Use este identificador para citar ou linkar para este item: http://repositorio.utfpr.edu.br/jspui/handle/1/1295
Registro completo de metadados
Campo DCValorIdioma
dc.creatorBorba, Gustavo Benvenutti-
dc.date.accessioned2015-06-18T17:29:26Z-
dc.date.available2015-06-18T17:29:26Z-
dc.date.issued2010-03-11-
dc.identifier.citationBORBA, Gustavo Benvenutti. Automatic extraction of regions of interest from images based on visual attention models. 2010. 109 f. Tese (Doutorado em Engenharia Elétrica e Informática Industrial) – Universidade Tecnológica Federal do Paraná, Curitiba, 2010pt_BR
dc.identifier.urihttp://repositorio.utfpr.edu.br/jspui/handle/1/1295-
dc.description.abstractThis thesis presents a method for the extraction of regions of interest (ROIs) from images. By ROIs we mean the most prominent semantic objects in the images, of any size and located at any position in the image. The novel method is based on computational models of visual attention (VA), operates under a completely bottom-up and unsupervised way and does not present con-straints in the category of the input images. At the core of the architecture is de model VA proposed by Itti, Koch and Niebur and the one proposed by Stentiford. The first model takes into account color, intensity, and orientation features and provides coordinates corresponding to the points of attention (POAs) in the image. The second model considers color features and provides rough areas of attention (AOAs) in the image. In the proposed architecture, the POAs and AOAs are combined to establish the contours of the ROIs. Two implementations of this architecture are presented, namely 'first version' and 'improved version'. The first version mainly on traditional morphological operations and was applied in two novel region-based image retrieval systems. In the first one, images are clustered on the basis of the ROIs, instead of the global characteristics of the image. This provides a meaningful organization of the database images, since the output clusters tend to contain objects belonging to the same category. In the second system, we present a combination of the traditional global-based with region-based image retrieval under a multiple-example query scheme. In the improved version of the architecture, the main stages are a spatial coherence analysis between both VA models and a multiscale representation of the AOAs. Comparing to the first one, the improved version presents more versatility, mainly in terms of the size of the extracted ROIs. The improved version was directly evaluated for a wide variety of images from different publicly available databases, with ground truth in the form of bounding boxes and true object contours. The performance measures used were precision, recall, F1 and area overlap. Experimental results are of very high quality, particularly if one takes into account the bottom-up and unsupervised nature of the approach.pt_BR
dc.description.sponsorshipUOL; CAPESpt_BR
dc.languageengpt_BR
dc.publisherUniversidade Tecnológica Federal do Paranápt_BR
dc.subjectProcessamento de imagens - Técnicas digitaispt_BR
dc.subjectSistemas de arquivamento e comunicação de imagenspt_BR
dc.subjectSistemas de recuperação da informaçãopt_BR
dc.subjectEngenharia elétricapt_BR
dc.subjectImage processing - Digital techniquespt_BR
dc.subjectPicture archiving and communication systemspt_BR
dc.subjectInformation storage and retrieval systemspt_BR
dc.subjectElectric engineeringpt_BR
dc.titleAutomatic extraction of regions of interest from images based on visual attention modelspt_BR
dc.typedoctoralThesispt_BR
dc.description.resumoEsta tese apresenta um método para a extração de regiões de interesse (ROIs) de imagens. No contexto deste trabalho, ROIs são definidas como os objetos semânticos que se destacam em uma imagem, podendo apresentar qualquer tamanho ou localização. O novo método baseia-se em modelos computacionais de atenção visual (VA), opera de forma completamente bottom-up, não supervisionada e não apresenta restrições com relação à categoria da imagem de entrada. Os elementos centrais da arquitetura são os modelos de VA propostos por Itti-Koch-Niebur e Stentiford. O modelo de Itti-Koch-Niebur considera as características de cor, intensidade e orientação da imagem e apresenta uma resposta na forma de coordenadas, correspondentes aos pontos de atenção (POAs) da imagem. O modelo Stentiford considera apenas as características de cor e apresenta a resposta na forma de áreas de atenção na imagem (AOAs). Na arquitetura proposta, a combinação de POAs e AOAs permite a obtenção dos contornos das ROIs. Duas implementações desta arquitetura, denominadas 'primeira versão' e 'versão melhorada' são apresentadas. A primeira versão utiliza principalmente operações tradicionais de morfologia matemática. Esta versão foi aplicada em dois sistemas de recuperação de imagens com base em regiões. No primeiro, as imagens são agrupadas de acordo com as ROIs, ao invés das características globais da imagem. O resultado são grupos de imagens mais significativos semanticamente, uma vez que o critério utilizado são os objetos da mesma categoria contidos nas imagens. No segundo sistema, á apresentada uma combinação da busca de imagens tradicional, baseada nas características globais da imagem, com a busca de imagens baseada em regiões. Ainda neste sistema, as buscas são especificadas através de mais de uma imagem exemplo. Na versão melhorada da arquitetura, os estágios principais são uma análise de coerência espacial entre as representações de ambos modelos de VA e uma representação multi-escala das AOAs. Se comparada à primeira versão, esta apresenta maior versatilidade, especialmente com relação aos tamanhos das ROIs presentes nas imagens. A versão melhorada foi avaliada diretamente, com uma ampla variedade de imagens diferentes bancos de imagens públicos, com padrões-ouro na forma de bounding boxes e de contornos reais dos objetos. As métricas utilizadas na avaliação foram presision, recall, F1 e area of overlap. Os resultados finais são excelentes, considerando-se a abordagem exclusivamente bottom-up e não-supervisionada do método.pt_BR
dc.degree.localCuritibapt_BR
dc.degree.levelDoutoradopt_BR
dc.publisher.localCuritibapt_BR
dc.contributor.advisor1Gamba, Humberto Remigio-
dc.contributor.advisor-co1Marques Filho, Ogê-
dc.publisher.programPrograma de Pós-Graduação em Engenharia Elétrica e Informática Industrialpt_BR
Aparece nas coleções:CT - Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
CT_CPGEI_M_Borba, Gustavo Benvenutti_2010.pdf87,97 MBAdobe PDFThumbnail
Visualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.