Use este identificador para citar ou linkar para este item: http://repositorio.utfpr.edu.br/jspui/handle/1/945
Registro completo de metadados
Campo DCValorIdioma
dc.creatorVieira Neto, Hugo-
dc.creatorNehmzow, Ulrich-
dc.date.accessioned2014-10-29T19:27:17Z-
dc.date.available2014-10-29T19:27:17Z-
dc.date.issued2005-
dc.identifier.citationVIEIRA NETO, Hugo; NEHMZOW, Ulrich. Automated exploration and inspection: comparing two visual novelty detectors. International Journal of Advanced Robotic Systems, Colchester, v. 2, n. 4, p. 355-362. 2005. Disponível em: <http://cdn.intechopen.com/pdfs/4153/InTech-Automated_exploration_and_inspection_comparing_two_visual_novelty_detectors.pdf>. Acesso em: 16 jul. 2013.pt_BR
dc.identifier.issn17298806-
dc.identifier.urihttp://repositorio.utfpr.edu.br/jspui/handle/1/945-
dc.description.abstractMobile robot applications that involve exploration and inspection of dynamic environments benefit, and often even are dependant on reliable novelty detection algorithms. In this paper we compare and discuss the performance and functionality of two different on-line novelty detection algorithms, one based on incremental Principal Component Analysis and the other on a Grow-When-Required artificial neural network. A series of experiments using visual input obtained by a mobile robot interacting with laboratory and real-world environments demonstrate and measure advantages and disadvantages of each approach.pt_BR
dc.languageengpt_BR
dc.relation.ispartofInternational Journal of Advanced Robotic Systemspt_BR
dc.relation.urihttp://cdn.intechopen.com/pdfs/4153/InTech-Automated_exploration_and_inspection_comparing_two_visual_novelty_detectors.pdfpt_BR
dc.rights.uriO autor pode arquivar a versão/PDF do editor. Disponível em: <http://www.sherpa.ac.uk/romeo/issn/1729-8806/pt/>. Acesso em: 17 jul. 2013.pt_BR
dc.subjectRobôs móveispt_BR
dc.subjectRobóticapt_BR
dc.subjectVisão por computadorpt_BR
dc.subjectRedes neurais (Computação)pt_BR
dc.subjectMobile robotspt_BR
dc.subjectRoboticspt_BR
dc.subjectComputer visionpt_BR
dc.subjectNeural networks (Computer science)pt_BR
dc.titleAutomated exploration and inspection: comparing two visual novelty detectorspt_BR
dc.typearticlept_BR
dc.publisher.localCuritibapt_BR
Aparece nas coleções:PCS - Artigos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
IJARS_Vieira Neto, Hugo_2005.pdf597,06 kBAdobe PDFThumbnail
Visualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons