Use este identificador para citar ou linkar para este item: http://repositorio.utfpr.edu.br/jspui/handle/1/3967
Registro completo de metadados
Campo DCValorIdioma
dc.creatorGoedert, Bruna dos Santos Cunha-
dc.date.accessioned2019-03-20T15:45:26Z-
dc.date.available2019-03-20T15:45:26Z-
dc.date.issued2017-03-27-
dc.identifier.citationGOEDERT, Bruna dos Santos Cunha. Biossorção do corante têxtil reativo azul 5G comparando resíduos industriais casca de soja e serragem. 2017. 90 f. Dissertação (Mestrado em Tecnologias Ambientais) – Universidade Tecnológica Federal do Paraná, Medianeira, 2017.pt_BR
dc.identifier.urihttp://repositorio.utfpr.edu.br/jspui/handle/1/3967-
dc.description.abstractThe textile industry is responsible for the disposal of great volumes of wastewaters, which contain high organic content and, notably, highly visible coloration. The diversity of chemical products used in the process, such as synthetic dyes, make the effluent variable and difficult to treat. Different methods are used for textile wastewaters treatment, such as adsorption, whereas the use of biossorbents constituted by agro-industrial waste is an alternative to the decontamination of such effluents. As such, the purpose of this study was to evaluate the potential of the utilization of the industrial wastes Soybean Hull and Sawdust as alternative adsorbents in the biossorption of textile dye Reactive Blue 5G in synthetic aqueous solution. The Granular Activated Carbon (GAC) was also tested as a comparison, in the same conditions of the proposed biossorbents. In order to do so, the biomass were characterized and the effects of pH, chemical treatment and material granulometry were evaluated, and finally, the adsorption runs were carried out, in which the process’ kinetics, isotherm and thermodynamics were evaluated. The physicochemical and structural characterization of the biossorbents allowed to identify a low content of humidity, ashes, volatile organic matter, as well as a higher amount of acid groups. The preliminary tests indicated that the ideal conditions for the process were a pH 2 and a granulometry of the in nature biomatter of 1 to 2 mm. The time for the process to reach equilibrium was found to be 100 min and the maximum removal rates were 96, 97 and 88% for the soybean hull, sawdust and GAC, respectively. By applying the kinetic models, it was verified that the biossorption process is of chemical nature, since the pseudo-second order model presented the best fit. For the adsorption isotherms, the Langmuir and Redlich-Peterson models described properly the equilibrium experimental data, indicating maximum adsorption capacity of 29,272, 28,241 and 23,2 mg g-1 for the soybean hull (25°C), sawdust (45°C) and GAC (25°C), respectively. Therefore, based on the obtained results, it was concluded that the sawdust presented more favorable conditions for a full scale application in the adsorption of Reactive dye Blue 5G, in comparison to the soybean hull. This biossorbent presented more acid groups in its structure, a wider pH range in which adsorption is favored, higher removal efficiency, better affinity with the dye, as well as a more stable process regarding temperature variation. Also, it is possible to state that the biossorbents’ performance regarding the dye adsorption was better than the commercial adsorbent GAC, considering that equilibrium, as well as maximum removal rate, were achieved in lower time. Besides, the maximum adsorbed amount was higher for the soybean hull and for the sawdust. Thereafter, the results of this research suggest that the studied biossorbents present a good adsorption potential for the dye Reactive Blue 5G, and are a viable alternative for the textile wastewater treatment, since these materials present a natural source, high availability and low cost. The use of such materials as biossorbents allows better industrial waste management, thus providing environmental and economical benefits.pt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)pt_BR
dc.languageporpt_BR
dc.publisherUniversidade Tecnológica Federal do Paranápt_BR
dc.rightsopenAccesspt_BR
dc.subjectAdsorçãopt_BR
dc.subjectResíduos industriaispt_BR
dc.subjectCorantespt_BR
dc.subjectAdsorptionpt_BR
dc.subjectFactory and trade wastept_BR
dc.subjectColorings matterpt_BR
dc.titleBiossorção do corante têxtil reativo azul 5G comparando resíduos industriais casca de soja e serragempt_BR
dc.title.alternativeBiossorption of textile dye Reactive Blue 5G comparing industrial wastes soybean hull and sawdustpt_BR
dc.typemasterThesispt_BR
dc.description.resumoA indústria têxtil é responsável pelo descarte de grandes volumes de efluentes com elevada carga orgânica e, principalmente, coloração altamente visível. A diversidade de produtos químicos usados no processo industrial, como os corantes sintéticos, torna o efluente variável e de difícil tratamento. Existem diferentes métodos utilizados no tratamento de efluentes têxteis, como a adsorção, sendo que a utilização de biossorventes constituídos por resíduos agroindustriais é uma alternativa para a descontaminação desses efluentes. Nesse contexto, este estudo teve por objetivo avaliar o potencial dos resíduos industriais casca de soja e serragem como adsorventes alternativos na biossorção do corante têxtil Reativo Azul 5G em meio aquoso sintético. O carvão ativado comercial granular (CAG) também foi testado de modo comparativo nas mesmas condições dos biossorventes propostos. Para isso, realizou-se a caracterização das biomassas, avaliou-se o efeito do pH, do tratamento químico e da granulometria dos materiais e por fim prosseguiu-se com os ensaios de adsorção, avaliando a cinética, isoterma e termodinâmica do processo. A caracterização físico-química e estrutural dos biossorventes permitiu identificar um baixo teor de umidade e cinzas, bem como uma maior quantidade de grupos ácidos. Os ensaios preliminares indicaram que as condições ideais para o processo foram pH 2 e biomassa in natura com granulometria de 1 a 2 mm. O tempo de equilíbrio do processo de biossorção foi de 100 min e as eficiências máximas de remoção foram de 96, 97 e 88% para a casca de soja, serragem e CAG, respectivamente. Com a aplicação dos modelos cinéticos verificou-se que o processo de biossorção é de natureza química, já que o modelo de pseudo-segunda ordem foi o que apresentou o melhor ajuste. Para as isotermas de adsorção, os modelos de Langmuir e Redlich-Peterson descreveram adequadamente os dados experimentais de equilíbrio, indicando capacidades máximas de adsorção de 29,272, 28,241 e 23,20 mg g-1 para a casca de soja (25°C), serragem (45°C) e CAG (25°C), respectivamente. A partir dos resultados obtidos, pode-se concluir que a serragem apresentou as condições mais favoráveis para aplicação em escala real, na adsorção do corante reativo Azul 5G, em relação a casca de soja. Esse biossorvente apresentou mais grupos ácidos em sua estrutura, maior faixa de pH que favorece a adsorção, maior eficiência de remoção, maior afinidade com o corante, além da maior estabilidade do processo em relação a variação da temperatura. Ainda, pode-se considerar que o desempenho dos biossorventes na adsorção do corante foi melhor quando comparado ao do adsorvente comercial CAG, uma vez que que o equilíbrio do processo e a eficiência máxima de remoção foram alcançados em um tempo menor. Além disso, a quantidade máxima adsorvida foi maior para a casca de soja e para a serragem. Portanto, os resultados desta pesquisa sugerem que os biossorventes estudados apresentam potencial de adsorção do corante Reativo Azul 5G e são uma alternativa válida para o tratamento de efluentes têxteis, uma vez que são materiais de fonte natural, de alta 5 disponibilidade e baixo custo. A utilização desses materiais como biossorventes permite o aproveitamento de resíduos gerados nos processos industriais, proporcionando benefícios ambientais e econômicos.pt_BR
dc.degree.localMedianeirapt_BR
dc.publisher.localMedianeirapt_BR
dc.creator.Latteshttp://lattes.cnpq.br/2507855813072940pt_BR
dc.contributor.advisor1Mees, Juliana Bortoli Rodrigues-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/3996272952342357pt_BR
dc.contributor.advisor-co1Costa Junior, Ismael Laurindo-
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/8830429960630659pt_BR
dc.contributor.referee1Mees, Juliana Bortoli Rodrigues-
dc.contributor.referee2Costa Junior, Ismael Laurindo-
dc.contributor.referee3Giona, Renata Mello-
dc.contributor.referee4Rech, Angela Laufer-
dc.publisher.countryBrasilpt_BR
dc.publisher.programPrograma de Pós-Graduação em Tecnologias Ambientaispt_BR
dc.publisher.initialsUTFPRpt_BR
dc.subject.cnpqCNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICA::QUIMICA ANALITICA::ANALISE DE TRACOS E QUIMICA AMBIENTALpt_BR
dc.subject.capesEngenharia Sanitáriapt_BR
Aparece nas coleções:MD - Programa de Pós-Graduação em Tecnologias Ambientais

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
biossorcaocorantereativoazul5g.pdf1,23 MBAdobe PDFThumbnail
Visualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.