Use este identificador para citar ou linkar para este item: http://repositorio.utfpr.edu.br/jspui/handle/1/1133
Título: Classificação de genótipos de café arábica usando espectroscopia de infravermelho próximo
Autor(es): Marquetti, Izabele
Orientador(es): Bona, Evandro
Palavras-chave: Café - Cultivo
Interação genótipo-ambiente
Café
Coffee plantations
Genotype-environment interaction
Coffee
Data do documento: 9-Jun-2014
Editor: Universidade Tecnológica Federal do Paraná
Câmpus: Campo Mourao
Medianeira
Citação: MARQUETTI, Izabele. Classificação de genótipos de café arábica usando espectroscopia de infravermelho próximo. 2014. 79 f. Dissertação (Mestrado em Tecnologia de Alimentos) - Universidade Tecnológica Federal do Paraná, Campo Mourão, 2014.
Resumo: As condições ambientais do cultivo do café, como clima, tipo de solo e altitude, associadas a práticas agrícolas, são responsáveis pela composição química final do grão. Além disso, o genótipo cultivado também influencia diretamente nas características essenciais da bebida, aumentando o seu valor agregado. Portanto, comprovações da origem geográfica e genotípica da genótipo do café devem ser realizadas utilizando métodos confiáveis. A espectroscopia no infravermelho próximo (NIRS), na região de 1100 a 2498 nm, foi utilizada na análise de genótipos de café arábica, cultivadas em diferentes cidades do estado do Paraná, Brasil. Como primeira aproximação, os métodos lineares, análise de componentes principais (ACP) e mínimos quadrados parciais com análise discriminante (PLS-DA), foram utilizados para a interpretação dos dados devido à complexidade e elevada quantidade de informação contida nos espectros. Os modelos PLS-DA obtidos para a classificação geográfica apresentaram uma sensibilidade média de 93,75% e uma especificidade de 100%. Já para a classificação dos genótipos a performance do PLS- DA foi de 93,75% para sensibilidade e 97,13% para a especificidade. Na tentativa de melhorar a performance e a confiabilidade de classificação foram desenvolvidos modelos de dois estágios. Tanto os scores da ACP como as variáveis latentes do PLS-DA foram alimentados em dois tipos diferentes de redes neurais artificiais, o perceptron de múltiplas camadas (MLP) e a rede de funções de base radial (RBF) que são modelos inerentemente não-lineares. Os respectivos parâmetros de arquitetura dessas redes foram otimizados através do método de busca direta simplex sequencial. Os modelos de dois estágios, linear com PLS-DA e não-linear com RBF, foram capazes de classificar geograficamente e genotipicamente com 100% de seletividade e especificidade todas as amostras de treinamento e de teste. As variáveis latentes do PLS-DA por serem determinadas levando-se em consideração a resposta desejada contêm mais informação que os scores da ACP. Já a rede RBF, por possuir um número menor de parâmetros livres e uma estrutura mais simples quando comparada à MLP, possui um treinamento mais rápido e convergente. Quando comparados com os resultados obtidos na espectroscopia de infravermelho médio (FTIR), os modelos obtidos usando os espectros NIRS apresentaram uma performance melhor e mais confiável. Estes resultados indicam que os espectros NIRS contêm informações importantes que aliadas a métodos adequados de reconhecimento de padrões resultam em uma classificação eficiente de amostras de café arábica verde por genótipo e local de cultivo. Além disso, uma análise dos loadings das variáveis latentes do PLS-DA permite associar quais bandas são características em cada classe. Essa informação pode ser correlacionada com a composição química das amostras fornecendo, assim, dados preliminares para avaliar o efeito da região de cultivo e do tipo de genótipo selecionado nas características químicas do grão de café verde.
Abstract: The environmental conditions in coffee cultivation, such as climate, soil type and altitude, associated with agronomic practices, are responsible for influence the final chemical composition of the bean. They directly influence the essential features of the beverage, increasing its aggregate price. Proof of geographic and genotypic origin of the coffee genotypes must be done using reliable methods. Thus, the near infrared spectroscopy (NIRS), in the 1100 to 2498nm range, was used for analyze different coffee genotypes that were cultivated in different cities (Brazil - Paraná State). As first approach linear methods, principal components analysis (PCA) and partial least squares with discriminant analysis (PLS-DA), were used for data interpretation due to the high complexity and amount of information contained in the spectra. The obtained PLS-DA models had an average sensitivity of 93.75% and a specificity of 100% for the geographical classification. While for genopyte classification, the PLS-DA performance was 93.75% for sensitivity and 97.13% for specificity. In an attempt to improve the performance and reliability of the developed classifiers, both the PCA scores and the PLS-DA latent variables were fed into two artificial neural networks, the multilayer perceptron (MLP) and radial basis function network (RBF), that are nonlinear models. The architecture parameters of these networks were optimized using the sequential simplex method. The two-stage models, linear with PLS-DA and nonlinear with RBF, were able to classify geographically and genotypically with 100% of selectivity and specificity all the training and test samples. The latent variables of the PLS-DA are determined by taking into account the desired response, so it contains more information than the scores of the PCA. While the RBF network, by having fewer free parameters and a simpler architecture compared to the MLP, has a faster and covergente training. The spectra analysis in near-infrared region showed better results than mid-infrared spectra. These results indicate that NIRS spectra contain important information that, combined with appropriate methods of pattern recognition, allow the classification of green arabica coffee samples by genotype and growing region. Besides, the PLS-DA loadings analysis allows associating which NIRS bands are specific of each class. This information can be correlated with the samples chemical composition, providing preliminary data to evaluate the effect of growing region and genotype in the selected green coffee chemical composition.
URI: http://repositorio.utfpr.edu.br/jspui/handle/1/1133
Aparece nas coleções:MD - Programa de Pós-Graduação em Tecnologia de Alimentos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
CM_PPGTA_M_Marquetti, Izabele_ 2014.PDF1,18 MBAdobe PDFThumbnail
Visualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.