Use este identificador para citar ou linkar para este item: http://repositorio.utfpr.edu.br/jspui/handle/1/25510
Título: Análise de deflexões de vigas via equação diferencial ordinária linear e não linear
Título(s) alternativo(s): Analysis of beam deflections via linear and nonlinear ordinary differential equation
Autor(es): Berbardi, Mariana Coelho Portilho
Orientador(es): Lobeiro, Adilandri Mercio
Palavras-chave: Vigas
Equações diferenciais lineares
Equações diferenciais não-lineares
Deformações e tensões
Girders
Differential equations, Linear
Differential equations, Nonlineares
Strains and stresses
Data do documento: 11-Dez-2019
Editor: Universidade Tecnológica Federal do Paraná
Câmpus: Campo Mourao
Citação: BERNARDI, Mariana Coelho Portilho. Análise de deflexões de vigas via equação diferencial ordinária linear e não linear. 2019. Trabalho de Conclusão de Curso (Bacharelado em Engenharia Civil) - Universidade Tecnológica Federal do Paraná, Campo Mourão, 2019.
Resumo: Vigas são elementos estruturais presentes em quase todas edificações, a função delas é basicamente vencer vãos e transmitir as ações nelas atuantes para os apoios, como por exemplo os pilares. Desse modo, em projetos, busca-se que as estruturas satisfaçam os parâmetros aceitáveis, como evitar deslocamentos excessivos. Embasando-se no estudo de deflexões de vigas, este trabalho apresenta a dedução matemática das Equações Diferenciais Ordinárias (EDOs) não linear e linear que controlam esse fenômeno. Além disso, realizou-se dois estudos de casos, de uma viga em balanço e de uma viga biapoiada, onde, para as mesmas, foram encontradas as respectivas EDOs não linear e linear que regem suas deflexões. Foi feito dois ensaios experimentais de modo a comparar seus resultados com as respectivas soluções das EDOs, numérica com base no Método das Diferenças Finitas (MDF) para as não lineares e analítica via integração para as lineares, em que constatou-se a EDO mais adequada para cada um dos estudos de caso.
Abstract: Beams are structural elements present in almost all buildings, their function is basically to overcome gaps and transmit the actions on them to the supports, such as the pillars. Thus, in projects, it is sought that the structures meet the acceptable parameters, such as avoiding excessive displacements. Based on the study of beam deflections, this paper presents the mathematical deduction of the nonlinear and linear ordinary differential equations (ODEs) that control this phenomenon. Inaddition, two case studies were performed, one balance beam and one two-beam, where, for them,were found the respective nonlinear and linear ODEs that govern their deflections.Two experimental tests were performed in order to compare their results with the respective ODE solutions, numerical based on the Finite Difference Method (MDF) for the nonlinear and analytical via integration for the linear ones, in which the most appropriate ODE was found for each of the case studies.
URI: http://repositorio.utfpr.edu.br/jspui/handle/1/25510
Aparece nas coleções:CM - Engenharia Civil

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
deflexoesvigasequacaodiferencial.pdf1,43 MBAdobe PDFThumbnail
Visualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.