Use este identificador para citar ou linkar para este item: http://repositorio.utfpr.edu.br/jspui/handle/1/29753
Registro completo de metadados
Campo DCValorIdioma
dc.creatorSilveira, Jonathas Evangelista da-
dc.creatorFelzmann, Isaías Bittencout-
dc.creatorFabrício Filho, João-
dc.creatorWanner, Lucas Francisco-
dc.date.accessioned2022-09-27T14:29:53Z-
dc.date.available2022-09-27T14:29:53Z-
dc.date.issued2020-10-21-
dc.identifier.citationSILVEIRA, Jonathas; FELZMANN, Isaías; FABRÍCIO FILHO, João; WANNER, Lucas. RV-Across: an associative processing simulator. In: SIMPÓSIO EM SISTEMAS COMPUTACIONAIS DE ALTO DESEMPENHO, 21., 2020. Anais eletrônicos [...]. Porto Alegre: Sociedade Brasileira de Computação, 2020. p. 131-142. DOI: https://doi.org/10.5753/wscad.2020.14064. Disponível em: https://sol.sbc.org.br/index.php/wscad/article/view/14064/13912. Acesso em: 28 jun. 2022.pt_BR
dc.identifier.urihttp://repositorio.utfpr.edu.br/jspui/handle/1/29753-
dc.description.abstractAssociative Processing provides high-performance and energyefficient parallel computation using a Content-Addressable Memory (CAM). Emerging big data applications can be significantly sped-up by Associative Processing, but validation and evaluation are key challenges. We present RVAcross, a RISC-V Associative Processing Simulator for testing, validation, and modeling associative operations. RV-Across eases the design of associative and near-memory processing architectures by offering interfaces to both building new operations and providing high-level experimentation. Our simulator records memory and registers states of each associative operation pass, giving the user visibility and control over the simulation. The user can employ the simulation statistics provided by RV-Across to compute performance and energy metrics. RV-Across implements common associative operations and provides a framework to allow for easy extension. We show how the simulator works by experimenting with different scenarios for associative operations with three applications that test the functionality of logic and arithmetic computations: matrix multiply, checksum, and bitcount. Our results highlight the direct relation between the data length and potential performance improvement of associative processing in comparison to regular CPU serial and parallel operation. In case of matrix multiplication, the speed-up increases linearly with matrices dimension, achieving 8X for 200x200 bytes matrices and overcoming parallel execution in an 8-core CPU.pt_BR
dc.languageengpt_BR
dc.relation.ispartofSimpósio em Sistemas Computacionais de Alto Desempenhopt_BR
dc.relation.urihttps://sol.sbc.org.br/index.php/wscad/article/view/14064/13912pt_BR
dc.rightsopenAccesspt_BR
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/pt_BR
dc.subjectSimulação (Computadores)pt_BR
dc.subjectSistemas de memória de computadorespt_BR
dc.subjectInterfaces de usuário (Sistemas de computação)pt_BR
dc.subjectComputer simulationpt_BR
dc.subjectComputer storage devicespt_BR
dc.subjectUser interfaces (Computer systems)pt_BR
dc.titleRV-Across: an associative processing simulatorpt_BR
dc.typeconferenceObjectpt_BR
dc.publisher.localCampo Mouraopt_BR
dc.identifier.doihttps://doi.org/10.5753/wscad.2020.14064pt_BR
dc.publisher.countryBrasilpt_BR
dc.subject.cnpqCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOpt_BR
dc.citation.issue21pt_BR
Aparece nas coleções:PCS - Trabalhos publicados em Eventos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
rvacrossassociativeprocessingsimulator.pdf352,85 kBAdobe PDFThumbnail
Visualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons