiçõesexperimentais estudadas sobre potência.36											

1 INTRODUÇÃO	11
1.1 OBJETIVOS	12
2 Fundamentação Teórica	13
2.1 NITRETAÇÃO A PLASMA	13
2.2 PROCESSO	14
2.2.1 Interação plasma/superfície do cátodo	16
2.2.2 Estrutura da camada nitretada	17
2.2.3 Formação da camada nitretada	18
2.2.4 Nitretação de aços	18
2.3 DIAGNÓSTICO DE PLASMA POR ESPECTROSCOPIA DE EMISSÃO ÓTICA (EO)	21
2.4 INFLUÊNCIA DAS ESPÉCIES	25
3 MATERIAIS E MÉTODOS	27
3.1 DESCRIÇÃO DA METODOLOGIA	27
3.1.1 Amostras	28
3.1.2 Reator	28
3.1.3 Espectrometria ótica (EO)	29
3.1.4 Nitretação	30
4 RESULTADOS E DISCUSSAO	32
4.1 RESULTADOS DA ESPECTROSCOPIA OTICA	32
	32
4.3 NITRETAÇÃO DO AÇO ISO 5832-1	52
	53
	50
6 REFERENCIAS	58
Apéndice A – Análises 3 Torr – 400°C	62
Apêndice B – Análises 4 Torr – 400°C	63
Apêndice C – Análises 5 Torr – 400°C	64
Apêndice D – Análises 5 Torr – 600°C	65
Apêndice E – Análises 10 Torr – 600°C	66
Apêndice F – Análises 15 Torr – 600°C	67
Apêndice G – Análises 5 Torr – 800°C	68
Apêndice H – Análises 10 Torr – 800°C	69
Apêndice I – Análises 15 Torr – 800°C	70
Apêndice J – Análises 20 Torr – 800°C	71
Apêndice L – Análises 30 Torr – 800°C	72
Apêndice M – Análises 10 Torr – 1000°C	73
Apêndice N – Análises 15 Torr – 1000°C	74
Apêndice O – Análises 20 Torr – 1000°C	75
Apêndice P – Análises 30 Torr – 1000°C	76

SUMÁRIO

1 INTRODUÇÃO

Cada vez mais se utiliza plasma para a realização de tratamentos de superfície. A crescente utilização desta técnica vem apresentando algumas vantagens em relação aos processos convencionais como: curto tempo de tratamento; a temperatura pode ser alta (>1000°C) ou baixa (<400°C); as peças saem secas e limpas, não necessitando de uma etapa posterior de limpeza; baixo custo de operação; os custos com reciclagem de banhos químicos são eliminados (BELKIND, 1995; PETASCH, 1997).

O plasma vem sendo utilizado para a realização de diferentes tratamentos termoquímicos de superfície, tais como: cementação a alta e a baixa temperatura (LAMIN, 2015); nitretação (BENDO, 2011) e; Carbonitretação (SKONIESKI, 2008). Alguns trabalhos mostram que a nitretação gasosa pode ser realizada a alta temperatura, acima de 1000°C, como apresentado no trabalho de Garzon e Tschiptschin (2005), entretanto, quando este é realizado a plasma, a formação da camada nitretada é inibida, como foi observado por Reis (2015).

Após certa temperatura, no tratamento de nitretação a plasma a alta temperatura do aço ISO 5832-1, mesmo tendo-se um aumento no coeficiente de difusão do nitrogênio, a formação da camada nitretada é inibida e consequentemente há uma diminuição da concentração de nitrogênio na peça (REIS, 2007; REIS, 2015).

Para melhor compreender o ambiente de plasma, visando o aperfeiçoamento e a otimização dos tratamentos de superfície que utilizam tal ambiente, algumas técnicas de diagnóstico vêm sendo utilizadas. Dentre tais técnicas estão o espectrômetro de massa (SILVA, 2003) e a espectroscopia de emissão ótica (OES) (SILVA, 2003; QAYYUM, 2006).

Uma das técnicas mais vantajosas para caracterização do plasma, devido, entre outros motivos, ao baixo preço, a facilidade de utilização e a reduzida interferência nas medições, é a espectrometria ótica. Experimentalmente, diversos estudos comprovam que espectrometria ótica é excelente para diagnosticar plasma (DESCOEUDRES, 2004; VUJOŠEVIĆ, 2007).

A utilização de OES permite acompanhar as principais espécies presentes na nitretação a plasma e correlacionar estes dados com a formação da camada

nitretada (SILVA, 2003, QAYYUM, 2006, KIM, 2002). Desta forma, é possível utilizar tal técnica para melhor compreender os tratamentos de nitretação a alta temperatura.

1.1 OBJETIVOS

Objetivo Geral

Realizar o diagnóstico do plasma por espectroscopia ótica em baixa (400°C) e em alta temperatura (1000°C), buscando um melhor entendimento dos mecanismos responsáveis pela diminuição da formação da camada nitretada do aço ISO 5832-1 quando nitretado a alta temperatura (>1000°C).

Objetivos Específicos

- Estudar a influência da temperatura (400, 600, 800 e 1000°C) e da pressão (3, 4, 5, 10, 15, 20 e 30 torr) na formação das espécies presentes na nitretação a plasma;
- Realizar a nitretação a plasma em diferentes condições e correlacionar a formação da camada nitretada com os resultados de Espectroscopia Ótica.

2 FUNDAMENTAÇÃO TEÓRICA

2.1 NITRETAÇÃO A PLASMA

A nitretação a plasma é um tratamento termo-físico-químico onde a inserção de nitrogênio na superfície dos substratos metálicos é a responsável pelo endurecimento superficial. É realizado em uma câmara a vácuo, na qual a amostra pode ser posicionada no cátodo e nesse caso o ânodo são as paredes do reator. A atmosfera pode ser composta de nitrogênio (necessário), hidrogênio e argônio (opcionais), formando uma atmosfera nitretante. Para gerar o plasma, é aplicada uma diferença de potencial no cátodo, ionizando-se o gás e formando o plasma. O mesmo é definido como um estado de gás total ou parcial ionizado com boa condutibilidade elétrica e que contêm íons, elétrons e moléculas neutras (KRAUSS, 1990).

Para o tratamento de nitretação a plasma, o reator pode ser constituído por: saídas para medidas de pressão, temperatura e outras variáveis para o controle de processo; entradas para os gases de tratamento; dois eletrodos (o catodo é portaamostras e amostra a ser tratada, o anodo são as paredes do reator) e bomba de vácuo (ADONIAS, 2003). A Figura 1 demonstra o reator para nitretação a plasma.

Figura 1 - Representação esquemática de um reator típico usado no tratamento termoquímico de nitretação a plasma.

Fonte: Adonias, 2003.

O processo apresenta algumas vantagens em relação a outros processos de nitretação como a gasosa e banho de sais, entre essas vantagens estão: controle do tipo de camada formada; curto tempo de tratamento; uniformidade da camada nitretada; baixa temperatura de tratamento; mais econômico e; menos poluente (ALVES JR, 2002).

2.2 PROCESSO

No processo de geração do plasma, uma diferença de potencial é aplicada entre os dois eletrodos metálicos, então os elétrons e íons são acelerados, provocando uma séria de colisões com átomos e moléculas no percurso. A partir de certo valor de tensão e energia imposta a estas partículas, as mesmas ganham energia suficiente para que por colisão, haja o arrancamento de elétrons desses átomos e moléculas. Este nível de energia é conhecida como energia de ionização. E ao ser atingido tal nível, as colisões passam a ser mais numerosas e fortes aumentando a quantidade de elétrons e íons livres. A este fenômeno dá-se o nome de avalanche de elétrons, que dará início à descarga luminescente. Na Figura 2, é mostrado os diferentes regimes que podem ocorrer devido a descarga (DC) em função dos valores de corrente e tensão (JONES, 1973) (REIS, 2007).

Figura 2 - Curva característica tensão vs Corrente de uma descarga luminescente Fonte: Chapman, 1980. Adaptada.

A região de descarga luminescente anormal se apresenta como a mais indicada no tratamento dos metais. Nesta região, a amostra é completamente envolta pela descarga, permitindo uma boa uniformidade de camada nitretada. Considerando que a corrente elétrica é função da tensão aplicada sendo que nessa região ambas aumentam simultaneamente. Pode-se variar a potência transferida sobre a superfície das amostras e com isso, o aporte de energia sobre as peças a serem processadas. Assim, pode-se controlar efetivamente a temperatura durante o processamento. (JONES, 1973).

Na descarga elétrica em regime anormal é possível identificar três regiões distintas e características: bainha catódica, região luminescente e bainha anódica. Como mostrado na Figura 3 (TATIANA, 2013).

Figura 3 - Regiões de uma descarga luminescente anormal e distribuição do potencial entre os eletrodos cátodo-ânodo, adaptado de (CHAPMAN, 1980) Fonte: Tatiana, 2013.

2.2.1 Interação plasma/superfície do cátodo

Conforme apresentado na Figura 4, na superfície do cátodo, podem ocorrer os seguintes fenômenos (CHAPMAN, 1980):

- O íon pode ser refletido e provavelmente ser neutralizado no processo de bombardeamento iônico;
- O bombardeamento dos íons provoca a emissão de elétrons secundários;
- Um íon pode ser implantado no interior das camadas superficiais do substrato;
- O impacto do íon pode causar algum rearranjo microestrutural no substrato do material (vacâncias e alterações de estequiometria);
- O impacto do íon pode causar aquecimento do material;
- O impacto do íon pode causar emissão de ondas de choque no volume do material;
- O bombardeamento dos íons pode provocar o arranchamento de átomos do cátodo possibilitando a pulverização desses átomos. Este fenômeno é conhecido como "sputtering";
- As espécies reativas podem participar de reações químicas na superfície;
- Átomos depositados na superfície podem difundir-se na amostra.

Figura 4 - Interações que podem ocorrer durante o processo de bombardeamento iônico Fonte: ASM HANDBOOK, 1994.

2.2.2 Estrutura da camada nitretada

A camada nitretada de um aço é formada por uma zona de difusão, com ou sem a zona de compostos (camada branca) e depende dos parâmetros do processo, dos tipos de elementos de liga dos aços a serem nitretados, composição dos gases, tempo e temperatura de exposição no tratamento de nitretação.

O mecanismo usado para gerar o nitrogênio na superfície da peça afeta a estrutura da camada, pois a formação da zona de compostos e a zona de difusão dependem da concentração de nitrogênio (EDNHOFFER, 1974). Na Figura 5 é apresentada cada camada citada.

Figura 5 - Formação da camada branca e zona de difusão no aço 4140 Fonte: PLASMA-LIITS.

A zona de difusão é formada por precipitados de nitreto dispersos em sua microestrutura original e nitrogênio em solução sólida. A profundidade dessa zona depende do gradiente de concentração de nitrogênio, do tempo de tratamento a uma dada temperatura, e da composição química da peça tendo uma dureza maior que a dureza do núcleo do material (EDNHOFFER, 1974).

De acordo com Ednhoffer (1974) a zona de compostos ou camada branca é a região onde são formados os nitretos de ferro γ ' e ϵ . A camada de compostos possui propriedades mecânicas, físicas e químicas diferentes quando esta é formada por uma ou outra fase. Por exemplo, a camada formada por nitretos de ferro γ ' (Fe₄N) possui maior tenacidade que a camada ϵ (Fe₂₋₃N). O processo de nitretação a plasma por ter um maior controle do processo nos seus parâmetros, possibilita controlar a camada a ser formada. Pode-se obter uma camada monofásica com a formação de apenas um tipo de nitreto ou inibir a formação da camada branca, tornando-se uma das principais vantagens da nitretação a plasma em relação a outros tratamentos convencionais de nitretação (TIER, 1998) (WIERZCHON, 1997).

2.2.3 Formação da camada nitretada

Em relação à formação e crescimento da camada nitretada, há varias teorias e modelos que surgiram no decorrer do tempo e não existe um consenso comum entre elas. Uma destas teorias é de KOLBEL (1965) apud EDENHOFER (1974) em que propõe que os átomos pulverizados da superfície catódica se combinariam com nitrogênio formando compostos do tipo FeN. Esses compostos são instáveis nas temperaturas usuais de nitretação, e ao se condensarem na superfície se decompõe em compostos mais estáveis do tipo Fe2N, Fe3N e Fe4N.

Contrário ao modelo de KOBEL, Jones (1973) afirmou que a pulverização não é o principal mecanismo de formação dos nitretos, podendo haver formação destes sem que ocorra pulverização do Fe. Na mistura de N₂/Ar, o argônio causa maior pulverização do Fe do que na mistura de N₂/H₂.

Outra teoria é de Edenhofer (1974) a qual propõe que, com o prolongamento do tempo de tratamento, o processo de *sputtering* acaba desfazendo a camada nitretada e para longos tempos e altas taxas de *sputtering*, pode-se obter somente camada de difusão.

2.2.4 Nitretação de aços

Quando os aços inoxidáveis são nitretados a altas temperaturas, acima de aproximadamente 400°C, a formação da camada nitretada é acompanhada pela precipitação de CrN. Tal precipitação promove um empobrecimento de cromo da matriz, tendo como consequência uma piora da resistência à corrosão, prejudicando também a formação da camada passiva característica desses materiais (LIANG, 2001) (LIANG, 2003).

Na nitretação a baixa temperatura, os mecanismos de modificação micro estrutural na superfície são completamente diferentes dos encontrados na nitretação a plasma a alta temperatura (PRANEVICIUS, 2001), a precipitação de nitretos é suprimida e a camada nitretada é constituída de uma solução sólida supersaturada em nitrogênio denominada austenita expandida (γ^N).

Nesta fase γ^N , o reticulado CFC da austenita encontra-se expandido com relação ao seu estado original, em decorrência da introdução do intersticial, o que introduz tensões elevadas residuais de compressão associadas a falhas de empilhamento, que aumentam com o acréscimo da concentração de nitrogênio, e promovem o endurecimento superficial sem a deterioração das propriedades de corrosão (LIANG,2000) (DONG, 2010).

Reis *et al* (2015) realizaram o tratamento de nitretação a temperaturas de 630, 750 e 870 °C (Figura 6), observando que quanto maior a temperatura maior a espessura de camada formada, que é constituída de nitretos de cromo e de ferro.

Figura 6 – Espessura de camada nitretada em função da temperatura de tratamento. Fonte: Reis, 2007

Garzon e Tschiptschin (2005) também realizaram o tratamento de nitretação em alta temperatura. Entretanto, este trabalho difere do trabalho de Reis (2007) por ter sido utilizando um processo convencional de nitretação, nitretação gasosa, seguido de têmpera. Neste trabalho ele mostra que dependendo do material de base, a nitretação seguida de tempera ocasiona na formação de diferentes camadas. Por exemplo, na nitretação de aço inoxidável austenítico, a camada formada é austenítica, já quando o material de base é martensítico-ferrítico, formase martensita (Figura 7). Nestes tratamentos, as pressões utilizadas variaram de 494 a 1900 torr.

Figura 7 – a) Formação da martensita no aço martensitico-ferritico. e b) Formação da austenita do aço inoxidável austenitico. Fonte: Garzon e Tschiptschin, 2005

Comparando os trabalhos de Reis (2015) e de Garzon e Tschiptschin (2005), observa-se que as pressões utilizadas foram muito diferentes. Esta diferença é devido aos processos serem diferentes. Entretanto, Reis (2015) mostra em seu trabalho que os tratamentos de nitretação a plasma realizados acima de 1000°C não apresentaram camadas nitretadas. Tal diferença pode estar associada a pressão utilizada.

No trabalho de Martendal (2014) amostras de aço de baixo carbono (AISI 1004) foram nitretadas em um reator de fonte micro-ondas, com o objetivo de analisar o efeito do fluxo gasoso e da pressão de trabalho na espessura e na composição da camada. As condições foram de pressão de trabalho de 30 a 50 torr, tempo de nitretação de 3 horas, atmosfera de 79% N₂ + 11% Ar + 10% H₂, fluxo gasoso entre 1000 e 3000 sccm e temperatura de 560°C.

Com o aumento da pressão de trabalho observou-se que somente com pressões maiores do que 20 torr era possível obter camadas nitretadas, conforme observado na Figura 8.

NNN

Figura 8 - Imagens de MO da microestrutura obtida após a nitretação das amostras de AISI 1004 nas condições (a) 20 torr, (b) 30 torr, (c) 40 torr, (d) 50 torr. Aumento 500x. Fonte: Martendal *et al*, 2014

2.3 DIAGNÓSTICO DE PLASMA POR ESPECTROSCOPIA DE EMISSÃO ÓTICA (EO)

A caracterização do plasma é essencial para entender não somente as espécies que ocasionam o crescimento da camada num processo de tratamento superficial, mas também compreender as possíveis modificações estruturais dessa camada (SKOOG; HOLLER; NIEMAN; 2001).

O diagnóstico de plasma utilizando OES vem sendo utilizado por diversos autores para identificar e, em alguns casos, quantificar as espécies presentes nos processos de tratamentos de superfície. Identificar as espécies presentes em função dos parâmetros para abertura de plasma e controlar a formação destas é necessário para que se possa aumentar a efetividade do tratamento no que diz respeito ao tempo e temperatura de tratamento e, em relação as diferentes fases que podem se formar. Sharma (2008) utilizou EO para verificar a influência da pressão na formação das espécies durante o tratamento de nitretação. Este observou que um aumento de pressão de 0,4 para 1,2 torr ocasionou em um aumento de intensidade das espécies N_2^+ para os comprimentos de onda 427 nm e 391,4 nm, conforme apresentado na Figura 9. Observa-se que a adição de 10% de hidrogênio ocasionou no maior aumento da produção de N_2^+ , sendo este aumento ocasionado pela maior emissão de elétrons secundários.

Figura 9 - a) Efeito da pressão na emissão do N₂⁺ em 427,81nm b) Efeito da pressão na emissão do N₂⁺ em 391,4 nm. Fonte: Sharma et al, 2008.

Jeong e Kim (2001) também obtiveram resultados similares a Sharma (2008) em relação ao aumento da intensidade da emissão do N_2^+ com o aumento da pressão, no entanto a espécie N_2 teve um aumento não tão acentuado como pode ser visto na Figura 10. Nesse trabalho, foi utilizado temperatura de trabalho a 550°C e proporção de $N_2/H_2 = 4$:1.

Kim (2002) utilizou a técnica OES para monitorar as espécies N_2^+ e N_2^* e observou que um aumento de até 20% de H_2 em N_2 , na pressão de trabalho de 1 torr, faz com que se tenha um aumento da produção de N_2^+ (391,4) e N_2^- (380,4) (Figura 11). Estes autores também associam este aumento com o aumento do coeficiente de emissão de elétrons secundários. Resultados similares foram observados por Hannemann (2013).

Figura 10 - Efeito da pressão na emissão do N_2^+ em 391,44 nm e N_2 em 357,69 nm. Fonte: Jeong e Kim, 2001.

Figura 11 – Intensidade da espécie N₂⁺-391,4 nm; N₂⁻⁻380,4 nm em relação a concentração de H₂. Fonte: Kim et al, 2002.

Silva (2003) utilizou EO para verificar a influência da temperatura (500-600°C), sendo que a mistura gasosa foi mantida constante, em 80% de N₂, 18% H₂ e 2% CH₄ e a pressão em 3 torr. E observou-se que em todos os casos, ocorreu um

aumento na formação das espécies químicas em relação as suas intensidades com o aumento da temperatura como pode ser visto na Figura 12.

Ba (2015) utilizou a técnica de EO para monitorar as espécies N_2^+ e N_2^* variando a tensão e observou um aumento na intensidade de emissão e da densidade do fluxo de íons com o aumento da tensão como pode ser visto na Figura 13, tendo como parâmetros de temperatura e pressão fixos em 800°C e 1,5 torr respectivamente.

Figura 12 – Evolução dos Perfis das espécies estudadas por espectroscopia ótica em função da variação da temperatura.

Fonte: Silva, 2003

Figura 13 – Densidade do fluxo de íons e intensidade da emissão das espécies N₂⁺ e N₂^{*} em diferentes tensões Fonte: Ba, 2015.

2.4 INFLUÊNCIA DAS ESPÉCIES

Existem várias teorias para descrever o processo de nitretação a plasma (HUDIS, 1973) (TIBBETS, 1974) (PETITIJEAN, 1984) (SHARMA, 2008) (JEONG, 2001). Entretanto, ainda não existe um consenso entre os pesquisadores sobre como ocorre a nitretação a plasma. Com isto, análises por EO são realizadas durante os tratamentos de nitretação com o objetivo de correlacionar as espécies presentes no plasma com a formação da camada nitretada.

No trabalho de Hudis (1973), os autores propõem que a formação dos nitretos se dá na superfície do catódo. Neste, as espécies iônicas que contribuem para o transporte de nitrogênio reativo seriam os íons NH⁺. Estes íons se dissociam na superfície do cátodo, liberando nitrogênio.

Segundo Tibbets (1974) o papel do H₂ na descarga N₂/H₂ é reduzir os óxidos na superfície. Na realidade as espécies ativas na nitretação são os átomos neutros de nitrogênio, originados da dissociação das moléculas de N₂.

Em 1984, Petitijean e Ricard (1984) estabeleceram que as espécies preponderantes na nitretação por plasma são os radicais NH. Estas espécies participariam da nitretação por serem pouco estáveis, e por haver um acréscimo no rendimento da nitretação por plasma pela adição de pequena quantidade de H₂ na mistura gasosa. Este aumento no rendimento ocorre porque o hidrogênio, além de aumentar a dissociação no nitrogênio, tornando mais fácil a obtenção do nitreto (já que a molécula de N₂ é muito estável), permite o aparecimento de radicais N-H, que reagem facilmente com a superfície metálica.

Segundo Sharma (2008), revelou-se que o íon N₂+ é responsável pelo aquecimento do cátodo além disso concluiu que o N₂ neutro participa no aquecimento.

Com o estudo de Jeong e Kim (2001) em relação ao aumento da intensidade da emissão do N₂⁺ com o aumento da pressão como pode ser visto na Figura 10, concluíram que o N₂⁺ tem uma maior influência que a espécie N₂ no efeito sobre o comportamento de formação da camada nitretada.

Continuando com o trabalho de Jeong e Kim (2001), foi realizado um estudo da influência da temperatura na intensidade da razão de N_2^+/N_2 como pode ser visto na Figura 14, em que ocorreu um aumento da razão de N_2^+/N_2 com o aumento da

temperatura. E além disso, analisaram a microestrutura formada como visto na Figura 15, em que observaram um aumento do tamanho e espessura dos microporos com o aumento da temperatura. Relacionando esse aumento dos micro-poros com o aumento de intensidades das espécies ativas de nitrogênio em especial o N_2^+ .

Figura 14- Efeito da temperatura da intensidade de razão de N_2^+/N_2 . Fonte: Jeong e Kim, 2001

Figura 15 - Micrografia da secção transversal da camada de composto e a zona de difusão (20% H₂ + 80% N₂ a 5 torr durante 5 horas) a) 500°C e b) 570°C. Fonte: Jeong e Kim, 2001.

3 MATERIAIS E MÉTODOS

3.1 DESCRIÇÃO DA METODOLOGIA

Na Figura 16 é apresentado um fluxograma de cada atividade que foi realizada no projeto. Observa-se que o trabalho contemplou a análise do plasma em diferentes condições de temperatura e pressão. A condição utilizada foi baseada no trabalho de Reis (Reis, 2007), o qual realizou nitretações em alta temperatura.

O trabalho foi concentrado na análise do plasma por espectroscopia ótica nas condições utilizadas para a nitretação de materiais metálicos. Após as caracterizações e interpretação dos resultados, foi realizado **dois ciclos de nitretação**, sendo a condição experimental utilizada neste ciclo apresentada na Figura 16.

Figura 16 - Fluxograma de cada etapa do trabalho Fonte: Autoria própria.

Para a mistura gasosa no reator manteve-se a proporção de 90N₂-10H₂, fluxos de 25 sccm para H₂ e 225 sccm para N₂. Durante o aquecimento do reator para análise do plasma, utilizou-se uma mistura de argônio e hidrogênio, com 100 sccm para cada gás até atingir temperatura próxima de 300°C, quando estabilizou-se a temperatura e a mistura gasosa foi reajustada para 90N₂-10H₂.

3.1.1 Amostras

Em todos os ciclos de caracterização e no ciclo de nitretação foram utilizadas amostras de aço inoxidável ISO 5832-1, fornecido pela empresa Villares, sendo sua composição química apresentada na Tabela 1. As amostras no formato cilíndrico possuem aproximadamente 15,0 mm de altura e 15,8 mm de diâmetro.

Tabela 1 - Composição química do aço inoxidável austenítico ISO 5832-1 (%peso)

С	Mn	Si	Cr	Ni	Мо	Ν	Fe
0,02	1,75	0,35	17,80	14,30	2,76	0,08	Balanço

Fonte: Ricardo et al, 2013.

As amostras passaram por preparação metalográfica convencional, lixamento, polimento e limpeza com álcool etílico em banho de ultrassom para limpeza e ataque com marble.

3.1.2 Reator

Para o processo de análise por espectroscopia ótica e nitretação, foi utilizado o reator de plasma provido de fonte pulsada pertencente ao Laboratório de Plasma da UTFPR. A fonte do modelo SDC, fluximetro da Edwards e o pirani do modelo Barocel. Sua representação esquemática é apresentada na Figura 17.

Figura 17 - Representação do reator a ser utilizado com seus equipamentos. Fonte: BERNARDELLI, 2007.

3.1.3 Espectrometria ótica (EO)

No presente trabalho, para a padronização dos dados obtidos na espectrometria ótica do plasma das temperaturas e pressões descritas na Tabela 2, usou-se valores fixos de exposição 7 e acumulação 1 na configuração do aparelho.

Para realização da leitura dos espectros de emissão do plasma em toda a faixa de pressão e temperaturas, o cabo ótico foi fixado em uma mesma posição para uma padronização dos dados obtidos na espectrometria.

Durante o tratamento de superfície, a espectrometria ótica serviu para diagnosticar o plasma, buscando obter uma melhor compreensão das espécies presentes e suas intensidades para obter uma relação com o comportamento da camada nitretada.

A variável de estudo foi a temperatura e pressão de tratamento a qual foi controlada pelo t_{on}, t_{off} e DDP conforme apresentado na Tabela 2. Utilizou-se diferentes valores para a diferença de potencial para que fosse possível alcançar temperaturas elevadas. As condições experimentais foram selecionadas com base no trabalho de Reis (2007),Reis *et al* (2015) que utilizou faixas de 400, 630, 750 e 870 °C, sendo que no projeto em questão foi adicionada a temperatura de 1000°C.

Temperatura (°C)	Mistura Gasosa (%)	Pressão (Torr)	DDP (V)
400	90N ₂ -10H ₂	3, 4, 5	500
600	90N ₂ -10H ₂	5, 10, 15	500
800	90N ₂ -10H ₂	5, 10, 15, 20, 30	700
1000	90N ₂ -10H ₂	10, 15, 20, 30	700

Tabela 2 - Parâmetros do processo da análise do plasma.

Fonte: Autoria própria.

3.1.4 Nitretação

As pressões utilizadas foram baseadas no trabalho de Jaoul *et al*, (2006a); Martendal *et al*, (2014). Nestes, pressões acima de 10 torr foram utilizadas para obter camadas nitretadas em pós-descarga. Comparando alta temperatura com alta pressão em pós-descarga, em alta pressão tem-se um aumento da concentração de gases, o que proporcionou um aumento da espessura de camada nitretada.

Em alta temperatura, o gás fica mais rarefeito se comparado a baixa temperatura. Com o aumento da pressão tem-se uma compensação, ou seja, um aumento da concentração de gases. Para os cálculos da concentração gasosa foi utilizado a equação *pV=nRT* em que são apresentados na Tabela 3.

Optou-se por realizar o ciclo de nitretação a 1000 °C e a 30 torr baseando-se na Tabela 3, nos trabalhos de Martendal (2014) e de Silva (2003).

Temperatura			Pi	ressão (to			
°C)	3	4	5	10	15	20	30
400	3,87E21	5,16E21	6,45E21				
600			4,97E21	9,95E21	1,49E21		
800			4,04E21	8,09E21	1,21E22	1,62E22	2,43E22
1000				8,82E21	1,02E22	1,36E22	2,05E22

Tabela 3 – Concentração gasosa (mol) em função da pressão e temperatura.

Fonte: Autoria própria.

No tratamento de nitretação a plasma a amostra foi exposta a 1000°C e 30 torr durante 1 hora. Em que primeiramente foi feito o aquecimento até 1000°C com a mistura gasosa de N₂-H₂-Ar e posteriormente realizou-se a nitretação com a mudança de parâmetros para 90N₂-10H₂. Após a nitretação as amostras foram cortadas e preparadas metalograficamente até polimento com alumina de 1 micrômetro. Seguiu-se para análise por microscopia ótica, sendo realizado 4 medições da espessura da camada nitretada.

Foram realizadas análises por microdureza Vickers com carga 0,245 N e feitas 3 medições de microdureza na superfície. O equipamento utilizado foi o Microdurometro Shimadzu modelo HV2000.

4 RESULTADOS E DISCUSSÃO

4.1 RESULTADOS DA ESPECTROSCOPIA ÓTICA

Na Tabela 5 são apresentados os resultados de EO. Observa-se que as mesmas espécies estão presentes em todas as condições estudadas. Por limitação das condições de experimento, a saturação é 65535. As identificações de tais espécies foram realizadas com base em alguns trabalhos e livros (SHARMA, 2008; JEONG E KIM, 2001; Kim, 2002; BA, 2015; SAEED, 2014; HANNEMANN, 2013; PEARSE, 1976) como pode ser visto na Tabela 4 a separação de cada espécie e qual a bibliografia correspondente.

4.2 COMPARAÇÃO DOS RESULTADOS

Todas os gráficos desta seção possuem um eixo primário (esquerda) e um eixo secundário (a direita). Isto se fez necessário pois as intensidades de emissão da espécie N₂+/N são de uma ordem de grandeza superior às demais emissões, dificultando a análise caso fosse utilizado apenas um eixo primário. E segue Tabela 4 mostrando os comprimentos de ondas para cada espécie utilizado nos comparativos.

Na Figura 18 na pressão de 5 torr nota-se que as espécies NH, N₂ e N₂⁺ tiveram um aumento expressivo da intensidade de emissão entre as temperaturas de 400°C e 600°C com uma queda do percentual do aumento da intensidade entre 600°C e 800°C. A espécie N obteve um aumento notável em toda a faixa de temperatura, e H_α, H_β e N⁺ também obtiveram um acréscimo da intensidade, porém menos expressivo e mais linear.

Espécie	Comprimento de onda (nm)
NH	336,01
N2	337,13
N ₂ +	391,44
Ηα	434,05
Ηβ	486,13
N	821,65
N+	568,00

 Tabela 4 – Comprimentos de onda utilizados nos comparativos

 Espécie
 Comprimento de

Fonte: Autoria própria.

Bibliografia	Espécie	Comp.	Intensidade														
		Onda	400°C.	400°C.	400°C.	600°C.	600°C.	600°C.	800°C.	800°C.	800°C.	800°C.	800°C.	1000°C.	1000°C.	1000°C.	1000°C.
			3torr	4torr	5torr	5torr	10torr	15torr	5torr	10torr	15torr	20torr	30torr	10torr	15torr	20torr	30torr
HANNEMANN	NH	336,01	1694	1082	1590	3785	1272	2267	5759	4631	4147	3411	2868	6957	5101	4787	4129
SHARMA,	N ₂	337,13	3626	1488	3500	6726	1890	5084	8677	8325	7611	6728	5825	10785	7750	7355	6732
HANNEMANN																	
SHARMA,	N ₂	357,69	3429	2951	3532	6412	5069	4838	9943	9060	8650	7425	6659	13828	10667	10368	9265
HANNEMANN																	
SHARMA	N ₂	375,54	1892	1740	1924	2825	2717	2183	4249	3676	3542	3172	2905	5709	4562	4495	4060
SHARMA,	N ₂	380,49	2158	2070	2156	3581	3430	2739	5218	4731	4551	4298	3775	7340	6242	5913	5571
HANNEMANN	N 1 4	050.05	1050	4.440	4 4 5 0	0040	1000	4.40.4	5070	0000	0404	0505	0400	7700	5404	1001	4470
SAEED	N ₂ +	358,25	1659	1410	1456	2649	1903	1464	5678	3698	3164	2505	2192	7709	5494	4991	4172
	N_2^+	391,44	16487	18680	12356	39326	34659	16823	65535	60808	48644	37339	26846	65535	65535	65535	63948
	NI +	407 01	7407	0224	5720	16060	16072	6021	27722	25244	10076	15705	11700	10600	27226	24141	27966
KIM SAFED	IN2"	427,01	1421	9324	5759	10000	10975	0931	31133	20044	19970	15705	11709	40002	37320	34141	27000
SHARMA	N _a +	470 92	2615	3115	2140	4516	4780	2287	8867	6133	4970	4123	3402	11689	8921	8127	6963
HANNEMANN	142	470,52	2013	5115	2140	4010	4700	2201	0007	0100	4570	4125	0402	11005	0021	0127	0000
HANNEMANN	Ηα	434.05	1249	1122	1240	1399	1404	1125	1601	1482	1470	1453	1421	1852	1715	1691	1652
HANNEMANN	Hß	486.13	1383	1287	1311	1740	1495	1162	2520	1813	1626	1521	1407	3209	1580	2441	2222
HANNEMANN	N⁺	500,15	1359	1302	1249	1621	1576	1048	2847	1939	1732	1510	1394	3587	2809	2550	2218
KIM	N+	568,00	1397	1394	1258	1779	1698	1141	3344	2126	1692	1613	1398	4394	3500	3121	2735
PEARSE	N ₂ +	522,72	1443	1469	1369	1887	1902	1247	2624	2122	1902	1727	1554	3379	2883	2685	2485
PEARSE	N ₂ +	631,7	1691	-	1700	2093	-	1720	1756	1812	1608	1559	1477	3186	-	-	-
PEARSE	N ₂	674,27	5135	1888	5041	10680	2532	8777	13510	12985	10995	10063	8826	19954	15194	14478	13551
KIM	Ηα	656,62	3574	4365	3007	8089	7980	3889	20380	10412	7990	6812	5712	34710	25458	23699	20382
PEARSE	N ₂	716,48	1882	1603	1620	3399	2198	1831	7699	4738	3535	3111	2691	15177	11981	11546	10235
JEONG	N ₂	782,90	17513	20547	1635	42805	37880	21400	65535	64797	48033	38992	29804	65535	65535	65535	65535
KIM	N	744,2	1499	1273	1341	2692	2010	1396	7490	4129	2952	2541	2218	15769	11732	11348	10094
KIM	N	746,8	1861	2156	1635	2991	2790	1863	6925	4337	3472	3355	2830	15372	12681	12722	11323
HANNEMANN	N	821,65	2302	2309	1896	3974	3533	2221	10137	6106	4935	4286	3665	24066	19815	19285	1/344
	N	822,33	1621	1509	1453	2356	2060	1394	55/6	3518	3019	2955	2667	17743	15566	15702	14574
PEARSE	N_2	855,55	4792	6127	3879	10515	10842	5635	24298	15/22	11985	10219	8291	42928	34959	33186	28408

Tabela 5 – Espécies presentes nas condições experimentais estudadas.

Fonte: Autoria própria.

Temperatura	Pressão	ddp	Corrente	Potência	Toff	Ton	Duty
		_					cycle
400	3	500	0,39	195	150	60	0,28571
400	4	500	0,42	210	150	100	0,4
400	5	500	0,42	210	150	100	0,4
600	5	500	0,81	405	216	130	0,37572
600	10	500	0,8	400	210	250	0,54347
600	15	500	0,78	390	216	158	0,42246
800	5	700	1,05	735	50	250	0,83333
800	10	700	1,05	735	120	250	0,67567
800	15	700	1,05	735	120	250	0,67567
800	20	700	1,06	742	120	250	0,67567
800	30	700	1,06	742	160	250	0,60975
1000	10	700	2,05	1435	120	250	0,67567
1000	15	700	1,92	1344	250	200	0,4444
1000	20	700	1,97	1379	250	185	0,42528
1000	30	700	2,25	1575	250	170	0,40476

Tabela 6 – Dados experimentais.

Fonte: Autoria própria.
Bibliografia	Espécie	Comp.	Comp. Intensidade														
		Onda	400°C, 3torr	400°C, 4torr	400°C, 5torr	600°C, 5torr	600°C, 10torr	600°C, 15torr	800°C, 5torr	800°C, 10torr	800°C, 15torr	800°C, 20torr	800°C, 30torr	1000°C, 10torr	1000°C, 15torr	1000°C, 20torr	1000°C, 30torr
HANNEMANN	NH	336,01	5929	2705	3975	10074	2340	5366	6911	6854	6138	5048	4704	10296	11477	11256	10201
SHARMA, HANNEMANN	N ₂	337,13	12691	3720	8750	17902	3478	12034	10412	12321	11264	9957	9553	15962	17438	17294	16632
SHARMA, HANNEMANN	N ₂	357,69	12002	7377,5	8830	17066	9327	11452	11932	13409	12802	10989	10921	20465	24001	24379	22890
SHARMA	N ₂	375,54	6622	4350	4810	7519	4999	5167	5099	5440	5242	4695	4764	8449	10265	10569	10031
SHARMA, HANNEMANN	N ₂	380,49	7553	5175	5390	9531	6311	6483	6262	7002	6735	6361	6191	10863	14045	13904	13764
SAEED	N ₂ +	358,25	5807	3525	3640	7050	3502	3465	6814	5473	4683	3707	3595	11409	12362	11736	10307
SHARMA, HANNEMANN	N ₂ +	391,44	57705	46700	30890	104668	63773	39822	78642	89996	71993	55262	44027	96992	147454	154096	157989
SHARMA, KIM, SAEED	N_2^+	427,81	25995	23310	14348	44895	31230	16406	45280	37509	29564	23243	19203	72049	83984	80277	68845
SHARMA, HANNEMANN	N ₂ +	470,92	9153	7787,5	5350	12020	8795	5414	10640	9077	7356	6102	5579	17300	20072	19109	17203
HANNEMANN	Ηα	434,05	4372	2805	3100	3723	2583	2663	1921	2193	2176	2150	2330	2741	3859	3976	4081
HANNEMANN	Нβ	486,13	4841	3217,5	3278	4631	2751	2751	3024	2683	2406	2251	2307	4749	3555	5740	5490
HANNEMANN	N⁺	500,15	4757	3255	3123	4314	2900	2481	3416	2870	2563	2235	2286	5309	6320	5996	5480
KIM	N⁺	568	4890	3485	3145	4735	3124	2701	4013	3146	2504	2387	2293	6503	7875	7339	6757
PEARSE	N ₂ +	522,72	5051	3672,5	3423	5022	3500	2952	3149	3141	2815	2556	2549	5001	6487	6313	6139
PEARSE	N ₂ +	631,7	5919	-	4250	5571	-	4071	2107	2682	2380	2307	2422	4715	-	-	-
PEARSE	N ₂	674,27	17973	4720	12603	28425	4659	20776	16212	19218	16273	14893	14475	29532	34187	34043	33479
KIM	Ηα	656,62	12509	10912,5	7518	21529	14683	9206	24456	15410	11825	10082	9368	51371	57281	55725	50356
PEARSE	N ₂	716,48	6587	4007,5	4050	9047	4044	4334	9239	7012	5232	4604	4413	22462	26957	27149	25286
JEONG	N ₂	782,9	61296	51367,5	4088	113927	69699	50656	78642	95900	71089	57708	48879	96992	147454	154096	161910
KIM	Ν	744,2	5247	3182,5	3353	7165	3698	3304	8988	6111	4369	3761	3638	23338	26397	26683	24938
KIM	Ν	746,8	6514	5390	4088	7961	5134	4410	8310	6419	5139	4965	4641	22751	28532	29914	27974
HANNEMANN	Ν	821,65	8057	5772,5	4740	10577	6501	5257	12164	9037	7304	6343	6011	35618	44584	45346	42850
HANNEMANN	Ν	822,33	5674	3772,5	3633	6271	3790	3300	6691	5207	4468	4373	4374	26260	35024	36921	36006
PEARSE	N ₂	855,55	16772	15317,5	9698	27986	19949	13339	29158	23269	17738	15124	13597	63533	78658	78032	70184

Tabela 7 – Razão de intensidade das espécies presentes nas condições experimentais estudadas sobre duty cycle.

Bibliografia	Espécie	Comp.	omp. Intensidade														
		Espécie	Onda	400°C, 3torr	400°C, 4torr	400°C, 5torr	600°C, 5torr	600°C, 10torr	600°C, 15torr	800°C, 5torr	800°C, 10torr	800°C, 15torr	800°C, 20torr	800°C, 30torr	1000°C, 10torr	1000°C, 15torr	1000°C, 20torr
HANNEMANN	NH	336,01	9	5	8	9	3	6	8	6	6	5	4	5	4	3	3
SHARMA, HANNEMANN	N ₂	337,13	19	7	17	17	5	13	12	11	10	9	8	8	6	5	4
SHARMA, HANNEMANN	N ₂	357,69	18	14	17	16	13	12	14	12	12	10	9	10	8	8	6
SHARMA	N ₂	375,54	10	8	9	7	7	6	6	5	5	4	4	4	3		3
SHARMA, HANNEMANN	N ₂	380,49	11	10	10	9	9	7	7	6	6	6	5	5	5	4	4
SAEED	N ₂ +	358,25	9	7	7	7	5	4	8	5	4	3	3	5	4	4	3
SHARMA, HANNEMANN	N_2^+	391,44	85	89	59	97	87	43	89	83	66	50	36	46	49	48	41
SHARMA, KIM, SAEED	N_2^+	427,81	38	44	27	42	42	18	51	34	27	21	16	34	28	25	18
SHARMA, HANNEMANN	N_2^+	470,92	13	15	10	11	12	6	12	8	7	6	5	8	7	6	4
HANNEMANN	Ηα	434,05	6	5	6	3	4	3	2	2	2	2	2	1	1	1	1
HANNEMANN	Нβ	486,13	7	6	6	4	4	3	3	2	2	2	2	2	1	2	1
HANNEMANN	N⁺	500,15	7	6	6	4	4	3	4	3	2	2	2	2	2	2	1
KIM	N+	568	7	7	6	4	4	3	5	3	2	2	2	3	3	2	2
PEARSE	N ₂ +	522,72	7	7	7	5	5	3	4	3	3	2	2	2	2	2	2
PEARSE	N ₂ +	631,7	9	-	8	5	-	4	2	2	2	2	2	2	-	-	-
PEARSE	N ₂	674,27	26	9	24	26	6	23	18	18	15	14	12	14	11	10	9
KIM	Ηα	656,62	18	21	14	20	20	10	28	14	11	9	8	24	19	17	13
PEARSE	N ₂	716,48	10	8	8	8	5	5	10	6	5	4	4	11	9	8	6
JEONG	N ₂	782,9	90	98	8	106	95	55	89	88	65	53	40	46	49	48	42
KIM	Ν	744,2	8	6	6	7	5	4	10	6	4	3	3	11	9	8	6
KIM	Ν	746,8	10	10	8	7	7	5	9	6	5	5	4	11	9	9	7
HANNEMANN	Ν	821,65	12	11	9	10	9	6	14	8	7	6	5	17	15	14	11
HANNEMANN	Ν	822,33	8	7	7	6	5	4	8	5	4	4	4	12	12	11	9
PEARSE	N ₂	855,55	25	29	18	26	27	14	33	21	16	14	11	30	26	24	18

Tabela 8 – Razão de intensidade das espécies presentes nas condições experimentais estudadas sobre potência.

Figura 18 – Comparativo de intensidade de emissão das espécies a 5 torr. Fonte: Autoria própria.

