Use este identificador para citar ou linkar para este item:
http://repositorio.utfpr.edu.br/jspui/handle/1/3887
Título: | Sistema de aquisição e classificação de dados para reconhecimento da presença das mãos do motorista no volante por redes neurais artificiais |
Título(s) alternativo(s): | Acquisition and classification system for the recognition of the driver hands on the steering wheel by artificial neural networks |
Autor(es): | Farinelli, Felipe Adalberto |
Orientador(es): | Stevan Junior, Sergio Luiz |
Palavras-chave: | Motoristas Sistemas de coleta automática de dados Redes neurais (Computação) Motor vehicle drivers Automatic data collection systems Neural networks (Computer science) |
Data do documento: | 18-Fev-2019 |
Editor: | Universidade Tecnológica Federal do Paraná |
Câmpus: | Ponta Grossa |
Citação: | FARINELLI, Felipe Adalberto. Sistema de aquisição e classificação de dados para reconhecimento da presença das mãos do motorista no volante por redes neurais artificiais. 2019. 128 f. Dissertação (Mestrado em Engenharia Elétrica) - Universidade Tecnológica Federal do Paraná, Ponta Grossa, 2019. |
Resumo: | Sistemas avançados de auxílio aos motoristas podem trazer alguns benefícios. No Brasil, o número de indenizações pagas pelo seguro obrigatório cresceu cerca de 41% nos últimos 10 anos e, dos 100.000 casos de acidente veiculares registrados em um cenário internacional, cerca de 90% ainda são ocasionados por conta da irresponsabilidade de motoristas. Com o objetivo de auxiliar na redução desses números, este trabalho apresenta o desenvolvimento completo de um sistema sem fios para a aquisição de dados analógicos, inerciais e veiculares voltado à classificação quanto a presença das mãos do motorista no volante e ao auxílio em sistemas já existentes, para fins de detecção de comportamentos do condutor. Para isso, conceitos sobre técnicas de aquisição de dados por redes de comunicação automotivas, de sinais analógicos, como de eletromiografia e eletrocardiograma, e de sinais inerciais, como giroscópios e acelerômetros, foram essenciais para o desenvolvimento do sistema físico de aquisição. A classificação comportamental do motorista dependeu de uma Rede Neural Artificial Perceptron de Múltiplas Camadas programada no software MATLAB®, a qual foi fundamental na identificação de amostras relacionadas a cenários de comportamento do motorista avaliados graficamente. O sistema de aquisição de dados apresentou-se hábil, após ser validado temporalmente por meio de um osciloscópio, e o classificador eficiente, o qual permitiu detectar, com precisão de 97,14 %, quando o motorista se comporta de forma imprudente ao dirigir um veículo. |
Abstract: | Advanced driver assistance systems are advantageous. In Brazil, the number of indemnities paid by the government increased 41% in the last 10 years and, of 100,000 traffic-accident occurrences, about 90% are by fault of irresponsible drivers. Aimed at reducing these occurrences, this work presents the development of a wireless system to acquire analog, inertial and vehicular data for classifying the presence of driver hands on the steering wheel and to help existing systems that needs this information. Basic concepts about data acquisition by automotive communication networks, analog signals, like electromyography and electrocardiogram, and inertial signals, like gyroscope and accelerometers, were essential to the whole system deployment. The driver behavior classification depended of a Multilayer Perceptron Neural Network developed in MATLAB™, which was fundamental in the identification of samples in according to some scenarios related to driver behavior evaluated graphically. The data acquisition system was reliable after being validated by an oscilloscope and the classification system detects, with 97.14 % of accuracy, when the driver behaves thoughtless while guides a vehicle. |
URI: | http://repositorio.utfpr.edu.br/jspui/handle/1/3887 |
Aparece nas coleções: | PG - Programa de Pós-Graduação em Engenharia Elétrica |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
PG_PPGEE_M_Farinelli, Felipe Adalberto_2019.pdf | 4,56 MB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.