Use este identificador para citar ou linkar para este item: http://repositorio.utfpr.edu.br/jspui/handle/1/27623
Registro completo de metadados
Campo DCValorIdioma
dc.creatorMiranda, Amanda Drzewinski de-
dc.date.accessioned2022-03-14T18:54:49Z-
dc.date.available2022-03-14T18:54:49Z-
dc.date.issued2021-10-01-
dc.identifier.citationMIRANDA, Amanda Drzewinski de. Invariantes operatórios mobilizados por um estudante cego mediante a resolução de situações-problema do campo conceitual aditivo em um contexto de inclusão. 2021. Tese (Doutorado em Ensino de Ciência e Tecnologia) - Universidade Tecnológica Federal do Paraná, Ponta Grossa, 2021.pt_BR
dc.identifier.urihttp://repositorio.utfpr.edu.br/jspui/handle/1/27623-
dc.descriptionAcompanha produção técnica: Ensino inclusivo e a matemática: orientações didáticas sobre a estrutura aditiva à luz da teoria dos campos conceituaispt_BR
dc.description.abstractThe implementation of subsidized educational policies from the perspective of inclusion has provided growing visibility to a school population which constitutes a great challenge for teachers in regular education: students who are the target audience of Special Education. The investigation proposed in this thesis consisted of analyzing the operative invariants mobilized by the blind student when solving problem-situations in the additive conceptual field. According to Vergnaud's Field Theory (TCC), concepts are defined through three sets: that of situations (S), that of operative invariants (I) and that of linguistic and symbolic representations (L). Of these, the most decisive from a cognitive point of view are the operative invariants, which structure the form of organization of manifested schemas relevant to situations. This study was based on the methodological framework founded by researchers in the field of Mathematics Education, Fiorentini and Lorenzato (2012), in a qualitative approach. The constitution and collection of data was established through the application of a set of sequences of activities and the constituted data were subjected to a content analysis, as proposed by Bardin (2011), from the notes referring to the logbook, recording of voice and text productions of the blind student who attended the fourth year of elementary school at the regular school. The results of the analysis of the problem-solving processes in the additive conceptual field reveal that the congenital blind student participating in this research manifested schemes different from the conventional ones, that is, he used his own resolution strategies, such as: mental calculation with rounding, decomposition and numerical complementation, mobilizing specific operative invariants. In addition, the sequences of activities "Battle Naval" and "Enigma da Poção Mágica" promoted the destabilization of an already consolidated scheme and, therefore, triggered in a wrong way, the search for the keyword in the utterance. Thus, at the end of this research, the blind student interpreted problem-situations by mobilizing resolution schemes associated with the idea expressed in the statement. In this study, we concluded that the diversity of problem-situations offered through the sequences of activities gave the blind student the opportunity to explain their schemes, which are linked to the mobilized operative invariants. The development of the research resulted in the elaboration of a didactic orientation, which aims to collaborate in the planning of pedagogical interventions in the subject of Mathematics, structured on the Theory of Conceptual Fields and based on the assumptions of Inclusive Education, specifically, with the target public student of Special Education.pt_BR
dc.languageporpt_BR
dc.publisherUniversidade Tecnológica Federal do Paranápt_BR
dc.rightsopenAccesspt_BR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/pt_BR
dc.subjectMatemática - Estudo e ensinopt_BR
dc.subjectEstudantes com deficiência visualpt_BR
dc.subjectEducação inclusivapt_BR
dc.subjectEducação especialpt_BR
dc.subjectAprendizagem baseada em problemaspt_BR
dc.subjectMathematics - Study and teachingpt_BR
dc.subjectStudents with visual disabilitiespt_BR
dc.subjectInclusive educationpt_BR
dc.subjectSpecial educationpt_BR
dc.subjectProblem-based learningpt_BR
dc.titleInvariantes operatórios mobilizados por um estudante cego mediante a resolução de situações-problema do campo conceitual aditivo em um contexto de inclusãopt_BR
dc.title.alternativeOperative invariants mobilized by a blind student by solving problem-situations in the additive conceptual field in a context of inclusionpt_BR
dc.typedoctoralThesispt_BR
dc.description.resumoA implementação de políticas educacionais subsidiadas na perspectiva da inclusão tem propiciado crescente visibilidade a uma população escolar a qual se constitui um grande desafio para os professores do ensino regular: os estudantes público-alvo da Educação Especial. A investigação que foi proposta nesta tese consistiu em analisar os invariantes operatórios mobilizados pelo estudante cego ao resolver situaçõesproblema do campo conceitual aditivo. Conforme a Teoria dos Campos (TCC) de Vergnaud, conceitos são definidos por meio de três conjuntos: o de situações (S), o de invariantes operatórios (I) e o das representações linguísticas e simbólicas (L). Destes o mais decisivo do ponto de vista cognitivo, são os invariantes operatórios, que estruturam a forma de organização dos esquemas manifestados pertinentes às situações. Este estudo sustentou-se no referencial metodológico fundamentado pelos pesquisadores do campo da Educação Matemática, Fiorentini e Lorenzato (2012), em uma abordagem qualitativa. A constituição e obtenção dos dados se estabeleceu mediante a aplicação de um conjunto de sequências de atividades e os dados constituídos foram submetidos a uma análise de conteúdo, conforme proposto por Bardin (2011), a partir das anotações referentes ao diário de bordo, gravação de voz e as produções de texto do estudante cego que frequentava quarto ano do Ensino Fundamental da escola regular. Os resultados da análise dos processos resolutivos das situações-problema do campo conceitual aditivo, revelam que, o estudante cego congênito participante desta pesquisa, manifestou esquemas diferentes dos convencionais, ou seja, utilizou estratégias próprias de resolução, tais como: cálculo mental com arredondamento, decomposição e complementação numérica, mobilizando invariantes operatórios específicos. Além disso, as sequências de atividades “Batalha Naval” e “Enigma da Poção Mágica”, promoveram a desestabilização de um esquema já consolidado e, portanto, acionado de forma equivocada, a procura da palavra-chave no enunciado. Assim, ao final desta pesquisa o estudante cego interpretava às situações-problema mobilizando esquemas de resolução associados a ideia expressa no enunciado. Neste estudo, concluímos que a diversidade de situações-problema oferecidas por meio das sequências de atividades oportunizou o estudante cego a explicitar seus esquemas, os quais estão atrelados aos invariantes operatórios mobilizados. O desenvolvimento da pesquisa resultou na elaboração de uma orientação didática, que visa colaborar no planejamento de intervenções pedagógicas na disciplina de Matemática, estruturada na Teoria dos Campos Conceituais e fundamentada nos pressupostos da Educação Inclusiva, especificamente, junto ao estudante público-alvo da Educação Especial.pt_BR
dc.degree.localPonta Grossapt_BR
dc.publisher.localPonta Grossapt_BR
dc.creator.IDhttps://orcid.org/0000-0002-9473-9783pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/9992061427235609pt_BR
dc.contributor.advisor1Pinheiro, Nilcéia Aparecida Maciel-
dc.contributor.advisor1IDhttps://orcid.org/0000-0003-3313-1472pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/9560346396921728pt_BR
dc.contributor.advisor-co1Silva, Sani de Carvalho Rutz da-
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/5694972079639390pt_BR
dc.contributor.referee1Pinheiro, Nilcéia Aparecida Maciel-
dc.contributor.referee1IDhttps://orcid.org/0000-0003-3313-1472pt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/9560346396921728pt_BR
dc.contributor.referee2Trevisan, André Luis-
dc.contributor.referee2IDhttps://orcid.org/0000-0001-8732-1912pt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/3166010229447391pt_BR
dc.contributor.referee3Santos, Clodogil Fabiano Ribeiro dos-
dc.contributor.referee3IDhttps://orcid.org/0000-0002-3557-0463pt_BR
dc.contributor.referee3Latteshttp://lattes.cnpq.br/1115081145275971pt_BR
dc.contributor.referee4Gazire, Eliane Scheid-
dc.contributor.referee4IDhttps://orcid.org/0000-0002-4798-2326pt_BR
dc.contributor.referee4Latteshttp://lattes.cnpq.br/4577045544623785pt_BR
dc.contributor.referee5Santos Junior, Guataçara dos-
dc.contributor.referee5IDhttps://orcid.org/0000-0002-6234-7961pt_BR
dc.contributor.referee5Latteshttp://lattes.cnpq.br/5026078100746374pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.programPrograma de Pós-Graduação em Ensino de Ciência e Tecnologiapt_BR
dc.publisher.initialsUTFPRpt_BR
dc.subject.cnpqCNPQ::CIENCIAS HUMANASpt_BR
dc.subject.capesEngenharia/Tecnologia/Gestãopt_BR
Aparece nas coleções:PG - Programa de Pós-Graduação em Ensino de Ciência e Tecnologia

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
invariantesoperatoriosmobilizadosdeficientevisual.pdf1,54 MBAdobe PDFThumbnail
Visualizar/Abrir
invariantesoperatoriosmobilizadosdeficienciavisual_produto.pdf897,71 kBAdobe PDFThumbnail
Visualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons