Use este identificador para citar ou linkar para este item: http://repositorio.utfpr.edu.br/jspui/handle/1/74
Registro completo de metadados
Campo DCValorIdioma
dc.creatorBarboza, Angela Olandoski-
dc.date.accessioned2010-10-08T11:57:36Z-
dc.date.available2010-10-08T11:57:36Z-
dc.date.issued2005-
dc.identifier.citationBARBOZA, Angela Olandoski. Simulação e técnicas da computação evolucionária aplicadas a problemas de programação linear inteira mista. 2005. 217 f. Tese (Doutorado em Engenharia Elétrica e Informática Industrial) – Universidade Tecnológica Federal do Paraná, Curitiba, 2005.-
dc.identifier.urihttp://repositorio.utfpr.edu.br/jspui/handle/1/74-
dc.description.abstractPresently, companies live a reality of rapid economic transformations generated by globalization. The growth of the products and services international trade, the constant exchange of information and the cultural interchange challenge administrators to define new paths for their companies. This dynamics and the increasing competitiveness demand new knowledge and abilities from professionals. In this way, new technologies are researched in order to improve operational efficiency. The Brazilian oil industry in particular has invested in applied research, as well as on development and technological qualification to keep its competitiveness in the international market. Many are the problems that must still be studied in this production sector. Among these, and due their importance, the problems of products storage and transference can be pointed out. This work approaches a scheduling problem that involves diesel oil storage and distribution in an oil refinery. The Mixed Integer Linear Programming (MILP) techniques with representation in the discrete and continuous time were used. The models that were developed were solved by the LINGO 8.0 software, using the branch and bound algorithm. However, due to their combinatorial nature, the expended computational time used for thesolution was excessive. Thus, four new methodologies were developed: Hybrid Steady State Genetic Algorithm (HSSGA) and Transgenetic ProtoG Algorithm, both integrated to Linear Programming (LP), for the representation of discrete time; simulation with optimization using the Genetic Algorithm (GA) and simulation with optimization using the Transgenetic ProtoG Algorithm, for the representation of continuous time. The results obtained through several tests with these new methodologies have shown that they can reach good results in an acceptable computational time. The two techniques for the representation of discrete time have shown satisfactory performance in terms of quality of solution and computational time. Among these, the methodology that uses the Transgenetic ProtoG Algorithm showed the best results. Also, the simulator with optimization using GA and the one that used the Transgenetic ProtoG Algorithm for the representation of continuous time were adequate to substitute the resolution through PLIM, because they reach solutions with a reduced computational time when compared with the time used for the solution with branch and bound.-
dc.languageporpt_BR
dc.publisherCentro Federal de Educação Tecnológica do Paraná-
dc.rightsopenAccess-
dc.subjectProgramação linearpt_BR
dc.subjectProgramação inteirapt_BR
dc.subjectOtimização matemáticapt_BR
dc.subjectAlgorítmos genéticospt_BR
dc.subjectMétodos de simulaçãopt_BR
dc.subjectPetróleo - Refinariaspt_BR
dc.subjectAdministração da produção - Processamento de dadospt_BR
dc.subjectLinear programming-
dc.subjectInteger programming-
dc.subjectMathematical optimization-
dc.subjectGenetic algorithms-
dc.subjectSimulation methods-
dc.subjectPetroleum refinaries-
dc.subjectProduction management - Data processing-
dc.titleSimulação e técnicas da computação evolucionária aplicadas a problemas de programação linear inteira mistapt_BR
dc.typedoctoralThesispt_BR
dc.description.resumoAs empresas vivem hoje uma realidade de transformações econômicas advindas da globalização. O crescimento do comércio internacional de produtos e serviços, a troca constante de informações e o intercâmbio cultural vêm desafiando os administradores a definir novos rumos para suas empresas. Esta dinâmica e a crescente competitividade exigem novos conhecimentos e habilidades dos profissionais. Desta forma, buscam-se novas tecnologias para conseguir-se a melhoria da eficiência operacional. Em especial, a indústria petrolífera brasileira tem investido na pesquisa aplicada, desenvolvimento e capacitação tecnológica para manter-se competitiva no mercado internacional. Muitos são os problemas que ainda devem ser estudados neste setor produtivo. Dentre estes, pode-se destacar os problemas de transferência e estocagem de produtos. Este trabalho aborda um problema de programação da produção (scheduling) envolvendo estocagem e distribuição de diesel em uma refinaria de petróleo. Para solucionar este problema foram utilizados a princípio modelos de Programação Linear Inteira Mista (PLIM) com abordagens para a representação no tempo discreto e contínuo. Os modelos desenvolvidos foram resolvidos com o uso do aplicativo computacional LINGO 8.0 através do algoritmo branch and bound. Devido à natureza combinatorial destes, o tempo computacional despendido na resolução mostrou-se excessivo. Desta forma, foram desenvolvidas quatro novas metodologias buscando amenizar este problema: Algoritmo Genético de Estado Estacionário Híbrido (AGEEH) e Algoritmo Transgenético ProtoG integrados à Programação Linear (PL) para a representação de tempo discreto; simulação com otimização através de Algoritmo Genético (AG) e simulação com otimização através de Algoritmo Transgenético ProtoG na representação de tempo contínuo. Os resultados obtidos através de vários testes com as novas metodologias mostraram que estas podem encontrar bons resultados em tempo computacional aceitável. Para a representação de tempo discreto as duas abordagens obtiveram desempenho satisfatório em termos de qualidade de solução e tempo computacional. Dentre estas, a metodologia que utilizou o Algoritmo Transgenético ProtoG apresentou os melhores resultados. Ainda, o simulador com otimização usando AG e o que utilizou Algoritmo Transgenético ProtoG na representação de tempo contínuo mostraram-se adequados para substituir a resolução através de PLIM por encontrar soluções com tempo computacional muito aquém do tempo despendido na resolução com o branch and bound.pt_BR
dc.degree.localCuritiba-
dc.degree.levelMestrado-
dc.publisher.localCuritibapt_BR
dc.contributor.advisor1Neves Junior, Flavio-
dc.publisher.programPrograma de Pós-Graduação em Engenharia Elétrica e Informática Industrial-
Aparece nas coleções:CT - Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
CT_CPGEI_D_Barboza, Angela Olandoski_2005.pdf1,56 MBAdobe PDFThumbnail
Visualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.