Use este identificador para citar ou linkar para este item: http://repositorio.utfpr.edu.br/jspui/handle/1/2933
Registro completo de metadados
Campo DCValorIdioma
dc.creatorRocha, Reginaldo da-
dc.date.accessioned2018-02-20T19:51:53Z-
dc.date.available2018-02-20T19:51:53Z-
dc.date.issued2016-07-06-
dc.identifier.citationROCHA, Reginaldo da. Explorando abordagens evolutivas para recuperação de imagens baseada em conteúdo. 2016. 95 f. Dissertação (Mestrado em Informática) - Universidade Tecnológica Federal do Paraná, Cornélio Procópio, 2016.pt_BR
dc.identifier.urihttp://repositorio.utfpr.edu.br/jspui/handle/1/2933-
dc.description.abstractThe process of organization and retrieval of images presents numerous problems to be addressed, to understand the subjective meaning of a visual query through numerical parameters that can be extracted and compared by a computer is a challenge. The disparity between the comparison performed by the machine and that in fact the human being interprets a visual query is known as semantic gap. Several studies in the literature techniques to address this gap. In this context, relevance feedback (RF) is an effective approach to capture user intent and reduce the difference between semantic concepts and the visual characteristics of an image. However, the semantic gap is still a challenge to be overcome, therefore, the present work aims to study, analysis and proposal for a new framework for image retrieval through relevance feedback combined with evolutionary algorithms aiming to bring the user’s expectation througth the results returned by the retrieval of images through the his intention and definition of the most appropriate parameters. To this end, the main idea of the work is to insert learning memory in a content-based image retrieval system for this by storing the user interaction data with the system profiles so that later these data are able to provide parameters for the system “learn” and respond to personalized user and need. Thus, contributing to reduction of existing semantic gap between the results of a retrieval operation and indeed expected images for a specific context, improving the efficiency and effectiveness of the retrieval process.pt_BR
dc.languageporpt_BR
dc.publisherUniversidade Tecnológica Federal do Paranápt_BR
dc.rightsopenAccesspt_BR
dc.subjectSistemas de controle por realimentaçãopt_BR
dc.subjectProcessamento de imagenspt_BR
dc.subjectAlgorítmospt_BR
dc.subjectFeedback control systemspt_BR
dc.subjectImage processingpt_BR
dc.subjectAlgorithmspt_BR
dc.titleExplorando abordagens evolutivas para recuperação de imagens baseada em conteúdopt_BR
dc.title.alternativeExploiting evolutionary approaches for content-based image retrievalpt_BR
dc.typemasterThesispt_BR
dc.description.resumoO processo de organização e recuperação de imagens apresenta inúmeros problemas a serem abordados, compreender o significado subjetivo de uma consulta visual por meio de parâmetros numéricos que podem ser extraídos e comparados por meio de um computador é um dos maiores desafios. A disparidade entre a comparação realizada pela máquina e o que de fato o ser humano interpreta de uma consulta visual é denominado de lacuna semântica. Diversos trabalhos na literatura abordam técnicas para diminuir essa disparidade. Nesse contexto, a abordagem de realimentação de relevância apresenta-se como um meio eficaz para capturar a intenção do usuário e reduzir a diferença entre os conceitos semânticos oriundos da percepção visual do usuário, bem como das características visuais de baixo nível extraídas automaticamente de uma imagem. Entretanto, a lacuna semântica ainda é um desafio a ser vencido. Por tal motivo, o presente trabalho tem por objetivo o estudo, análise e proposta de um arcabouço para recuperação de imagens o qual combina a realimentação de relevância unida a algoritmos evolutivos visando aproximar a expectativa do usuário em relação aos resultados retornados pela recuperação de imagens, por meio da captura de intenção do mesmo e posterior definição dos parâmetros mais adequados. Para tanto, a ideia principal do trabalho é inserir memória de aprendizado ao processo de recuperação de imagens por conteúdo, armazenando os dados da interação do usuário com o sistema em perfis, os quais posteriormente serão utilizados para prover respostas ao usuário de maneira personalizada, consequentemente, contribuindo para diminuição da lacuna semântica.pt_BR
dc.degree.localCornélio Procópiopt_BR
dc.publisher.localCornelio Procopiopt_BR
dc.creator.Latteshttp://lattes.cnpq.br/4352990757818660pt_BR
dc.contributor.advisor1Bugatti, Pedro Henrique-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/2177467029991118pt_BR
dc.contributor.advisor-co1Saito, Priscila Tiemi Maeda-
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/6652293216938994pt_BR
dc.contributor.referee1Bugatti, Pedro Henrique-
dc.contributor.referee2Oliveira, Claiton de-
dc.contributor.referee3Barbon Júnior, Sylvio-
dc.contributor.referee4Saito, Priscila Tiemi Maeda-
dc.publisher.countryBrasilpt_BR
dc.publisher.programPrograma de Pós-Graduação em Informáticapt_BR
dc.publisher.initialsUTFPRpt_BR
dc.subject.cnpqCNPQ::CIENCIAS EXATAS E DA TERRApt_BR
dc.subject.capesCiência da Computaçãopt_BR
Aparece nas coleções:CP - Programa de Pós-Graduação em Informática

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
CP_PPGI_M_Rocha, Reginaldo da_2016.pdf3,99 MBAdobe PDFThumbnail
Visualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.