Use este identificador para citar ou linkar para este item:
http://repositorio.utfpr.edu.br/jspui/handle/1/36002
Título: | Advancements in two-phase flow regime classification: a comparative study of machine learning and deep learning approaches using wire-mesh sensor data |
Título(s) alternativo(s): | Avanços na classificação de escoamentos bifásicos: um estudo comparativo de abordagens de aprendizado de máquina e aprendizado profundo usando dados de sensores Wire-Mesh |
Autor(es): | Ambrosio, Jefferson dos Santos |
Orientador(es): | Lazzaretti, André Eugênio |
Palavras-chave: | Máquina de vetores de suporte Escoamento bifásico Aprendizado profundo (Aprendizado do computador) Análise de séries temporais Detectores Redes neurais (Computação) Support vector machines Two-phase flow Deep learning (Machine learning) Time-series analysis Sensors Neural networks (Computer science) |
Data do documento: | 16-Dez-2024 |
Editor: | Universidade Tecnológica Federal do Paraná |
Câmpus: | Curitiba |
Citação: | AMBROSIO, Jefferson dos Santos. Advancements in two-phase flow regime classification: a comparative study of machine learning and deep learning approaches using wire-mesh sensor data. 2025. Tese (Doutorado em Engenharia Elétrica e Informática Industrial) - Universidade Tecnológica Federal do Paraná, Curitiba, 2024. |
Resumo: | A classificação do regime de escoamento é essencial para analisar e modelar escoamentos bifásicos, pois demarca o comportamento do escoamento e influencia a seleção de modelos preditivos apropriados. Abordagens baseadas em aprendizado de máquina ganharam relevância na pesquisa de classificação de regime de escoamento nos últimos anos. No entanto, elas ainda são solidamente baseadas na construção e definição cuidadosa de características. Abordagens de aprendizado profundo, por outro lado, podem fornecer soluções mais robustas e completas. No entanto, elas são pouco exploradas e não avaliaram a generalização dos modelos para outros dados ou sistemas de aquisição. Nesta tese, comparamos duas abordagens diferentes para classificar padrões de escoamento (agitação, bolhas e slug) usando séries temporais de fração de vazio de um sensor wire-mesh. Na primeira abordagem, definida como MdG+MVS, a série temporal é modelada como um processo estocástico de amostras independentes e distribuídas de forma idêntica com função de densidade de probabilidade descrita por um modelo de mistura gaussiana (MdG). Os parâmetros estimados da mistura são então alimentados em uma Máquina de Vetor de Suporte (MVS), produzindo a classificação do padrão de escoamento. Na segunda, definida como EDA-AP, propomos usar métodos de classificação de séries temporais de baseados em aprendizado profundo (ResNet, LSTM-FCN e TSTPlus) para padrões de escoamento de duas fases. Também apresentamos a análise de generalização dos modelos com experimentos entre conjuntos de dados, treinando o modelo com um conjunto de dados e testando-o com outro conjunto de dados coletados em outro sistema para dois conjuntos de dados, aqui definidos como HZDR e TUD. Os resultados demonstram que a abordagem baseada em aprendizado profundo (EDA-AP) apresenta métricas de classificação superiores em todos os casos avaliados, particularmente em experimentos entre conjuntos de dados. Com os métodos propostos, todas as métricas avaliadas (precisão e F1-Score) consistentemente ultrapassam 90% em todos os casos, enquanto o método MdG+MVS pode diminuir o desempenho abaixo de 80%. Isso demonstra a relevância da análise proposta aqui para a literatura de classificação de regime de escoamento e abre um novo conjunto de possibilidades para pesquisa nesta área, visando soluções robustas que sejam viáveis para uso prático. |
Abstract: | Flow regime classification is essential for analyzing and modeling two-phase flows, as it demarcates the flow behavior and influences the selection of appropriate predictive models. Machine learning-based approaches have gained relevance in flow regime classification research in the last few years. However, they are still solidly based on the construction and careful definition of hand-crafted features. Deep learning approaches, on the other hand, can provide more robust and end-to-end solutions. However, they are underexplored and have not evaluated the generalization of the models to other data or acquisition systems. In this thesis, we compare two different approaches for classifying flow patterns (churn, bubbly, and slug) using time series of void fraction from a wire-mesh sensor. In the first, defined as MoG+SVM, the time series is modeled as a stochastic process of independent and identically distributed samples with probability density function described by a Mixture of Gaussian (MoG) model. The estimated parameters of the mixture are then fed into a Support Vector Machine (SVM), yielding the flow pattern classification. The second, defined as SOTA-DL, we propose using end-to-end state-of-the-art (SOTA) time-series classification methods (ResNet, LSTM-FCN, and TSTPlus) for two-phase flow patterns. We also present the generalization analysis of the models with cross-dataset experiments, training the model with one dataset and testing it with another dataset collected in another system for two datasets, here defined as HZDR and TUD. The results demonstrate that the deep learning-based approach (SOTA-DL) presents superior classification metrics in all cases evaluated, particularly in cross-dataset experiments. With the proposed SOTA methods, all the evaluated metrics (accuracy and F1-Score) consistently surpass 90% in all cases, while the MoG+SVM method can decrease the performance under 80%. This demonstrates the relevance of the analysis proposed here for flow regime classification literature and opens up a new set of possibilities for research in this area, aiming at robust solutions that are viable for practical use. |
URI: | http://repositorio.utfpr.edu.br/jspui/handle/1/36002 |
Aparece nas coleções: | CT - Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
classificacaoescoamentoseriestemporais.pdf | 8,45 MB | Adobe PDF | ![]() Visualizar/Abrir |
Este item está licenciada sob uma Licença Creative Commons