Use este identificador para citar ou linkar para este item: http://repositorio.utfpr.edu.br/jspui/handle/1/2325
Título: Previsão do índice de desenvolvimento humano e da expectativa de vida na América Latina por meio de técnicas de mineração de dados
Título(s) alternativo(s): Prediction of the human development index and life expectancy in Latin American using data mining techniques
Autor(es): Santos, Celso Bilynkievycz dos
Orientador(es): Pilatti, Luiz Alberto
Palavras-chave: Indicadores sociais
Desenvolvimento social
Qualidade de vida - América Latina
Mineração de dados (Computação)
Social indicators
Progress
Quality of life - Latin America
Data mining
Data do documento: 22-Dez-2016
Editor: Universidade Tecnológica Federal do Paraná
Câmpus: Ponta Grossa
Citação: SANTOS, Celso Bilynkievycz dos. Previsão do índice de desenvolvimento humano e da expectativa de vida na América Latina por meio de técnicas de mineração de dados. 2016. 216 f. Tese (Doutorado em Engenharia de Produção) - Universidade Tecnológica Federal do Paraná. Ponta Grossa, 2016.
Resumo: A previsibilidade de indicadores de qualidade de vida pode contribuir na projeção de variáveis dependentes, auxiliar em tomadas de decisões para sustentar ou não políticas públicas e justificar o cenário vivido pelos países e o mundo. Objetivo: Prever o Índice de Desenvolvimento Humano (IDH) e a expectativa de vida (EV) nos países latino-americanos no período de 2015 a 2020, utilizando técnicas de Mineração de Dados. Metodologia: Foram percorridas as etapas do processo Descoberta de Conhecimento em Base Dados (DCBD). Durante a etapa de DCBD de Mineração de Dados, foi avaliado o desempenho de diferentes algoritmos com paradigma de aprendizado baseados em funções. A partir do algoritmo com melhor desempenho, foram desenvolvidos 748 modelos de previsão univariados e dois multivariados para previsão do IDH de 187 países do mundo e seus resultados, comparados com os últimos relatórios do United Nations Development Programme (UNDP), para definição do modelo mais eficiente. Os resultados desses testes de previsões ainda foram comparados com 44 modelos univariados Autoregressive Integrated Moving Average (ARIMA). A partir da definição do melhor algoritmo de Mineração de Dados e modelo, fez-se a previsão do IDH e da EV para os países da America Latina para o período de 2015 a 2020. Resultados: O algoritmo SMOReg e os modelos multivariados apresentaram melhor desempenho nos testes desenvolvidos durante o experimento. As médias de crescimento do IDH e EV previstas para os países latino-americanos tendem a aumentar no período analisado, respectivamente, 4,99±3,90 % e 2,47±0,09 anos. Conclusão: Experiências multivariadas possibilitam maior aprendizagem dos algoritmos, aumentando sua precisão. As técnicas de Mineração de Dados apresentaram melhor qualidade nas previsões em relação à técnica mais popular, ARIMA. As previsões sugerem média de crescimento do IDH e EV dos países latino-americanos maiores que a média mundial.
Abstract: The predictability of quality of life indicators can contribute to the projection of dependent variables, help decision-making processes to support public policies and justify the scenario experienced by the countries and the world. Aim: This study aimed to predict the Human Development Index (HDI) and life expectancy (LE) in Latin American countries in the period of 2015–2020 using data mining techniques. Methodology: The study followed the steps of Knowledge Discovery in Database (KDD) processes. During the data mining KDD step, the performance of different algorithms with function-based learning paradigms was analyzed. From the algorithm with the best performance, 748 prediction models of univariate and two multivariate were developed to predict the HDI of 187 countries and their results were compared with the last reports from the United Nations Development Program (UNDP) in order to define the most efficient model. The results of these prediction tests were compared with 44 univariate Autoregressive Integrated Moving Average (ARIMA) models. From the definition of the best algorithm of data mining and model, the prediction of HDI and LE for Latin American countries from 2015 and 2020 was done. Results: The SMOReg algorithm and the multivariate models presented the best performance in the tests during the experiment. The average growth in HDI and LE predicted for Latin American countries tend to increase in the period analyzed, 4.99±3.90 % and 2.47±0.09 years, respectively. Conclusion: Multivariate experiences allow better learning of algorithms, increasing their prediction. Mining data techniques present better quality in the predictions compared to Autoregressive Integrated Moving Average (ARIMA), which is the most popular technique. The predictions suggest an average growth in HDI and LE in Latin American countries compared to the world average.
URI: http://repositorio.utfpr.edu.br/jspui/handle/1/2325
Aparece nas coleções:PG - Programa de Pós-Graduação em Engenharia de Produção

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
PG_PPGEP_D_Santos, Celso Bilynkievycz dos_2016.pdf8,73 MBAdobe PDFThumbnail
Visualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.