UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CAMPUS CURITIBA CURSO DE ENGENHARIA INDUSTRIAL ELÉTRICA – ÊNFASE ELETROTÉCNICA

> JEAN PRZYBYSZ DE SOUZA PRISCILA DE OLIVEIRA RICARDO VIEIRA ICKERT

IMPLEMENTAÇÃO DE CONVERSOR CC-CC COM ALTO GANHO DE TENSÃO E SAÍDA EM CORRENTE

TRABALHO DE CONCLUSÃO DE CURSO

CURITIBA 2015 JEAN PRZYBYSZ DE SOUZA PRISCILA DE OLIVEIRA RICARDO VIEIRA ICKERT

IMPLEMENTAÇÃO DE CONVERSOR CC-CC COM ALTO GANHO DE TENSÃO E SAÍDA EM CORRENTE

Trabalho de Conclusão de Curso de Graduação, apresentado à disciplina de TCC2 do curso de Engenharia Industrial Elétrica – Ênfase Eletrotécnica, do Departamento Acadêmico de Eletrotécnica (DAELT) da Universidade Tecnológica Federal do Paraná (UTFPR), como requisito parcial para obtenção do título de Engenheiro Eletricista.

Orientador: Professor Dr. Roger Gules

CURITIBA 2015 Jean Przybysz de Souza Priscila de Oliveira Ricardo Vieira Ickert

Implementação de conversor CC-CC com alto ganho de tensão e saída em corrente

Este Trabalho de Conclusão de Curso de Graduação foi julgado e aprovado como requisito parcial para a obtenção do Título de Engenheiro Eletricista, do curso de Engenharia Industrial Elétrica ênfase Eletrotécnica do Departamento Acadêmico de Eletrotécnica (DAELT) da Universidade Tecnológica Federal do Paraná (UTFPR).

Curitiba, 16 de Julho de 2015.

Prof. Emerson Rigoni, Dr., Coordenador de Curso Engenharia Industrial Elétrica ênfase Eletrotécnica

Profa. Annemarlen Gehrke Castagna, Ma. Responsável pelos Trabalhos de Conclusão de Curso de Engenharia Industrial Elétrica ênfase Eletrotécnica do DAELT

ORIENTAÇÃO

BANCA EXAMINADORA

Prof. Roger Gules, Dr. Eng. Universidade Tecnológica Federal do Paraná Orientador Prof. Alceu André Badin, Dr. Eng. Universidade Tecnológica Federal do Paraná

Prof. Eduardo Félix Ribeiro Romaneli, Dr. Eng. Universidade Tecnológica Federal do Paraná

A folha de aprovação assinada encontra-se na Coordenação do Curso de Engenharia Industrial Elétrica ênfase em Eletrotécnica

Agradecemos em primeiro lugar a Deus, que iluminou o nosso caminho durante esta caminhada. Aos nossos pais, irmãos e a toda minha família que, com muito carinho e apoio, não mediram esforços para que chegássemos até esta etapa da nossa vida. Ao professor Roger Gules, pela paciência na orientação e incentivo que tornou possível a conclusão deste Trabalho de Conclusão de Curso.

AGRADECIMENTOS

Nossos genuínos agradecimentos a todos que direta ou indiretamente fizeram parte da nossa formação, que nos apoiou, nos confortou, nos deu forças, nos agradou, nos perdoou pelos momentos não vividos, pelo incômodo das luzes acesas madrugada adentro enquanto estudávamos, o nosso muito obrigado. Sem vocês, pais, irmãos, tios, tias, amigos, professores, este sonho não seria possível. Este sucesso não é meu, é nosso, pois só foi factível com a ajuda de vocês. Mais uma vez, o nosso muito obrigado.

"Quem não lê, não pensa, e quem não pensa será para sempre um servo." (Paulo Francis)

RESUMO

ICKERT, Ricardo V.; OLIVEIRA, Priscila; SOUZA, Jean P. Implementação de conversor CC-CC com alto ganho de tensão e saída em corrente. 2015. 116 f. Trabalho de conclusão de curso (Graduação) – Curso de Engenharia Industrial Elétrica – Eletrotécnica. Universidade Tecnológica Federal do Paraná, Curitiba, 2015.

Com a busca por meios de produção de energia elétrica renováveis menos prejudiciais ao meio ambiente e principalmente mais próximo dos grandes centros de consumo, destaca-se a geração fotovoltaica, que possui condições favoráveis para a aplicação no sistema de distribuição de energia, por ser de fácil instalação, e adaptação em ambientes urbanos, basta que o local possua irradiação solar de qualquer intensidade. Esta aplicação exige a utilização de conversores CC-CC de elevado ganho estático, e um estudo cuidadoso deve ser feito visando à eficiência, visto que alta corrente e alta tensão de saída é um ponto crítico para a operação de um conversor. Para garantir a máxima extração de energia possível dos módulos fotovoltaicos utilizam-se os métodos de controle MPPT (Maximum Power Point Tracking) aplicados nesta etapa do processo de geração. Este trabalho apresenta um estudo, simulação e montagem de uma nova topologia de conversor que tem como base a topologia Cúk acrescida de células elevadoras de tensão, proporcionando alto ganho estático de tensão, entrada e saída em corrente. O protótipo não possui comutação suave, porém obteve um alto rendimento, chegando a 96 % para uma potência de saída de 100 W e 94,61 % para 220 W.

Palavras chaves: Conversor CUK, Alto ganho estático, fontes renováveis, Células elevadoras de tensão.

ABSTRACT

ICKERT, Ricardo V.; OLIVEIRA, Priscila; SOUZA, Jean P. **DC-DC power converter implementation a high static gain with output current source.** 2015. 116 p. Final dissertation (Bachelor Degree). Engenharia Industrial Elétrica – Eletrotécnica. Universidade Tecnológica Federal do Paraná, Curitiba, 2015.

The photovoltaic power generation stands out in the search for renewable electricity sources less harmful to the environment and especially closer to the largest energy consumers. This is due to the fact that photovoltaic generation has favorable conditions for applications in power distribution systems, easy installation and adaptation to urban environments, the only condition is the presence of solar irradiance of any intensity. This application requires use of dc-dc converters for a high static gain and a careful study should be done in order to the efficiency, since a critical point is the operation with high output current and high output voltage. To ensure the maximum possible power from the PV modules are used MPPT control methods (Maximum Power Point Tracking) applied at this step of the generation process. This paper presents a study, simulation and assembly of a new converter topology based on the non-isolated Cuk converter plus voltage multiplier cells, which provides high static voltage gain, presenting input and output current source characteristic. The prototype does not have soft switching, but obtained a high yield, reaching 96 % for an output power of 100 W and 94.61 % to 220 W.

Keywords: CUK converter, High static gain, Renewable power sources, Voltage multiplier.

LISTA DE FIGURAS

Figura 1 – Esquema do conversor Cúk clássico.	27
Figura 2 – Esquema do conversor proposto	27
Figura 3 – Topologia do conversor Cúk a ser analisada	31
Figura 4 – Primeira etapa de operação do conversor Cúk	31
Figura 5 – Segunda etapa de operação do conversor Cúk.	32
Figura 6 – Topologia do conversor proposto a ser analisada	34
Figura 7 – Topologia do conversor proposto a ser analisada com detalhe d	as
correntes durante a Etapa 1	35
Figura 8 – Topologia do conversor proposto a ser analisada com detalhe d	as
correntes durante a Etapa 2	36
Figura 9 – Topologia do conversor proposto com detalhe na comutação	37
Figura 10 - Topologia do conversor proposto a ser analisada com detalhe d	os
componentes ativos durante a Etapa 2	37
Figura 11 - Topologia do conversor proposto a ser analisada com detalhe d	os
componentes ativos durante a Etapa 1	38
Figura 12 – Gráficos dos componentes do conversor proposto	39
Figura 13 – Conversor proposto com n células elevadoras de tensão	41
Figura 14 – Gráfico do ganho estático.	42
Figura 15 – Gráficos dos componentes do conversor proposto	44
Figura 16 – Representação do circuito série de segunda ordem LC	47
Figura 17 – Representação linearizada a ondulação de tensão dos componentes	do
conversor proposto	53
Figura 18 – Simulação da tensão da chave S	76
Figura 19 – Simulação da tensão da chave S	77
Figura 20 – Simulação da corrente na chave S	78
Figura 21 – Simulação da tensão na carga	78
Figura 22 – Simulação da tensão no capacitor C_1	79
Figura 23 – Simulação da tensão no capacitor C ₂	79
Figura 24 – Simulação da tensão no capacitor C_3	80
Figura 25 – Simulação da corrente no diodo D ₁	80
Figura 26 – Simulação da corrente no diodo D ₂	81

Figura 27 – Simulação da corrente no diodo D_3	81
Figura 28 – Simulação da tensão no diodo D_1	82
Figura 29 – Simulação da tensão no diodo D ₂	82
Figura 30 – Simulação da tensão no diodo D_3	83
Figura 31 – Simulação da corrente no indutor L _i	83
Figura 32 – Simulação da corrente no indutor L_o	84
Figura 33 – Simulação das tensões nos capacitores C_1 , C_2 e C_3	84
Figura 34 – Simulação da tensão e corrente na chave S e no diodo D ₁	84
Figura 35 – Simulação da tensão e corrente no diodo D_2 e no diodo D_3	85
Figura 36 – Simulação da tensão e corrente na chave S e tensão no C $_{\rm o}$	85
Figura 37 – Esquemático da implementação	86
Figura 38 - Foto do drive PWM utilizado	87
Figura 39 - Razão cíclica do ponto de operação	88
Figura 40 - Foto da placa montada para o estudo	88
Figura 41 - Foto do indutor Li projetado	90
Figura 42 - Foto do indutor Lo projetado	92
Figura 43 - Detalhamento da forma de onda da tensão e da corrente na chave.	93
Figura 44 - Detalhe da comutação na chave	93
Figura 45 – Principais formas de onda da chave S e do diodo D_1	94
Figura 46 - Formas de onda dos diodos D_1 e D_2	94
Figura 47 - Formas de onda no indutor Li e Lo	95
Figura 48 - Ondulação da corrente no indutor L_o	95
Figura 49 - Ondulação da corrente no indutor L _i	96
Figura 50 - Detalhamento da corrente na chave S	96
Figura 51 - Detalhamento da corrente no diodo D ₁	97
Figura 52 - Detalhamento da corrente no diodo D ₂	97
Figura 53 - Detalhe do período de condução do diodo D2	98
Figura 54 - Detalhamento da corrente no diodo D ₃	99
Figura 55 - Detalhamento da corrente no diodo D ₃	99
Figura 56 - Forma de onda da tensão nos capacitores C_1 , C_2 e C_3	100
Figura 57 - Forma de onda da tensão no capacitor C_1	101
Figura 58 - Forma de onda da tensão no capacitor C2	101
Figura 59 - Forma de onda da tensão no capacitor C_3	102
Figura 60 – Gráfico do ganho estático x razão cíclica	102

Figura 61 – Gráfico do rendimento versus potência do conversor proposto103
Figura 62 – Representação do conversor Cúk com chaveamento ideal113
Figura 63 – Representação do conversor Cúk com a chave na posição 1113
Figura 64 – Representação do conversor Cúk com a chave na posição 2114
Figura 65 – Gráficos dos componentes do conversor Cúk116
Figura 66 – Gráficos dos componentes do conversor Cúk119

LISTA DE TABELAS

Tabela 1 - Matriz energética brasileira	24
Tabela 2 – Principais equações do conversor Cúk	33
Tabela 3 – Especificações do circuito	66
Tabela 4 - Comparação dos resultados	104

LISTA DE SIGLAS

- NOS Operador Nacional do Sistema Elétrico
- CGH Central Geradora Hidrelétrica
- EOL Central Geradora Eólica
- PCH Pequena Central Hidrelétrica
- UFV Central Geradora Solar Fotovoltaica
- UHE Usina Hidrelétrica
- UTE Usina Termelétrica
- UTN Usina Termonuclear
- CC Corrente contínua
- ANEEL Agência Nacional de Energia Elétrica
- PWM Pulse Width Modulation (Modulação por largura de pulso)
- AWG American Wire Gauge (Escala americana normalizada)

LISTA DE SÍMBOLOS USADOS NOS DIAGRAMAS DE CIRCUITOS E EQUAÇÕES

Símbolo	Descrição	Unidade
Е	Fonte de tensão continua	V
D	Diodo	-
Di	Diodo "i"	-
D ₁	Diodo "1"	-
D_2	Diodo "2"	-
D_3	Diodo "3"	-
D _{n+1}	Diodo "n+1"	-
D _{n+2}	Diodo "n+2"	-
L _i	Indutor "i"	Н
Lo	Indutor "o"	Н
Ls	Indutor "s"	Н
С	Capacitor	F
Co	Capacitor "o"	F
C_1	Capacitor "1"	F
C ₂	Capacitor "2"	F
C ₃	Capacitor "3"	F
Ca	Capacitor "a"	F
Cb	Capacitor "b"	F
C_{eq}	Capacitância equivalente em C _a paralelo com C _b	F
C _{n+1}	Capacitor "n+1"	F
C _{n+2}	Capacitor "n+2"	F
S	Chave	-
Ro	Resistor "o"	Ω
D	Razão cíclica	-
Т	Período	S
T ₁	Período de ressonância no capacitor "C ₃ "	S
f	Frequência	Hz
W	Velocidade angular	rad/s
G	Ganho estático	-

V_{Li}	Tensão no indutor "i"	V
V_{Lo}	Tensão no indutor "o"	V
V_{Ls}	Tensão no indutor "s"	V
V_{Ro}	Tensão média na resistência "o"	V
V _C	Tensão no capacitor	V
V_{Co}	Tensão no capacitor C_o	V
V_{C1}	Tensão no capacitor C ₁	V
V_{C2}	Tensão no capacitor C ₂	V
V_{C3}	Tensão no capacitor C_3	V
V_{Ca}	Tensão no capacitor C _a	V
V_{Cb}	Tensão no capacitor C_b	V
V _{CaM}	Tensão no capacitor C _a máxima	V
V _{Cbm}	Tensão no capacitor C _b mínima	V
V _{Ceq}	Tensão no capacitor equivalente	V
V_{Cab}	Máxima diferença de potencia entre C_a e C_b	V
V_{s}	Tensão média na chave S	V
V_{sef}	Tensão eficaz na chave S	V
Vp	Queda de tensão	V
V_{D1}	Tensão no diodo D ₁	V
V_{D2}	Tensão no diodo D_2	V
V_{D3}	Tensão no diodo D_3	V
V_{D}	Tensão no diodo D	V
i∟(t)	Corrente instantânea no indutor	А
i _{Ls} (t)	Corrente instantânea no indutor L _s	А
i _{∟i} (t)	Corrente instantânea no indutor L _i	А
i _{Lo} (t)	Corrente instantânea no indutor Lo	А
i _D	Corrente média no diodo D	А
i _o	Corrente média na carga	А
i _E	Corrente média da fonte de tensão continua	А
I _C	Corrente média no capacitor C	А
i _{Co}	Corrente média no capacitor Co	А
i _{C1}	Corrente média no capacitor C1	А
i _{C2}	Corrente média no capacitor C ₂	А

i _{C3}	Corrente média no capacitor C ₃	А
i _D (t)	Corrente instantânea no diodo D	А
I _C (t)	Corrente instantânea no capacitor C	А
i _{Co} (t)	Corrente instantânea no capacitor Co	А
i _{C1} (t)	Corrente instantânea no capacitor C1	А
i _{C2} (t)	Corrente instantânea no capacitor C2	А
i _{C3} (t)	Corrente instantânea no capacitor C_3	А
i(t)	Corrente instantânea no LC isolado	А
is	Corrente média na chave	А
i _{Sef}	Corrente eficaz na chave	А
i _{Ro}	Corrente média no LC isolado	А
i _{D1}	Corrente média no diodo D ₁	А
i _{D2}	Corrente média no diodo D ₂	А
i _{D3}	Corrente média no diodo D ₃	А
i _{D1} (t)	Corrente instantânea no diodo D ₁	А
i _{D2} (t)	Corrente instantânea no diodo D ₂	А
i _{D3} (t)	Corrente instantânea no diodo D_3	А
İ _{D1pk}	Corrente pico no diodo D ₃	А
i _{D2pk}	Corrente pico no diodo D ₃	А
i _{D3pk}	Corrente pico no diodo D ₃	А
Δi_{Lo}	Ondulação de corrente no indutor L _o	А
Δi_{Li}	Ondulação de corrente no indutor L _i	А
ΔV_{C}	Ondulação de tensão no capacitor C	V
ΔV_{Co}	Ondulação de tensão no capacitor C_o	V
ΔV_{C1}	Ondulação de tensão no capacitor C ₁	V
ΔV_{C2}	Ondulação de tensão no capacitor C_2	V
ΔV_{C3}	Ondulação de tensão no capacitor C_3	V
Q	Carga no capacitor	С
Q_{Co}	Carga no capacitor C_o	С
Q _{C1}	Carga no capacitor C1	С
Q _{C2}	Carga no capacitor C_2	С
Q_{C3}	Carga no capacitor C_3	С
ΔQ _{Co}	Transferência de carga no capacitor C $_{\circ}$	С

ΔQ_{C1} T	Fransferência de carga no capacitor C1	С
ΔQ_{C2} T	Fransferência de carga no capacitor C ₂	С
ΔQ_{C3} T	Fransferência de carga no capacitor C ₃	С
J _o D	Densidade de corrente	A/cm ²
m C	Coeficiente angular	-
B _o D	Densidade de fluxo magnético	Т
Ae Á	Área da coluna central do núcleo	cm ²
N _e N	Número de espiras	-
L _g E	Entre ferro	cm
A _{cond} Á	Area do condutor	cm ²
N _{cond} N	Número do condutores	-