Figura 19 - Comparativo de intensidade/dc das espécies a 5 torr Fonte: Autoria própria

Figura 20 - Comparativo de intensidade/potência das espécies a 5 torr Fonte: Autoria própria

Na Figura 21 na pressão de 10 torr notou-se que as espécies NH, N₂ e N₂⁺ tiveram um aumento expressivo da intensidade de emissão entre as temperaturas de 600°C e 800°C com uma queda do percentual do aumento da intensidade entre 800°C e 1000°C, com N₂⁺ mantendo-se praticamente constante. As espécies N e N⁺ obteve um aumento notável na faixa entre 800°C e 1000°C. H_a e H_β obtiveram um acréscimo da intensidade.

Figura 21 – Comparativo de intensidade de emissão das espécies a 10 torr. Fonte: Autoria própria.

Figura 22 - Comparativo de intensidade/dc das espécies a 10 torr. Fonte: Autoria própria.

Figura 23 - Comparativo de intensidade/potência das espécies a 10 torr. Fonte: Autoria própria.

Na Figura 24 na pressão de 15 torr observou-se que as espécies NH, N e N₂⁺ tiveram um aumento expressivo da intensidade de emissão entre as temperaturas de 600°C e 800°C com uma queda do percentual do aumento da intensidade entre 800°C e 1000°C para NH e N₂⁺. A espécie N e N⁺ obtiveram um grande aumento na faixa entre 800°C e 1000°C. H_α e H_β tiveram valores de intensidade praticamente idênticos, com uma queda do valor da intensidade de emissão para H_β entre 800°C e 1000°C. E na Figura 25 observa também uma tendência do aumento da relação intensidade/dc das espécies, sendo que na Figura 26 não há um comportamento linear.

Na Figura 27 e 28 na pressão de 20 torr observa-se que as espécies N e N₂⁺ tiveram um grande aumento da intensidade de emissão entre as temperaturas de 800°C e 1000°C. As espécies NH, N₂, H_{α}, H_{β} e N⁺ obtiveram um aumento pequeno da intensidade de emissão. Sendo que na Figura 29 observa um comportamento inverso com a diminuição da relação da intensidade/potência da maioria das espécies.

Na Figura 30 e 31 na pressão de 30 torr observa-se que as espécies N e N₂⁺ tiveram um grande aumento da intensidade de emissão entre as temperaturas de 800°C e 1000°C. As espécies NH, N₂, H_{α}, H_{β} e N⁺ obtiveram um aumento pequeno da intensidade de emissão. Sendo que na Figura 32 observa um comportamento inverso com a diminuição da relação da intensidade/potência da maioria das espécies.

Na Figura 33 observa-se que as espécies NH e N₂ tiveram queda da intensidade de emissão entre 3 e 4 torr com posterior aumento entre 4 e 5 torr, voltando a níveis parecidos com os observados inicialmente. Para N, H_{α}, H_{β}, N⁺ e N₂⁺ tivemos um aumento de intensidade entre 3 e 4 torr e posterior queda entre 4 e 5 torr, com destaque para a variação da intensidade de emissão de N.

Figura 24 – Comparativo de intensidade de emissão das espécies a 15 torr. Fonte: Autoria própria.

Figura 25 - Comparativo de intensidade/dc das espécies a 15 torr. Fonte: Autoria própria.

Figura 26 - Comparativo de intensidade/potência das espécies a 15 torr. Fonte: Autoria própria.

Figura 27 – Comparativo de intensidade de emissão das espécies a 20 torr. Fonte: Autoria própria.

Figura 28 - Comparativo de intensidade/dc das espécies a 20 torr. Fonte: Autoria própria.

Figura 29 - Comparativo de intensidade/potência das espécies a 20 torr. Fonte: Autoria própria.

Figura 30 – Comparativo de intensidade de emissão das espécies a 30 torr. Fonte: Autoria própria.

Figura 31 - Comparativo de intensidade/dc das espécies a 30 torr. Fonte: Autoria própria.

Figura 32 - Comparativo de intensidade/potência das espécies a 30 torr. Fonte: Autoria própria.

Na Figura 36 houve queda da intensidade de emissão em toda a faixa de pressões para as espécies N, H_{β}, N₊ e N₂⁺. Para a espécie N₂ e NH, observou-se uma queda da intensidade entre as pressões de 5 e 10 torr, com aumento entre 10 e 15 torr. Para H_{α}, tivemos baixíssimos níveis de variação da intensidade de emissão.

Para a temperatura de 800°C, ocorreu queda dos níveis de intensidade de emissão para todas as espécies em toda a faixa de pressão, como pode-se observar na Figura 25.

Figura 33 – Comparativo de intensidade de emissão das espécies a 400°C.

Fonte: Autoria própria.

Figura 34 – Comparativo de intensidade/dc das espécies a 400°C. Fonte: Autoria própria.

Figura 35 – Comparativo de intensidade/potência das espécies a 400°C. Fonte: Autoria própria.

Figura 36 – Comparativo de intensidade de emissão das espécies a 600°C. Fonte: Autoria própria.

Figura 37 – Comparativo de intensidade/dc das espécies a 600°C. Fonte: Autoria própria.

Figura 38 - – Comparativo de intensidade/potência das espécies a 600°C. Fonte: Autoria própria.

Figura 39 – Comparativo de intensidade de emissão das espécies a 800°C. Fonte: Autoria própria.

Figura 40 - Comparativo de intensidade/dc das espécies a 800°C. Fonte: Autoria própria.

Figura 41 - Comparativo de intensidade/potência das espécies a 800°C. Fonte: Autoria própria.

Figura 42 – Comparativo de intensidade de emissão das espécies a 1000°C. Fonte: Autoria própria.

Figura 43 – Comparativo de intensidade/dc das espécies a 1000°C. Fonte: Autoria própria.

Figura 44 – Comparativo de intensidade/potência das espécies a 1000°C. Fonte: Autoria própria.

Na temperatura de 1000°C, tivemos pequena queda dos níveis de intensidade de emissão para as espécies N, H_a, N⁺ e N₂ e NH em toda a faixa de pressão, como pode-se observar na Figura 26. A espécie H_β teve queda entre as pressões de 10 a 15 torr e de 20 a 30 torr, com aumento de intensidade de emissão entre as pressões de 15 e 20 torr. N₂⁺ obteve intensidade praticamente constante em toda faixa de pressão estudada. Na Figura 43 não uma alteração significativa dos valores da relação intensidade/dc e na Figura 44 observa uma tendência de diminuição da relação intensidade/potência.

4.3 NITRETAÇÃO DO AÇO ISO 5832-1

Na Figura 27 é apresentado a metalografia da amostra ISO 5832-1 feita a 1000°C a 10 e 30 torr na borda interna. Foram realizadas 4 medições da espessura da camada que resultaram em uma média de $(18,4\pm3)$ µm no tratamento a 1000°C e 30 torr como pode ser visto na Figura 29 (b) e não houve formação de camada como visto na Figura 27 (a) quanto tratado a 1000°C e 10 torr.

Na realização das medições da microdureza, foram obtidos 687, 652, 673, 667 e 684 Vickers, resultando em uma média de (672±12) Vickers para a amostra tratada a 1000°C e 30 torr. A dureza do material de base é de (208±3) HV.

Figura 45 – (a) Metalografia da amostra nitretada a 1000°C e 10 torr. (b) Metalografia da amostra nitretada a 1000°C e 30 torr. Fonte: Autoria própria.

Na Figura 28 é apresentado o resultado da microscopia eletrônica de varredura (MEV) da amostra ISO 5832-1 feita a 1000°C a 30 torr na borda interna. Foi realizada uma medição da espessura da camada resultando em 16,59 µm como pode ser visto na Figura 28 (a). E na Figura 28 (b) observa-se o perfil da camada formada no tratamento.

Figura 46 – (a) MEV da amostra nitretada a 1000°C e 30 torr com aumento de 4.5 K X. (b) MEV da amostra nitretada a 1000°C e 30 torr com aumento de 2.0 K X Fonte: Autoria própria.

4.4 DISCUSSÃO

De acordo com Reis (2007) tem-se a comparação do crescimento da camada nitretada do aço ISO 5832-1. Conforme apresentado na Figura 6, no capítulo de revisão bibliográfica, o aumento da temperatura aumenta a espessura da camada nitretada e, também, tem-se um aumento da taxa de crescimento em função do tempo de tratamento.

Segundo Reis *et al,* (2015), essa análise especificamente foi feita em toda a camada nitretada (compostos + difusão). Sendo que na temperatura de 630°C houve apenas uma região correspondente de camada de compostos enquanto que nas temperaturas de 750°C e 870°C, camada de compostos e de difusão.

Comparando os resultados apresentados na Figura 6 com os da Figura 18-21, observa-se que o aumento da temperatura aumenta a intensidade das espécies vistas por OES, como observado também no trabalho de Silva (2003), o que vem a contribuir para o aumento da espessura de camada nitretada. Entretanto, o aumento

da temperatura faz com que se tenha um aumento do valor do coeficiente de difusão do nitrogênio no aço, o que também contribui para o aumento da espessura de camada nitretada (CAVALIERE,2009).

O que se mostra em desacordo com os resultados de espectroscopia ótica é que o aumento da temperatura de 800°C para 1000°C aumenta a intensidade de todas as espécies em plasma, o que facilitaria a nitretação. Entretanto, Reis *et al*, (2015), mostra que para a temperatura de 1000°C não se tem a formação de uma camada de compostos utilizando como pressão 10 torr.

Em relação aos resultados variando a pressão com temperatura constante, uma explicação para a diminuição das intensidades de diversas espécies foi proposta por Qayyum *et al*, (2006) que quando a pressão na câmara aumenta, há um aumento no número de colisões entre os elétrons e as outras espécies do plasma. Como resultado, a energia transferida a partir dos elétrons para as espécies do plasma aumenta, causando uma diminuição da temperatura dos elétrons.

Assim, a ponta do EEDF (*eléctron energy distribution function*) desloca para energias inferiores e o número de elétrons com uma energia superior à energia de excitação limiar responsável pela emissão óptica é reduzido. Com isto, quando se aumenta a pressão de 10 para 30 torr, pode fazer com que a densidade de elétrons capazes de produzir espécies excitadas diminua.

Segundo Hudis (1973), o NH seria o responsável pela formação da camada nitretada, entretanto, com o aumento da pressão, a 1000°C, ocorreu uma diminuição da intensidade do pico de NH, como observado na figura 26.

Ainda de acordo com o trabalho de Jeong (2001), observou-se um aumento na intensidade da razão N_2^+/N_2 com o aumento da temperatura em pressões constantes, como visto na Figura 14, e constatado na Figura 29, com exceção da razão de intensidades na pressão de 10 torr.

Nas figuras 24 e 25, nos comparativos de intensidade de emissão à pressão constante nas temperaturas de 600 e 800°C, houve uma diminuição da intensidade da espécie N₂+, contradizendo o estudo de Jeong (2001), onde este mostrou que com o aumento da pressão, ocorreu um aumento da intensidade de emissão desta espécie.

Com o aumento da pressão a 1000°C, ocorreu uma diminuição das espécies excitadas. Apesar disso, ocorreu a formação de uma camada nitretada. Estes resultados mostram que o N₂ desempenha um papel importante na nitretação, uma vez que com o aumento da temperatura ocasionou um aumento da concentração desta espécie, conforme apresentado na Tabela 4.

Outro fator que se mostra importante seria em relação a Tabela 3 que com o aumento da pressão de 10 Torr para 30 Torr, nota-se um aumento na concentração gasosa que paralelamente vemos uma relação com a Figura 27 (a) e Figura 27 (b) que com o aumento da pressão há a formação de camada.

Figura 47 – Razão de intensidades $N_2^+/N_2 a$) 5 torr; b) 10 torr; c) 15 torr; d) 20 torr e e) 30 torr. Fonte: Autoria própria.

5 CONCLUSÃO

Nesta seção será apresentado um resumo das principais conclusões deste trabalho.

- Mantendo-se pressão constante, há uma tendência no aumento da intensidade de emissão de todas as espécies com o aumento da temperatura:
 - A 5 torr, as espécies N, NH, N₂ e N₂⁺ obtiveram um aumento da intensidade de emissão.
 - A 10 torr, NH, N₂ e N₂⁺ obtiveram um aumento da intensidade de emissão.
 - A 15 torr, notou-se um aumento da intensidade nas espécies N₂⁺, NH, N.
 - A 20 torr e a 30 torr, N₂⁺ e N foram as únicas espécies que obtiveram aumento da intensidade de emissão.
- Ao manter a temperatura constante e variando a pressão da análise de espectro, há variação na linearidade entre aumento e diminuição das intensidades de emissão:
 - A 400°C, NH e N₂ obtiveram máxima intensidade a 3 torr; N₂+, H_α, H_β, N⁺ e N a máxima intensidade ocorreu a 4 torr; a 5 torr, não obtivemos nenhum máximo de intensidade.
 - A 600°C, somente a espécie H_α obteve máximo de intensidade a 10 torr. Todas as espécies restantes tiveram máximo de intensidade a 5 torr.
 - A 800°C, há uma tendência de diminuição da intensidade de emissão para todas as espécies com o aumento da pressão de trabalho
 - A 1000°C, há uma tendência de diminuição da intensidade de emissão para NH, N₂, H_α, N⁺ e N com o aumento da pressão de trabalho. Para H_β, não há constância no comportamento. A espécie N₂⁺ manteve-se constante em toda a faixa de pressão.

 Em relação ao tratamento das amostras observa-se que a 10 torr não houve formação da camada, no entanto, apesar de haver uma menor formação das espécies NH, N₂, H_α, N⁺ e N, a 30 torr ocorre formação.

6 REFERÊNCIAS

ADONIAS R. F. JÚNIOR, Obtenção de revestimentos dúplex por nitretação a plasma e PVD-Tin em aços ferramentas AISI D2 e AISI H13, Tese (Doutorado), USP, 2003.

AÉCIO F. MENDES, Nitretação a baixa temperatura assistida por plasma em aço inoxidável AISI 316L sinterizado obtido por moldagem por injeção, Tese (Mestrado), UFPR, 2012.

ALVES JR., C. Nitretação a Plasma: Fundamentos e Aplicações, Ed. UFRN, Natal, 2001.

AMERICAN SOCYTE METALS. Engineering Surface. In: Metals Handbook, vol. 5, p. 2535, 1994.

BA, D.C.; XU, L.; WANG, Q. Effects of plasma nitriding ion beam flux density and time on the properties of CoCrMo alloy, 2015.

BELKIND, A.; LI, H.; CLOW, H.; & JANSEN, F. Oil removal from metals by linear multi-orifice hollow cathode. Surface and Coatings Technology, v.77, p. 738-743, 1995.

BENDO, T. et al. **Plasma Nitriding of Surface Mo-Enriched Sintered Iron**. ISRN Materials Science, v. 2011, p. 1–8, 2011.

BERNARDELLI, E.A., **Tratamento Concomitante de Nitretação e Envelhecimento a Plasma do Aço Inoxidável 15-5 ph**. Dissertação (Mestrado). Universidade Tecnológica Federal do Paraná, Curitiba, 2007

CAVALIERE, P.; ZAVARISE, G.; PERILLO, M.; Modeling of the carburizing and nitriding processes, 2009.

CHAPMAN, B. N. Glow discharge process. New York: Jonh Wiler & Sons, 1980.

DESCOEUDRES A .¹, HOLLENSTEIN C^{.1}, DEMELLAYER R.² and WALDER g.² Optical emission spectroscopy of electrical discharge machining plasma, 2004.

DIANA M. L. OCHOA, Estudo do desgaste erosivo-corrosivo de aços inoxidáveis de alto nitrogênio em meio lamacento, Tese (Doutorado), USP, 2007

DONG, H., International Materials Review, (2010) 1-34

EDNHOFFER, B., 1974) Physical and mettalurgical aspects of ion nitriding – part 2. Heat Treatment of Metals, v. 2, p.59-67, 1974

GARZÓN, C.M; TSCHIPTSCHIN, A.P. Nitretação Gasosa em alta Temperatura de Aços Inoxidáveis. Revista Matéria, v. 10, n. 4, pp. 502 – 525, 2005.

HANNEMANN, M.; HAMANN, S.; BURLACOV, I.; BORNER, K.; SPIES, H-J.; ROPCKE, J.; Langmuir probe and optical diagnostics of active screen N_2 - H_2 plasma nitriding processis with admixture of CH₄, 2013.

HUDIS, M.; Study of ion-nitriding, Journal Applied Physics, 44(4):1489-96, 1973.

JAOUL, C.; BELMONTE, T.; CZERWIEC, T.; ABLITZER, D.; RICARD, A.; MICHEL, H., **Iron Nitrocarburising in Flowing post-discharge: Evolution of the compound layer**, 2006.

JEONG, BONG-JEONG; KIM, MYUNG-HO. Effects of the process parameters on the layer formation behavior of plasma nitride steels, 2001.

JONES, C. K.; MARTINS, S. W.; STUERGES, D. J.; HUDIS, M. Ion nitriding. In: Heat Treatment'73. The Metal Society, p. 71-79, London, 1973.

JORGE M. LOURENÇO, Evolução microestrutural de ferro puro e ligas ferrosas sinterizadas por plasma, Tese (Doutorado), UFSC, 2004.

KIM, YONG; KIM, JONG; HAN JEON, Investigation on the pulsed DC plasma nitriding with optical emission spectroscopy, 2002.

KRAUSS, G. Steels: heat treatment and processing principles. 1990. 497p.

LAMIM, T.S., BENARDELLI, E.A., BINDER, C., KLEIN, A.N., MALISKA, A.M. **Plasma Carburizing of Sintered Pure Iron at Low Temperature**. Materials Research; v. 18(2), pp. 320-327, 2015.

LIANG, W. et al., Surface and Coatings Technology, 130 (2000) 304 - 308

LIANG, W., Applied Surface Science 211 (2003) 308

LIANG, W.; JUNCAI, S.; XIAOLEI, X., Surface and Coatings Technology 145 (2001) 31.

