Use este identificador para citar ou linkar para este item: http://repositorio.utfpr.edu.br/jspui/handle/1/33962
Título: Predição por redes neurais artificiais da captura de CO2 por adsorção em carvão ativado
Título(s) alternativo(s): Prediction of CO2 uptake on activated carbon by artificial neural networks
Autor(es): Venturella, Suzan Roberta Tombini
Orientador(es): Souza, Fernanda Batista de
Palavras-chave: Adsorção
Carbono ativado
Redes neurais (Computação)
Aquecimento global
Mudanças climáticas
Adsorption
Carbon, Activated
Neural networks (Computer science)
Global warming
Climatic changes
Data do documento: 16-Mai-2024
Editor: Universidade Tecnológica Federal do Paraná
Câmpus: Francisco Beltrao
Citação: VENTURELLA, Suzan Roberta Tombini. Predição por redes neurais artificiais da captura de CO2 por adsorção em carvão ativado. 2024. Dissertação (Mestrado em Engenharia Ambiental: Análise e Tecnologia Ambiental) - Universidade Tecnológica Federal do Paraná, Francisco Beltrão, 2024.
Resumo: Em 2022, os níveis de CO2 na atmosfera atingiram 420 ppm e tornaram-se fator preocupante para a comunidade científica. A mudança climática pode causar, de forma indireta, efeitos negativos na saúde da população devido a alterações na poluição do ar, disseminação de doenças, insegurança alimentar e outros. Desta forma, os investimentos previstos pelo Acordo de Paris se tornam importantes para redução dos impactos nas mudanças climáticas, e dá aos países envolvidos a oportunidade de desenvolver novas tecnologias para mitigar a emissão de CO2. Como o aumento das emissões de CO2 é considerado a principal causa para a alteração climática, a captura de carbono torna-se uma alternativa para a solução do problema através da adsorção do CO2 em superfícies sólidas. Esforços vem sendo feitos para aplicar técnicas de computação na indústria e na área acadêmica devido ao custo e a alta demanda de tempo necessário para a realização de experimentos relacionados a adsorção. Devido a estas condições e a dificuldade de utilizar métodos computacionais tradicionais para resolução de problemas de engenharia, se passou a estudar métodos mais simples e amplos. Para estudar a capacidade de adsorção de CO2 em carvão ativado sob diferentes condições experimentais, este trabalho usou rede neural artificial alimentada com dados de temperatura e pressão de operação, área superficial do adsorvente, capacidade de adsorção para CO2 e CH4, e a fração molar dos gases. Para a simulação da rede neural, foi utilizado o algoritmo de Levenberg-Marquardt com auxílio do software Matlab®. Os dados utilizados foram distribuídos em 70% para treinamento, 15% para validação e 15% para testes e aplicado para 10, 15 e 20 neurônios na camada oculta. Para análise dos resultados foi utilizado o erro quadrático médio (MSE) e o coeficiente de correlação (R²). O melhor resultado foi obtido para 20 camadas de neurônios com MSE equivalente a 3,80 x 10-3 e R² de 0,98347 para dados de treinamento, 0,98328 para a validação e 0,97365 para o teste, e mostra que as redes neurais artificiais são capazes de prever a capacidade de adsorção em carvão ativado. A predição da adsorção de dióxido de carbono a partir de redes neurais artificiais (RNA) torna possível estudar a capacidade de captura de CO2 em carvão ativado. A união do método experimental ao método computacional pode se tornar uma ferramenta capaz de facilitar o estudo de captura de outros gases de efeito estufa e reduzir custos e tempo investidos em experimentos laboratoriais.
Abstract: In 2022, CO2 levels in the atmosphere reached the mark of 420 ppm and became a concerning matter among the scientific community. Climate change may cause, in an indirect way, adverse effects on people’s health due to changes in air pollution, spread of diseases, food insecurity and others. Thus, the investments foreseen in the Paris Agreement are essential to reducing the impacts caused by climate change, and it also gives the countries involved the opportunity to develop new technologies to mitigate CO2 emissions. As the rise in CO2 emissions is considered as the main cause for climate change, carbon capture becomes an alternative of these technologies, and a technique that can be used is gas adsorption on solid surfaces. Efforts are being made to apply computational techniques in industry and academia due to the cost and high time demand required for conducting experiments related to adsorption. Given these conditions and the challenges associated with using traditional computational methods to solve engineering problems, simpler and more versatile approaches have been explored. To study the uptake of CO2 on activated carbon under different experimental conditions, this work used artificial neural networks (ANN) feed with experimental data for pressure, temperature, superficial area of the adsorbent, CO2 and CH4 uptake and their molar fractions. For training the network it was used of the Levenberg-Marquardt algorithm and Matlab© software. The data was distributed as 70% for training, 15% for validation, 15% for testing and trained for 10, 15, and 20 layers. The network comprises the tangent activation function in the hidden layers and the linear function in the output layer. The mean squared error and the correlation coefficient were used to analyze the outputs obtained through the network test. The best result was obtained for the 20-layer training presenting MSE equivalent of 3.80x10-3 and an R2 of 0.98347 for the training data, 0.98328 for the validation data, 0.97365 for the test data, and it shows that the neural artificial network is capable of predicting the CO2 adsorption on activated carbon. Therefore, the uptake of CO2 through artificial neural networks makes it possible to study the uptake of CO2 on activated carbon. Uniting the experimental method to the machine learning method may be a tool capable of allowing the study for the capture of other greenhouse gases and reduce costs and time invested in laboratory experiments.
URI: http://repositorio.utfpr.edu.br/jspui/handle/1/33962
Aparece nas coleções:FB - Programa de Pós-Graduação em Engenharia Ambiental: Análise e Tecnologia Ambiental

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
predicaoadsorcaodioxidocarbono.pdf3,55 MBAdobe PDFThumbnail
Visualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons