Use este identificador para citar ou linkar para este item: http://repositorio.utfpr.edu.br/jspui/handle/1/37429
Título: Desempenho mecânico e durabilidade de um solo argiloso melhorado com resíduo do polimento de vidro, cimento e cloreto de sódio para uso em base e sub-base de pavimentos
Título(s) alternativo(s): Mechanical performance and durability of a clayey soil improved with glass polishing waste, cement, and sodium chloride for use in base and sub-base layers of pavements
Autor(es): Ordoñez Muñoz, Yeimy
Orientador(es): Izzo, Ronaldo Luis dos Santos
Palavras-chave: Álcalis
Solos - Agregação
Solos vermelhos
Resíduos de vidro
Solos - Compactação
Mecânica do solo
Solo-cimento
Solos argilosos
Pavimentos
Alkalies
Soil-binding
Red soils
Glass waste
Soil compaction
Soil mechanics
Soil cement
Clay soils
Pavements
Data do documento: 26-Jun-2025
Editor: Universidade Tecnológica Federal do Paraná
Câmpus: Curitiba
Citação: ORDOÑEZ MUÑOZ, Yeimy. Desempenho mecânico e durabilidade de um solo argiloso melhorado com resíduo do polimento de vidro, cimento e cloreto de sódio para uso em base e sub-base de pavimentos. 2025. Tese (Doutorado em Engenharia Civil) - Universidade Tecnológica Federal do Paraná, Curitiba, 2025.
Resumo: A crescente demanda por soluções sustentáveis na engenharia civil tem impulsionado pesquisas voltadas ao reaproveitamento de resíduos como alternativa no desenvolvimento de materiais geotécnicos. Apesar dos avanços, ainda há poucas pesquisas sobre o uso de resíduos em solos locais, como o solo vermelho da Formação Guabirotuba, comum em Curitiba e região, mas pouco investigado. Além disso, a ausência de estudos que combinem resíduos de vidro em pó (RPV), cimento e cloreto de sódio (NaCl) como ativador alcalino evidencia uma lacuna no estado da arte. Este estudo investigou a potencialidade do uso de RPV (5%, 15% e 25%), cimento (2%, 5% e 8%) e NaCl como materiais para o melhoramento do solo da Formação Guabirotuba, visando sua aplicação em camadas de base e sub-base de pavimentos. Diversos ensaios laboratoriais foram realizados para avaliar a influência de variáveis como teores de cimento, RPV, NaCl, porosidade (η), tempo de cura e energia de compactação na resistência à compressão simples (qu), à tração por compressão diametral (qt) e durabilidade através de perda de massa acumulada (PMA). As melhores misturas foram analisadas quanto à deformação elástica (MR), plástica (DP), e propriedades mineralógicas e microestruturais. A metodologia MEDINA foi utilizada para verificar a potencialidade do uso desses materiais como base e sub-base de pavimentos rodoviários em sistema coletor primário (SCP) e sistema arterial principal (SAP). Os resultados indicaram que a adição de até 15% de RPV e 1% de NaCl formou materiais álcali-ativados, reduzindo em 3% a quantidade de cimento necessária para atingir a resistência alvo, que anteriormente exigia um maior teor de cimento. A PMA do solo puro (100%) caiu para menos de 7% nas misturas estudadas. Relações entre porosidade, teor volumétrico de cimento (η/Civ) e aglomerante (η/Biv) permitiram o desenvolvimento de equações para prever qu, qt e durabilidade. O MR variou conforme o estado de tensão. No solo, aumentou com a tensão confinante e reduziu com a tensão desvio (310 a 297 MPa). Nas misturas, o MR aumentou com ambas as tensões, variando de 261 a 1003 MPa. Misturas contendo cimento-RPV-NaCl resultaram em valores maiores MR e menores de DP. A DP dos materiais estudados foi considerada admissível, pois não ultrapassou 6% do afundamento de trilha de roda estabelecido na literatura para camadas de pavimento. Além disso, todos os materiais exibiram tendência ao acomodamento plástico (Shakedown). As simulações no MEDINA indicaram que, no SCP, o solo puro como base e sub-base foi suficiente para atender os critérios de área trincada e deformação permanente estipulados nas normas. Já no SAP com N=107, é necessária a adição de 5% de cimento, 15% de RPV e 1% de NaCl ao solo para atender esses critérios. Os resultados mineralógicos e microestruturais evidenciaram a formação de géis álcali-ativados na forma de hidrato de aluminossilicato de cálcio e sódio (C,N)-A-S-H, conforme as relações Ca/Si, Al/Si e Na/Si. Esses novos materiais apresentaram propriedades mecânicas melhoradas, contribuindo para o uso sustentável de resíduos na construção civil e abrindo novas possibilidades para o uso de solos locais em pavimentação.
Abstract: The growing demand for sustainable solutions in civil engineering has driven research on reusing waste materials as an alternative in developing geotechnical materials. Despite advances in the field, few studies have addressed the use of waste in local soils, such as the red soil from the Guabirotuba Formation, which is common in Curitiba and surrounding areas but remains understudied. Furthermore, the lack of studies combining glass powder waste (GPW), cement, and sodium chloride (NaCl) as an alkali activator highlights a state-of-the-art gap. This study assessed the feasibility of using glass powder waste (GPW) (5%, 15%, and 25%), cement (2%, 5%, and 8%), and NaCl as soil improvement agents for Guabirotuba Formation soil, targeting their application in pavement base and subbase layers. A series of laboratory tests was carried out to assess the influence of variables including cement, GPW, and NaCl contents, porosity (η), curing time, and compaction energy on unconfined compressive strength (qu), splitting tensile tensile strength (qt), and durability based on accumulated mass of loss (AML). The best-performing blends regarding elastic deformation (MR), plastic deformation (PD), and mineralogical and microstructural properties were analyzed. The MEDINA methodology was applied to evaluate the potential use of these materials as base and subbase layers in road pavements for primary collector systems (PCS) and principal arterial systems (PAS). The results indicated that adding up to 15% GPW and 1% NaCl led to the formation of alkali-activated materials, allowing a 3% reduction in the amount of cement required to achieve the target strength, which previously demanded a higher cement content. The AML of the untreated soil (100%) was reduced to below 7% in the studied blends. Relationships among porosity, volumetric cement content (η/Civ), and binder content (η/Biv) enabled the development of equations to predict qu, qt, and durability. The MR varied with the stress state: in untreated soil, it increased with confining stress and decreased with increasing deviatoric stress, ranging from 310 to 297 MPa. For the blends, MR increased with both stress components, varying from 261 to 1003 MPa. Blends containing cementGPW-NaCl exhibited the highest MR values and the lowest PD. The PD of the evaluated materials was considered acceptable, as it did not exceed 6% of the typical track of wheel sinking established in the literature for pavement layers. Furthermore, all materials tended to plastic accommodation (Shakedown). Simulations using the MEDINA methodology indicated that, in the PCS, the untreated soil used as base and subbase layers was sufficient to meet the criteria for cracked area and PD established by the standards. However, for PAS under N=107 load repetitions, adding 5% cement, 15% GPW, and 1% NaCl was necessary to meet these performance requirements. The mineralogical and microstructural results evidenced the formation of alkaliactivated gels in the form of calcium and sodium aluminosilicate hydrate (C,N)-A-S-H, as indicated by the Ca/Si, Al/Si, and Na/Si ratios. These new materials exhibited improved mechanical properties, contributing to the sustainable use of waste in civil construction and opening new possibilities for the use of local soils in pavement applications.
URI: http://repositorio.utfpr.edu.br/jspui/handle/1/37429
Aparece nas coleções:CT - Programa de Pós-Graduação em Engenharia Civil

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
desempenhomecanicosolopavimentos.pdf23,2 MBAdobe PDFThumbnail
Visualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons