Use este identificador para citar ou linkar para este item:
http://repositorio.utfpr.edu.br/jspui/handle/1/647
Título: | Visual novelty detection with automatic scale selection |
Autor(es): | Vieira Neto, Hugo Nehmzow, Ulrich |
Palavras-chave: | Robôs Robótica Visão por computador Redes neurais (Computação) Robots Robotics Computer vision Neural networks (Computer science) |
Data do documento: | Mai-2007 |
Câmpus: | Curitiba |
Citação: | VIEIRA NETO, Hugo; NEHMZOW, Ulrich. Visual novelty detection with automatic scale selection. Robotics and Autonomous Systems, v. 55, n. 9, p. 693-701, maio 2007. Disponível em: <http://dces.essex.ac.uk/staff/udfn/ftp/ras55.pdf>. Acesso em: 15 jul. 2013. |
Abstract: | This paper presents experiments with an autonomous inspection robot, whose task was to highlight novel features in its environment from camera images. The experiments used two different attention mechanisms — saliency map and multi-scale Harris detector — and two different novelty detection mechanisms — Grow-When-Required (GWR) neural network and an incremental Principal Component Analysis (PCA). For all mechanisms we compared fixed-scale image encoding with automatically scaled image patches. Results show that automatic scale selection provides a more efficient representation of the visual input space, but that performance is generally better using a fixed-scale image encoding. |
URI: | http://repositorio.utfpr.edu.br/jspui/handle/1/647 |
ISSN: | 0921-8890 |
Aparece nas coleções: | PCS - Artigos |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
ROBOT. AUTON. SYST._Vieira Neto, Hugo_2007.pdf | 652,09 kB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.