Use este identificador para citar ou linkar para este item: http://repositorio.utfpr.edu.br/jspui/handle/1/658
Título: Classification of events in distribution networks using autonomous neural models
Autor(es): Lazzaretti, Andre Eugênio
Ferreira, Vitor Hugo
Vieira Neto, Hugo
Riella, Rodrigo Jardim
Omori, Julio Shigeaki
Palavras-chave: Energia elétrica - Distribuição
Redes neurais (Computação)
Wavelets (Matemática)
Electric power distribution
Neural networks (Computer science)
Wavelets (Mathematics)
Data do documento: Nov-2009
Câmpus: Curitiba
Citação: LAZZARETTI, André Eugênio et al. Classification of events in distribution networks using autonomous neural models. In: INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEM APPLICATIONS TO POWER SYSTEMS, 15., 2009, Curitiba. Anais eletrônicos… Curitiba, 2009. Disponível em: <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5352812>. Acesso em: 16 jul. 2013.
Abstract: This paper presents a method for automatic classification of faults and events related to quality of service in electricity distribution networks. The method consists in preprocessing event oscillographies using the wavelet transform and then classifying them using autonomous neural models. In the preprocessing stage, the energy present in each sub-band of the wavelet domain is computed in order to compose input feature vectors for the classification stage. The classifiers investigated are based in Multi-Layer Perceptron (MLP) feed-forward artificial neural networks and Support Vector Machines (SVM), which automatically promote input selection and structure complexity control simultaneously. Experiments using simulated data show promising results for the proposed application.
URI: http://repositorio.utfpr.edu.br/jspui/handle/1/658
ISBN: 978-1-4244-5097-8
Aparece nas coleções:PCS - Trabalhos publicados em Eventos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
ISAP_Vieira Neto, Hugo_2009.pdf
  Acesso Restrito
141,82 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.