Use este identificador para citar ou linkar para este item:
http://repositorio.utfpr.edu.br/jspui/handle/1/12479
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.creator | Minozzo, Laercio | |
dc.date.accessioned | 2020-11-16T13:08:51Z | - |
dc.date.available | 2020-11-16T13:08:51Z | - |
dc.date.issued | 2017-09-11 | |
dc.identifier.citation | MINOZZO, Laercio. Object tracking using a many-core embedded system. 2017. 60 f. Trabalho de Conclusão de Curso (Graduação) - Universidade Tecnológica Federal do Paraná, Medianeira, 2017. | pt_BR |
dc.identifier.uri | http://repositorio.utfpr.edu.br/jspui/handle/1/12479 | - |
dc.description.abstract | Object localization and tracking is essential for many practical applications, such as mancomputer interaction, security and surveillance, robot competitions, and Industry 4.0. Because of the large amount of data present in an image, and the algorithmic complexity involved, this task can be computationally demanding, mainly for traditional embedded systems, due to their processing and storage limitations. This calls for investigation and experimentation with new approaches, as emergent heterogeneous embedded systems, that promise higher performance, without compromising energy e_ciency. This work explores several real-time color-based object tracking techniques, applied to images supplied by a RGB-D sensor attached to di_erent embedded platforms. The main motivation was to explore an heterogeneous Parallella board with a 16-core Epiphany coprocessor, to reduce image processing time. Another goal was to confront this platform with more conventional embedded systems, namely the popular Raspberry Pi family. In this regard, several processing options were pursued, from low-level implementations specially tailored to the Parallella, to higher-level multi-platform approaches. The results achieved allow to conclude that the programming e_ort required to e_- ciently use the Epiphany co-processor is considerable. Also, for the selected case study, the performance attained was bellow the one o_ered by simpler approaches running on quad-core Raspberry Pi boards. | pt_BR |
dc.language | por | pt_BR |
dc.language | eng | pt_BR |
dc.publisher | Universidade Tecnológica Federal do Paraná | pt_BR |
dc.rights | openAccess | pt_BR |
dc.subject | Raspberry Pi (Computador) | pt_BR |
dc.subject | Sistemas embarcados (Computadores) | pt_BR |
dc.subject | Sistemas de computação | pt_BR |
dc.subject | Raspberry Pi (Computer) | pt_BR |
dc.subject | Embedded computer systems | pt_BR |
dc.subject | Computer systems | pt_BR |
dc.title | Object tracking using a many-core embedded system | pt_BR |
dc.type | bachelorThesis | pt_BR |
dc.description.resumo | A localização e o seguimento de objetos são essenciais para muitas aplicações praticas, como interação homem-computador, segurança e vigilância, competições de robôs e Industria 4.0. Devido à grande quantidade de dados presentes numa imagem, e a complexidade algorítmica envolvida, esta tarefa pode ser computacionalmente exigente, principalmente para os sistemas embebidos tradicionais, devido as suas limitações de processamento e armazenamento. Desta forma, e importante a investigação e experimentação com novas abordagens, tais como sistemas embebidos heterogêneos emergentes, que trazem consigo a promessa de melhor desempenho, sem comprometer a eficiência energética. Este trabalho explora várias técnicas de seguimento de objetos em tempo real baseado em imagens a cores adquiridas por um sensor RBD-D, conectado a diferentes sistemas embebidos. A motivação principal foi a exploração de uma placa heterogênea Parallella com um co-processador Epiphany de 16 nucleos, a m de reduzir o tempo de processamento das imagens. Outro objetivo era confrontar esta plataforma com sistemas embebidos mais convencionais, nomeadamente a popular família Raspberry Pi. Nesse sentido, foram prosseguidas diversas opções de processamento, desde implementações de baixo nível, especificas da placa Parallella, até abordagens multi-plataforma de mais alto nível. Os resultados alcançados permitem concluir que o esforço de programação necessário para utilizar e eficientemente o co-processador Epiphany e considerável. Adicionalmente, para o caso de estudo deste trabalho, o desempenho alcançado fica aquém do conseguido por abordagens mais simples executando em sistemas Raspberry Pi com quatro núcleos. | pt_BR |
dc.degree.local | Medianeira | pt_BR |
dc.publisher.local | Medianeira | pt_BR |
dc.contributor.advisor1 | Rufino, José | |
dc.contributor.advisor-co1 | Menezes, Paulo Lopes de | |
dc.contributor.referee1 | Rufino, José | |
dc.contributor.referee2 | Matos, Paulo Jorge Teixeira | |
dc.contributor.referee3 | Fernandes, Rui Vitor Pires | |
dc.publisher.country | Brasil | pt_BR |
dc.publisher.program | Graduação em Ciência da Computação | pt_BR |
dc.publisher.initials | UTFPR | pt_BR |
dc.subject.cnpq | CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO | pt_BR |
Aparece nas coleções: | MD - Ciência da Computação |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
trackingusingembeddedsystem.pdf | 9,8 MB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.