Use este identificador para citar ou linkar para este item: http://repositorio.utfpr.edu.br/jspui/handle/1/4430
Registro completo de metadados
Campo DCValorIdioma
dc.creatorSilva, Fernando José da-
dc.date.accessioned2019-09-19T12:09:34Z-
dc.date.available2019-09-19T12:09:34Z-
dc.date.issued2019-04-30-
dc.identifier.citationSILVA, Fernando José da. Simulação numérica de escoamentos de fluidos incompressíveis a baixo Reynolds utilizando o método de Galerkin descontínuo h-adaptativo. 2019. 93 f. Dissertação (Mestrado em Engenharia Civil) - Universidade Tecnológica Federal do Paraná, Pato Branco, 2019.pt_BR
dc.identifier.urihttp://repositorio.utfpr.edu.br/jspui/handle/1/4430-
dc.description.abstractIn several engineering applications the knowledge of the speed and pressure fields favors the understanding of physical processes that represent the problem. The study of fluid flow behavior can be modeled by Navier-Stokes equations. These equations, in its complete form, have no analytical solution and it is necessary to use approximation methods to obtain an approximate solution. The most classical approximation methods obtain the result from first order precision schemes, which may not represent with good precision the physical phenomenon studied. Results with greater precision are obtained with methods of high order of precision. Recently, the Discontinuous Galerkin Method has been explored in large scale in fluid dynamics applications, presenting excellent results. In this method, high-grade polynomials (p) are used to interpolate the solution considering the discontinuity between elements. On the other hand, meshes with adaptive refinement (h) also offer good precision to the results considering the regions of greatest variation of the solution. Adaptive meshes can be obtained from the definition of an optimal mesh criterion, for example, seeking to increase the accuracy of a given approximate solution by increasing the amount of elements only in the regions that have the highest gradients in the solution. Such an approach can significantly reduce the computational cost when compared to a homogeneous mesh refining required to obtain the same approximation error. The hp union represents a solution strategy capable of combining the attractiveness of the solution obtained with high-grade polynomials together with the adaptive refinement of the mesh in the critical regions of the domain. This work uses the h-adaptive discontinuous Galerkin method as a numerical tool in order to explore the precision of the results together with an optimized strategy for the generation of meshes in the domain. Initially, the problem is validated considering known analytical solutions in steady and transient regimes. The Reynolds low transient flow around the two-dimensional cylinder is used to verify the accuracy of the results from the h-adaptive schema. In all cases analyzed in this work, the h-adaptive discontinuous Galerkin method presented excellent results regarding validation and its comparison with classical literature results.pt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)pt_BR
dc.languageporpt_BR
dc.publisherUniversidade Tecnológica Federal do Paranápt_BR
dc.rightsopenAccesspt_BR
dc.subjectGalerkin, Métodos dept_BR
dc.subjectDinâmica dos fluidospt_BR
dc.subjectAnálise numéricapt_BR
dc.subjectMétodo dos elementos finitospt_BR
dc.subjectGalerkin methodspt_BR
dc.subjectFluid dynamicspt_BR
dc.subjectNumerical analysispt_BR
dc.subjectFinite element methodpt_BR
dc.titleSimulação numérica de escoamentos de fluidos incompressíveis a baixo Reynolds utilizando o método de Galerkin descontínuo h-adaptativopt_BR
dc.title.alternativeNumerical simulation of incompatible fluidslow Reynolds using the discontinuos Galerkin Method h-adaptivept_BR
dc.typemasterThesispt_BR
dc.description.resumoEm várias aplicações de engenharia o conhecimento dos campos de velocidade e pressão favorecem o entendimento de processos físicos que representam o problema. O estudo do comportamento do escoamento de fluidos pode ser modelado pelas equações de Navier-Stokes. Essas equações, em sua forma completa, não possuem solução analítica, sendo necessário o uso de métodos de aproximação para obtenção de uma solução aproximada. Os métodos de aproximação mais clássicos obtêm o resultado a partir de esquemas de primeira ordem de precisão, os quais podem não representar com boa precisão o fenômeno físico estudado. Resultados com maior precisão são obtidos com métodos de alta ordem de precisão. Recentemente o Método de Galerkin Descontínuo tem sido explorado em larga escala em aplicações da dinâmica dos fluidos, apresentando excelentes resultados. Nesse método, polinômios de alto grau (p) são utilizados para interpolar a solução considerando a descontinuidade entre elementos. Por outro lado, malhas com refinamento adaptativo (h) também oferecem boa precisão aos resultados considerando as regiões de maior variação da solução. Malhas adaptativas podem ser obtidas a partir da definição de um critério de malha ótima, por exemplo, buscando aumentar a exatidão de uma dada solução aproximada através do aumento da quantidade de elementos apenas nas regiões que apresentam os maiores gradientes na solução. Tal abordagem pode diminuir significativamente o custo computacional se comparado com um refino homogêneo da malha necessário para obtenção do mesmo erro de aproximação. A união hp representa uma estratégia de solução capaz de aliar o atrativo da solução obtida com polinômios de alto grau em conjunto com o refinamento adaptativo da malha nas regiões críticas do domínio. Esse trabalho utiliza o método de Galerkin Descontínuo h-adaptativo como ferramenta numérica com objetivo de explorar a precisão dos resultados em conjunto com uma estratégia otimizada de geração de malhas no domínio. Inicialmente, o problema é validado considerando soluções analíticas conhecidas nos regimes estacionário e transiente. O escoamento transiente a baixo Reynolds ao redor do cilindro bidimensional é utilizado para verificar a precisão nos resultados a partir dos esquemas h-adaptativo. Em todos os casos analisados neste trabalho, o método de Galerkin Descontínuo h-adaptativo apresentou excelentes resultados quanto à validação e sua comparação com resultados clássicos de literatura.pt_BR
dc.degree.localPato Brancopt_BR
dc.publisher.localPato Brancopt_BR
dc.creator.Latteshttp://lattes.cnpq.br/9450320678875385pt_BR
dc.contributor.advisor1Gomes, Francisco Augusto Aparecido-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/4960562897145659pt_BR
dc.contributor.advisor-co1Novak, Paulo Rogerio-
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/7766888778491590pt_BR
dc.contributor.referee1Gomes, Francisco Augusto Aparecido-
dc.contributor.referee2Silva, Rômel da Rosa da-
dc.contributor.referee3Martinelli Júnior, Luiz Carlos-
dc.contributor.referee4Silva, João Batista Campos-
dc.publisher.countryBrasilpt_BR
dc.publisher.programPrograma de Pós-Graduação em Engenharia Civilpt_BR
dc.publisher.initialsUTFPRpt_BR
dc.subject.cnpqCNPQ::ENGENHARIAS::ENGENHARIA CIVIL::ESTRUTURASpt_BR
dc.subject.capesEngenharia Civilpt_BR
Aparece nas coleções:PB - Programa de Pós-Graduação em Engenharia Civil

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
PB_PPGEC_M_Silva, Fernando José da_2019.pdf9,72 MBAdobe PDFThumbnail
Visualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.