SUMÁRIO

1 INTRODUÇÃO	23
1.1 TEMA	26
1.1.1 DELIMITAÇÃO DO TEMA	26
1.2 PROBLEMAS E PREMISSAS	26
1.3 OBJETIVOS	28
1.3.1 OBJETIVO GERAL	28
1.3.2 OBJETIVO ESPECÍFICO	28
1.4 JUSTIFICATIVA	28
1.5 PROCEDIMENTOS METODOLÓGICOS	29
1.6 ESTRUTURA DE TRABALHO	29
2 CONVERSOR CÚK	30
2.1. TOPOLOGIA CÚK	30
2.2. EQUACIONAMENTO DO CÚK	32
2.3. CONCLUSÃO	33
3 TOPOLOGIA DO CONVERSOR CC-CC DE ALTO GANHO ESTÁTICO	34
3.1. PRINCÍPIO DE OPERAÇÃO EM MODO DE CONDUÇÃO CONTÍNUA	34
3.2. EQUACIONAMENTO DO CONVERSOR PROPOSTO	36
3.2.1. TENSÃO NOS CAPACITORES C ₁ , C ₂ , C ₃ E C ₀	37
3.2.2. GANHO ESTÁTICO (G)	41
3.2.3. ONDULAÇÃO DE CORRENTE NOS INDUTORES $L_0 \in L_1$	42
3.2.4. ONDULAÇÃO DE TENSÃO NOS CAPACITORES C ₁ , C ₂ , C ₃ E C ₀	45
3.2.4.1. ONDULAÇÃO DE TENSÃO NO CAPACITOR C1	46
3.2.4.2. ONDULAÇÃO DE TENSÃO NO CAPACITOR C ₂	46
3.2.4.3. ONDULAÇÃO DE TENSÃO NO CAPACITOR C3	47

3.2.4.4. ONDULAÇÃO DE TENSÃO NO CAPACITOR C ₀	52
3.2.4.5. REPRESENTAÇÃO GRÁFICA DAS ONDULAÇÕES DE	TENSÃO NOS
CAPACITORES C_1 , C_2 , $C_3 \in C_0$	
3.2.5. CORRENTE NA CHAVE S	54
3.2.5.1. CORRENTE MÉDIA NA CHAVE S	54
3.2.5.2. CORRENTE EFICAZ NA CHAVE S	56
3.2.6. CORRENTE NOS DIODOS D ₁ , D ₂ E D ₃	59
3.2.6.1. CORRENTE MÉDIA NOS DIODOS D ₁ , D ₂ E D ₃	60
3.2.6.2. CORRENTE DE PICO NOS DIODOS D ₁ , D ₂ E D ₃	62
3.2.7. OBSERVAÇÃO DO EQUACIONAMENTO	64
3.3. CONCLUSÃO	65
~	
4 ESPECIFICAÇOES PARA O CONVERSOR CC-CC DE	ALTO GANHO
4 ESPECIFICAÇOES PARA O CONVERSOR CC-CC DE ESTÁTICO	ALTO GANHO
4 ESPECIFICAÇOES PARA O CONVERSOR CC-CC DE ESTÁTICO 4.1. ANÁLISE MATEMÁTICA	ALTO GANHO 66 66
 4 ESPECIFICAÇÕES PARA O CONVERSOR CC-CC DE ESTÁTICO 4.1. ANÁLISE MATEMÁTICA 4.2. SIMULAÇÃO 	ALTO GANHO 66 66 76
 4 ESPECIFICAÇÕES PARA O CONVERSOR CC-CC DE ESTÁTICO	ALTO GANHO 66 66 76
 4 ESPECIFICAÇÕES PARA O CONVERSOR CC-CC DE ESTÁTICO	ALTO GANHO 66 76
 4 ESPECIFICAÇÕES PARA O CONVERSOR CC-CC DE ESTÁTICO	ALTO GANHO 66 66 76 85 88
 4 ESPECIFICAÇÕES PARA O CONVERSOR CC-CC DE ESTÁTICO	ALTO GANHO 66 66 76 85 88
 4 ESPECIFICAÇÕES PARA O CONVERSOR CC-CC DE ESTÁTICO	ALTO GANHO 66 66 76 85 88 93 105 106
 4 ESPECIFICAÇÕES PARA O CONVERSOR CC-CC DE ESTÁTICO	ALTO GANHO 66 66 76 85 88 93 105 106 108
 4 ESPECIFICAÇÕES PARA O CONVERSOR CC-CC DE ESTÁTICO 4.1. ANÁLISE MATEMÁTICA 4.2. SIMULAÇÃO 4.3. IMPLEMENTAÇÃO 4.3.1. PROJETO DOS INDUTORES L_I E L₀ 4.3.2. RESULTADOS OBTIDOS NA IMPLEMENTAÇÃO 4.3. CONCLUSÃO 5 CONCLUSÃO GERAL REFERÊNCIAS APÊNDICE A – EQUACIONAMENTO DO CONVERSOR CÚK 	ALTO GANHO 66 66 76

1 INTRODUÇÃO

A medida que a população de um país cresce é natural que sua demanda energética cresça junto. Energia elétrica já deixou de ser luxo há muito tempo. Segundo o Instituto Brasileiro de Geografia e Estatística (IBGE), em 1999, no Brasil (Exclusive a população rural de Rondônia, Acre, Amazonas, Roraima, Pará e Amapá), 94,8% da população possui energia elétrica em seus domicílios, sendo o nordeste a região com a menor porcentagem, 85,8%.

Ainda segundo o IBGE, em 2000, a população brasileira era 169.799.170 de pessoas, e em 2013 passou para 201.032.714. Fazendo uma analogia à demanda eletro energética, segundo o Operador Nacional do Sistema Elétrico (ONS), o ano de 2000, teve seu pico de demanda elétrica no Sistema Interligado Nacional (SIN) no mês de junho, chegando a 54.335,00 MWh/h, e em 2013, no mês de dezembro a demanda atingiu 78.982,91 MWh/h. Fazendo um simples cálculo do aumento percentual desses valores mostrados, tem-se que a população cresceu 15,54% e a demanda elétrica cresceu 31,21%.

Este aumento na demanda elétrica, juntamente com o Protocolo de Quioto (o qual o Brasil faz parte dos Países do Não-Anexo I, define que o crescimento necessário de suas emissões fosse limitado pela introdução de recursos financeiros e tecnológicos dos países desenvolvidos), põe em evidência a busca por fontes alternativas de energia, principalmente as renováveis, menos danosas ao meio ambiente.

No Brasil, a forma predominante de se gerar energia é através das Usinas Hidrelétricas (UHE), que representa 63,7% da geração, seguida das Usinas Termelétricas (UTE) que representa 28,6%, segundo a Tabela 1 fornecida pela Agência Nacional de Energia Elétrica (ANEEL).

Considerando que os valores de porcentagem são referentes a Potência Fiscalizada. A Potência Outorgada é igual à considerada no Ato de Outorga. A Potência Fiscalizada é igual a considerada a partir da operação comercial da primeira unidade geradora.

Prevendo auxiliar o setor elétrico brasileiro a minimizar os efeitos do crescimento elevado do consumo eletro energético, como sobrecarga na geração e na transmissão de energia elétrica, em 17 de abril de 2012 entrou em vigor a

Resolução Normativa ANEEL nº 482/2012, onde prevê que "o consumidor brasileiro pode gerar sua própria energia elétrica a partir de fontes renováveis e inclusive fornecer o excedente para a rede de distribuição de sua localidade. Trata-se da micro e da minigeração distribuídas de energia elétrica, inovações que podem aliar economia financeira, consciência socioambiental e autossustentabilidade".

Empreendimentos em Operação				
Тіро	Quantidade	Potência Outorgada (kW)	Potência Fiscalizada (kW)	%
CGH ¹	450	275.450	276.679	0,21
EOL ²	147	3.172.076	3.106.180	2,41
PCH ³	462	4.648.729	4.610.967	3,57
UFV ⁴	108	13.355	9.355	0,01
UHE⁵	197	86.601.045	82.181.842	63,7
UTE ⁶	1.840	39.061.032	36.897.334	28,6
UTN ⁷	2	1.990.000	1.990.000	1,54
Total	3.206	135.761.687	129.072.357	100

Fonte: ANEEL, 2014.

- ³ PCH Pequena Central Hidrelétrica.
- ⁴ UFV Central Geradora Solar Fotovoltaica.
- ⁵ UHE Usina Hidrelétrica.
- ⁶ UTE Usina Termelétrica.
- ⁷ UTN Usina Termonuclear.

¹ CGH - Central Geradora Hidrelétrica.

² EOL - Central Geradora Eólica.

Dentre as fontes renováveis (eólica, fotovoltaica, célula de combustível etc.), a fotovoltaica possui condições favoráveis para a aplicação no sistema de distribuição de energia, por ser de fácil instalação, e adaptação em ambientes urbanos, basta que o local possua irradiação solar de qualquer intensidade (DREHER, 2012). É bastante vantajoso também por ter condições de estar próximo dos grandes centros de consumo, minimizando o fluxo de potência nas linhas de transmissão.

A conversão de energia solar em elétrica acontece através de células fotovoltaicas, geralmente, estas são feitas de silício cristalino. A utilização deste material é viável, não devido ao seu rendimento alcançado (apresenta-se na faixa de 14 a 20% para os monocristalinos e de 13 a 15% para os policristalinos), mas sim, por questões econômicas de produção em larga escala. Uma célula fotovoltaica é capaz de produzir 1,5 W de potência, e são associadas de forma a produzirem módulos com um fornecimento, geralmente, entre 100 e 500 W com uma tensão entre 18 e 46 V na forma de corrente e tensão contínua (DREHER, 2012). Devido a essa característica (geração em corrente e tensão contínua), esta potência gerada não pode ser injetada diretamente na rede elétrica, ela deve passar por um processamento. Primeiro, deve-se adequar o nível de tensão passando por um conversor CC-CC, e em seguida passar por um inversor de potência, após este processo o sinal gerado deve ser colocado em sincronismo com o sistema de distribuição, para então, ser conectado (DREHER, 2012).

O processamento feito pelo conversor CC-CC é muito importante, pois é nesse momento que se aperfeiçoa a retirada da máxima potência possível do painel fotovoltaico, através de um controle chamado MPPT (Maximum Power Point Tracking). Existem vários métodos para efetuar este controle, como, Hill Climbing, Hill Climbing Modificado, Condutância Incremental, Tensão Constante, Oscilação do Sistema, Correlação de Ondulação, entre outros (SILVA, 2008).

Existem várias topologias bem conhecidas de conversores CC-CC, tais como, o Buck, Boost, Buck-Boost, Cúk, SEPIC, ZETA, e isolados, como o Forward, Flyback, Cúk isolado, SEPIC isolado e ZETA isolado (DREHER, 2012). A proposta deste trabalho é desenvolver e analisar o funcionamento de uma nova topologia de conversor CC-CC com alto ganho em tensão e saída em corrente.

A escolha por uma topologia de elevado ganho estático com característica de saída tipo fonte de corrente foi feita com o objetivo de futuramente atender aplicações em que o segundo estágio no qual este conversor será utilizado necessita de entrada tipo fonte de corrente, por exemplo, inversor de tensão. Assim, poderá ocorrer a integração entre as duas estruturas.

1.1 TEMA

Este Trabalho de Conclusão de Curso propôs uma nova topologia de conversor CC-CC elevador, baseado no conversor Cúk, devido à característica deste conversor possuir entrada e saída em corrente, acoplando células elevadoras de tensão, garantindo um alto ganho em sua saída.

1.1.1 Delimitação do Tema

Este trabalho limita-se ao estudo, implementação e análise de um conversor CC-CC com elevado ganho estático e característica de saída tipo fonte de corrente.

1.2 PROBLEMAS E PREMISSAS

Há algumas não-idealidades verificadas em um conversor CC-CC elevador que podem prejudicar significativamente o seu desempenho.

Uma delas é a questão das perdas de energia. Quando a razão cíclica de um conversor CC-CC elevador tende a um, a tensão de saída tende ao infinito, porém, em circuitos reais isto não ocorre devido a uma parcela resistiva presente nos componentes, principalmente em interruptores e indutores.

Portanto, inviabiliza a realização de conversores em que a relação entre as tensões de saída e entrada seja elevada (POMILIO, 2010).

Para que se tenha, um conversor CC-CC elevador de tensão, deve-se considerar essas perdas, verificar o impacto delas, para que se consiga obter a efetiva taxa de conversão do equipamento.

No caso do conversor Cúk clássico, pode ser analisado como a junção de outros dois conversores, Boost e Buck, Figura 1, onde a tensão na chave é a soma da tensão de saída com a tensão de entrada. Tratando-se de um conversor que pode operar como elevador de tensão, o esforço na chave é grande para conseguir

obter um elevado ganho de tensão, sendo necessário elevar também a razão cíclica. Isto faz com que o conversor trabalhe na região de baixa eficiência, fato que ainda é agravado devido à obrigatoriedade de se utilizar chaves pouco eficientes (perda de condução) devido à tensão nela aplicada ser alta.

Figura 1 – Esquema do conversor Cúk clássico.

Já para o conversor que está sendo proposto (Figura 2), o ganho na tensão é controlado pela razão cíclica e também existem células elevadoras de tensão que auxiliam no ganho estático desejado, permitindo que o conversor trabalhe em uma região de maior eficiência, uma vez que a razão cíclica pode ser mais baixa, ou podendo aumentar o número de células elevadoras para um aumento na tensão. Somando o fato de que o nível de tensão aplicado na chave é mais baixo (tensão do capacitor conectado diretamente) e, portanto, pode-se utilizar uma chave com pouca perda de condução, este conversor terá um desempenho de alto rendimento.

Figura 2 – Esquema do conversor proposto.

1.3 OBJETIVOS

1.3.1 Objetivo Geral

Desenvolver uma topologia de conversor CC-CC elevador com possibilidade de alto ganho na tensão a partir de células elevadoras e saída em corrente.

1.3.2 Objetivo Específico

- Realizar uma revisão bibliográfica sobre conversor Cúk;
- Escolher e projetar uma nova topologia, dimensionando e especificando componentes;
- Simular o circuito;
- Desenvolver/implementar o protótipo do projeto;
- Realizar experimentos, testes e medições;
- Analisar resultados obtidos e verificar a eficiência do projeto.

1.4 JUSTIFICATIVA

A realização desse projeto vem para beneficiar o sistema de geração fotovoltaica que necessita de um conversor que entregue, em sua saída, um ganho elevado na tensão de entrada.

Enquanto outros conversores têm um ganho estático controlado apenas pela razão cíclica a ele aplicado, este projeto propôs o aumento da tensão dependendo também do número de células elevadoras aplicadas, diminuindo perdas devido a uma razão cíclica mais baixa e com a vantagem de se apresentar saída em corrente, uma propriedade pouco comum que pode ser requerida num inversor com entrada em corrente, pensando numa próxima etapa.

1.5 PROCEDIMENTOS METODOLÓGICOS

A metodologia aplicada no desenvolvimento deste projeto baseou-se no estudo, modelagem e implementação da topologia em questão.

Os modelos foram simulados, verificados e comparados com os estudos teóricos. Uma vez que os resultados e comportamentos do circuito na simulação estejam de acordo com os requisitos do projeto, foi realizado a implementação do conversor.

Por fim foram feitos os testes, e as medições para verificação e conclusão dos resultados.

1.6 ESTRUTURA DE TRABALHO

A divisão do trabalho foi feita em cinco capítulos. No primeiro, está a introdução, os objetivos deste trabalho e as metas a serem alcançadas. No segundo, foram apresentados os estudos e revisões bibliográficas para a melhor escolha dos componentes requeridos para a implementação da topologia proposta. No capítulo três discutiu-se o conversor proposto e as componentes do circuito foram equacionadas. No quarto capítulo foi especificado o conversor propostos para ser simulado em ambiente computacional, com o intuito de verificar sua funcionalidade, analisando matematicamente e também foram feitos testes e medições no circuito, a fim de comparar e verificar a prática realizada. No quinto capítulo é feita a conclusão geral do trabalho analisando criticamente os resultados obtidos.

2 CONVERSOR CÚK

Existem várias topologias conhecidas de conversores CC-CC, tais como, o Buck, Boost, Buck-Boost, Cúk, SEPIC, ZETA entre outros. A proposta desse trabalho é desenvolver e analisar o funcionamento de uma nova topologia de conversor CC-CC com alto ganho de tensão e saída em corrente.

Foi optado fazer a revisão bibliográfica neste capítulo apenas para o conversor Cúk, considerando que a proposta é uma nova topologia baseada neste conversor.

2.1. TOPOLOGIA CÚK

O conversor Cúk, também conhecido como conversor de acumulação capacitiva é empregado em casos onde se deseja controlar o fluxo de energia entre uma fonte de corrente contínua e uma carga tipo fonte de corrente contínua (BARBI, 2006).

Este conversor é classificado como conversor indireto, já que a transferência de energia da entrada do conversor para a saída não se processa diretamente, passando por um elemento acumulador de energia, no caso, um capacitor (BARBI, 2006) que deve suportar correntes relativamente elevadas.

O conversor em questão pode ser encarado como uma associação de outros conversores clássicos, pois possui entrada com característica tipo fonte de corrente, semelhante o que ocorre com o conversor Boost, enviando energia para um capacitor e em seguida tem-se o capacitor transferindo esta energia para uma carga tipo fonte corrente, semelhante ao que ocorre com o conversor Buck. Portanto, este conversor pode ser chamado de conversor Boost-Buck (BARBI, 2006).

Como o objetivo buscado pelo conversor proposto é atender uma futura aplicação onde em um seguinte estágio (por exemplo, um inversor de corrente, do ponto de vista de geração de energia elétrica utilizando painéis fotovoltaicos) necessite de uma entrada e de uma saída tipo fonte de corrente, foi optado como topologia base para o desenvolvimento o conversor Cúk, porém agregando alto ganho estático de tensão.

Esta topologia base é um conversor básico muito bem conhecido pela literatura que foi abordada a diante.

Para um efeito de melhor visualização das etapas de funcionamento deve-se levar em consideração a nomenclatura dos componentes conforme sugere a Figura 3.

A primeira etapa de funcionamento, representada pela Figura 4, a chave S estará aberta.

Figura 3 – Topologia do conversor Cúk a ser analisada.

Assim, a energia proveniente da fonte de tensão E e do indutor L_i carregará o capacitor C e o mesmo terá uma diferença de potencial V_c. Esta parte da topologia utiliza a mesma estrutura de entrada do conversor boost (PADILHA, 2011), que possui característica elevadora de tensão, logo a diferença de potencial V_c será maior que a da fonte E, então a corrente i_{Li} decrescerá, assim como i_o, devido a transferência de energia do indutor L_o para a carga.

Nesta etapa o diodo D está diretamente polarizado, conduzindo as correntes i_{Li} e i_o .

Figura 4 – Primeira etapa de operação do conversor Cúk.

A segunda etapa de funcionamento, representada pela Figura 5, a chave S estará fechada. O indutor L_o e a carga receberá a energia proveniente do capacitor C, que se descarregará, causando um acréscimo na corrente i_o.

Nesta etapa a energia proveniente da fonte de tensão E alimentará o indutor L_i , o que causará um crescimento na corrente i_{Li} . Assim, o diodo D está inversamente polarizador, logo está bloqueando a passagem de energia, então as correntes i_{Li} e i_o serão conduzidas pela chave S.

Figura 5 – Segunda etapa de operação do conversor Cúk.

2.2. EQUACIONAMENTO DO CÚK

Para a análise do equacionamento deste conversor foi utilizado como base a referência bibliografia (ERICKSON, 2000).

As análises a seguir foram fundamentadas considerando condições ideais de funcionamento dos componentes, ou seja, desconsiderando perdas, tensão média no indutor igual a zero e sem quedas de tensão no diodo e transistor, sem correntes de recuperação reversa, assim como a transição de estado causado pela chave comutadora foi abordada de forma instantânea conforme demostrado na Figura 6.

Na Tabela 2 estão as equações finais do circuito Cúk, referenciadas no apêndice A, onde estas equações foram analisadas.

Equações		
Tensão no capacitor C	$V_C = \frac{E}{1 - D}$	(12)
Tensão no capacitor C_o	$V_{Co} = \frac{D}{1-D} \cdot E$	(13)
Corrente no indutor L _i	$i_{Li} = -\left(\frac{D}{1-D}\right)^2 \cdot \frac{E}{R_o}$	(14)
Corrente na carga	$i_o = \frac{D}{1 - D} \cdot \frac{E}{R_o}$	(15)
Ganho estático	$G = \frac{D}{1 - D}$	(16)
Oscilação de corrente no indutor L _i	$\Delta i_{Li} = \frac{E.D.T}{2L_i}$	(23)
Oscilação de corrente no indutor L_o	$\Delta i_{Lo} = \frac{E.D.T}{2L_o}$	(25)
Oscilação de tensão no capacitor C	$\Delta V_C = \frac{E \cdot D^2 \cdot T}{2 \cdot C \cdot R_o \cdot (1 - D)}$	(27)

Tabela 2 – Principais equações do conversor Cúk

2.3. CONCLUSÃO

Com base na fundamentação teórica do conversor Cúk apresentada, é possível desenvolver uma análise matemática semelhante para a nova topologia proposta para que seja possível dimensionar todos os seus componentes.

3 TOPOLOGIA DO CONVERSOR CC-CC DE ALTO GANHO ESTÁTICO

O conversor proposto teve seu desenvolvimento com base no conversor Cúk, buscando agregar um alto ganho estático de tensão através da inserção chaveada de componentes capacitivos (célula elevadora de tensão).

Para realizar uma comutação suave e deixando o conversor com melhor rendimento, deve ser inserido o indutor L_S entre os capacitores, somado a aplicação de uma elevada frequência de comutação para que a corrente reduza seu pico na comutação, devido aos capacitores chaveados.

Para um efeito de melhor visualização das etapas de funcionamento deve-se levar em consideração a nomenclatura dos componentes conforme sugere a Figura 6:

Figura 6 – Topologia do conversor proposto a ser analisada.

3.1. PRINCÍPIO DE OPERAÇÃO EM MODO DE CONDUÇÃO CONTÍNUA

Considerando a primeira etapa de funcionamento, quando a chave S estiver aberta ($i_S = 0$), representada pela Figura 7, o conversor teve um comportamento semelhante ao Cúk clássico.

A energia proveniente da fonte de tensão E e do indutor L_i carregará o capacitor C₁, assim a corrente i_{Li} decrescerá, pois a diferença de potencial em V_{C1} é maior que na fonte de tensão E.

Nesta etapa, ocorrerá a transferência de energia do capacitor C_3 para o capacitor C_2 (devido aos capacitores estarem em paralelo, ocorre um fenômeno na

transferência de energia, que foi abordado adiante) e ambos atuaram como fonte de tensão para carga.

O diodo D₂ estará inversamente polarizado, logo estará bloqueado para a passagem de corrente. E o diodo D₁ estará diretamente polarizado, conduzindo as correntes:

$$i_{D1}(t) = i_{Li}(t) - i_{Lo}(t) + i_{C3}(t)$$
(3.1)

Assim como o diodo D₃ que estará diretamente polarizado, conduzindo as correntes:

$$i_{D3}(t) = -i_{C3}(t) \tag{3.2}$$

Figura 7 – Topologia do conversor proposto a ser analisada com detalhe das correntes durante a Etapa 1.

Considerando a segunda etapa de funcionamento, quando a chave S estiver fechada ($i_S = i_{Li} + i_{Lo} + i_{C3}$), representada pela Figura 8, o conversor teve um comportamento semelhante ao Cúk clássico.

Essa etapa é onde ocorrerá o ganho estático devido ao capacitor C_2 (previamente carregado) estar em série com o paralelismo dos capacitores C_1 e C_3 , ou seja, a soma das diferenças de potenciais nos capacitores atuará como fonte de tensão para a carga.

Nesta etapa, ocorrerá a transferência de energia do capacitor C_1 para o capacitor C_3 (também devido aos capacitores estarem em paralelo, ocorre um fenômeno na transferência de energia, que foi abordado adiante) e ambos atuaram como fonte de tensão para carga.

O indutor L_o e a carga receberam a energia proveniente do capacitor C₁, que se descarregará, causando um acréscimo na corrente i_{Lo} , onde i_{Ls} é $-i_{Lo}$ mais I_{C3} (i_{Ls} = $-i_{Lo} + i_{C3}$):

O diodo D_1 e D_3 estarão inversamente polarizados, logo estarão bloqueados para a passagem de corrente. E D_2 estará diretamente polarizado, conduzindo as correntes:

$$I_{D2} = I_{C3} (3.3)$$

A chave S estará fechada conduzindo a corrente do indutor L_i e do capacitor C_1 .

Figura 8 – Topologia do conversor proposto a ser analisada com detalhe das correntes durante a Etapa 2.

3.2. EQUACIONAMENTO DO CONVERSOR PROPOSTO

As análises a seguir foram fundamentadas considerando condições ideais de funcionamento dos componentes, ou seja, desconsiderando perdas, tensão média no indutor igual a zero e sem quedas de tensão no diodo e transistor.

Assim como a transição de estado causado pela comutação da chave foi abordada de forma instantânea conforme demostrado na Figura 9, e para simplificação do equacionamento, o indutor L_S foi considerado um curto para o cálculo das tensões, e os diodos, quando diretamente polarizados, foram considerados curtos.

Figura 9 – Topologia do conversor proposto com detalhe na comutação.

3.2.1. Tensão nos capacitores C1, C2, C3 e Co

Com a chave do conversor na posição 1, equivalente a segunda etapa de funcionamento do conversor proposto, mostrada na Figura 10, pode-se extrair as seguintes considerações:

Figura 10 – Topologia do conversor proposto a ser analisada com detalhe dos componentes ativos durante a Etapa 2.

Pela lei de Kirchhoff das tensões:

 $\begin{cases} -E + V_{Li} = 0 \\ V_{Li} = E \end{cases}$ (3.4)

$$\begin{cases} V_{C1} - V_{C3} = 0 \\ V_{C1} = V_{C3} \end{cases}$$
(3.5)

$$\begin{cases} V_{C3} + V_{C2} - V_{Lo} - V_{Co} = 0 \\ V_{Lo} = V_{C3} + V_{C2} - V_{Co} \end{cases}$$
(3.6)

$$\begin{cases} V_{Co} - V_{Ro} = 0 \\ V_{Co} = V_{Ro} \end{cases}$$
(3.7)

Com a chave do conversor na posição 2, equivalente a primeira etapa de funcionamento do conversor proposto, mostrada na Figura 11, pode-se extrair as seguintes considerações:

Figura 11 – Topologia do conversor proposto a ser analisada com detalhe dos componentes ativos durante a Etapa 1.

Pela lei de Kirchhoff das tensões:

$$\begin{cases} E - V_{Li} - V_{C1} = 0 \\ V_{Li} = E - V_{C1} \end{cases}$$
(3.8)

$$\begin{cases} V_{C2} - V_{C3} = 0\\ V_{C2} = V_{C3} \end{cases}$$
(3.9)

$$\begin{cases} -V_{Lo} - V_{Co} + V_{C3} = 0 \\ V_{Lo} = V_{C3} - V_{Co} \end{cases}$$
(3.10)

$$\begin{cases} V_{Co} - V_{Ro} = 0\\ V_{Co} = V_{Ro} \end{cases}$$
(3.11)

Na Figura 12 tem-se o gráfico dos componentes do conversor proposto de elevado ganho estático: (a) tensão no indutor L_i , (b) tensão do indutor L_o .

Figura 12 – Gráficos dos componentes do conversor proposto: (a) tensão no indutor V_{Li} e (b) tensão do indutor V_{Lo} .

A análise gráfica dos componentes do conversor resulta nas seguintes equações:

Da Figura 12 (a), isolando V_{C1}, tem-se:

$$(D.T).E + ((1-D).T).(E - V_{C1}) = 0$$

$$D.E + E.D' - (1 - D)(V_{C1}) = 0$$

$$E - V_{C1} \cdot (1 - D) = 0$$

$$V_{C1} = \frac{E}{1 - D}$$
(3.12)

Da Figura 12 (b) isolando V_{Co} , tem-se:

$$(D.T).(V_{C3} + V_{C2} - V_{Co}) + ((1 - D).T).(V_{C3} - V_{Co}) = 0$$

$$V_{C3} \cdot (D + (1 - D)) + V_{C2} \cdot D - V_{Co} \cdot (D + (1 - D)) = 0$$
$$V_{C3} - V_{Co} + V_{C2}.D = 0$$

$$V_{Co} = V_{C3} + V_{C2}.D$$
(3.13)

Da expressão (3.9) se tem que $V_{C2} = V_{C3}$, substituindo na expressão (3.13) e isolando V_{C3} , admite-se:

$$V_{Co} = V_{C3} + V_{C3}.D$$

$$V_{Co} = V_{C3}.(1 + D)$$

$$V_{C3} = \frac{V_{Co}}{1 + D}$$
(3.14)

$$V_{C2} = \frac{V_{Co}}{1+D}$$
(3.15)

Da equação (3.5) obtém-se que $V_{C1} = V_{C3}$, substituindo na equação (3.14), tem-se:

$$V_{C1} = \frac{V_{Co}}{1+D}$$
(3.16)

Igualando a equação (3.12) com a (3.16) e isolando V_{Co} , tem-se:

$$\frac{E}{1-D} = \frac{V_{Co}}{1+D}$$

$$V_{Co} = \frac{E.(1+D)}{1-D}$$
(3.17)

As equações resultam nas seguintes igualdades:

$$V_{Co} = E \cdot \left(\frac{1+D}{1-D}\right) \tag{3.18}$$

$$V_{C1} = V_{C2} = V_{C3} = \frac{E}{1 - D}$$
(3.19)

Para extrair a equação do ganho estático (G), para uma célula elevadora de tensão, n=1, tem-se:

$$G = \frac{V_{Co}}{E} \tag{3.20}$$

Substituindo a expressão encontrada na equação (3.18), tem-se:

$$V_{Co} = E \cdot \left(\frac{1}{1-D} + \frac{D}{1-D}\right)$$

$$\frac{V_{Co}}{E} = \left(\frac{1}{1-D} + \frac{D}{1-D}\right)$$

$$G = \frac{D}{1-D} + \frac{1}{1-D}$$
(3.21)

Pode-se observar que este ganho será a soma do ganho estático de um conversor Boost com um conversor Cúk.

Caso seja aumentado um número "n" de células elevadoras de tensão o ganho estático (G), será:

$$G = \frac{D}{1 - D} + n. \left(\frac{1}{1 - D}\right)$$
(3.22)

Na Figura 13 está a topologia do conversor propostos com duas células n células elevadoras de tensão.

Figura 13 – Conversor proposto com n células elevadoras de tensão.

Na Figura 14 apresenta-se o gráfico de razão cíclica (D) *versus* o ganho estático (G), com o comparativo das características do conversor clássico com o proposto (considerando apenas uma célula elevadora de tensão, n=1).

Figura 14 – Gráfico do ganho estático.

3.2.3. Ondulação de corrente nos indutores L_o e L_i

Para o cálculo das ondulações das correntes de L_i e L_o causado pelo chaveamento (representado pela Figura 15), tem-se:

• Primeira etapa (Chave na posição 2):

Pela definição da tensão no indutor L_i, tem-se:

$$L_i \frac{di_{Li}\left(t\right)}{dt} = V_{Li}(t) \tag{3.23}$$

Substituindo V_{Li} na equação (3.8) e isolando o diferencial de i_{Li} , tem-se:

$$\frac{di_{Li}(t)}{dt} = \frac{E - V_{C1}}{L_i}$$
(3.24)

Pela definição da tensão no indutor Lo tem-se:

$$L_{o}\frac{di_{Lo}(t)}{dt} = V_{Lo}(t)$$
(3.25)

Substituindo V_{Lo} na equação (3.10) e isolando o diferencial de i_{Lo} , tem-se:

$$\frac{di_{Lo}(t)}{dt} = \frac{V_{C3} - V_{Co}}{L_o}$$
(3.26)

• Segunda etapa (Chave na posição 1):

Substituindo V_{Li} da definição, equação (3.23), pela igualdade em (3.4) e isolando o diferencial de i_{Li} , tem-se:

$$\frac{di_{Li}\left(t\right)}{dt} = \frac{E}{L_i} \tag{3.27}$$

Substituindo V_{Lo} da definição, na equação (3.25), pela igualdade (3.6) e isolando o diferencial de i_{Lo} , tem-se:

$$\frac{di_{Lo}(t)}{dt} = \frac{V_{C3} + V_{C2} - V_{Co}}{L_o}$$
(3.28)

• Calculando Δi_{Li} usando expressão geral da reta, tem-se:

$$\left(i_{Li} + \frac{\Delta i_{Li}}{2}\right) - \left(i_{Li} - \frac{\Delta i_{Li}}{2}\right) = \left(\frac{E}{L_i}\right). (D.T - 0)$$

$$\Delta i_{Li} = \frac{E.D.T}{L_i}$$
(3.29)

• Calculando Δi_{Lo} usando expressão geral da reta, tem-se:

$$\left(i_{Lo} + \frac{\Delta i_{Lo}}{2}\right) - \left(i_{Lo} - \frac{\Delta i_{Lo}}{2}\right) = \left(\frac{V_{C3} + V_{C2} - V_{Co}}{L_o}\right) \cdot (D.T - 0)$$

$$\Delta i_{Lo} = \frac{(V_{C3} + V_{C2} - V_{Co}) \cdot D.T}{L_o}$$
(3.30)

Substituindo V_{Co} , V_{C2} e V_{C3} pelas equações (3.18) e (3.19) respectivamente, tem-se:

$$\Delta i_{Lo} = \frac{E.D.T}{L_o} \tag{3.31}$$

Figura 15 – Gráficos dos componentes do conversor proposto: (a) corrente no indutor i_{Li} , (b) corrente no indutor i_{Lo} .

3.2.4. Ondulação de tensão nos capacitores C₁, C₂, C₃ e C_o

O equacionamento da corrente nos capacitores foi dividido em duas etapas de funcionamento como ocorrido anteriormente. Na primeira etapa de funcionamento, representada pela Figura 10, a chave do conversor proposto está aberta. Assim, pode-se extrair as seguintes considerações:

Pela lei de Kirchhoff das correntes, obtém-se:

$$I_{C0} = -I_{Lo} - I_{Ro} (3.32)$$

$$I_{C1} = I_{Li} \tag{3.33}$$

$$I_{C2} = I_{Lo} - I_{C3} \tag{3.34}$$

$$I_{C3} = -I_{C2} + I_{Lo} (3.35)$$

Na segunda etapa de funcionamento, representada na Figura 11, a chave do conversor proposto está fechada. Assim podem-se extrair as seguintes considerações:

$$I_{C0} = -I_{Lo} - I_{Ro} (3.36)$$

 $I_{C1} = I_{L0} - I_{C3} \tag{3.37}$

$$I_{C2} = I_{Lo} \tag{3.38}$$

$$I_{C3} = -I_{C1} + I_{Lo} (3.39)$$

Quanto ao cálculo das ondulações das tensões nos capacitores C_1 , C_2 e C_3 causado pelo chaveamento, Figura 16 (c), foi utilizado o conceito de fluxo de carga, já que a tensão nestes componentes não segue um padrão linear, uma vez que em cada etapa existem capacitores em paralelo o que causa picos de corrente entre os

mesmos. Portanto, primeiramente foi obtida a carga transferida em uma determinada etapa através da equação (3.40), e após, a substituição na equação (3.41).

$$\Delta Q = \int i_C \, dt \tag{3.40}$$

$$\Delta V_C = \frac{\Delta Q}{C} \tag{3.41}$$

3.2.4.1. Ondulação de tensão no capacitor C₁

Para calcular a ondulação de tensão no capacitor C₁, se tem que a corrente i_{C1} é igual a corrente i_{Li} na primeira etapa, equação (3.33). Substitui-se i_{C1} na equação (3.40), portanto, a carga transferida por C₁ em cada etapa será:

$$\Delta Q_{C1} = \int_{D.T}^{T} i_{C1} dt$$

$$\Delta Q_{C1} = i_{Li} (1 - D) T$$
(3.42)

Aplica-se o ΔQ_{C1} encontrado da equação (3.42) em (3.41), conforme definido ΔV_{C1} na Figura 17 (a). Portanto, considera-se:

$$\Delta V_{C1} = \frac{i_{Li} \cdot (1 - D) \cdot T}{C_1} \tag{3.43}$$

3.2.4.2. Ondulação de tensão no capacitor C₂

Para calcular a ondulação de tensão no capacitor C₂, se tem que a corrente i_{C2} é igual a corrente i_{L0} na segunda etapa, equação (3.38). Substitui-se i_{C2} na equação (3.40), portanto, a carga transferida por C₂ em cada etapa será:

$$\Delta Q_{C2} = \int_0^{D.T} i_{C2}.\,dt$$

$$\Delta Q_{C2} = i_{Lo}. D. T \tag{3.44}$$

Aplica-se o ΔQ_{C2} encontrado da equação (3.44) em (3.41), conforme definido ΔV_{C2} na Figura 17 (b). Portanto, dispõe-se:

$$\Delta V_{C2} = \frac{i_{Lo}.D.T}{C_2}$$
(3.45)

3.2.4.3. Ondulação de tensão no capacitor C₃

Para calcular a ondulação de tensão no capacitor C_3 , primeiramente, isolar-se parte do circuito e se faz uma análise para a primeira e segunda etapa de funcionamento e assim encontra-se uma forma generalista para os dois circuitos isolados para então seguir os passos feitos na análise dos capacitores $C_1 e C_2$.

A corrente que circula por este capacitor, na segunda etapa, quando a chave S está fechada, como pode ser visto na Figura 16 (a) e na primeira etapa de funcionamento, quando a chave S está aberta, que pode ser visto na Figura 16 (b), serão provenientes de um circuito série de segunda ordem LC generalizado na Figura 16 (c).

Figura 16 – Representação do circuito série de segunda ordem LC: (a) segunda etapa de funcionamento, (b) primeira etapa de funcionamento e (c) generalização do circuito isolado.

Considerando em um primeiro momento todos os componentes ideais, e para simplificar o circuito, encontra-se um capacitor equivalente, C_{eq} , juntando os capacitores $C_a \in C_b$ em série, equação (3.46), e para satisfazer as condições iniciais, a tensão no capacitor equivalente será a máxima diferença de potencial entre os capacitores $C_a \in C_b$, equação (3.47)

$$\frac{1}{C_{eq}} = \frac{1}{C_a} + \frac{1}{C_b}$$
(3.46)

 $V_{Cab} = V_{CaM} - V_{Cbm} \tag{3.47}$

Aplica-se a lei de Kirchhoff das correntes, na malha da Figura 16 (c), obtémse:

$$i + i_{LS} = 0$$
 (3.48)

Considerando a expressão da corrente no indutor, equação (3.49) e da corrente no capacitor, equação (3.50):

$$i_{L} = \frac{1}{L} \int_{0}^{t} V_{L}(\tau) \, d\tau \tag{3.49}$$

$$i_C = C.\frac{dV_C(t)}{dt}$$
(3.50)

Substituindo as equações (3.49) e (3.50), se tem a equação (3.48) em função da tensão, $V_C(t)$,

$$C_{eq} \cdot \frac{dV_{Cab}(t)}{dt} + \frac{1}{L_s} \int_0^t V_{Ls}(\tau) \cdot d\tau = 0$$
(3.51)

Derivando a expressão (3.51), dividindo por C_{eq} e levando em consideração que a tensão no indutor, V_{Ls} , e a tensão nos capacitores, V_{Cab} , são iguais, pois os componentes estão em paralelo, assim:

$$\frac{d^2 V_{Cab}(t)}{dt^2} + \frac{1}{C_{eq} \cdot L_s} \cdot V_{Cab}(t) = 0$$
(3.52)

Considerando a forma geral da frequência de oscilação do circuito, equação (3.53), da Figura 16 (c) e substituindo na equação (3.52), tem-se:

$$w^2 = \frac{1}{L_S. \, C_{eq}} \tag{3.53}$$

$$\frac{d^2 V_{Cab}(t)}{dt^2} + w^2 \cdot V_{Cab}(t) = 0$$
(3.54)

Para a expressão diferencial de segunda ordem, equação (3.54), pode se obter a equação característica e após a expansão senoidal, expressão (3.55), e sua derivada (3.56), onde A e B são constantes que dependem das condições iniciais.

$$V_{Cab}(t) = A.\sin(wt) + B.\cos(wt)$$
(3.55)

$$\frac{dV_{Cab}(t)}{dt} = A.w.\cos(wt) - B.w.\sin(wt)$$
(3.56)

As constantes A e B são definidas considerando as condições iniciais de tensão equivalente nos capacitores a e b, equação (3.57), na comutação da chave (t=0) e na derivada da tensão equivalente no capacitor, equação (3.61).

$$V_{Cab}(0) = -V_{Cab} (3.57)$$

Substituindo na equação (3.55) a igualdade (3.57), encontra-se a constante B:

 $-V_{Cab} = A.\sin(w.0) + B.\cos(w.0)$

 $-V_{Cab} = B.\cos(w.0)$

A derivada da equação (3.59), representada na expressão (3.60), é igual a corrente no capacitor equivalente.

$$Q(t) = C_{eq} V_{Cab}(t) \tag{3.59}$$

$$\frac{dQ(t)}{dt} = i(t) = C_{eq} \cdot \frac{dV_{Cab}(t)}{dt}$$
(3.60)

Isolando a derivada da tensão equivalente no capacitor, equação (3.60), e verificando para as condições iniciais (t=0) para a igualdade, vê-se que a corrente no circuito da Figura 16 (c), no instante da comutação da chave S, é igual a zero, assim:

$$\frac{dV_{Cab}}{dt}(t) = \frac{i(t)}{C_{eq}}$$

$$\frac{dV_{Cab}}{dt}(0) = 0$$
(3.61)

Substituindo na equação (3.56) a igualdade da derivada de segunda ordem (3.61), encontra-se a constante A:

$$0 = A.w.\cos(w.0) - B.w.\sin(w.0)$$

 $A.w = 0$
 $A = 0$ (3.62)

Substituindo na equação (3.56) as igualdades de A, B e w, respectivamente as equações (3.62), (3.58) e (3.53), tem-se:

$$\frac{dV_{Cab}(t)}{dt} = 0.\frac{1}{\sqrt{C_{eq}.L_s}} \cdot \cos(wt) - (-V_{Cab}) \cdot \frac{1}{\sqrt{C_{eq}.L_s}} \cdot \sin(wt)$$
(3.63)

Assim pode-se encontrar a corrente i(t) que passa pelo capacitor C_3 , substituindo a equação (3.60) na equação (3.63), logo i_{C3} em função do tempo será:

$$i_{C3}(t) = V_{Cab} \cdot \sqrt{\frac{C_{eq}}{L_s}} \cdot \sin\left(\frac{1}{\sqrt{C_{eq} \cdot L_s}} \cdot t\right)$$
(3.64)

Considerando V_p a queda causada pelo diodo D₂ e pela chave S ou pelo diodo D₁ respectivamente Figura 16 (a), segunda etapa de funcionamento e Figura 16 (b), primeira etapa de funcionamento, a tensão equivalente (V_{Ceq}), é a diferença de potencial entre os capacitores no momento da comutação, V_{Cab}, menos a queda de tensão, V_p, logo:

$$V_{Ceq} = V_{Cab} - V_p \tag{3.65}$$

Para se obter a carga transferida de carga entre os capacitores substitui-se i_{C3} encontrada na equação (3.64) na igualdade (3.40). Portanto:

$$\Delta Q_{C3} = \int_0^{T_1/2} i_{C3}(t) \, dt$$

$$\Delta Q_{C3} = -\left[V_{Ceq}.C_{eq}.\cos(w.t)\right] {T_1/2 \atop 0}$$
(3.66)

Substituindo T₁ e w, respectivamente equação (3.67) e equação (3.53), nos limites de integração da equação (3.66), assim se encontra a transferência de Q_{C3} equação (3.67):

$$w = \frac{1}{\sqrt{L_s. C_{eq}}}$$

$$f = \frac{1}{2.\pi \sqrt{L_s. C_{eq}}}$$

$$T_1 = \frac{1}{f} = 2.\pi . \sqrt{L_s. C_{eq}}$$
(3.67)

$$\Delta Q_{C3} = V_{Ceq}. C_{eq} \tag{3.68}$$

Para calcular a ondulação de tensão no capacitor C₃, substitui-se a variação de carga do capacitor ΔQ_{C3} , encontrado na equação (3.68), na igualdade (3.41):

$$\Delta V_{C3} = \frac{V_{Ceq}.\,C_{eq}}{C_3} \tag{3.69}$$

3.2.4.4. Ondulação de tensão no capacitor Co

Para o cálculo da ondulação de tensão no capacitor C_o , Figura 17 (d), admitese que a componente alternada da corrente no indutor L_o circule toda por C_o .

Desse modo, calcula-se a integral da ondulação de corrente no indutor L_o (i_{Lo}). Assim substitui-se i_{Co} na equação (3.40), portanto, a carga transferida por C_o será:

$$\Delta Q_{Co} = \int_{DT}^{T} i_{Co} dt$$

$$\Delta Q_{Co} = \int_{\frac{D.T}{2}}^{\frac{(1-D)T}{2} + DT} i_{Lo}. dt$$

$$\Delta Q_{Co} = \frac{D.T.\Delta i_{Lo}}{8} + \frac{(1-D).T.\Delta i_{Lo}}{8}$$

$$\Delta Q_{Co} = \frac{\Delta i_{Lo}.T}{8} \tag{3.70}$$

Para calcular a ondulação de tensão no capacitor C_o , substitui-se a carga do capacitor ΔQ_{Co} , encontrado na equação (3.70), na igualdade (3.41), tem-se:

$$\Delta V_{Co} = \frac{\Delta Q_{Co}}{C_o} \qquad \qquad \Delta V_{Co} = \frac{\Delta i_{Lo} \cdot T}{\frac{8}{C_o}}$$

$$\Delta V_{Co} = \frac{\Delta i_{Lo} \cdot T}{\frac{8}{C_o}}$$
(3.71)

3.2.4.5. Representação gráfica das ondulações de tensão nos capacitores C_1 , C_2 , C_3 e C_o

Figura 17 – Representação linearizada a ondulação de tensão dos componentes do conversor proposto: (a) tensão no capacitor C_1 , (b) tensão no capacitor C_2 , (c) tensão no capacitor C_3 e (d) tensão no capacitor C_0 .

3.2.5. Corrente na chave S

Considerando que a chave S estará conduzindo apenas na segunda etapa de funcionamento do conversor, para calcular o valor médio e eficaz, deve-se considerar o período na primeira etapa de funcionamento igual a zero.

3.2.5.1. Corrente média na chave S

Admitindo-se que quando a chave S está fechada, segunda etapa de funcionamento do conversor, a corrente que passa por S, será dada pela equação (3.72):

$$i_S = i_{Li} - i_{Lo} + i_{C3} \tag{3.72}$$

Para calcular a corrente média na chave S, i_S , foi calculada a corrente média nos indutores L_i e L_o e no capacitor C₃ respectivamente:

Para encontrar o valor da corrente média no indutor L_i, tem-se que a potência de entrada é igual para a potência de saída, sem considerar perdas, assim:

 $P_{Entrada} = P_{Saida}$

$$i_{Li}$$
. $E = V_{Ro}$. i_{Ro}

$$i_{Li} = \frac{V_{Ro}}{E} \cdot i_{Ro}$$

Substituindo a equação (3.21) na corrente média no indutor L_i, tem-se:

$$i_{Li} = \left(\frac{1+D}{1-D}\right) \cdot i_{Ro}$$

$$i_{Li} = \left(\frac{1+D}{1-D}\right)^2 \cdot \frac{E}{R_0}$$
 (3.73)

Para encontrar a corrente média no indutor L_o , tem-se que a potência de entrada é igual para a potência de saída, sem considerar perdas, assim:

$P_{Entrada} = P_{Saida}$

$$i_{Li}$$
. $E = V_{Ro}$. i_{Ro}

Substituindo a equação (3.73) e isolando a corrente na carga, tem-se:

$$\left(\frac{1+D}{1-D}\right)^2 \cdot \frac{E}{R_0} \cdot E = V_{Ro} \cdot i_{Ro}$$

$$i_{Ro} = \left(\frac{1+D}{1-D}\right) \cdot \frac{E}{R_o}$$

Considerando a corrente média que passa pelo capacitor C_o igual à zero, obtém-se pelas equações (3.32) e (3.36), que a corrente média no indutor L_o (i_{Lo}):

$$i_{Lo} = -i_{Ro}$$

$$i_{Lo} = -\left(\frac{1+D}{1-D}\right) \cdot \frac{E}{R_o}$$
(3.74)

Para encontrar a corrente média do capacitor C_3 (i_{C3}) no intervalo necessário, deve-se seguir os seguintes passos:

$$i_{C3} = \frac{1}{T} \cdot \int_{0}^{T} i_{C3}(t) dt$$

$$i_{C3} = \frac{1}{T} \cdot \left[\int_{0}^{\pi \cdot \sqrt{L_{S}C_{eq}}} i_{C3}(t) dt + \int_{\pi \cdot \sqrt{L_{S}C_{eq}}}^{T} i_{C3}(t) dt \right]$$
(3.75)

$$i_{C3} = \frac{1}{T} \int_{0}^{\pi \sqrt{L_{S}C_{eq}}} i_{C3}(t)dt$$
(3.76)

Substituindo $i_{C3}(t)$ da equação (3.64), na expressão (3.76), tem-se:

$$i_{C3} = \frac{1}{T} \cdot \int_{0}^{\pi \cdot \sqrt{L_{S}C_{eq}}} V_{Ceq} \cdot \sqrt{\frac{C_{eq}}{L_{s}}} \cdot \sin\left(\frac{1}{\sqrt{C_{eq} \cdot L_{s}}} \cdot t\right) dt$$

$$i_{C3} = \frac{1}{T} \cdot \left(V_{Ceq} \cdot C_{eq} \cdot \cos\left(\frac{1}{\sqrt{C_{eq} \cdot L_{s}}} \cdot t\right)\right) \Big|_{0}^{\pi \cdot \sqrt{L_{S}C_{eq}}}$$

$$i_{C3} = \frac{2 \cdot V_{Ceq} \cdot C_{eq}}{T}$$

$$(3.77)$$

Como C₁ funciona como fonte de tensão no sistema da Figura 16 (c), a corrente do capacitor C₃ tem polaridade inversa. Na chave S, i_{C3} tem o mesmo sentido das correntes nos indutores L_o e L_i, assim a corrente média na chave S será a soma das correntes médias.

Nesta análise, a chave S e o diodo D_2 não foram considerados ideais, pois a queda de tensão causada pela presença destes elementos altera significativamente a ondulação no capacitor C_3 (Δi_{C3}) e consequentemente seu pico de corrente.

Substituindo na expressão (3.72) as igualdades encontradas para as correntes médias i_{Li} , i_{Lo} e i_{C3} , respectivamente as equações (3.73), (3.74) e (3.77), se tem que para encontrar o valor médio da chave S, as correntes nos indutores $L_i e L_o$ devem ser multiplicadas por D, assim estes vão coincidir com o:

$$i_{S} = D.\left(\left(\frac{1+D}{1-D}\right)^{2} \cdot \frac{E}{R_{0}} + \left(\frac{1+D}{1-D}\right) \cdot \frac{E}{R_{0}}\right) + \frac{2\cdot(V_{Ceq})\cdot C_{eq}}{T}$$
(3.78)

3.2.5.2. Corrente eficaz na chave S

Foi utilizada a definição (3.79) para o cálculo da corrente eficaz na chave S:

$$i_{ef} = \sqrt{\frac{1}{T} \cdot \int_{0}^{D.T} i(t)^2 dt}$$
(3.79)

Para calcular a corrente eficaz na chave S, i_{Sef} , será calculada a corrente eficaz nos indutores $L_i e L_o e$ no capacitor C_3 respectivamente, este só é válido para baixos valores de corrente eficaz:

$$i_{Sef} = i_{Lief} - i_{Loef} + i_{C3ef}$$
 (3.80)

Para encontrar o valor da corrente eficaz no indutor L_i, será necessária a equação da corrente em função do tempo no indutor L_i, i_{Li}(t), expressão encontrada através da Figura 15 (a), no período de 0 a DT:

$$i_{Li}(t) = \frac{E}{L_i} \cdot t + i_{Li} - \frac{\Delta i_{Li}}{2}$$

Substituindo os valores da corrente média e oscilação respectivamente as equações (3.73) e (3.29) do indutor L_i, obtém-se a equação da corrente instantânea deste indutor:

$$i_{Li}(t) = \frac{E}{L_i} \cdot t + \left(\frac{1+D}{1-D}\right)^2 \cdot \frac{E}{R_0} - \frac{E \cdot D \cdot T}{2 \cdot L_i}$$
(3.81)

Utiliza-se a definição de corrente eficaz (3.79), a corrente do indutor L_i em função do tempo, equação (3.81), e encontra-se a corrente eficaz para o indutor L_i :

$$i_{Lief} = \sqrt{\frac{1}{T} \cdot \int_{0}^{D.T} \left(\frac{E}{L_{i}} \cdot t + \left(\frac{1+D}{1-D}\right)^{2} \cdot \frac{E}{R_{0}} - \frac{E.D.T}{2.L_{i}}\right)^{2}} dt$$
(3.82)

Para encontrar o valor da corrente eficaz no indutor L_o , será necessária a equação da corrente em função do tempo no indutor L_o , $i_{Lo}(t)$, expressão, encontrada através da Figura 15 (b),: no período de 0 a DT

$$i_{Lo}(t) = \frac{V_{C3} + V_{C2} - V_{Co}}{L_o} \cdot t + i_{Lo} - \frac{\Delta i_{Lo}}{2}$$
(3.83)

Substituindo os valores da corrente média e oscilação respectivamente as equações (3.74) e (3.30) do indutor L_o , na equação (3.83), obtém-se a equação da corrente instantânea deste indutor:

$$i_{Lo}(t) = \frac{V_{C3} + V_{C2} - V_{Co}}{L_o} \cdot t - \left(\frac{1+D}{1-D}\right) \cdot \frac{E}{R_o} - \frac{(V_{C3} + V_{C2} - V_{Co}) \cdot D \cdot T}{2 \cdot L_o}$$

Substituindo V_{Co} da equação (3.18) e V_{C2} e V_{C3} da equação (3.19), se obtém a equação da corrente instantânea deste indutor:

$$i_{Lo}(t) = E \cdot \left(\frac{2t - D \cdot T}{2 \cdot L_o}\right) - \left(\frac{1 + D}{1 - D}\right) \cdot \frac{E}{R_o}$$
(3.84)

Utiliza-se a definição de corrente eficaz (3.79), a corrente do indutor L_o em função do tempo equação (3.84), encontra-se a corrente eficaz para o indutor L_o :

$$i_{Loef} = \sqrt{\frac{1}{T} \cdot \int_{0}^{D.T} \left(E \cdot \left(\frac{1+D}{1-D} \right) \cdot \left(\frac{2t-D.T}{2.L_{o}} \right) - \left(\frac{1+D}{1-D} \right) \cdot \frac{E}{R_{o}} \right)^{2} dt}$$
(3.85)

Substituindo a equação (3.64), na definição de corrente eficaz em (3.79), temse a corrente eficaz no capacitor C_3 :

$$i_{C3ef} = \sqrt{\frac{1}{T} \cdot \left[\int_{0}^{\pi \cdot \sqrt{C_{eq} \cdot L_{s}}} \left(V_{Ceq} \cdot \sqrt{\frac{C_{eq}}{L_{s}}} \cdot \sin\left(\frac{1}{\sqrt{C_{eq} \cdot L_{s}}} \cdot t\right) \right)^{2} dt + \int_{\pi \cdot \sqrt{C_{eq} \cdot L_{s}}}^{T} \left(V_{Ceq} \cdot \sqrt{\frac{C_{eq}}{L_{s}}} \cdot \sin\left(\frac{1}{\sqrt{C_{eq} \cdot L_{s}}} \cdot t\right) \right)^{2} dt}$$
$$i_{C3ef} = \sqrt{\frac{1}{T} \cdot \int_{0}^{\pi \cdot \sqrt{C_{eq} \cdot L_{s}}} \left(V_{Ceq} \cdot \sqrt{\frac{C_{eq}}{L_{s}}} \cdot \sin\left(\frac{1}{\sqrt{C_{eq} \cdot L_{s}}} \cdot t\right) \right)^{2} dt}$$

$$i_{C3ef} = \sqrt[4]{\frac{(V_{Ceq})^4 \cdot C_{eq}^3 \cdot \pi^2}{4 \cdot L_S \cdot T^2}}$$
(3.86)

Admitindo-se que quando a chave S está fechada, segunda etapa de funcionamento do conversor, a corrente eficaz equação (3.80), será dada pela soma das correntes eficazes dos componentes L_i , L_o e C_3 respectivamente equações (3.82), (3.85) e (3.86), assim a corrente eficaz na chave S, lembrando que está forma de calcular a corrente eficaz na chave S, é valida apenas para valores pequenos.

$$i_{Sef} = \sqrt{\frac{1}{T} \cdot \int_{0}^{D.T} \left(\frac{E}{L_{i}} \cdot t + \left(\frac{1+D}{1-D}\right)^{2} \cdot \frac{E}{R_{0}} - \frac{E \cdot D \cdot T}{2 \cdot L_{i}}\right)^{2} dt} - \sqrt{\frac{1}{T} \cdot \int_{0}^{D.T} \left(E \cdot \left(\frac{2t-D \cdot T}{2 \cdot L_{o}}\right) - \left(\frac{1+D}{1-D}\right) \cdot \frac{E}{R_{o}}\right)^{2} dt} + \sqrt[4]{\frac{(V_{Ceq})^{4} \cdot C_{eq}^{3} \cdot \pi^{2}}{4 \cdot L_{S} \cdot T^{2}}}$$
(3.87)

3.2.6. CORRENTE NOS DIODOS D₁, D₂ E D₃

Para o cálculo da corrente nos diodos deve-se considerar a etapa de funcionamento:

Na primeira etapa de funcionamento, quando a chave S está aberta, tem-se que o diodo D₁ e D₃ estarão conduzindo conforme descreve as equações (3.1) e a (3.2), repetidas aqui:

$$i_{D1} = i_{Li} - i_{Lo} + i_{C3}$$

 $i_{D3} = -i_{C3}$

 Na segunda etapa de funcionamento, quando a chave S está fechada, apenas o diodo D₂ estará conduzindo para este tem-se a equação (3.3) repetida aqui:

 $i_{D2} = i_{C3}$

3.2.6.1. Corrente média nos diodos D₁, D₂ e D₃

Para calcular a corrente média nos diodos, deve-se utilizar a equação (3.88):

$$i_D = \frac{1}{T} \cdot \int_0^T i_D(\tau) d\tau$$
 (3.88)

Para o cálculo da corrente média no diodo D_1 considera-se a equação (3.88) e substitui na equação (3.1), para o intervalo que este diodo encontra-se em funcionamento:

$$i_{D1} = \frac{1}{T} \cdot \int_{D.T}^{T} i_{D1}(t) dt$$

Para encontrar o valor da corrente média no indutor L_i, será necessária a equação da corrente em função do tempo no indutor L_i, i_{Li}(t), expressão encontrada através da Figura 15 (a), no período de DT a T.

$$i_{Li}(t) = \left(\frac{E - V_{C1}}{L_i}\right) \cdot (t - D \cdot T) + i_{Li} + \frac{\Delta i_{Li}}{2}$$

Substituindo os valores da corrente média e oscilação respectivamente as equações (3.73) e (3.29) do indutor L_i, obtém-se a equação da corrente instantânea deste indutor:

$$i_{Li}(t) = \left(\frac{1+D}{1-D}\right)^2 \cdot \frac{E}{R_0} + \frac{E.D.T}{2.L_i} - \left(\frac{E.D}{L_i}\right) \left(\frac{t-D.T}{1-D}\right)$$
(3.89)

Para encontrar o valor da corrente eficaz no indutor L_o , será necessária a equação da corrente em função do tempo no indutor L_o , $i_{Lo}(t)$, expressão, encontrada através da Figura 15 (b), no período de DT a T.

$$i_{Lo}(t) = \frac{V_{C3} - V_{Co}}{L_o} \cdot (t - D.T) + i_{Lo} + \frac{\Delta i_{Lo}}{2}$$
(3.90)

Substituindo os valores da corrente média e oscilação respectivamente as equações (3.74) e (3.30) do indutor L_o , na equação (3.90), obtém-se a equação da corrente instantânea deste indutor:

$$i_{Lo}(t) = \frac{V_{C3} - V_{Co}}{L_o} \cdot (t - D.T) - \left(\frac{1+D}{1-D}\right) \cdot \frac{E}{R_o} + \frac{(V_{C3} + V_{C2} - V_{Co}) \cdot D.T}{2 \cdot L_o}$$

Substituindo V_{Co} da equação (3.18) e V_{C2} e V_{C3} da equação 3.19 (b), se obtém a equação da corrente instantânea deste indutor:

$$i_{Lo}(t) = \frac{E.D.T}{2.L_o} - \left(\frac{D.E}{1-D}\right) \cdot \left(\frac{t-D.T}{L_o}\right) - \left(\frac{1+D}{1-D}\right) \cdot \frac{E}{R_o}$$
(3.91)

Para encontrar o valor médio no diodo D₁, precisa-se substituir a equação da corrente em função do tempo dos indutores L_i, $i_{Li}(t)$, e L_o, $i_{Lo}(t)$, e no capacitor C₃, $i_{C3}(t)$, no intervalo em que o diodo D₁ está conduzindo.

Na igualdade (3.1), se tem a corrente no diodo $D_{1.}$ As funções dos indutores e do capacitor, se encontram respectivamente nas equações (3.89), (3.91) e (3.64). Assim, tem-se:

$$i_{D1} = \frac{1}{T} \cdot \left[\int_{D.T}^{T} i_{Li}(t) dt - \int_{D.T}^{T} i_{Lo}(t) dt + \int_{0}^{T_{1/2}} i_{C3}(t) dt \right]$$

$$i_{D1} = \frac{1}{T} \cdot \left\{ \int_{D.T}^{T} \left(\left(\frac{1+D}{1-D} \right)^{2} \cdot \frac{E}{R_{0}} + \frac{E.D.T}{2.L_{i}} - \left(\frac{E.D}{L_{i}} \right) \left(\frac{t-D.T}{1-D} \right) \right) dt$$

$$- \int_{D.T}^{T} \left(\frac{E.D.T}{2.L_{0}} - \left(\frac{D.E}{1-D} \right) \cdot \left(\frac{t-D.T}{L_{0}} \right) - \left(\frac{1+D}{1-D} \right) \cdot \frac{E}{R_{0}} \right) dt \right\}$$

$$+ \frac{2.V_{Ceq} \cdot C_{eq}}{T}$$
(3.92)

Para o cálculo da corrente média no diodo D₂, considera-se a equação (3.88), para o intervalo que este diodo encontra-se em funcionamento e substitui a equação (3.3):

$$i_{D2} = \frac{1}{T} \cdot \int_0^{D.T} i_{D2}(t) dt$$

$$i_{D2} = \frac{1}{T} \cdot \int_0^{T_1/2} (i_{C3}(t)) dt$$

Para o valor médio de i_{C3} da equação (3.77) e considerando a queda de tensão na chave S e no diodo D_2 , tem-se:

$$i_{D2} = \frac{2. [V_{Ceq}]. C_{eq}}{T}$$
(3.93)

Para o cálculo da corrente média no diodo D_3 , considera-se a equação (3.88), para o intervalo que este diodo encontra-se em funcionamento e substitui a equação (3.2) e (3.1):

$$i_{D3} = \frac{1}{T} \cdot \int_0^{D.T} i_{D3}(t) dt$$

$$i_{D3} = \frac{1}{T} \cdot \int_0^{T_{1/2}} (-i_{C3}(t)) dt$$

Para o valor médio de i_{C3} da equação (3.77) e considerando a queda de tensão na chave S e no diodo D₃, tem-se:

$$i_{D3} = -\frac{2.(V_{Ceq}).C_{eq}}{T}$$
(3.94)

3.2.6.2. Corrente de pico nos diodos D_1 , D_2 e D_3

Para o equacionamento da corrente de pico nos diodos foram feitas considerações individualizadas para cada um dos casos:

Para o equacionamento da corrente de pico no diodo D₁, se considera a equação (3.95):

$$i_{D1pk} = i_{Li} + \frac{\Delta i_{Li}}{2} + i_{Ro} + \frac{\Delta i_{Lo}}{2}$$
(3.95)

Substituindo na equação (3.95), as expressões i_{Li} , Δi_{Li} , $i_{Ro} e \Delta i_{Lo}$, funções encontra-se respectivamente nas equações (3.73), (3.29), (3.74) e (3.31), tem-se:

$$i_{D1pk} = \frac{E}{R_o} \cdot \left(\frac{1+D}{1-D}\right)^2 + \frac{E.D.T}{2.L_i} - \frac{E}{R_o} \cdot \left(\frac{1+D}{1-D}\right) + \frac{E.D.T}{2.L_o}$$
$$i_{D1pk} = \frac{E}{R_o} \cdot \left(\frac{1+D}{1-D}\right)^2 - \frac{E}{R_o} \cdot \left(\frac{1+D}{1-D}\right) + \frac{E.D.T}{2} \cdot \left(\frac{1}{L_i} + \frac{1}{L_o}\right)$$
(3.96)

Para o equacionamento da corrente de pico no diodo D_2 , se considera a equação (3.97), tem-se:

$$i_{D2pk} = i_{C3pk}$$
 (3.97)

Considerando a equação (3.64), repetida aqui, vê-se que o valor de pico para a corrente no capacitor C_3 , i_{C3} será quando o seno for igual a um, assim pode-se concluir que t deve ser igual a equação (3.98):

$$i_{C3} = V_{Ceq} \cdot \sqrt{\frac{C_{eq}}{L_s}} \cdot \sin\left(\frac{1}{\sqrt{C_{eq} \cdot L_s}} \cdot t\right)$$

$$t = \frac{\pi}{2} \cdot \sqrt{C_{eq} \cdot L_s}$$

$$i_{C3pk} = V_{Ceq} \cdot \sqrt{\frac{C_{eq}}{L_s}} \cdot \sin\left(\frac{\pi}{2}\right)$$

$$i_{C3pk} = V_{Ceq} \cdot \sqrt{\frac{C_{eq}}{L_s}}$$
(3.98)

Nesta análise a tensão V_{Ceq} , não foi considerada ideal, pois a queda de tensão destes elementos com a chave S altera seu pico de corrente no diodo D_2 .

$$i_{D2pk} = V_{Ceq} \cdot \sqrt{\frac{C_{eq}}{L_s}}$$
(3.99)

Para o cálculo da corrente de pico no diodo D_3 se considera a equação (3.100). A partir da equação (3.64), tem-se que o valor de pico para i_{C3} será quando o seno for um, assim como no anterior.

$$i_{D3pk} = -i_{C3pk} (3.100)$$

$$i_{D3pk} = -V_{Ceq} \cdot \sqrt{\frac{C_{eq}}{L_s}} \tag{3.101}$$

3.2.7. Observação do equacionamento

Para as equações que dependem da corrente no capacitor C_3 , existe uma limitação quanto à razão cíclica. O tempo DT não pode ser menor que a metade do período ressonante e o mesmo vale para o período (1-D)T.

Isso ocorre devido à comutação durante o meio período ressonante $T_1/2$, equação (3.67), de carregamento do capacitor, fazendo com que o mesmo não se carregue por completo, alterando a transferência de energia. Por tanto os requisitos são:

$$\frac{T_1}{2} \le DT$$

$$\pi \cdot \sqrt{C_{eq} \cdot L_s} \le DT$$

$$\frac{T_1}{2} \le (1-D) \cdot T$$
(3.102)

$$\pi.\sqrt{C_{eq}.L_s} \le (1-D).T \tag{3.103}$$

3.3. CONCLUSÃO

Com a análise apresentada neste capítulo foi possível obter as principais expressões matemáticas para o dimensionamento de todos os componentes do conversor proposto bem como algumas características de funcionamento.

4 ESPECIFICAÇÕES PARA O CONVERSOR CC-CC DE ALTO GANHO ESTÁTICO

As especificações na Tabela 3 foram adotadas para a simulação, análise matemática e para implementação, respectivamente no conversor apresentado neste capítulo.

Especificações	
Carga	220 W
Tensão na saída	230 V
Tensão na entrada	30 V
Ondulação de corrente nos indutores Li	53 %
Ondulação de corrente nos indutores L_o	43 %
Capacitor de poliéster C ₁	6,8 µF
Capacitor de poliéster C ₂	6,8 µF
Capacitor de poliéster C ₃	6,8 µF
Capacitor eletrolítico Co	47 µF
A indutância de L _S	0,247 µH

Tabela 3 – Especificações do circuito

4.1. ANÁLISE MATEMÁTICA

O dimensionamento dos componentes foi obtido na seguinte ordem: G, D, R_o, i_{Ro}, i_{Lo}, i_{Li}, Δi_{Lo} , L_o, Δi_{Li} , L_i, i_{Loef}, i_{Lief}, V_{C1}, V_{C2}, V_{C3}, V_{Co}, ΔV_{C1} , ΔV_{C2} , C_{eq}, V_{Cab}, ΔV_{C3} , ΔV_{Co} , V_{Ceq}, V_{Ceq}, i_S, i_{Sef}, T₁, i_{D1}, i_{D2}, i_{D3}, i_{D1pk}, i_{D2pk}, i_{D3pk} e limitação de D, respetivamente.

O cálculo para o ganho estático (G), usando as especificações da proposta de implementação, é dado pela equação (3.20):

$$G = \frac{230}{30}$$

G = 7,67

Substituindo o ganho estático de 7,67 na equação (3.21), encontramos uma razão cíclica (D):

$$\frac{D}{1-D} + \frac{1}{1-D} = 7,67$$

D = 0,77

Para encontrar a carga do conversor, aplica-se:

$$P = \frac{V^2}{R}$$

$$P_{saida} = \frac{V_{Ro}^2}{R_o}$$
(3.101)

Com os valores propostos na equação (3.101), se encontrou a resistência em R_{o} :

$$220 = \frac{230^2}{R_o} \qquad \qquad R_o = 240,45 \,\Omega$$

Para encontrar a corrente média na carga, se iguala a razão tensão e corrente na carga com a potência de saída:

$$P_{saida} = V_{Ro}.i_{Ro} \tag{3.104}$$

Com os valores propostos na equação (3.104), se encontrou a corrente na carga $\mathsf{R}_{\mathsf{o}}:$

$$220 = 230. i_{Ro}$$

$$i_{Ro} = 0,960 A$$

Considerando a corrente média que passa pelo capacitor C_o igual à zero, obtém-se pelas equações (3.32) e (3.36), que a corrente média no indutor L_o , i_{Lo} :

$$i_{Lo} = -i_{Ro}$$

$$i_{Lo} = -0,960 A$$

Pela equação (3.73), se encontrar a corrente média que passa pelo indutor L_i (i_{Li}), com a ausência de perdas (considerando componentes ideais), logo:

$$i_{Li} = \left(\frac{1+0.77}{1-0.77}\right)^2 \cdot \frac{30}{240.5}$$

$$i_{Li} = 7,39 A$$

Com a equação (3.31) pode-se extrair o valor da indutância em L_o , considerando que ondulação da corrente no indutor não deve ultrapassar 43 %, como já citado anteriormente, tem-se:

$$\begin{split} \Delta i_{Lo} &= (43\%). \, i_{Lo} \\ \Delta i_{Lo} &= (43\%). \, 0.960 \\ L_o &= 559.31 \, \mu H \\ \Delta i_{Lo} &= 0.41 \, A \end{split}$$

Através da equação (3.29) pode-se extrair o valor da indutância em L_i, considerando que a ondulação da corrente no indutor não deve ultrapassar 53 % como já citado anteriormente, tem-se:

$\Delta i_{Li} = (53\%). i_{Li}$	$L_i = \frac{30.0,77}{3,92.100.10^3}$
$\Delta i_{Li} = (53\%).7,39$	$L_i = 58,930 \ \mu H$
$\Delta i_{Li} = 3,92 A$	

