Use este identificador para citar ou linkar para este item:
http://repositorio.utfpr.edu.br/jspui/handle/1/658
Título: | Classification of events in distribution networks using autonomous neural models |
Autor(es): | Lazzaretti, Andre Eugênio Ferreira, Vitor Hugo Vieira Neto, Hugo Riella, Rodrigo Jardim Omori, Julio Shigeaki |
Palavras-chave: | Energia elétrica - Distribuição Redes neurais (Computação) Wavelets (Matemática) Electric power distribution Neural networks (Computer science) Wavelets (Mathematics) |
Data do documento: | Nov-2009 |
Câmpus: | Curitiba |
Citação: | LAZZARETTI, André Eugênio et al. Classification of events in distribution networks using autonomous neural models. In: INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEM APPLICATIONS TO POWER SYSTEMS, 15., 2009, Curitiba. Anais eletrônicos… Curitiba, 2009. Disponível em: <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5352812>. Acesso em: 16 jul. 2013. |
Abstract: | This paper presents a method for automatic classification of faults and events related to quality of service in electricity distribution networks. The method consists in preprocessing event oscillographies using the wavelet transform and then classifying them using autonomous neural models. In the preprocessing stage, the energy present in each sub-band of the wavelet domain is computed in order to compose input feature vectors for the classification stage. The classifiers investigated are based in Multi-Layer Perceptron (MLP) feed-forward artificial neural networks and Support Vector Machines (SVM), which automatically promote input selection and structure complexity control simultaneously. Experiments using simulated data show promising results for the proposed application. |
URI: | http://repositorio.utfpr.edu.br/jspui/handle/1/658 |
ISBN: | 978-1-4244-5097-8 |
Aparece nas coleções: | PCS - Trabalhos publicados em Eventos |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
ISAP_Vieira Neto, Hugo_2009.pdf Acesso Restrito | 141,82 kB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.