Use este identificador para citar ou linkar para este item: http://repositorio.utfpr.edu.br/jspui/handle/1/26343
Registro completo de metadados
Campo DCValorIdioma
dc.creatorWinkler, Anderson Marcelo-
dc.date.accessioned2021-11-10T15:20:41Z-
dc.date.available2021-11-10T15:20:41Z-
dc.date.issued2007-05-31-
dc.identifier.citationWINKLER, Anderson Marcelo. Inferência baseada em voxel para fMRI. 2007. Dissertação (Mestrado em Engenharia Elétrica e Informática Industrial) - Universidade Tecnológica Federal do Paraná, Curitiba, 2007pt_BR
dc.identifier.urihttp://repositorio.utfpr.edu.br/jspui/handle/1/26343-
dc.description.abstractBackground: Statistical parametric maps are constructed from a massive, univariate, voxel-wise hypothesis testing. Type I errors may happen very often if such a large amount of tests are performed. Though this is a central problem for neuroimaging studies, the best approach is still unclear. Two approaches have emerged as the most suitable for fMRI: the random field theory (RFT) and false discovery rate (FDR). RFT has become the de facto standard method for controlling the family-wise error rate (FWE), despite its complexity and restrictive assumptions. If the researcher is willing to accept some false-positives within the image, methods for controlling the FDR, as the Benjamini and Hochberg (B&H) procedure, can provide more liberal thresholds, with minimal assumptions. This study also features a literature review on recent advances in the field. Objective: Evaluate the performance of RFT and B&H procedures, as well the traditional Bonferroni correction (BON) and no correction (UNC). Method: A real “null” fMRI dataset was acquired at 1.5 T. A temporal high-pass filter was applied, and the brain volumes were randomly permuted, thus avoiding the potential bias due to autocorrelation. Patches of boxcar-like “activation” were added using the canonical haemodynamic response function, which parameters were slightly variable for each “activation” period. The general linear model was applied to both rest and added “activation” datasets, and with and without spatial smoothing. Estimation of the smoothness was based on the residuals of the model fit. For each of these conditions, t-maps were generated and thresholded using the UNC, BON, B&H and RFT procedures. Results: All the evaluated methods resulted in adequate control over error rates, within their theoretical assumptions and limitations. The Bonferroni correction was less conservative than expected. The B&H procedure resulted in variable thresholds, providing better control over FDR for large areas of simulated activity. B&H procedure was also influenced by smoothness. Conservative results were obtained for RFT, but the observed error was close to the nominal level for smoothed maps with a filter of 2.0 voxels of width. Smoothing induced bias in voxel-based measurements.pt_BR
dc.languageporpt_BR
dc.publisherUniversidade Tecnológica Federal do Paranápt_BR
dc.rightsopenAccesspt_BR
dc.subjectRadiologia médicapt_BR
dc.subjectRessonância magnéticapt_BR
dc.subjectEngenharia biomédicapt_BR
dc.subjectRadiology, Medicalpt_BR
dc.subjectMagnetic resonancept_BR
dc.subjectBiomedical engineeringpt_BR
dc.titleInferência baseada em voxel para fMRIpt_BR
dc.typemasterThesispt_BR
dc.description.resumoIntrodução: Mapas estatísticos paramétricos são construídos a partir de testes de hipóteses aplicados para cada voxel de imagens funcionais. Erros tipo I podem ocorrer muito frequentemente quando um grande número de testes e´ realizado simultaneamente. Embora este seja um problema central em estudos de neuroimagem, a melhor solução ainda não foi encontrada. Duas abordagem são mais utilizadas em fMRI: a teoria dos campos aleatórios (RFT) e a taxa de falsas descobertas (FDR). A RFT pode ser considerada atualmente o método padrão para controle de erro por família de testes (FWE), apesar de sua complexidade e suposições restritivas. Se o pesquisador está disposto a aceitar alguns falsos positivos na imagem, procedimentos que controlam a FDR, como o de Benjamini e Hochberg (B&H), podem gerar resultados mais liberais, com suposições mínimas. Este trabalho inclui ainda uma revisão da literatura recente sobre o tema. Objetivos: Avaliar a performance dos procedimentos RFT e B&H, bem como o procedimento convencional de Bonferroni (BON) e sem nenhuma correção (UNC). Método: Um conjunto de dados foi adquirido em repouso, em 1,5 T. Um filtro passa alta foi aplicado, e os volumes foram permutados no tempo para evitar o efeito da auto correlação. Áreas de “ativação” utilizando um sinal do tipo bloco foram adicionados, utilizando como referência a resposta hemodinâmica canônica, com parâmetros ligeiramente variáveis para cada período de “ativação”. O modelo linear geral foi aplicado para dados com e sem sinal, bem como para imagens suavizadas e não-suavizadas espacialmente. A estimação da suavização foi baseada nos resíduos do modelo linear geral. Para cada condição, mapas estatísticos foram gerados e limiarizados com os procedimentos UNC, BON, B&H e RFT. Resultados: Todos os métodos avaliados resultaram em controle apropriado da quantidade de erros, dentro de suas limitações teóricas sendo o de B&H o mais poderoso. O procedimento de Bonferroni foi menos conservador do que o esperado. O procedimento de B&H resultou em limiar variável, e controle mais exato sobre FDR quanto maiores as áreas de atividade simulada. Verificou-se ainda que a suavização interfere no valor do limiar de B&H. Para RFT os resultados foram conservadores para os níveis de suavização avaliados, mas aproximaram-se do nível de significância nominal para suavização com filtro de largura igual a 2,0 voxels. A suavização interferiu de forma indesejada nas medidas dependentes da contagem de voxelspt_BR
dc.degree.localCuritibapt_BR
dc.publisher.localCuritibapt_BR
dc.creator.IDhttps://orcid.org/ 0000-0002-4169-9781pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/3158613415305645pt_BR
dc.contributor.advisor1Gamba, Humberto Remigio-
dc.contributor.advisor1IDhttps://orcid.org/ 0000-0003-3210-2725pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/9211006688316492pt_BR
dc.contributor.referee1Araújo, Dráulio Barros de-
dc.contributor.referee1IDttps://orcid.org/0000-0002-6934-2485pt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/7818012155694188pt_BR
dc.contributor.referee2Amaro Junior, Edson-
dc.contributor.referee2IDhttps://orcid.org/ 0000-0002-5889-1382pt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/5927371795409877pt_BR
dc.contributor.referee3Schneider, Fábio Kurt-
dc.contributor.referee3IDhttps://orcid.org/ 0000-0001-6916-1361pt_BR
dc.contributor.referee3Latteshttp://lattes.cnpq.br/1463591813823167pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.programPrograma de Pós-Graduação em Engenharia Elétrica e Informática Industrialpt_BR
dc.publisher.initialsUTFPRpt_BR
dc.subject.cnpqCNPQ::ENGENHARIAS::ENGENHARIA BIOMEDICApt_BR
dc.subject.capesEngenharia Elétricapt_BR
Aparece nas coleções:CT - Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
CT_CPGEI_M_Winkler, Anderson Marcelo_2007.pdf4,59 MBAdobe PDFThumbnail
Visualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.