Use este identificador para citar ou linkar para este item:
http://repositorio.utfpr.edu.br/jspui/handle/1/34501
Título: | Otimização paramétrica de rolo polimérico de correia transportadora de minério |
Título(s) alternativo(s): | Parametric optimization of ore belt conveyor's polymeric roller |
Autor(es): | Jabour, Rafiq Said Dias |
Orientador(es): | Luersen, Marco Antônio |
Palavras-chave: | Correias transportadoras Viscoelasticidade Otimização estrutural Polímeros Método dos elementos finitos Conveyor belts Viscoelasticity Structural optimization Polymers Finite element method |
Data do documento: | 26-Mar-2024 |
Editor: | Universidade Tecnológica Federal do Paraná |
Câmpus: | Curitiba |
Citação: | JABOUR, Rafiq Said Dias. Otimização paramétrica de rolo polimérico de correia transportadora de minério. 2024. Dissertação (Mestrado em Engenharia Mecânica e de Materiais) - Universidade Tecnológica Federal do Paraná, Curitiba, 2024. |
Resumo: | A mineração é uma atividade econômica de grande relevância no Brasil. O transporte do minério, realizado por meio de correias transportadoras, inicia-se nas operações de peneiramento, britagem e beneficiamento, e termina no abastecimento de navios e vagões ferroviários. O rolo é um dos elementos fundamentais dos transportadores, uma vez que possui a função de suportar, guiar e direcionar o material sobre a correia. Este componente é composto, basicamente, por um tubo que gira em torno de um eixo fixo em estruturas metálicas chamadas cavaletes. A grande maioria dos rolos (tubo e eixo) utilizados em correias transportadoras de minério são feitos de aço, o que, consequentemente, leva essa peça a ter uma massa elevada. A severidade do transporte de minério, que está associada ao intemperismo e ao alto volume de material carregado nas correias, faz com que este componente mecânico falhe, muitas vezes, prematuramente. A substituição dos rolos é feita manualmente por operadores, fato que dificulta a manutenção do equipamento. Com o objetivo de reduzir a massa deste componente mecânico, este trabalho aborda a otimização estrutural paramétrica de um rolo polimérico. Para isso, foi construído um modelo de elementos finitos no software Ansys Workbench. O rolo considerado foi inicialmente composto por um tubo externo de polietileno de alta densidade (PEAD), sedes dos rolamentos de poliamida 6 (PA.6) e eixo de aço. Para caracterizar os materiais poliméricos (PEAD e PA.6), foram realizados ensaios de relaxação de tensão em corpos de prova. Os resultados da variação do módulo de cisalhamento ao longo do tempo foram inseridos no modelo para o cálculo dos termos de uma série de Prony, e dessa forma, levar em conta o efeito viscoelástico. A otimização da estrutura, com o objetivo de minimizar a massa e tendo como variáveis de projeto o raio do eixo e o raio interno do tubo, foi realizada por meio de metamodelos de base radial (RBF) e do algoritmo Globalized Bounded Nelder-Mead (GBNM). Na definição das restrições do problema de otimização, foram consideradas as cargas admissíveis de projeto e valores limites de tensão e de ângulo de deflexão impostos pela norma ABNT NBR 6678:2017. O processo de otimização foi dividido em dois casos. No primeiro, que considera a configuração de materiais inicial do rolo (i.e., tubo de PEAD e sedes de rolamentos de PA.6), o ponto ótimo violou as restrições impostas e não reduziu a massa do sistema. No segundo caso, que utiliza o PA.6 tanto nas sedes do rolamento quanto no tubo, foi encontrado um ponto ótimo que respeitou todas as restrições de projeto, e, além disso, reduziu a massa do rolo em 15,5%, que equivale a 5,15 kg. O principal motivo da divergência entre os casos se deu pela diferença de rigidez entre os materiais poliméricos. Nos ensaios de relaxação de tensão, o PA.6 apresentou um módulo de elasticidade longitudinal muito superior ao PEAD. Essa propriedade mecânica influencia diretamente no ângulo de desalinhamento entre eixo e rolamento e nas deflexões máximas do eixo e do tubo. Além disso, os resultados gráficos indicam que as curvas de respostas estruturais nas simulações viscoelásticas se assemelham ao modelo de Maxwell-Voigt, que descreve fenômenos viscoelásticos. Embora a incorporação da viscoelasticidade aumente os custos computacionais, ela oferece uma representação mais acurada do comportamento mecânico real em comparação com um modelo elástico linear. |
Abstract: | Mining is an economically significant activity in Brazil. The ore transportation, performed by belt conveyors, begins with the sieving, crushing, and beneficiation operations and ends with the supply of ships and railway wagons. The roller is one of the fundamental elements of belt conveyors since it supports, guides, and directs the material on the belt. This component is basically composed of a body that rotates around a fixed shaft in metallic structures called easels. Rollers (tube and shaft) used in ore conveyor belts are mostly made of steel, which consequently leads to this part having a high mass. The severity of ore transport, associated with weathering and the high volume of material loaded on the belts, often causes this mechanical component to fail prematurely. Equipment maintenance is carried out manually by operators, hindering roller replacement. Aiming to achieve a mass reduction in this mechanical component, this work presents a parametric structural optimization study of a polymeric roller. To accomplish this, a finite element method (FEM) model is built using Ansys Workbench software. The roller considered was initially composed of an external tube made of high-density polyethylene (HDPE), bearing seats of polyamide 6 (PA.6), and a shaft made of steel. To characterize the polymeric materials (HDPE and PA.6), stress relaxation tests were executed in specimens. The results of the shear modulus variation over time were incorporated into the model to calculate the Prony series terms, thus accounting for the viscoelastic effect. The optimization of the structure aimed at minimizing mass was conducted using surrogate models of radial basis functions (RBF) and the Globalized Bounded Nelder-Mead (GBNM) algorithm, with the shaft radius and tube inner radius as design variables. In the optimization problem constraint’s definition, the design loads, and also the stress and deflection angle limits imposed by the ABNT NBR 6678:2017 were considered. The optimization process was divided into two cases. In the first one, which regards the roller’s initial material settings (i.e., PEAD tube and bearing seats of PA.6), the optimum point violated the constraints and could not reduce the mass of the system. In the second case, which uses the PA.6 in both the bearing seats and the tube, it was found a minimum point that respected all the constraints and reduced the roller’s mass by 15,5%, which is equivalent to 5,15kg. The primary reason for the divergence between the cases was the difference in stiffness between the polymeric materials. In the stress relaxation tests, PA.6 exhibited a longitudinal elasticity modulus significantly higher than that of PEAD. This mechanical property directly influences the misalignment angle between the shaft and the bearings, as well as the maximum deflection of both the shaft and tube. Additionally, the graphical results indicate that the curves of structural responses in the viscoelastic simulations resemble the Maxwell-Voigt model, which describes viscoelastic phenomena. Although incorporating viscoelasticity increases computational costs, it offers a more accurate representation of real mechanical behavior compared to a linear-elastic model. |
URI: | http://repositorio.utfpr.edu.br/jspui/handle/1/34501 |
Aparece nas coleções: | CT - Programa de Pós-Graduação em Engenharia Mecânica e de Materiais |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
otimizacaoparametricarolopolimerico.pdf | 5,13 MB | Adobe PDF | Visualizar/Abrir |
Este item está licenciada sob uma Licença Creative Commons