Através das equações de reta no indutor L_o (3.84) e (3.91), pode-se extrair o valor da corrente eficaz no indutor, somando a corrente eficaz para as duas etapas de funcionamento e substituindo na definição (3.79), assim tem-se:

$$i_{Loef} = \sqrt{\frac{1}{10.10^{-6}} \cdot \left[\int_{0}^{0,77.(10.10^{-6})} \left(30.\left(\frac{2t - 0,77.(10.10^{-6})}{2.(559,31.10^{-6})}\right) - \left(\frac{1 + 0,77}{1 - 0,77}\right) \cdot \frac{30}{240,45} \right)^{2} dt + \frac{1}{\int_{0,77.(10.10^{-6})}^{10.10^{-6}} \left(\frac{30.(0,77).(10.10^{-6})}{2.(559,31.10^{-6})} - \left(\frac{0,77.30}{1 - 0,77}\right) \cdot \left(\frac{t - (0,77).(10.10^{-6})}{559,31.10^{-6}}\right) - \left(\frac{1 + 0,77}{1 - 0,77}\right) \cdot \frac{30}{240,45} \right)^{2} dt \right]}$$

$$i_{Loef} = 0,97 A$$

Através das equações de reta no indutor L_i (3.81) e (3.89), pode-se extrair o valor da corrente eficaz no indutor, somando a corrente eficaz para as duas etapas de funcionamento e substituindo na definição (3.79), assim tem-se:

$$i_{Lief} = \sqrt{\frac{1}{10.10^{-6}} \cdot \left[\int_{0}^{0.77.(10.10^{-6})} \left(\frac{30}{58,93.10^{-6}} \cdot t + \left(\frac{1+0,77}{1-0,77} \right)^{2} \cdot \frac{30}{240,45} - \frac{30.(0,77).(10.10^{-6})}{2.(58,93.10^{-6})} \right)^{2} dt + \frac{1}{2} \cdot \frac{10.10^{-6}}{1-0,77} \cdot \frac{10}{240,45} + \frac{30.(0,77).(10.10^{-6})}{2.(58,93.10^{-6})} - \left(\frac{30.(0,77)}{58,93.10^{-6}} \right) \left(\frac{t-0,77.(10.10^{-6})}{1-0,77} \right)^{2} dt \right]}$$

$$i_{Lief} = 7,48 \, A$$

Encontra-se a tensão média nos capacitores C_1 , C_2 e C_3 , com a igualdade da equação (3.19), assim:

$$V_{C1} = V_{C2} = V_{C3} = \frac{30}{1 - 0.77}$$

$$V_{C1} = V_{C2} = V_{C3} = 130,43 V$$

Para encontrar a tensão média no capacitor C_o , aplica-se a igualdade da equação (3.18), tem-se:

$$V_{Co} = 30. \left(\frac{1}{1 - 0.77} + \frac{0.77}{1 - 0.77}\right)$$
$$V_{Co} = 230.87 V$$

Para o cálculo das ondulações de tensões nos capacitores, C_1 e C_2 , se utiliza respectivamente as expressões das equações (3.43) e (3.45), assim:

$$\Delta V_{C1} = \frac{7,39(1-0,77)}{6,8.10^{-6}.100.10^3} \qquad \qquad \Delta V_{C2} = \frac{0,960(0,77)}{6,8.10^{-6}.100.10^3}$$
$$\Delta V_{C1} = 2,5 V \qquad \qquad \Delta V_{C2} = 1,09 V$$

Para encontrar o valor da capacitância equivalente da Figura 16 (c), se aplica os valores dos capacitores $C_a \in C_b$, descritos na proposta de implementação, na equação (3.46), logo se tem:

$$\frac{1}{C_{eq}} = \frac{1}{6.8 \cdot 10^{-6}} + \frac{1}{6.8 \cdot 10^{-6}}$$

$$C_{eq} = 3,4 \ \mu F$$

Para o cálculo da tensão equivalente dos capacitores da Figura 16 (c), foram extraídos da simulação, a tensão de pico do capacitor C_a , que neste instante foi considerado C_1 , e a menor tensão do capacitor C_b , que neste instante foi considerado C_3 , Figura 16 (a), no instante da comutação da chave S (chave S fechada), adota-se na equação (3.47), tem-se:

$$V_{Cab} = 132,62 - 129,52$$

 $V_{Cab} = 3,10 V$

Para o cálculo da ondulação de tensão no capacitor $C_{3,}$ utiliza-se a equação (3.69), sendo que C_{eq} e V_{Cab} deve-se utilizar respectivamente as equações (3.46) e (3.65), assim:

$$\Delta V_{C3} = \frac{(3,10).\,(3,4.\,10^{-6})}{6,8.\,10^{-6}}$$

 $\Delta V_{C3} = 1,55 V$

E para o cálculo da ondulação de corrente no capacitor $C_{o,}$ utiliza-se a equação (3.71), tem-se:

$$\Delta V_{Co} = \frac{(0,41).\,(10.\,10^{-6})}{8.\,(47.\,10^{-6})}$$

$$\Delta V_{Co} = 0,011 V$$

Para a Figura 16 (a), o cálculo de V_{Ceq} , neste instante será composto por V_{Ca} igual a V_{C1} e V_{Cb} igual a V_{C3} , há uma queda de tensão, V_p , causada pela chave S e o diodo D₂, que somadas serão igual a 1,62 V, constatada na simulação do conversor, assim:

$$V_{Ceq} = 3,10 - 1,62$$

$$V_{Ceq} = 1,48 V$$

Através da equação (3.78) se tem a corrente média na chave S.

$$i_{S} = 0,77. \left[\left(\frac{1+0,77}{1-0,77} \right)^{2} \cdot \frac{30}{240,45} + \left(\frac{1+0,77}{1-0,77} \right) \cdot \frac{30}{240,45} \right] + \frac{2 \cdot (1,48) \cdot (3,4.10^{-6})}{10.10^{-6}}$$

 $i_S = 7,44 A$

E com a equação (3.87) a corrente eficaz da chave S, considerando que há queda de tensão no diodo D_2 de 2,33 V, assim:

$$\begin{split} i_{Sef} &= \sqrt{\frac{1}{10.10^{-6}} \cdot \int_{0}^{0.77.10.10^{-6}} \left(\frac{30}{58,93.10^{-6}} \cdot t + \left(\frac{1+0.77}{1-0.77}\right)^{2} \cdot \frac{30}{240,45} - \frac{30.0,77.\left(10.10^{-6}\right)}{2.\left(58,93.10^{-6}\right)}\right)^{2} dt \\ &- \sqrt{\frac{1}{10.10^{-6}} \cdot \int_{0}^{0.77.10.10^{-6}} \left(30.\left(\frac{2t-0.77.\left(10.10^{-6}\right)}{2.\left(559,31.10^{-6}\right)}\right) - \left(\frac{1+0.77}{1-0.77}\right) \cdot \frac{30}{240,45}\right)^{2} dt \\ &+ \sqrt[4]{\frac{\left(1,48\right)^{4} \cdot \left(3,4.10^{-6}\right) \cdot ^{3}\pi^{2}}{4\left(0,247.10^{-6}\right) \cdot \left(10.10^{-6}\right)^{2}}} \end{split}$$

 $i_{Sef} = 6,56 - 0,85 + 2,08$

 $i_{Sef} = 7,79 A$

O período T₁ foi encontrado através da equação (3.67).

$$T_1 = 2.\pi.\sqrt{(0,247.10^{-6}).(3,4.10^{-6})}$$

 $T_1 = 5,76 \ \mu s$

Para o cálculo da tensão equivalente dos capacitores da Figura 16 (c), foram extraídos da simulação, a tensão de pico do capacitor C_a , que neste instante foi considerado C_2 , e a menor tensão do capacitor C_b , que neste instante foi considerado C_3 , Figura 16 (b), no instante da comutação da chave S (chave S fechada), adota-se a equação (3.47), tem-se:

$$V_{Cab} = 128,89 - 130,43$$

$$V_{Cab} = -1,54 V$$

Para a Figura 16 (b), o cálculo de V_{Ceq} , neste instante será composto por V_{Ca} igual a V_{C2} e V_{Cb} igual a V_{C3} , há uma queda de tensão, V_p , causada pelos diodos D_1 e D_3 , que somadas serão igual a 0,24 V, constatada na simulação do conversor, assim:

$$V_{Ceq} = -1,54 - (-0,24)$$

 $V_{Ceq} = -1,30 V$

Para o cálculo da corrente média no diodo D_1 (i_{D1}), foi considerada a equação (3.92). Assim tem-se:

$$\begin{split} i_{D1} &= \frac{1}{10.10^{-6}} \cdot \left\{ \int_{(0,77).(10.10^{-6})}^{10.10^{-6}} \left(\left(\frac{1+0,77}{1-0,77} \right)^2 \cdot \frac{30}{240,45} + \frac{30.(0,77).(10.10^{-6})}{2.(58,93.10^{-6})} - \left(\frac{30.0,77}{58,93.10^{-6}} \right) \left(\frac{t-(0,77).(10.10^{-6})}{1-0,77} \right) \right) \right\} dt \\ &- \int_{(0,77).(10.10^{-6})}^{10.10^{-6}} \left(\frac{30.(0,77).(10.10^{-6})}{2.(559,31.10^{-6})} - \left(\frac{0,77.30}{1-0,77} \right) \cdot \left(\frac{t-(0,77).(10.10^{-6})}{559,31.10^{-6}} \right) - \left(\frac{1+0,77}{1-0,77} \right) \cdot \frac{30}{240,45} \right) dt \right\} \\ &+ \frac{2.(-1,30).(3,4.10^{-6})}{10.10^{-6}} \end{split}$$

 $i_{D1} = 1,70 - (-0,22) - 0,88$

 $i_{D1} = 1,04 A$

Para o cálculo da corrente média no diodo D_2 (i_{D2}), foi considerada a equação (3.93), cuja tensão equivalente é composta pela diferença de potencial do capacitor V_{Ca} igual a V_{C1} e V_{Cb} igual a V_{C3} , com uma queda de tensão, V_p , causada pela chave S e o diodo D_2 , que somadas serão igual a 2,12 V, constatada na simulação do conversor, assim:

$$i_{D2} = 2. \frac{(1,48).(3,4.10^{-6})}{10.10^{-6}}$$

 $i_{D2} = 1,01 A$

Para o cálculo da corrente média no diodo D_3 (i_{D3}), foi considerada a equação (3.94), cuja tensão equivalente é composta pela diferença de potencial do capacitor V_{Ca} igual a V_{C2} e V_{Cb} igual a V_{C3} , assim:

$$i_{D3} = -2. \frac{(-1,54).(3,4.10^{-6})}{10.10^{-6}}$$

$$i_{D3} = 1,05 \ A$$

Para o cálculo da corrente de pico no diodo D_1 (i_{D1pk}), foi considerada a equação (3.96). Assim tem-se:

$$i_{D1pk} = \frac{30}{240,45} \cdot \left[\left(\frac{1+0,77}{1-0,77} \right)^2 + \left(\frac{1+0,77}{1-0,77} \right) \right] + \frac{30.0,77(10.10^{-6})}{2} \left(\frac{1}{58,93.10^{-6}} + \frac{1}{559,31.10^{-6}} \right)$$

 $i_{D1pk} = 10,52 A$

Para o cálculo da corrente de pico no diodo D_2 (i_{D2pk}), foi considerada a equação (3.99), cuja tensão equivalente é composta pela diferença de potencial do capacitor V_{Ca} igual a V_{C1} e V_{Cb} igual a V_{C3}. Com uma queda de tensão, V_p, causada pela chave S e o diodo D₂, que somadas serão igual a 2,43 V, constatada na simulação do conversor. Assim:

$$i_{D2pk} = (1,48). \sqrt{\frac{3,4.10^{-6}}{0,247.10^{-6}}}$$

 $i_{D2pk} = 5,49 A$

Para o cálculo da corrente de pico no diodo D_3 (i_{D3pk}), foi considerada a equação (3.101), cuja tensão equivalente é composta pela diferença de potencial do capacitor V_{Ca} igual a V_{C2} e V_{Cb} igual a V_{C3}. Com uma queda de tensão, V_p, causada pela chave S e o diodo D₂, que somadas serão igual a 0,24 V, constatada na simulação do conversor. Assim:

$$i_{D3pk} = -(-1,30). \sqrt{\frac{3,4.10^{-6}}{0,16.10^{-6}}}$$

 $i_{D3pk} = 5,99 A$

Para o cálculo dos limites em que a razão cíclica (D) e seu complemento (1-D) sejam válidos usaremos respectivamente as equações (3.102) e (3.103).

$$\pi.\sqrt{3,4.10^{-6}.0,16.10^{-6}} \le D.10.10^{-6}$$

 $D \ge 0,23$

 $\pi.\sqrt{3,4.10^{-6}.0,16.10^{-6}} \le (1-D).10.10^{-6}$

 $D \leq 0,77$

Assim concluímos que o período válido para a razão cíclica (D) foi:

 $0,\!23 \leq D \leq 0,\!77$
4.2. SIMULAÇÃO

Para demonstrar o comportamento do conversor proposto, foram apresentadas as principais formas de onda, usando o simulador PSPICE ®, versão 9.2, como observado na Figura 18.

Figura 18 – Simulação da tensão da chave S.

Para a simulação foram adotas as seguintes configurações:

✓ Para a modulação do sinal PWM foi utilizado o componente cujo nome na biblioteca do programa é VPULSE, configurado para a tensão máxima ser 15 V (tensão suficiente para saturar o MOSFET) e a mínima ser 0 V, com um tempo de subida e de descida igual a 200 ns;

✓ A frequência de operação foi fixada em 100 kHz;

✓ A razão cíclica em 0,7494;

✓ O código da biblioteca do MOSFET utilizado é IRFZ35;

✓ A indutância dos indutores L_i, L_o e L_s são respectivamente 58,93 µH, 559,31 µH e 0,247 µH e não são configurados como componentes ideais;

✓ Como na prática os diodos D_1 , D_2 e D_3 são do tipo schottky, os diodos utilizados na simulação são ideais e seu código na biblioteca é DBREAK;

✓ As capacitâncias dos capacitores C₁, C₂ e C₃ possuem o mesmo valor de 6,8 μ F, e não são ideais, assim como o capacitor de filtro, C_o, que possui uma capacitância de 47 μ F;

✓ A tensão de entrada vem do componente VDC com um valor de 30 V;

 \checkmark A resistência da carga possui 240,45 Ω;

✓ O valor dos indutores Li e Lo foram adquiridos a partir dos cálculos que foram apresentados adiante e o valor do indutor Ls foi obtido a partir da implementação do circuito;

Na Figura 19, está representada a forma de onda da tensão na chave S a partir da qual se podem obter os seguintes valores:

- V_S = 30,08 V (tensão média na chave S);
- V_{Sef} = 62,06 V (tensão eficaz na chave S);

• V_{Spk} = 133,83 V (tensão de pico na chave S).

Figura 19 – Simulação da tensão da chave S.

Na Figura 20, está representada a forma de onda da corrente na chave S a partir da qual se podem obter os seguintes valores:

- i_S = 8,12 A (corrente média na chave S);
- i_{Sef} = 9,22 A (corrente eficaz na chave S);
- i_{Spk} = 12,99 A (corrente de pico na chave S).

Figura 20 – Simulação da corrente na chave S.

Na Figura 21, está representada a forma de onda da tensão na carga a partir da qual se podem obter os seguintes valores:

- $Vc_o = 230,152 V$ (tensão na carga).
- Vc_{oM} = 230,157 V (tensão máxima na carga).

• Vcom = 230,146 V (tensão mínima na carga).

Figura 21 – Simulação da tensão na carga.

Na Figura 22, está representada a forma de onda da tensão no capacitor C₁ a partir da qual se podem obter os seguintes valores:

- V_{C1} = 131,12 V (tensão média no capacitor C₁);
- V_{C1ef} = 131,14 V (tensão eficaz no capacitor C₁);
- V_{C1M} = 132,63 V (tensão máxima no capacitor C₁);
- V_{C1m} = 130,14 V (tensão mínima no capacitor C₁).

Figura 22 – Simulação da tensão no capacitor C1.

Na Figura 23, está representada a forma de onda da tensão no diodo C_2 a partir da qual se podem obter os seguintes valores:

- V_{C2} = 129,47 V (tensão média no capacitor C₂);
- V_{C2ef} = 129,49 V (tensão eficaz no capacitor C₂);
- V_{C2M} = 130,00 V (tensão máxima no capacitor C₂);

• V_{C2m} = 128,89 V (tensão mínima no capacitor C₂).

Figura 23 – Simulação da tensão no capacitor C2.

Na Figura 24, está representada a forma de onda da tensão no diodo C_3 a partir da qual pode-se obter os seguintes valores:

- V_{C3} = 130,12 V (tensão média no capacitor C₃);
- V_{C3ef} = 130,14 V (tensão eficaz no capacitor C₃);
- V_{C3M} = 130,43 V (tensão máxima no capacitor C₃);
- V_{C3m} = 129,52 V (tensão mínima no capacitor C₃).

Figura 24 – Simulação da tensão no capacitor C₃.

Na Figura 25, está representada a forma de onda da corrente no diodo D_1 a partir da qual se podem obter os seguintes valores:

- i_{D1} = 959,64 mA (corrente média no diodo D₁);
- i_{D1ef} = 2,37 A (corrente eficaz no diodo D₁);

• $i_{D1pk} = 11,13 \text{ A}$ (corrente de pico no diodo D₁).

Figura 25 – Simulação da corrente no diodo D₁.

Na Figura 26, está representada a forma de onda da corrente no diodo D_2 a partir da qual se podem obter os seguintes valores:

- i_{D2} = 960,1 mA (corrente média no diodo D₂);
- i_{D2ef} = 2,03 A (corrente eficaz no diodo D₂);
- i_{D2pk} = 5,41 A (corrente de pico no diodo D₂).

Figura 26 – Simulação da corrente no diodo D₂.

Na Figura 27, está representada a forma de onda da corrente no diodo D_3 a partir da qual se podem obter os seguintes valores:

- i_{D3} = 960,28 mA (corrente média no diodo D₃);
- i_{D3ef} = 2,21 A (corrente eficaz no diodo D₃);

• $i_{D3pk} = 5,96 \text{ A}$ (corrente de pico no diodo D_3).

Figura 27 – Simulação da corrente no diodo D₃.

