Use este identificador para citar ou linkar para este item: http://repositorio.utfpr.edu.br/jspui/handle/1/1144
Registro completo de metadados
Campo DCValorIdioma
dc.creatorLazzaretti, André Eugenio-
dc.date.accessioned2015-05-18T16:03:30Z-
dc.date.available2015-05-18T16:03:30Z-
dc.date.issued2015-02-27-
dc.identifier.citationLAZZARETTI, André Eugenio. Segmentação, classificação e detecção de novas classes de eventos em oscilografias de redes de distribuição de energia elétrica. 2015. 220 f. Tese (Doutorado em Engenharia Elétrica e Informática Industrial) – Universidade Tecnológica Federal do Paraná, Curitiba, 2015.pt_BR
dc.identifier.urihttp://repositorio.utfpr.edu.br/jspui/handle/1/1144-
dc.description.abstractThis work presents new approaches for two of the fundamental steps in automatic waveform analysis in electrical distribution systems: transient time detection and its classification. Two datasets were used to compare and validate the proposed methods. The first is composed by simulated waveforms, by using the Alternative Transient Program, while the second is formed by real data from a monitoring system developed for overhead distribution power lines. The real data present a set of relevant events for the analysis proposed here, mainly due to the variety of events, including lightning-related transients. Regarding transient detection (waveform segmentation), the experiments involve usual segmentation methods, such as Kalman filtering, standard Discrete Wavelet Transform, and autoregressive models, besides two new techniques based on the Teager Energy Operator and Support Vector Data Description. The results obtained on both simulated and real world data demonstrate that the method based on Support Vector Data Description outperforms other methods in the transient identification task. Regarding the automatic waveform classification, a new approach including the detection of classes not defined in the training stage (called novelties) is presented. Also, the classifier is able to discriminate among multiple known classes, normally defined as multi-class classification. Two different approaches are compared, by using multi-class classification and novelty detection in two subsequent stages and in a simultaneous way. The following classifiers were assessed: X-Means, K-Nearest-Neighbors, and Support Vector Data Description with different formulations, besides the Support Vector Machine for multi-class classification. Furthermore, a technique for the post-processing of the novelties is presented, in order to provide some useful information for the experts, regarding possible similarities in the novelty set. To accomplish this task, automatic clustering methods were used. The final results, especially for the dataset with real examples, show that it is possible to obtain a relevant classification performance (above 80%) in each one of the three stages of the classification process: multi-class classification, novelty detection, and the post-processing applied to the novelties (automatic clustering).pt_BR
dc.description.sponsorshipCAPESpt_BR
dc.languageporpt_BR
dc.publisherUniversidade Tecnológica Federal do Paranápt_BR
dc.subjectEnergia elétrica - Distribuiçãopt_BR
dc.subjectEnergia elétrica - Transmissãopt_BR
dc.subjectTransitórios (Eletricidade)pt_BR
dc.subjectOsciladores elétricospt_BR
dc.subjectWavelets (Matemática)pt_BR
dc.subjectSistemas de energia elétrica - Estabilidadept_BR
dc.subjectMétodos de simulaçãopt_BR
dc.subjectEngenharia elétricapt_BR
dc.subjectElectric power distributionpt_BR
dc.subjectElectric power transmissionpt_BR
dc.subjectTransients (Electricity)pt_BR
dc.subjectOscillators, Electricpt_BR
dc.subjectWavelets (Mathematics)pt_BR
dc.subjectElectric power system stabilitypt_BR
dc.subjectSimulation methodspt_BR
dc.subjectElectric engineeringpt_BR
dc.titleSegmentação, classificação e detecção de novas classes de eventos em oscilografias de redes de distribuição de energia elétricapt_BR
dc.typedoctoralThesispt_BR
dc.description.resumoEste trabalho apresenta novas abordagens para duas das etapas fundamentais relacionadas com análise automática de oscilografias de redes de distribuição: a detecção dos instantes transitórios e a sua classificação. Para comparação e validação dos métodos são utilizadas duas bases de dados, sendo uma delas formada por dados simulados no aplicativo Alternative Transient Program e outra contendo dados reais de oscilógrafos instalados em uma rede de distribuição de energia elétrica. Os dados reais apresentam um conjunto de eventos relevante para as análises aqui propostas, principalmente por conter uma gama variada de eventos, incluindo transitórios decorrentes de descargas atmosféricas. Com relação à detecção de transitórios (segmentação de oscilografias), foram testados os métodos atualmente propostos na literatura, os quais contemplam Filtro de Kalman, Transformada Wavelet Discreta e Modelos Autorregressivos, além de serem propostas duas novas técnicas baseadas no Operador de Energia de Teager e Representação de Dados Utilizando Vetores Suporte. Demonstra-se que, tanto para dados simulados quanto para dados reais, o método de detecção baseado na Representação de Dados utilizando Vetores Suporte aponta para um melhor desempenho global no processo de detecção. Com relação à classificação automática de oscilografias, propõe-se uma nova abordagem incluindo um estágio dedicado à detecção de padrões não inseridos no aprendizado prévio do classificador, denominados de novidades, além da própria classificação multiclasse normalmente empregada para diferenciar múltiplas classes conhecidas a priori. São testadas abordagens utilizando a detecção de novidades e classificação multiclasse em estágios simultâneos e subsequentes, com base nos classificadores X-Médias, K-Vizinhos-Mais-Próximos e Representação de Dados Utilizando Vetores Suporte com diferentes formulações, além do próprio classificador multiclasse baseado em Máquinas de Vetor Suporte. Adicionalmente, é proposto um tratamento aos padrões considerados como novidades, com o intuito de fornecer informações ao especialista sobre as similaridades existentes entre os padrões desse conjunto. Para realizar esse processo, optou-se por utilizar modelos de agrupamento automático. Os resultados finais, principalmente para a base de dados incluindo eventos reais, mostram que é possível obter um desempenho de classificação relevante (acima de 80%) para cada um dos estágios do processo de classificação proposto, o qual inclui a detecção de novidades, a classificação multiclasse e o processamento de padrões classificados como novidades (agrupamento automático).pt_BR
dc.degree.localCuritibapt_BR
dc.degree.levelDoutoradopt_BR
dc.publisher.localCuritibapt_BR
dc.contributor.advisor1Vieira Neto, Hugo-
dc.contributor.advisor-co1Ferreira, Vitor Hugo-
dc.publisher.programPrograma de Pós-Graduação em Engenharia Elétrica e Informática Industrialpt_BR
Aparece nas coleções:CT - Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
CT_CPGEI_D_Lazzaretti, André Eugênio_2015.pdf5,17 MBAdobe PDFThumbnail
Visualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.