MARTENDAL, C. P.; KLEINJOHANN, K. C.; BERNARDELLI, E. A.; MALISKA, A. M., Efeitos de fluxo gasoso e da pressão de trabalho na nitretação em pósdescarga do aço de baixo carbono AISI 1004., 2014. PEARSE, R.W.B; GAYDON, A.G., The identification of molecular spectra, 1976.

PETASCH, W., KEGEL, B., SCHMID, H., LENDENMANN, K., & KELLER, H, Lowpressure plasma cleaning: a process for precision cleaning applications. Surface and Coatings Technology, v.97, pp. 176-181, 1997.

PETITJEAN,L.,RICARD,A., Emission Spectroscope study of N₂-H₂ glow discharge for metal surface nitriding, J. Phys. D:Appl. Phys., 17:919-929, 1984,

PRANEVICIUS, L. et al., Surface and Coatings Technology, 135 (2001) 250 – 257

QAYYUM, A.; SHAISTA ZEB; M. A. NAVEED; S. A. GHAURI; A. WAHEED & M. ZAKAULLAH, **Optical emission spectroscopy of the active species in nitrogen plasma**, Plasma Devices and Operations, 14:1, 61-70, 2006.

REINALDO B. JÚNIOR, Avaliação do Efeito de Modificações Superficiais a Plasma no Desempenho do Aço AISI 316 Frente ao Desgaste e Corrosão, Tese (Doutorado), UFMG, 2011.

REIS, RICARDO. Elevação do teor superficial de nitrogênio no aço inoxidável austenítico ISO 5832-1. Tese (doutorado), UTFPR, Curitiba, 2007.

REIS, RICARDO; VILLANOVA, RODRIGO; COSTA, KAIUÃ; DURANTE, GABRIELA, Nitrogen Surface Enrichment of Austenitic Stainless Steel ISSO 5832-1: SHTPN vs Low-temperature Plasma Nitriding, Materials Research, v.18, pp. 575-580, 2015.

RICARDO R. MARINHO, **Nitretação a plasma em aço inoxidável 17-4 PH**, Tese (Mestrado), UFRGS, 2003.

SAEED, ADNAN; KHAN, A.W.; JAN, FAIQ; WAQAR, MUHAMMADA; ABRAR, MUHAMMAD; MUHAHID, Z.; HUSSNAUN A.; ZAKAULLAH, MUHAMMAD. Pulsed dc Discharge in the Presence of active Screen for Nitriding of High Carbon Steel, 2014.

SHARMA, M. K.; SAIKIA, B.K; BUJARBARUA, S. Optical emission spectroscopy of DC pulsed plasmas udes for steel nitriding, 2008.

SILVA, HELOISA R. T. **Estudo do processo de nitrocementação por plasma**. Tese (doutorado), UFSC, Florianópolis, 2003.

SKONIESKI, A. F. O. et al. Influência da mistura gasosa em processos de nitretação e nitrocarbonetação a plasma. Revista Brasileira de AplicaçÕes de Vácuo, v27, p. 175–182, 2008.

SKOOG D. A., HOLLER F. J., NIEMAN T. A., **Principios de Análisis Instrumental**. Espanha. Mc Graw Hill, 2001.

TATIANA, B. Caracterização estrutural e microestrutural de camadas obtidas em ferro puro sinterizado, enriquecido superficialmente e nitretado por plasma. Tese (doutorado), UFSC, 2013.

TIBBETS,G.G.; Role of nitrogen atoms in ion-nitriding, J.Appl. Phys., 45(11):-5072-5073, 1974.

TIER, M.A.D. Avaliação da resistência do desgaste do AISI M2 nitretado a plasma. Porto alegre, 1998. Tese (Doutorado em Engenharia) – Escola de Engenharia, Programa de Pós-graduação em Engenharia de Minas Metalúrgica, e de Materiais da UTFRGS.

VUJOŠEVIĆ D.¹, MOZETIČ M. ¹, CVELBARA U.¹, KRSTULOVIĆ N.² and MILOŠEVIĆ S.², **Optical emission spectroscopy characterization of oxygen plasma during degradation of Escherichia coli spectroscopy and a global model** Surfaces, Interfaces and Devices, Department of Physics and Astronomy, Utrecht University, 2007.

WIERZCHON, T. et al. Formation and properties of nitriding layers produced in plasma at a frequency between 10 and 60 khz. Vacuum, v.48, n.6, p.499-502, 1997.

Apêndice A – Análises 3 Torr – 400°C

Figura 49 - Espectro de emissão a 400°C e 4 torr a) entre 300 e 400°C; b) entre 400 e 500°C; c) entre 500 e 600°C; d) entre 600 e 700°C; e) entre 700 e 800°C e f) entre 800 e 900°C.

Fonte: Autoria própria

Apêndice B – Análises 4 Torr – 400°C

Apêndice C – Análises 5 Torr – 400°C

Figura 50 - Espectro de emissão a 400°C e 5 torr a) entre 300 e 400°C; b) entre 400 e 500°C; c) entre 500 e 600°C; d) entre 600 e 700°C; e) entre 700 e 800°C e f) entre 800 e 900°C.

Apêndice D – Análises 5 Torr – 600°C

Figura 51 - Espectro de emissão a 600°C e 5 torr a) entre 300 e 400°C; b) entre 400 e 500°C; c) entre 500 e 600°C; d) entre 600 e 700°C; e) entre 700 e 800°C e f) entre 800 e 900°C.

Fonte: Autoria própria

Apêndice E – Análises 10 Torr – 600°C

Figura 52 - Espectro de emissão a 600°C e 10 torr a) entre 300 e 400°C; b) entre 400 e 500°C; c) entre 500 e 600°C; d) entre 600 e 700°C; e) entre 700 e 800°C e f) entre 800 e 900°C.

Apêndice F – Análises 15 Torr – 600°C

Figura 53 - Espectro de emissão a 600°C e 15 torr a) entre 300 e 400°C; b) entre 400 e 500°C; c) entre 500 e 600°C; d) entre 600 e 700°C; e) entre 700 e 800°C e f) entre 800 e 900°C.

Fonte: Autoria própria

Apêndice G – Análises 5 Torr – 800°C

Figura 54 - Espectro de emissão a 800°C e 5 torr a) entre 300 e 400°C; b) entre 400 e 500°C; c) entre 500 e 600°C; d) entre 600 e 700°C; e) entre 700 e 800°C e f) entre 800 e 900°C.

Apêndice H – Análises 10 Torr – 800°C

Figura 55 - Espectro de emissão a 800°C e 10 torr a) entre 300 e 400°C; b) entre 400 e 500°C; c) entre 500 e 600°C; d) entre 600 e 700°C; e) entre 700 e 800°C e f) entre 800 e 900°C.

Fonte: Autoria própria

Apêndice I – Análises 15 Torr – 800°C

Figura 56 - Espectro de emissão a 800°C e 15 torr a) entre 300 e 400°C; b) entre 400 e 500°C; c) entre 500 e 600°C; d) entre 600 e 700°C; e) entre 700 e 800°C e f) entre 800 e 900°C.

Fonte: Autoria própria
Apêndice J – Análises 20 Torr – 800°C

Figura 57 - Espectro de emissão a 800°C e 20 torr a) entre 300 e 400°C; b) entre 400 e 500°C; c) entre 500 e 600°C; d) entre 600 e 700°C; e) entre 700 e 800°C e f) entre 800 e 900°C.

Fonte: Autoria própria

Apêndice L – Análises 30 Torr – 800°C

Figura 58 - Espectro de emissão a 800°C e 30 torr a) entre 300 e 400°C; b) entre 400 e 500°C; c) entre 500 e 600°C; d) entre 600 e 700°C; e) entre 700 e 800°C e f) entre 800 e 900°C.

Fonte: Autoria própria

Apêndice M – Análises 10 Torr – 1000°C

Figura 59 - Espectro de emissão a 1000°C e 10 torr a) entre 300 e 400°C; b) entre 400 e 500°C; c) entre 500 e 600°C; d) entre 600 e 700°C; e) entre 700 e 800°C e f) entre 800 e 900°C.

Fonte: Autoria própria

Apêndice N – Análises 15 Torr – 1000°C

Figura 60 - Espectro de emissão a 1000°C e 15 torr a) entre 300 e 400°C; b) entre 400 e 500°C; c) entre 500 e 600°C; d) entre 600 e 700°C; e) entre 700 e 800°C e f) entre 800 e 900°C.

Fonte: Autoria própria

Figura 61 - Espectro de emissão a 1000°C e 20 torr a) entre 300 e 400°C; b) entre 400 e 500°C; c) entre 500 e 600°C; d) entre 600 e 700°C; e) entre 700 e 800°C e f) entre 800 e 900°C.

Fonte: Autoria própria

Apêndice O – Análises 20 Torr – 1000°C

Apêndice P – Análises 30 Torr – 1000°C

Fonte: Autoria própria