Na Figura 28, está representada a forma de onda da tensão no diodo D_1 a partir da qual se podem obter os seguintes valores:

- V_{D1} = 100,68 V (tensão média no diodo D₁);
- V_{D1ef} = 114,28 V (tensão eficaz no diodo D₁);
- $V_{D1pk} = 131,76V$ (tensão de pico no diodo D_1).

Figura 28 – Simulação da tensão no diodo D₁.

Na Figura 29, está representada a forma de onda da tensão no diodo D₂ a partir da qual se podem obter os seguintes valores:

- V_{D2} = 28,91 V (tensão média no diodo D₂);
- V_{D2ef} = 60,96 V (tensão eficaz no diodo D₂);

• V_{D2pk} = 130,10 V (tensão de pico no diodo D₂).

Na Figura 30, está representada a forma de onda da tensão no diodo D_3 a partir da qual se podem obter os seguintes valores:

- V_{D3} = 99,77 V (tensão média no diodo D₃);
- V_{D3ef} = 113,3 V (tensão eficaz no diodo D₃);
- V_{D3pk} = 130,36 V (tensão de pico no diodo D₃).

Figura 30 – Simulação da tensão no diodo D₃.

Na Figura 31, está representada a forma de onda da corrente no indutor L_i a partir da qual se podem obter os seguintes valores:

- i_{Li} = 8,14 A (corrente média no indutor L_i);
- i_{Lief} = 8,23 A (corrente eficaz no indutor L_i);
- i_{LiM} = 10,06 A (corrente máxima no indutor L_i);
- i_{Lim} = 6,24 A (corrente mínima no indutor L_i).

Figura 31 – Simulação da corrente no indutor L_i.

Na Figura 32, está representada a forma de onda da corrente no indutor L_o a partir da qual se podem obter os seguintes valores:

- iLo = 955,90 mA (corrente média no indutor Lo);
- i_{Loef} = 1,05 A (corrente eficaz no indutor L_o);
- i_{LoM} = 1,15 A (corrente máxima no indutor L_o);
- i_{Lom} = 751,30 mA (corrente mínima no indutor L_o).

Figura 32 – Simulação da corrente no indutor L_o.

Na Figura 33, está a representação das formas de onda das tensões nos capacitores C_1 , C_2 e C_3 .

Figura 33 – Simulação das tensões nos capacitores C1, C2 e C3.

Na Figura 34, está a representação das formas de onda de tensão e corrente no diodo D₁, simultâneas com as formas de onda de tensão e corrente na chave S.

Figura 34 – Simulação da tensão e corrente na chave S e no diodo D1.

Na Figura 35, estão à representação das formas de onda de tensão e corrente no diodo D₂, simultâneas com as formas de onda de tensão e corrente no diodo D₃.

Figura 35 – Simulação da tensão e corrente no diodo D₂ e no diodo D₃.

Na Figura 36, estão à representação das formas de onda de tensão e corrente na chave S e tensão no capacitor C_o .

Figura 36 – Simulação da tensão e corrente na chave S e tensão no Co.

4.3. IMPLEMENTAÇÃO

Na implementação, com um esquemático da implementação na Figura 37, foi utilizado como drive para a modulação do sinal PWM o circuito integrado IR2110 controlado pelo Tiva™ C Series TM4C123GLX LaunchPad, conforme pode ser visto na Figura 38.

Figura 37 – Esquemático da implementação.

O microcontrolador foi escolhido devido à sua velocidade de processamento de 80 Mhz, o que garante uma maior precisão na escolha da razão cíclica desejada, e também, devido à facilidade de utilização dos botões anexos, interface necessária para o controle manual da tensão de saída do conversor proposto, já que este está sendo estudado em malha aberta.

Este microcontrolador possui terminais para conexão que facilita o seu acoplamento a placas universais por encaixe, e portas USB, que permite transferir diretamente o código feito em computadores. Possui módulo de hibernação para baixo consumo. É alimentado em 5 V, e possui fonte interna de 3,3 V para alimentar módulos e sensores auxiliares, dependendo da aplicação. Mais especificações foram apresentadas abaixo:

- Barramento de dados 32 bits;
- Memória flash 256 kb;
- System Sram 32 kb;
- EEPROM 2 kb;
- Módulos PWM 16;
- Temperatura de operação -40 a 85 °C;
- Temporizadores Watchdog 2.

Para a implementação foram adotas as seguintes configurações:

 \checkmark O drive modula um sinal de 0 a 15 V a 100 kHz, com um tempo de subida de 120 ns e um tempo de descida de 94 ns.

✓ A razão cíclica foi fixada em 0,78 para atender as especificações estabelecidas e pode ser visto na Figura 39.

✓ A chave escolhida é o MOSFET IRFP4768Pbf, que suporta corrente de até 93 A a tensão de até 250 V, sua resistência interna varia de 14,5 mΩ a 17,5 mΩ.

✓ A indutância dos indutores L_i , L_o são respectivamente 58,5 µH, 563,9 µH e a indutância L_s medida foi 0,247 µH.

✓ Os diodos D_1 , D_2 e D_3 são diodos schottky com o código IDH16S60C que suportam uma corrente de até 16 A.

✓ Os capacitores C₁, C₂ e C₃ são de poliéster com uma capacitância de 6,8 μ F que suportam até 250 V.

 \checkmark O capacitor de filtro é eletrolítico de 47 μF que suporta até 250 V.

✓ A carga utilizada foi um reostato que varia até 300 Ω, e foi ajustado com a utilização de um wattímetro até que a potência estabilizasse em 220 W devido à resistência variar pelo aumento de temperatura.

✓ A fonte utilizada estava regulada para garantir que a tensão de entrada do circuito fosse fixa em 30 V para garantir a qualidade dos resultados obtidos.

A Figura 40 ilustra o circuito utilizado para os testes que foram apresentados.

Figura 38 - Foto do drive PWM utilizado.

Figura 39 - Razão cíclica do ponto de operação.

Figura 40 - Foto da placa montada para o estudo.

4.3.1. Projeto dos indutores L_i e L_o

Para o projeto dos indutores foi utilizado como base de cálculo o trabalho, "Projeto Físico de Indutores e Transformadores" de Alves e Carlos (2002). • Projeto do indutor L_i

Para se escolher o núcleo utilizado, deve ser feito o seguinte cálculo, considerando que a densidade de fluxo magnético (B_o) é igual a 0,28 T, a densidade de corrente (J_o) é igual a 350 A/cm² e o fator de enrolamento do indutor (k) é igual a 70 % (k=0,7):

 $L_{i} \approx 59 \mu H$ $AP = \frac{L_{i} \cdot i_{Lipk}^{2} \cdot 10^{4}}{k \cdot B_{o} \cdot J_{o}}$ $AP = \frac{59 \cdot 10^{-6} \cdot 10^{2} \cdot 10^{4}}{0,7.0,28.350}$ $AP = 0,86 \ cm^{4}$

$$N_e = \frac{L_i \cdot i_{Lipk} \cdot 10^4}{B_o \cdot Ae}$$
$$N_e = \frac{59 \cdot 10^{-6} \cdot 10 \cdot 10^4}{0,28.1,81}$$

 $N_e = 11,64 \approx 12$ espiras.

Para o cálculo do entreferro tem-se:

$$L_g = \frac{N_e^2 \cdot 4\pi \cdot 10^{-7} \cdot Ae \cdot 10^{-2}}{2 \cdot L_i}$$

$$L_g = \frac{12^2 \cdot 4\pi \cdot 10^{-7} \cdot 1,81 \cdot 10^{-2}}{2.59 \cdot 10^{-6}}$$
$$L_g = 0,028 \text{ cm}$$

Para reduzir as perdas no indutor, foi utilizado o fio litz (a bitola deste fio, A_{cond}, pode ser comparada ao 17 AWG) e para atender a densidade de corrente definida, é necessário calcular o número de condutores em paralelo, assim:

$$N_{cond.} = \frac{i_{Lief}}{A_{cond.} \cdot J_o}$$

$$N_{cond.} = \frac{8,24}{0,01.350}$$

 $N_{cond.} = 2,4 \approx 3$ condutores

Na Figura 41, tem-se uma imagem do indutor projetado com seu respectivo valor de indutância.

Figura 41 - Foto do indutor Li projetado.

• Projeto do indutor Lo

Para se escolher o núcleo utilizado, deve ser feito o seguinte cálculo, considerando que a densidade de fluxo magnético ($_{Bo}$) é igual a 0,28 T, a densidade de corrente (J_o) é igual a 350 A/cm² e o fator de enrolamento do indutor (k) é igual a 70 % (0,7):

L_i ≈ 560µH

$$AP = \frac{L_i \cdot i_{Lipk}^2 \cdot 10^4}{k \cdot B_o \cdot J_o}$$

$$AP = \frac{560.10^{-6}.1,15^2.10^4}{0,7.0,28.350}$$

$$AP = 0,11 \ cm^4$$

Devido ao fator de ocupação, o núcleo escolhido foi o E-30/07. O cálculo do número de espiras deve ser feito da seguinte forma, considerando a área da coluna central (Ae) do núcleo escolhido igual a 0,6 cm²:

$$N_e = \frac{L_i \cdot i_{Lipk} \cdot 10^4}{B_o \cdot Ae}$$
$$N_e = \frac{560 \cdot 10^{-6} \cdot 1,15 \cdot 10^4}{0,28.0,6}$$

 $N_e = 38,34 \approx 39$ espiras

Para o cálculo do entreferro tem-se:

$$L_g = \frac{N_e^{2.4\pi \cdot 10^{-7} \cdot Ae \cdot 10^{-2}}}{2 \cdot L_i}$$
$$L_g = \frac{38^{2.4\pi \cdot 10^{-7} \cdot 0.6 \cdot 10^{-2}}}{2.560 \cdot 10^{-6}}$$
$$L_g = 0.01 \text{ cm}$$

Para reduzir as perdas no indutor, o condutor foi escolhido através da expressão do valor da profundidade de penetração:

$$\Delta = \frac{7,5}{\sqrt{f}} = \frac{7,5}{\sqrt{100.10^3}} = 0,024$$

Como o condutor não deve possuir um diâmetro superior ao valor 2∆, o condutor escolhido foi o 24 AWG. Para atender a densidade de corrente definida, é necessário calcular o número de condutores em paralelo, assim:

$$N_{cond.} = \frac{i_{Lief}}{A_{cond.} \cdot J_o}$$

$$N_{cond.} = \frac{1,05}{0,00204.350}$$

 $N_{cond.} = 1,47 \approx 2 \text{ condutores}$

Na Figura 42, tem-se uma imagem do indutor projetado com seu respectivo valor de indutância.

Figura 42 - Foto do indutor Lo projetado.

4.3.2. Resultados obtidos na implementação

Na Figura 43, têm-se a forma de onda da tensão (linha amarela) e da corrente (linha roxa) na chave S e a forma de onda da tensão de saída do conversor proposto (linha azul). Uma observação interessante desta figura é que a tensão na chave é consideravelmente menor que a tensão de saída, o que contribui para um melhor rendimento do conversor proposto.

Figura 43 - Detalhamento da forma de onda da tensão e da corrente na chave.

Na Figura 44, tem-se maior detalhamento da comutação na chave.

Figura 44 - Detalhe da comutação na chave.

Figura 45 – Principais formas de onda da chave S e do diodo D₁.

Na Figura 46, é possível observar a forma de onda da corrente nos diodos D_2 e D_3 e suas respectivas tensões, a linha amarela e roxa correspondem ao diodo D_2 e as linhas azul e verde ao diodo D_3 .

Figura 46 - Formas de onda dos diodos D₁ e D₂.

Na Figura 47, é possível observar a forma de onda da corrente nos indutores L_i (linha roxa) e L_o (linha verde).

Figura 47 - Formas de onda no indutor Li e Lo.

Na Figura 48, tem-se a ondulação da corrente no indutor L_i e na Figura 49 tem-se a ondulação da corrente no indutor L_o .

Figura 48 - Ondulação da corrente no indutor L_o.

Figura 49 - Ondulação da corrente no indutor L_i.

Na Figura 50, tem-se o detalhamento dos valores da corrente eficaz, média e de pico na chave S.

Figura 50 - Detalhamento da corrente na chave S.

Na Figura 51, tem-se o detalhamento dos valores da corrente eficaz, média e de pico no diodo D₁.

Figura 51 - Detalhamento da corrente no diodo D₁.

Na Figura 52, tem-se o detalhamento dos valores da corrente eficaz, média e de pico no diodo D_2 .

Figura 52 - Detalhamento da corrente no diodo D₂.

Na Figura 53, é possível observar o tempo de condução do diodo D_2 para se obter a indutância da trilha.

Figura 53 - Detalhe do período de condução do diodo D2.

Isolando L_S da equação (3.67) e substituindo os valores do período e da capacitância equivalente, se tem:

$$T_{1} = 2.\pi \cdot \sqrt{L_{s} \cdot C_{eq}}$$
$$L_{s} = \frac{\left(\frac{T_{1}}{2.\pi}\right)^{2}}{C_{eq}}$$
$$L_{s} = \frac{\left(\frac{2.2,88.10^{-6}}{2.\pi}\right)^{2}}{3,4.10^{-6}}$$

$$L_s = 0,247 \ \mu H$$

Na Figura 54, tem-se o detalhamento dos valores da corrente eficaz, média e de pico no diodo D_3 .

Figura 54 - Detalhamento da corrente no diodo D₃.

Na Figura 55, é possível observar o tempo de condução do diodo D₃ para se obter a indutância da trilha.

Figura 55 - Detalhamento da corrente no diodo D₃.

Isolando L_S da equação (3.67) e substituindo os valores do período e da capacitância equivalente, se tem:

$$T_1 = 2.\pi . \sqrt{L_s.C_{eq}}$$

$$L_{s} = \frac{\left(\frac{T_{1}}{2.\pi}\right)^{2}}{C_{eq}}$$
$$L_{s} = \frac{\left(\frac{2.2,32.10^{-6}}{2.\pi}\right)^{2}}{3,4.10^{-6}}$$

 $L_s = 0,16 \, \mu H$

Na Figura 56, tem-se a forma de onda da tensão nos capacitores C_1 (linha amarela, CH1), C_2 (linha azul, CH2) e C_3 (linha roxa, CH3), com o detalhamento dos seus valores médios.

Na Figura 57, tem-se a forma de onda da tensão no capacitor C_1 , com o detalhamento do sua ondulação.

Figura 57 - Forma de onda da tensão no capacitor C₁.

Na Figura 58, tem-se a forma de onda da tensão no capacitor C_2 , com o detalhamento do sua ondulação.

Figura 58 - Forma de onda da tensão no capacitor C₂.

Na Figura 59, tem-se a forma de onda da tensão no capacitor C_3 , com o detalhamento do sua ondulação.

Figura 59 - Forma de onda da tensão no capacitor C₃.

Na Figura 60, tem-se o gráfico do ganho estático x razão cíclica. A curva do ganho estático implementado seguiu muito próximo do esperado, porém divergiu para D igual a zero. Uma explicação para está observação é que quando a chave está aberta, a energia armazenada em C₁ não é transferida para os demais componentes. Verificou-se também que este conversor é elevador de tensão desde que a razão cíclica aplicada seja maior que zero.

Figura 60 – Gráfico do ganho estático x razão cíclica.

Na Figura 61, tem-se o gráfico do rendimento x potência do conversor proposto. Neste gráfico é possível observar que o maior rendimento alcançado ocorre em 100 W, com um pico de 96 % de rendimento. E para o ponto de operação proposto anteriormente (220 W), foi medido um rendimento de 94,61 %.

Figura 61 – Gráfico do rendimento versus potência do conversor proposto.

Na Tabela 4, são comparados os valores simulados, cálculos (obtidos através das equações) e implementados para o conversor proposto.

O erro de 9,21 % na corrente do indutor L_i, i_{Li}, foi devido a perda de potência dissipada dos componentes do conversor, que se reflete também no valor de sua corrente eficaz, i_{Lief}, corrente na chave S, i_S, e na corrente eficaz da chave S, i_{Sef}.

Na oscilação de tensão no capacitor C₃, ΔV_{C3} , pode-se atribuir o erro relativo de 9,93 % a dissipação de potência na chave S e nos diodos.

E o erro relativo entre os valores simulados e os valores implementados são principalmente dados pelas incertezas nas aquisições feitas pelo osciloscópio.

	Simulação	Calculado	Implementado	Erro	Erro	Erro
				S [®] vs C [®]	S ⁸ vs I ¹⁰	C ⁸ vs I ¹⁰
G	7,670	7,670	7,700	0,00%	0,39%	-0,39%
D	0,749	0,770	0,780	2,75%	4,08%	-1,30%
V _{Ro} (V)	230,000	230,000	231,000	0,00%	0,43%	-0,43%
R_o (Ω)	240,450	240,450	240,360	0,00%	-0,04%	0,04%
i _{Ro} (A)	-0,956	-0,960	-0,902	0,43%	-5,64%	6,04%
i _{Lo} (A)	0,956	0,960	0,902	0,43%	-5,64%	6,04%
i _{Li} (A)	8,140	7,390	8,520	-9,21%	4,67%	-15,29%
Δi_{Lo} (A)	0,400	0,410	0,520	2,50%	30,00%	-26,83%
Δi _{Li} (A)	3,820	3,920	4,080	2,62%	6,81%	-4,08%
i _{Loef} (A)	1,050	0,970	-	-7,62%	-	-
i _{Lief} (A)	8,230	7,480	-	-9,11%	-	-
V _{Co} (V)	230,152	230,870	231,000	0,31%	0,37%	-0,06%
V _{C1} (V)	131,120	130,430	133,000	-0,53%	1,43%	-1,97%
V _{C2} (V)	129,470	130,430	132,000	0,74%	1,95%	-1,20%
V _{C3} (V)	132,120	130,430	131,000	-1,28%	-0,85%	-0,44%
$\Delta V_{Co} \left(V \right)$	0,011	0,011	-	0,00%	-	-
ΔV_{C1} (V)	2,490	2,500	5,200	0,40%	108,84%	-108,00%
ΔV_{C2} (V)	1,110	1,090	3,600	-1,80%	224,32%	-130,28%
ΔV_{C3} (V)	1,410	1,550	3,600	9,93%	155,32%	-132,26%
i _s (A)	8,120	7,440	8,120	-8,37%	0,00%	-9,14%
i _{Sef} (A)	9,220	7,790	9,160	-15,51%	-0,65%	-17,59%
i _{D1} (A)	0,960	1,040	0,924	8,37%	-3,71%	11,15%
i _{D2} (A)	0,960	1,010	0,919	5,20%	-4,28%	9,01%
i _{D3} (A)	0,960	1,050	0,912	9,34%	-5,03%	13,14%
i _{D1pk} (A)	11,130	10,520	5,920	-5,48%	-46,81%	43,73%
i _{D2pk} (A)	5,410	5,490	5,440	1,48%	0,55%	0,91%
i _{D3pk} (A)	5,960	5,990	6,160	0,50%	3,36%	-2,84%

Tabela 4 - Comparação dos resultados

- ⁸ S Valores retirados da simulação.
- ⁹ C Valores calculados.
- ¹⁰ I Valores obtidos na implementação.

4.3. CONCLUSÃO

Na Tabela 4 também pode ser observado os erros relativos entre os valores simulados e calculados, em que podemos obter a aproximação do equacionamento com a simulação, uma vez que o equacionamento não leva em consideração a potência dissipada pelos componentes do conversor proposto.

5 CONCLUSÃO GERAL

Este trabalho contribuiu com o desenvolvimento de uma nova topologia de conversor CC-CC com elevado ganho estático, com característica de entrada e saída como fonte de corrente, o que é um ponto positivo para a aplicação em painéis fotovoltaicos.

Nos capítulos iniciais, foi contextualizada a necessidade deste trabalho do ponto de vista de geração fotovoltaica, frente à matriz energética brasileira e após os autores buscaram apresentar a base teórica para fundamentar as análises detalhadas de corrente e tensão nos principais componentes do conversor proposto.

O trabalho atingiu os objetivos propostos e os resultados experimentais e simulados comprovaram os estudos teóricos realizados, tornando possível dimensionar os componentes do conversor.

Uma observação importante, é que o nível de tensão na chave do conversor proposto é menor que o nível de na saída, sendo possível escolher uma chave com menor resistência interna, o que impacta positivamente no rendimento.

O conversor proposto mostrou-se consideravelmente eficaz, proporcionando um rendimento de 94,61 % fornecendo 220 W à carga, o que torna a sua aplicação em sistemas de geração fotovoltaica muito proveitosa, uma vez que a potência dissipada pelos componentes do conversor foi de 12,5 W, sendo necessário o painel fotovoltaico fornecer os 232,5 W mais as perdas relacionadas ao inversor, assim sendo, um painel que gera 245 W (valor comercial muito comum) pode alimentar uma carga que consuma por volta de 220 W.

Como recomendação para trabalhos futuros, é interessante considerar perdas no equacionamento para garantir maior precisão nos valores obtidos, e principalmente, estudar o conversor com mais células elevadoras de tensão, pois o ganho estático é maior para o mesmo nível de tensão na chave, ou até para trabalhar em níveis de tensão mais elevados em relação ao deste trabalho, o que possibilitaria o desenvolvimento de um inversor de potência gerando tensão senoidal com picos de 220 V ou outras tensões comumente fornecidas pelas concessionárias.

Seguindo está linha de raciocínio, buscar razões para o acréscimo no ganho estático devido a valores maiores de indutância L_s (fato observado durante a coleta de material da implementação) podem ser de grande importância.

Estudar técnicas para tornar a comutação na chave suave pode ser um fator importante para um incremento no rendimento do conversor. E também a possibilidade de um acoplamento magnético entre os indutores L_i e L_S, possibilitando uma redução da tensão de pico na chave.

REFERÊNCIAS

ANEEL, **Capacidade de geração do brasil.** Disponível em http://www.aneel.gov.br/aplicacoes/capacidadebrasil/capacidadebrasil.cfm. Acesso em: 28 mai. 2014.

_____, Informações técnicas, geração distribuída. Disponível em http://www.aneel.gov.br/area.cfm?idArea=757&idPerfil=2&idiomaAtual=0. Acesso em: 28 mai. 2014.

ALVES, Ricardo L.; FONT, Carlos H. I. **Projeto físico de indutores e transformadores.** Março 2002. 11 f. departamento de Engenharia Elétrica – Centro Tecnológico Universidade Federal de Santa Catarina. Florianópolis. 2002.

BARBI, Ivo. Eletrônica de potência: conversores CC-CC básicos não isolados.
 2^a ed. Florianópolis: Edição dos Autores, 2006. 377 p.

CORTEZ, Daniel F. **Família de retificadores híbridos unidirecionais três-níveis a capacitor chaveado com elevado fator de potência.** 2014. 150 f. Tese (Doutorado em Engenharia elétrica) – Universidade Federal de Santa Catarina. Florianópolis. 2014.

DREHER, Jacson R. **Conversores Boost-Flyback integrados para aplicações com alto ganho de tensão.** 2012. 188 f. Dissertação (Mestrado em Engenharia elétrica) – Universidade Tecnológica Federal do Paraná. Pato Branco. 2012.

ERICKSON, Robert W. **Fundamentals of Power Electronics.** 2^a ed. Secaucus, NJ, USA: Kluwer Academic Publishers, 2000. 900 p.

IBGE, **Indicadores sociais mínimos.** Disponível em http://www.ibge.gov.br/home/estatistica/populacao/condicaodevida/indicadoresminimos/tabela3.shtm>. Acesso em: 28 mai. 2014.

_____, **Censo demográfico 2000 – resultados do universo.** Disponível em http://www.ibge.gov.br/home/estatistica/populacao/censo2000/tabelabrasil111.shtm Acesso em: 28 mai. 2014.

_____, **Estimativas de população.** Disponível em http://www.ibge.gov.br/home/estatistica/populacao/estimativa2013/estimativa_dou.s htm>. Acesso em: 28 mai. 2014.

POMILIO, José A. **Conversores CC-CC elevadores de tensão.** Disponível em ">http://www.dsce.fee.unicamp.br/~antenor/>. Acesso em: 28 mai. 2014.

PRUDENTE, Marcos; PFITSCHER, Luciano L.; EMMENDOERFER, Gustavo; ROMANELI, Eduardo F.; GULES, Roger. Voltage Multiplier Cells Applied to Non-Isolated DC-DC Converters. **IEEE Power Electronics**, Março 2008. vol. 23, no. 2, p.871-887.

SILVA, André N. M. Sistemas de conversão de energia solar fotovoltaica. 2008.
125 f. Dissertação (Mestrado em Engenharia eletrotécnica) – Faculdade de Engenharia da Universidade do Porto. Porto. 2008.

PADILHA, Felipe J. C. **Topologias de conversores CC-CC não isolados com saídas simétricas para sistemas.** 2011. 175 f. Tese (Doutorado em Engenharia Elétrica) – Universidade Federal do Rio de Janeiro. Rio de Janeiro. 2011. APÊNDICE

APÊNDICE A – Equacionamento do conversor Cúk

Para a análise do equacionamento deste conversor foi utilizado como base à referência bibliografia (ERICKSON, 2000).

As análises a seguir foram fundamentadas considerando condições ideais de funcionamento dos componentes, ou seja, desconsiderando perdas, tensão média no indutor igual a zero e sem quedas de tensão no diodo e transistor, sem correntes de recuperação reversa, assim como a transição de estado causado pela chave comutadora foi abordada de forma instantânea conforme demostrado na Figura 62.

Figura 62 – Representação do conversor Cúk com chaveamento ideal.

Com a chave do conversor na posição 1, equivalente a segunda etapa de funcionamento do Cúk, mostrada na Figura 63, pode-se extrair as seguintes considerações:

Figura 63 – Representação do conversor Cúk com a chave na posição 1.
Pela lei de Kirchhoff das tensões:

$$\begin{cases} E - V_{Li} = 0\\ V_{Li} = E \end{cases}$$
(1)

$$\begin{cases} V_{Co} - V_{Lo} - V_{C} = 0 \\ V_{Lo} = V_{C} - V_{Co} \end{cases}$$
(2)

$$\begin{cases} V_{Co} - V_{Ro} = 0 \\ V_{Co} = V_{Ro} \end{cases}$$
(3)

Pela lei de Kirchhoff das correntes:

$$\begin{cases} i_C = -i_o \\ i_{Ro} = \frac{V_{Ro}}{R_o} \end{cases}$$
(4)

$$\begin{cases} i_{o} = i_{Co} + i_{Ro} \\ i_{Co} = i_{o} - \frac{V_{Ro}}{R_{o}} \end{cases}$$
(5)

Com a chave do conversor na posição 2, equivalente a primeira etapa de funcionamento do Cúk mostrada na Figura 64, pode-se extrair as seguintes considerações:

Pela lei de Kirchhoff das tensões:

$$\begin{cases} E - V_{Li} - V_C = 0 \\ V_{Li} = E - V_C \end{cases}$$
(6)

Figura 64 – Representação do conversor Cúk com a chave na posição 2.

$$\begin{cases} V_{Co} + V_{Lo} = 0 \\ V_{Lo} = -V_{Co} \end{cases}$$
(7)

$$\begin{cases} V_{Co} - V_{Ro} = 0 \\ V_{Co} = V_{Ro} \end{cases}$$
(8)

Pela lei de Kirchhoff das correntes:

$$\begin{cases}
i_C = i_{Li} \\
i_{Ro} = \frac{V_{Ro}}{R_o} \\
V_{Ro} = V_{Co}
\end{cases}$$
(9)

$$\begin{cases} i_{o} = i_{Co} + i_{Ro} \\ i_{Co} = i_{o} - \frac{V_{Co}}{R_{o}} \end{cases}$$
(10)

Na Figura 65 tem-se o gráfico para: (a) tensão no indutor L_i , (b) tensão no indutor L_o , (c) corrente no capacitor C e (d) corrente do capacitor C_o .

A análise gráfica dos componentes do conversor resulta nas seguintes equações:

$$\begin{cases} (D.T).E + ((1-D).T).(E - V_C) = 0 \\ D.E + (1-D).(E - V_C) = 0 \end{cases}$$
(11 - a)

$$\begin{cases} (D.T). (V_{Co} - V_C) + ((1 - D).T). (-V_{Co}) = 0 \\ D. (V_{Co} - V_C) - (1 - D). V_{Co} = 0 \end{cases}$$
(11 - b)

$$\begin{cases} (D.T).(-i_o) + ((1-D).T).i_{Li} = 0 \\ -D.i_o + (1-D).i_{Li} = 0 \end{cases}$$
(11 - c)

$$\begin{cases} (D.T + (1 - D).T) \left(i_o - \frac{V_{Co}}{R_o} \right) = 0 \\ (D + (1 - D)) \left(i_o - \frac{V_{Co}}{R_o} \right) = 0 \end{cases}$$
(11 - d)

Figura 65 – Gráficos dos componentes do conversor Cúk: (a) tensão no indutor V_{Li} , (b) tensão do indutor V_{Lo} , (c) corrente no capacitor i_c e (d) corrente no capacitor i_{Co} .

Os sistemas resultam nas seguintes igualdades:

• Isolando V_C da equação (11 - a), tem-se:

$$V_C = \frac{E}{(1-D)} \tag{12}$$

• Isolando V_{Co} da equação (11 - b), tem-se:

$$V_{Co} = \frac{D}{(1-D)}.E$$
(13)

• Isolando i_{Li} da equação (11 - c), tem-se:

$$i_{Li} = -\left(\frac{D}{(1-D)}\right)^2 \cdot \frac{E}{R_o} \tag{14}$$

• Isolando i_o da equação (11 - d), tem-se:

$$i_o = \frac{D}{(1-D)} \cdot \frac{E}{R_o} \tag{15}$$

A equação do ganho estático (G), portanto:

$$G = \frac{V_{Co}}{E}$$

$$G = \frac{D}{1 - D}$$
(16)

Para o cálculo da ondulação da corrente i_{Li} , i_{Lo} e da tensão V_C , causado pelo chaveamento (representado pela Figura 66), tem-se:

• Primeira etapa (Chave na posição 2):

$$\frac{di_{Li}(t)}{dt} = \frac{V_{Li}(t)}{L_i} = \frac{E - V_C}{L_i}$$
(17)

$$\frac{di_{o}(t)}{dt} = \frac{V_{Lo}(t)}{L_{o}} = -\frac{V_{Co}}{L_{o}}$$
(18)

$$\frac{dV_C(t)}{dt} = \frac{i_C(t)}{C} = \frac{i_{Li}}{C}$$
(19)

• Segunda etapa (Chave na posição 1):

$$\frac{di_{Li}(t)}{dt} = \frac{V_{Li}(t)}{L_i} = \frac{E}{L_i}$$
(20)

$$\frac{di_o(t)}{dt} = \frac{V_{Lo}(t)}{L_o} = \frac{V_C - V_{Co}}{L_o}$$
(21)

$$\frac{dV_C(t)}{dt} = \frac{i_C(t)}{C} = -\frac{i_o}{C}$$
(22)

 \bullet Calculando Δi_{Li} usando expressão geral da reta, tem-se:

$$(i_{Li} + \Delta i_{Li}) - (i_{Li} - \Delta i_{Li}) = \left(\frac{E}{L_i}\right) \cdot (D \cdot T - 0)$$

$$\Delta i_{Li} = \frac{E \cdot D \cdot T}{2L_i}$$
(23)

• Calculando Δi_{Lo} usando expressão geral da reta, tem-se:

$$(i_{Lo} + \Delta i_{Lo}) - (i_{Lo} - \Delta i_{Lo}) = \left(\frac{V_C - V_{Co}}{L_o}\right) \cdot (D \cdot T - 0)$$

$$\Delta i_{Lo} = \frac{(V_C - V_{Co}) \cdot D \cdot T}{2L_o}$$
(24)

Substituindo V_C e V_{Co} pelas equações (12) e (13) respectivamente, tem-se:

$$\Delta i_{Lo} = \frac{E.D.T}{2L_o} \tag{25}$$

 \bullet Calculando ΔV_C usando expressão geral da reta, tem-se:

$$(V_C + \Delta V_C) - (V_C - \Delta V_C) = \left(\frac{-i_o}{C}\right) \cdot (0 - D \cdot T)$$

$$2\Delta V_C = \left(\frac{-i_o}{C}\right)(-D.T)$$

$$2\Delta V_C = \frac{i_o}{C}.D.T$$
(26)

Substituindo i_o na equação (15), e isolando ΔV_C , tem-se:

Figura 66 – Gráficos dos componentes do conversor Cúk: (a) corrente no indutor i_{Li} , (b) corrente no indutor i_{Lo} e (c) tensão no capacitor V_c.

APÊNDICE B – Código fonte

Código para a operação do PWM:

#include <stdint.h>
#include <stdbool.h>
#include "inc/hw_types.h"
#include "driverlib/debug.h"
#include "driverlib/fpu.h"
#include "driverlib/pin_map.h"
#include "driverlib/rom.h"
#include "driverlib/rom.h"
#include "driverlib/sysctl.h"
#include "driverlib/uart.h"
#include "utils/uartstdio.h"
#include "buttons.h"
#include "PWMWrapper.h"

#ifdef DEBUG

void __error__(char *pcFilename, uint32_t ui32Line) {} #endif

int i;

int Release; int ButtonState;

int

main(void){ ROM_FPULazyStackingEnable(); ROM_SysCtlClockSet(SYSCTL_SYSDIV_4|SYSCTL_USE_PLL|SYSCTL_XTAL_16MHZ|SYSCTL_OSC_MAIN); ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF); ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB); ROM_GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_3); ROM_GPIOPinTypeGPIOOutput(GPIO_PORTB_BASE, GPIO_PIN_0);

PWMInit(100000); ButtonsInit(); Release=50;

while(1){

ButtonState = ButtonsPoll(0,0); switch(ButtonState & ALL_BUTTONS){ case RIGHT_BUTTON:{ if(Release < 8700){ Release++;

```
SysCtlDelay(SysCtlClockGet() / 18000);
                         }
                         break;
                }
                case LEFT_BUTTON:{
                         if(Release > 50){
                                   Release--;
                                   SysCtlDelay(SysCtlClockGet() / 25000);
                         }
                         break;
                }
                default:{
                }
       }
       SysCtlDelay(SysCtlClockGet() / 1000 );
       SetPWM(Release);
 }
}
```

Código para configuração do PWM:

```
#include <stdbool.h>
         #include <stdint.h>
         #include "driverlib/rom.h"
         #include "driverlib/sysctl.h"
         #include "inc/hw_memmap.h"
         #include "inc/hw_types.h"
         #include "inc/hw_ints.h"
         #include "driverlib/pwm.h"
         #include "driverlib/pin_map.h"
         #include "driverlib/gpio.h"
         uint32_t gPWMFrequency = 0;
         int aux;
         int duty;
         int aux1;
         void SetPWM(int32_t DutyCycle){
               aux = (SysCtlClockGet()/gPWMFrequency);
               duty = ((aux*DutyCycle)/10000);
               PWMPulseWidthSet(PWM0_BASE, PWM_OUT_0, duty);
         }
         void PWMInit(uint32_t Frequency_Hz) {
               ROM_SysCtlPeripheralEnable (SYSCTL_PERIPH_GPIOB);
               ROM_GPIOPinConfigure (GPIO_PB6_M0PWM0);
               ROM_GPIOPinTypePWM (GPIO_PORTB_BASE, GPIO_PIN_6);
               ROM_SysCtlPeripheralEnable (SYSCTL_PERIPH_PWM0);
               PWMGenConfigure(PWM0_BASE,
PWM GEN 0, PWM GEN MODE DOWN PWM GEN MODE NO SYNC/PWM GEN MODE DBG STOP);
       aux1 = (SysCtlClockGet()/Frequency_Hz);
               PWMGenPeriodSet(PWM0_BASE, PWM_GEN_0, aux1);
               gPWMFrequency = Frequency_Hz;
               PWMPulseWidthSet(PWM0_BASE, PWM_OUT_0, 0);
               PWMGenEnable(PWM0_BASE, PWM_GEN_0);
               PWMOutputState(PWM0_BASE, (PWM_OUT_0_BIT), true);
```

}