Use este identificador para citar ou linkar para este item:
http://repositorio.utfpr.edu.br/jspui/handle/1/35802
Título: | Nanopartículas de ouro aplicadas em células solares de perovskita |
Título(s) alternativo(s): | Gold nanoparticles applied in perovskite solar cells |
Autor(es): | Rosa, Eduardo Henrique dos Santos |
Orientador(es): | Silva, Wilson José da |
Palavras-chave: | Materiais de perovskita Sistemas de energia fotovoltaica Nanopartículas Células solares Sistemas de energia elétrica - Estabilidade Cristalização Perovskite materials Photovoltaic power systems Nanoparticles Solar cells Electric power system stability Crystallization |
Data do documento: | 20-Dez-2024 |
Editor: | Universidade Tecnológica Federal do Paraná |
Câmpus: | Curitiba |
Citação: | ROSA, Eduardo Henrique dos Santos. Nanopartículas de ouro aplicadas em células solares de perovskita. 2024. Tese (Doutorado em Engenharia Elétrica e Informática Industrial) - Universidade Tecnológica Federal do Paraná, Curitiba, 2024. |
Resumo: | Atualmente, as fontes não renováveis para geração de energia elétrica possuem a maior parcela na produção de energia elétrica, contribuindo para o aumento dos índices de degradação ambiental. Dentro deste panorama, surge a necessidade do desenvolvimento de novas pesquisas que contribuam para a produção de eletricidade a partir de fontes renováveis, com alta demanda energética. Dentre as tecnologias existentes destaca-se a energia fotovoltaica, que converte a energia do sol em eletricidade, sendo este um recurso abundante e livre para ser captado. A crescente demanda por fontes de energia limpa e renováveis levou ao desenvolvimento e aperfeiçoamento da tecnologia de células solares de perovskita (CSP) que apresentam eficiência de conversão de energia na ordem de 26,7% e apresentam características interessantes, como baixo custo, transparência, leveza e podem ser processadas em substratos flexíveis. Entretanto, estes dispositivos apresentam estabilidade reduzida quando expostos à atmosfera ambiente devido à interação da camada ativa e intermediárias com oxigênio, umidade e impurezas que contribuem para a degradação da célula solar. Visando otimizar a estabilidade das CSPs quando expostas ao ar, neste trabalho, nanopartículas de ouro (AuNPs) produzidas pelo método de ablação à laser em líquidos (LASis) foram utilizadas na camada transportadora de buracos (CTB) ou na camada ativa. Na modificação da CTB as AuNPs foram produzidas em isopropanol (IPA) e processadas sobre a camada de Spiro-OmeTAD, um material que requer o uso de aditivos para melhorar suas propriedades elétricas, afim de garantir uma boa condutividade. Dentre os aditivos utilizados, o sal LiTFSI desempenha papel fundamental no aumento da mobilidade de buracos da camadas, entretanto é higroscópico e absorve a umidade do ambiente, dessa forma degradando o dispositivo. A análise dos dispositivos modificados através da técnica de microscopia de força atômica (AFM) mostram o surgimento de precipitados do ânion do aditivo (TFSI-) ao longo da superfície da camada com o tempo de exposição ao ar, resultando na redução da estabilidade do dispositivo durante o tempo de operação. Portanto, dois procedimentos foram adotados: lavar a superfície do Spiro-OmeTAD com IPA e depositar a suspensão de AuNP em IPA sobre a CTB. A modificação com AuNP diminuiu expressivamente o surgimento do aditivo higroscópico precipitado na superfície da camada, resultando em um aumento do ângulo de contato. Medidas de espectroscopia Raman sugerem a coordenação do ânion TFSI- em dois ambientes diferentes, com Li ou AuNPs em bandas de deslocamento Raman em 747 cm-1 e 751 cm-1, contribuindo para a estabilização do aditivo e evitando a interação com moléculas de H2O. Utilizando a técnica de AFM, verificouse a contribuição do solvente IPA nas modificações, tendo este um papel fundamental na melhora da morfologia da camada com uma redução da rugosidade média quadrática (Rrms) e dos defeitos superficiais. A melhora na morfologia resultou em dispositivos com eficiência superior após 48 h de exposição em ar devido o efeito protetivo do uso de AuNP e interação com o aditivo higroscópico, resultando em CSPs mais estáveis e eficientes, mesmo expostos ao ar por 35 dias em ambientes com alta umidade relativa do ar. Na segunda parte deste trabalho, AuNPs produzidas em clorobenzeno (CB) foram processadas na camada ativa ao serem introduzidas no antisolvente da perovskita. Análises morfológicas indicaram um aumento do tamanho de grão para os filmes modificados com AuNPs devido o processo de nucleação heterogênea induzido pelas nanopartículas, que atuam como sementes para a nucleação e posterior crescimento dos grãos de perovskita. Grãos maiores levam à menos contornos de grão, e portanto, menos locais para a infiltração de impurezas e moléculas de H2O que degradam o dispositivo. Análises GIWAXS in-situ foram feitas durante a cristalização do filme. Os resultados mostram o surgimento mais rápido de picos referentes à fase cúbica da perovskita, além da ausência de PbI2 durante a formação do filme, resultando em um processo mais eficiente de cristalização. A análise GIWAXS também revelou que a modificação com AuNP leva à uma maior presença de fase cúbica na interface perovskita/CTB. Os dispositivosmodificados com diferentes proporções de AuNP no antisolvente foram monitorados por 1000h expostos em ar e apresentaram uma performance superior aos dispositivos de controle, além de serem mais estáveis, resultado do processo de nucleação heterogênea pelo uso de AuNPs. Além disso, houve uma diminuição no índice de histerese dos dispositivos, que pode ser relacionada ao acúmulo de cargas nas interfaces das camadas e com o fato de uma maior concentração e fase cúbica na interface perovskita/CTB. Utilizando a técnica de UV-Vis, foi verificado uma melhora na absorbância dos filmes modificados, o que contribuiu para a performance superior desses dispositivos. |
Abstract: | Currently, non-renewable sources for electricity generation account for the largest share of electricity production, contributing to increased rates of environmental degradation. Against this backdrop, there is a need to develop new research that contributes to producing electricity from renewable sources with a high energy demand. Among the existing technologies is photovoltaic energy, which converts the energy of the sun into electricity, an abundant and free resource to capture. The growing demand for clean and renewable energy sources has led to the development and improvement of perovskite solar cell (PSC) technology, which has an energy conversion efficiency of around 26.7% and exciting features such as low cost, transparency, lightness, and can be processed on flexible substrates. However, these devices show reduced stability when exposed to the ambient atmosphere due to the interaction of the active layer and intermediates with oxygen, humidity, and impurities that contribute to the degradation of the solar cell. Aiming to improve the stability of PSCs when exposed to air, in this work, gold nanoparticles (AuNPs) produced by the laser ablation in suspension method (LASis) were applied in two distinct ways: at the hole transport layer (HTL) and in the active layer. In the modification of the HTL, the AuNPs were produced in isopropanol (IPA) and processed onto the Spiro-OmeTAD layer. This material must use additives to improve its electrical properties and guarantee good conductivity. Among the used additives, LiTFSI salt performs an essential role in enhancing the hole mobility of the layer, although it is hygroscopic and absorbs air moisture, degrading the photovoltaic device. The analysis of the modified devices using atomic force microscopy (AFM) shows the precipitation of the TFSI- anion along the top surface, with this process depending on the exposure time in the air, resulting in the reduction of the stability during the operation time. Therefore, two procedures were adopted: washing the surface of Spiro-OmeTAD with IPA and depositing the suspension of AuNPs in IPA onto the HTL. The modification with AuNP decreased the precipitation of the hygroscopic additive to the top surface, increasing the water contact angle. Spectroscopy Raman measurements suggest the coordination of the TFSI- anion in two distinct ways, in Li or AuNPs, with Raman shift bands in 747 cm-1 e 751 cm-1, contributing to the stabilization of the additive and avoiding its interaction with H2O molecules. Using the AFM technique, the contribution of the IPA solvent was found, which helps in the morphology improvement of the HTL by decreasing the root mean square roughness (Rrms) and superficial defects. The morphology improvement resulted in more efficient devices after 48h of air exposure due to the shielding effect of the AuNP and its interaction with the hygroscopic additive, resulting in more stable and efficient PSCs, even when exposed to air for 35 days with high relative humidity in the air. In the second approach, AuNPs produced with chlorobenzene (CB) were processed in the active layer by being introduced into the perovskite (PSK) antisolvent. Morphological analysis indicates the increase in the grain size for the modified thin films with AuNPs due to the heterogeneous nucleation induced by the nanoparticles, which act as nucleation seeds and perovskite grain growth. Bigger grains result in fewer grain boundaries and, therefore, fewer propitious spots for the infiltration of impurities, such as H2O molecules. In-situ GIWAXS analysis shows a faster nucleation process by the appearance of cubic perovskite peaks and the no-presence of PbI2 peaks during the film nucleation, resulting in an improved crystallization process. The GIWAXS analysis also reveals that the modification with AuNP leads to a more significant presence of cubic perovskite phase in the interface between PSK/ HTL. The modified devices with different AuNP contents in the antisolvent were monitored in the air for 1000h. They showed superior performance compared to control devices and were more stable due to the heterogeneous nucleation process by using AuNP. Moreover, modified devices showed a decrease in the hysteresis index, which can be related to the charge accumulation in interfaces and the fact that the highest concentration of the cubic phase was observed in the interface between PSK/ HTL.Using the UV-Vis technique, an improvement in the thin film absorbance for the modified samples was observed, which contributes to the superior performance of these devices. |
URI: | http://repositorio.utfpr.edu.br/jspui/handle/1/35802 |
Aparece nas coleções: | CT - Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
celulassolaresperovskitananoparticulas.pdf | 7,49 MB | Adobe PDF | ![]() Visualizar/Abrir |
Este item está licenciada sob uma Licença Creative Commons