Use este identificador para citar ou linkar para este item: http://repositorio.utfpr.edu.br/jspui/handle/1/29011
Registro completo de metadados
Campo DCValorIdioma
dc.creatorMicheletti, João Pedro Santos Brito-
dc.date.accessioned2022-07-06T12:30:26Z-
dc.date.available2022-07-06T12:30:26Z-
dc.date.issued2021-08-23-
dc.identifier.citationMICHELETTI, João Pedro Santos Brito. Solução numérica da equação de Poisson em malhas estruturadas bidimensionais e tridimensionais. 2021. Trabalho de Conclusão de Curso (Licenciatura em Matemática) - Universidade Tecnológica Federal do Paraná, Curitiba, 2021.pt_BR
dc.identifier.urihttp://repositorio.utfpr.edu.br/jspui/handle/1/29011-
dc.description.abstractIn this work, we numerically solve second-order elliptic partial differential equations such as the Laplace and Poisson equations, using the finite difference method in two-dimensional and threedimensional structured meshes. To solve the system of linear equations arising from the finite difference discretization, we use the iterative methods of Gauss-Seidel and SOR. Furthermore, we build manufactured solutions for some Poisson equations and compare the exact and numerical solutions, and test optimal values for the relaxation parameter in the SOR method. We also apply the theory studied in the numerical solution of stationary or equilibrium problems and employ Matlab and Tecplot 360 to visualize the numerical solution. We conclude that the convergence of the SOR method is slow in problems with Neumann boundary conditions and in problems with singularities.pt_BR
dc.languageporpt_BR
dc.publisherUniversidade Tecnológica Federal do Paranápt_BR
dc.rightsopenAccesspt_BR
dc.subjectFunções harmônicaspt_BR
dc.subjectDiferenças finitaspt_BR
dc.subjectMATLAB (Programa de computador)pt_BR
dc.subjectSimulação (Computadores)pt_BR
dc.subjectHarmonic functionspt_BR
dc.subjectFinite differencespt_BR
dc.subjectMATLAB (Computer program)pt_BR
dc.subjectComputer simulationpt_BR
dc.titleSolução numérica da equação de Poisson em malhas estruturadas bidimensionais e tridimensionaispt_BR
dc.title.alternativeNumerical solution of Poisson equation in bidimesional and three-dimensional structured meshespt_BR
dc.typebachelorThesispt_BR
dc.description.resumoNeste trabalho, solucionamos numericamente equações diferenciais parciais elípticas de segunda ordem, como as equações de Laplace e de Poisson, empregando o método de diferenças finitas em malhas estruturadas bidimensionais e tridimensionais. Para solucionar o sistema de equações lineares proveniente da discretização por diferenças finitas, usamos os métodos iterativos de Gauss-Seidel e SOR. Além disso, construímos soluções manufaturadas para algumas equações de Poisson, comparamos as soluções exata e numérica e testamos valores ótimos para o parâmetro de relaxação no método SOR. Também aplicamos a teoria estudada na solução numérica de problemas estacionários ou de equilíbrio e utilizamos o Matlab e o Tecplot 360 para visualizar a solução numérica. Concluímos que a convergência do método SOR é lenta em problemas com condições de contorno de Neumann e em problemas com singularidades.pt_BR
dc.degree.localCuritibapt_BR
dc.publisher.localCuritibapt_BR
dc.contributor.advisor1Nós, Rudimar Luiz-
dc.contributor.referee1Nós, Rudimar Luiz-
dc.contributor.referee2Bobko, Nara-
dc.contributor.referee3Sampaio, Júlio César Santos-
dc.publisher.countryBrasilpt_BR
dc.publisher.programLicenciatura em Matemáticapt_BR
dc.publisher.initialsUTFPRpt_BR
dc.subject.cnpqCNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICApt_BR
Aparece nas coleções:CT - Licenciatura em Matemática

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
solucaonumericapoisson.pdf13,34 MBAdobe PDFThumbnail
Visualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.