Use este identificador para citar ou linkar para este item: http://repositorio.utfpr.edu.br/jspui/handle/1/15625
Título: Módulo de reconhecimento de imagens anômalas baseado em microsserviços
Título(s) alternativo(s): Microservices based anomalous image recognition module
Autor(es): Boniolo, Rafael
Orientador(es): Brilhador, Anderson
Palavras-chave: Sistemas de reconhecimento de padrões
Construção civil
Automação
Pattern recognition systems
Building
Automation
Data do documento: 5-Dez-2019
Editor: Universidade Tecnológica Federal do Paraná
Câmpus: Santa Helena
Citação: BONIOLO, Rafael. Módulo de reconhecimento de imagens anômalas baseado em microsserviços. 2019.Trabalho de Conclusão de Curso (Bacharelado em Ciência da Computação) - Universidade Tecnológica Federal do Paraná, Santa Helena, 2019.
Resumo: Este trabalho apresenta o desenvolvimento de um módulo reconhecedor de imagens anômalas ao contexto da construção civil com base na arquitetura de microsserviços. Utilizam-se os classificadores KNN e OC-SVM juntamente com os descritores locais HOG, SIFT, SURF e ORB em diferentes dimensionalidades do espaço de característica utilizando o PCA. A base de dados foi construída por meio de Web Crawler o qual contempla imagenspertencentes a construção civil e também de outras classes anômalas. Para microsserviços, utilizo se o framework Spring na construção dos serviços em níveis de front-end, back-end e gerenciamento. A melhor combinação entre descritor, classificador e PCA deu origem a um modelo de classificação a ser implantado em um serviço web. O descritor local HOG sem aplicação de PCA junto com o classificador KNN obtiveram o melhor desempenho, alcançando 96,2% de taxa na métrica precisão quando feito a tarefa de detecção de imagens anômalas, na qual o modelo de classificação resultante foi posteriormente embutido e disponibilizado para uso em uma aplicação web.
Abstract: This work presents the development of an anomalous image recognition module in the context of civil construction based on microservices architecture. The KNN and OCSVM classifiers are used together with the local descriptors HOG, SIFT, SURF and ORB in different PCA dimensions. The dataset was built using Web Scrapping which includes images that belongs to construction and also from other anomalous classes. For microservices, the Spring Framework was used to build services in the frontend, backend and management levels. The best combination of descriptor, classifier and PCA originated a classification model to be deployed in a web service. The HOG local descriptor no use of PCA with the KNN classifier obtained the best performance, achieving 96.2 % metric precision rate when performing the anomalous image detection task, in which the resulting classification model was later embedded and made available for use in a web application.
URI: http://repositorio.utfpr.edu.br/jspui/handle/1/15625
Aparece nas coleções:SH - Ciência da Computação

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
SH_COCIC_2019_2_8.pdf2,79 MBAdobe PDFThumbnail
Visualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.