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ABSTRACT

Gabardo, Ademir. . 115 f. Dissertation – Graduate Program in Applied Computing (PPGCA),
Federal University of Technology - Paraná – UTFPR. Curitiba, 2014.

Complex networks are ubiquitous; billions of people are connected through social networks;
there is an equally large number of telecommunication users and devices generating implicit
complex networks. Furthermore, several structures can be represented as complex networks in
nature, genetic data, social behavior, financial transactions and many other structures.

Most of these complex networks present communities in their structure. Unveiling these
communities is highly relevant in many fields of study. However, depending on several factors,
the discover of these communities can be computationally intensive. Several algorithms for
detecting communities in complex networks have been introduced over time. We will approach
some of them. Our goal in this work is to identify or create an understandable and applicable
heuristic to detect communities in complex networks, with a focus on time repetitions and
strength measures.

This work proposes a semi-supervised clustering approach as a modification of the traditional
K-means algorithm submitting each dimension of data to a weight in order to obtain a weighted
clustering method.

As a first case study, databases of companies that have participated in public bids in Paraná
state, will be analyzed to detect communities that can suggest structures such as cartels.

As a second case study, the same methodology will be used to analyze datasets of microarray
data for gene expressions, representing the correlation of the genes through a complex network,
applying community detection algorithms in order to witness such correlations between genes.

Keywords: Social Networks, Complex Networks, Graphs, Data Mining, Clustering,
Algorithms, Community detection.
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1 INTRODUCTION

The study of complex networks pervades a wide range of fields, from neurobiology to

statistical physics. The theory of complex networks is addressed in the field of mathematics

known as graph theory, evolving from purely mathematical models to faithful representations

of complex systems present in nature, chemical processes, human behavior, food chains, and so

forth.

Nowadays, complex networks are ubiquitous; billions of people are connected through

social networks and there is an equally large number of telecommunications users forming

implicit complex networks. The vast amount of social data available creates a scenario in which

it is possible to trace several aspects of human life and behavior. Social network analysis has

been used to portray social organization, alliances, political preferences and influence, among

many other aspects that permeate society.

Most of the studied networks include groups or communities, which are clusters of

vertexes highly similar or in which the vertices are strongly connected. These characteristics

have been widely studied in several fields.

Community structures in networks are fundamental to understanding the structural and

functional properties of a large network and also to denote which entities exist in networks

and how they are kept together (NEWMAN, 2003b). In this sense, several algorithms have

been created, with strengths and drawbacks, but still, some of them are not capable of dealing

with large datasets, while others are unable to handle real-world complex networks such as the

internet or small world networks (MILGRAM, 1967).

1.1 MOTIVATION

Complex networks can be represented by means of graphs, which are a mathematical

abstraction of vertices in the network and their connections. Although complex network

analysis is often referred to as a snapshot of the network, many of the complex networks under
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study are dynamic. The relationships between vertices and from vertices to the community

change dynamically (SANTORO et al., 2011).

Despite the dynamic characteristics of the complex networks, most of the techniques

are mainly created for static networks and fail to capture the evolution of phenomena, their

dynamical properties and the temporal dimension, focusing instead on structural or statistical

aspects of the systems (CASTEIGTS et al., 2012). It is higly relevant to consider dynamic

complex networks where connections can change over time.

1.1.1 GENERAL GOAL

The development of a heuristic to detect communities in dynamic complex networks.

1.1.2 SPECIFIC GOALS

• The development and use of a heuristic method for identifying communities in complex

networks with temporal repetitions through clustering algorithms and techniques for

complex network analysis.

• The creation of a variation of K-means algorithm using a weighted approach in order to

obtain a supervised clustering algorithm.

• To apply the resulting heuristic to identify communities in different networks in order to

validate the solution.

• The creation or identification of a similarity measure capable of depicting homogeneous

communities in large networks.

• The creation or identification of a heuristic to trace these communities through a temporal

analysis in search of repetitions.

• As a first case study: Applying the proposed heuristic method to a public bids database

practiced in Paraná State to identify the formation of cartels.

• As a second case study: to apply the methodology developed to analyze gene expression

data by means of complex networks in order to evaluate the correlation among genes.
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2 GRAPHS, COMPLEX NETWORKS AND COMMUNITY DETECTION
ALGORITHMS

This section briefly examines the historical background of complex networks and

graphs. It also looks at the main principles of complex networks and graphs, metrics, algorithms

and strategies for detecting communities in complex networks.

2.1 HISTORICAL BACKGROUND

Theories of complex networks have been addressed by a field of mathematics known

as graph theory. The first studies date back to Euler’s solution of the Königsberg bridges

problem (ALBERT; BARABÁSI, 2002; ALEXANDERSON, 2006) illustrated in Figure 1.

Figure 1: Left: a simplified depiction of the pattern of the rivers and bridges in the
Königsberg bridge problem. Right: the corresponding network of vertices and edges (NEWMAN;
BARABASI; WATTS, 2006).

Evolving from purely mathematical models of graphs from the Random Graph of the

Erdős and Rényi (1960), to the small-world from Watts and Strogatz (1998), complex network

analysis has encompassed graph theory and gone further to represent real world networks.

One of most popularly known social network experiments was conducted by the

psychologist Stanley Milgram, known as the ‘Small-World Experiment’ (MILGRAM, 1967).

The idea consists of a chain of ‘friends of a friends’ connecting any two people in a maximum

of six steps. In this context, ordinary people can reach whoever target they want in the world if
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they know the six correct (or maybe fewer) connections.

Even though not directly related to the graphs theory and complex networks or to

detecting communities in graphs, Milgram’s experiment has attracted attention to social network

analysis and inspired many other researchers. As an area with a vast field of applications it is

easy to find work on to social network analysis, an example can be addressed to Frank (1996),

who studied cohesive subgroups of professionals and the influence of the group.

Most recently, Newman (2003) have conducted experiments with a collaboration

network of scientists at the Santa Fé Institute to denote how the members interact and how

they work as a team. He also conducted experiments with a food web of marine organisms.

These are some examples of how community detection can be applied to denote a wide range

of interactions between subjects.

Social network analysis is widely used nowadays to help understand how to conduct

marketing (MANGOLD; FAULDS, 2009) and to measure political influence (MAYFIELD,

2005).

These are some examples of how graph theory, complex networks and social network

analysis have evolved to a complex scenario where large amounts of data can be used to: solve

or minimize routing problems, study biological networks, reveal social behavior and understand

massive communication.

2.2 GRAPH

A graph is represented as a set of vertices connected by edges. Graphs are

mathematical abstract representations of complex networks. A graph G can be defined as an

ordered pair of vertices G = (V,E) where,

• V is a set of vertices.

• E is a set of edges.

Figure 1 on the right shows a graph with four vertices and seven edges. The size of G

is the number n of vertices in V and the order of G is the number L of edges in E.

2.2.1 VERTICES

A vertex is the fundamental unit of a graph. Vertices are fundamental and indivisible

parts of a graph. Usually vertices are featureless and represented by an ID and a label, although
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they may have supplementary features depending on the meaning of his application.

Figure 2 shows a graph consisting of vertices A, B, C, D, E and F and seven edges

connecting them.

Figure 2: A Graph with six vertices.

Some examples of elements that can be represented as vertices in graphs: Individuals

in a social network, genes in a network of gene expression or cities on a map.

2.2.2 EDGES

The simplest definition of an edge is a connection between two vertices. Edges are

represented by the symbol e, and the set of edges in a graph is represented by the symbol E.

A definition for a non-weighted edge can be written as: e ∈ E(G) = vi,v j, where e is

the edge itself, E is the set of all edges in graph G, vi and v j are vertices of G. For an edge

{vi,v j}, a shorter notation is viv j.

2.2.2.1 DIRECTION OF THE CONNECTIONS

A Graph could be either directed, undirected or mixed. In directed graphs an edge

e{vi,v j} could have a different value from the edge e{v j,vi}. Examples of directed graphs are:

a traffic route into a highway system with one-way roads; sending a message from a sender to a

recipient. etc.

For a non-directed graph the value for an edge e{vi,v j} is the same for the edge

e{v j,vi}. If e{vi,v j} ∈ G, e{v j,vi} ∈ G. Examples of non-directed graphs are: A highway

system that connects points and allows traffic in both directions, protein chains or any other

networks where is not possible to determine the origin and the destination of the information.

Graphs also can present both, undirected edges and directed edges in the same graph.

In this case, the graph is classified as mixed.
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2.2.2.2 CONNECTIONS WEIGHT

Edges in a graph may or may not have a weight. Edge weights define wheter a graph

is weighted or not. In non-weighted graphs, all connections have the same value, usually set as

1 for an existing connection between two vertices. Otherwise, if there is no connection between

two vertices, the edge could simply be omitted, or the value set as 0.

In weighted graphs, the edges can have values other than 0 or 1, and the value for the

weight can be any continuous value. The weight of an edge can represent cost, distance or

strength. For instance, taking a routing system represented by means of a graph the weights of

the edges could be the cost of reaching one point from another. Another point in question is that

it is possible to use the number of times that two individuals exchange messages as a metric to

define the strength of the connection between them in a social network.

A weighted edge e ∈ E(G) is usually represented as {vi,v j,w}, where w is the weight

value.

2.2.2.3 VERTEX AND GRAPH DEGREE

Vertex degree is the counting of how many connections the vertex has

(STEPHENSON; ZELEN, 1989). It shows direct contact between vertices (FREEMAN, 1977).

Vertex degree is also known as local degree. The degree of a vertex v is denoted deg(v). Given

a graph G = (V ;E), the degree can be computed by the Equation 1:

∑
v∈V

deg(v) = 2|E|, (1)

where E is the number of edges in G. Minimum degree, also known as the minimum

vertex degree, of a graph G is the smallest vertex degree in G. The maximum degree,

also known as maximum vertex degree, of a graph G is the largest vertex degree in G

(PEMMARAJU; SKIENA, 2003).

2.3 METRICS IN GRAPHS

In this section, we will examine some but not all the metrics of graphs and complex

networks with a focus on which can be used as metrics in order to detect communities. Distance

metrics, such as the shortest paths and Average Path Length, which is the number of steps
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along the shortest paths for all possible pairs of network nodes (ALBERT; BARABÁSI, 2002)

Betweenness Centrality, Closeness, Degree and Eigenvector, which are metrics used to show the

relevance of a vertex in a network (PFEFFER; CARLEY, 2012). Moreover, some additional

metrics of graphs and complex networks will be covered for the purpose of mathematical and

topological comprehension of complex networks.

2.3.1 BETWEENNESS CENTRALITY

Betweenness Centrality is a metric in graphs used to define densely connected regions

of a network. It takes in to account the fraction of the number of shortest paths that pass

through a vertex over all pair of vertices (FREEMAN, 1977). Using Betweeness Centrality,

it is possible to compute the influence that a distinct vertex has over the network. Girvan and

Newman (NEWMAN, 2005) used Betweenness Centrality as a metric to detect communities in

graphs by progressively removing the edges with higher Betweenness Centrality. At each step,

all edge Betweenness must be recalculated, resulting in a drawback: the highly computational

cost of the algorithm (COSTA; RODRIGUES; TRAVIESO G. ANDVILLAS BOAS, 2005).

Figure 3: Vertices A,B,C and D connect distinct subgroups in the network. These vertices have
high Betweenness Centrality (NEWMAN, 2012).

The Betweenness Centrality BC(v) of a vertex v ∈V is the sum of all pairs of vertices

vi;v j ∈ V , of the fraction of shortest paths between vi and v j that pass through v as shown in

Equation 2:

BC(v) = ∑
vi 6=v j 6=v

σviv j(v)
σviv j

, (2)
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where σviv j(v) denotes the total number of shortest paths between vi and v j that pass

through vertex v, and σviv j denotes the total number of shortest paths between vi and v j.

A simple example of this concept is shown in Figure 3 Vertices A,B,C and D connect

distinct subgroups in the network. These vertices have high Betweenness Centrality. It is easy

to see that by removing the edges A, B, C and D, the three groups in this figure are separated,

revealing the presence of communities.

2.3.2 CLOSENESS CENTRALITY

Closeness centrality is a metric that evaluates how far a vertex is in relation to all other

vertices in a graph (FREEMAN, 1977; STEPHENSON; ZELEN, 1989). Intuitively, it is easy

to note that the most central a vertex is, the lower the total distance is from that vertex to all the

other vertices. The closeness centrality can be computed using the Equation 3:

c(i) = ∑
j

[
di j
]−1

, (3)

where i is the focal vertex, j is another vertex in the graph, and di j is the shortest path

between these two vertices.

Figure 4: An example where Closeness Centrality is infinite, with no path from A to B.

Taking the graph in Figure 4 as an example, there is a well-know issue with closeness

centrality: the distance between vertex A and vertex B is infinite as no path exists between them.

As long as at least one vertex is unreachable by the others, the sum of distances to all

other vertices is infinite. This peculiarity means that closeness centrality is usually applied to

the largest component.

A vertex in the center of a graph is closest to all the other vertices relative to a vertex

positioned at the periphery of the graph. Eventually, the vertices located at the periphery are

closer to some other vertices, but possibly many others are more distant compared to a vertex
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in the center of the graph (WASSERMAN, 1994).

2.3.3 CONNECTED COMPONENTS

The key feature of a connected component is that from any vertex of the component

there is at least one path to all the other vertices of the same component. A connected

component, or component in an undirected graph, is also called a sub-graph (ERDŐS; RÉNYI,

1960).

It is possible to discover the connected components of a graph by using either breadth-

first search or depth-first search. The search starts at any vertex v until the entire connected

component containing v is found, restarting a new search whenever it reaches a vertex that has

not been included in a previously found connected component (HOPCROFT; TARJAN, 1973).

This procedure is illustrated by pseudocode shown in Algorithm 1.

Algorithm 1: Depth-first Search Algorithm for finding connected components.

dfs(vertex u);

foreach vertex v connected to u do

visited[v] = true;

dfs(v);

end

foreach vertex u do

if u is not visited then

visited[u] = true;

component ++;

end

dfs(vertex u);

end

2.3.4 CLUSTERING COEFFICIENT

Clustering coefficient is a metric used to evaluate the existence of communities in a

graph by computing the tendency of the vertices to cluster together. There are two Clustering

Coefficients: the global clustering coefficient and the local clustering coefficient.

The global clustering coefficient is based on triplets of nodes and measures the number

of closed triplets or triangles. The local clustering coefficient is relative to the number of

connections to a particular vertex, the proportion between the number of connections to a vertex
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and the total number of possible connections between the vertex and its neighbors (NEWMAN,

2003c). Local undirected Clustering Coefficient formula is show in Equation 4:

Ci =
2|{e jk : vi,v j ∈ Ni,e jk ∈ E}|

Ki(Ki−1)
, (4)

where Ci is the local clustering coefficient, Ki is the number of neighbors of a vertex, vi

and v j represent the vertices in the graph from i to j, and Ni represents the neighbourhood of a

vertex that is defined by its immediately connected neighbours.

2.3.5 DEGREE DISTRIBUTION

The degree of a vertex is related to the number of connections that this vertex has.

Real networks such as the Internet, Social networks, and Scientific Collaboration Networks,

usually have some features related to degree distribution. Vertices with small degrees are the

most frequent, although high degree vertices do exist, albeit in fewer numbers. The fraction of

highly connected nodes decreases, but is not zero.

Many real-world networks have a degree distribution that follows a power law or has

a long tail (BARABÁSI; ALBERT, 1999). These characteristics provide a glimpse of the

topology of the network. The degree distribution of a graph is usually presented by means

of a histogram of the network, which lists the distinct degrees in the network.

By computing the frequency of each degree, we form the degree distribution Pdeg(k),

as defined in Equation 5:

Pdeg(k) = ν , (5)

where ν is the frequency of that particular degree, or simply the fraction of nodes in the

graph with degree k.

Figure 5 shows a random graph which follows the Erdős and Rényi model on the left

and its respective chart with degree distribution on the right. The size of the graph is 100, the

average degree is 1.9, and the clustering coefficient is 0.004.

Figure 6 shows a network which follows the Barabási and Albert model and its
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Figure 5: On the left, an Erdős and Rényi Random network. On the right, the chart with the
degree distribution for this network.

respective chart with degree distribution on the right. The size of the graph is 102, the average

degree is 3.9, and the clustering coefficient is 0.102, with a degree distribution that follows a

power low.

Figure 6: On the left, a Barabási and Albert network. On the right, the chart with the degree
distribution for this network.

2.3.6 DISTANCE BETWEEN VERTICES

Although simple, this is an important concept in graph theory. The vertex distance is

a mathematical measure of distance from one vertex to another. The distance d(vi,v j) between

two vertices vi and v j of a finite graph is the minimum length of connection between these two

vertices. Distance also can be a dimension of cost.



26

The geodesic distance between two vertices in a graph is the length of any shortest

path between them. Given a graph G, the distance d(vi,v j) between two vertices vi and v j is the

length of the shortest path from vi to v j, taking into account all possible paths in G from vi to

v j. If there is no path from vi to v j, then d(vi,v j) is infinite. Furthermore, the distance from any

node to itself is zero.

2.3.7 MODULARITY

Modularity is a quality index for clustering. It is a metric which aims to demonstrate

the division of a network into modules (NEWMAN, 2003; NEWMAN; GIRVAN, 2004).

A module presents dense connections between the vertices within the modules and sparse

connections between nodes in different modules.

Figure 7: Example of a network showing community structure. This network is divided into three
groups, with most connections within groups and few connections between groups (NEWMAN,
2012).

The modularity of a graph G(V,E) can be computed by Equation 6:

Q = ∑
u

{
euv

2m
−
( au

2m

)2
}

(6)

where euv is the total number of edges between cluster u and v, au is the total number of

edges that are attached to vertices in cluster u and m is the total number of edges in the whole

graph. au
2m is the expected fraction of edges of u, which can be obtained when we assume the

graph to be a random graph. As a result, well clustered graphs will show high modularity, since

the value of euv is higher than in a random graph (SHIOKAWA; FUJIWARA; ONIZUKA,
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2013).

Figure 7 shows a small network with three communities. Modularity measures aim to

reveal the communities. Modularity is also a measure of the quality of a particular division of a

network.

2.3.8 NETWORK DIAMETER

The network diameter (d), also know as the geodesic distance, is the length of the

shortest path between the vertices of a graph that are farthest apart. In a disconnected graph the

diameter is infinite (WEST et al., 2001).

A network diameter definition is: The length maxu,vd(u,v) of the longest shortest path

between any pair of vertices (u,v) in G, where d(u,v) is the graph distance.

2.4 COMPLEX NETWORKS

Complex networks are suitable for representing complex systems (AMARAL;

OTTINO, 2004). Some examples of these systems are: Ecosystems, the internet, social

networks, spread of diseases, routes of roads, etc..

A complex network is a graph with non-trivial topological features, a complex

network that shows features not present in simple graphs and classical networks. Features

that characterize complex networks are a heavy tail in the degree distribution, a high clustering

coefficient, high assortativity or disassortativity, community structure, and hierarchical structure

(ALBERT; BARABÁSI, 2002).

A central aspect to the study of networks is discovering, characterizing and modeling

the structure of the network. The study of the topology of complex networks leads to

understanding phenomena such as the presence of cohesive groups in communities and

networks.

A Complex Network Model was developed by Barabási and Albert, with

characteristics of a scale-free network showing degree distribution that follows a power law

(long tail) (BARABÁSI; ALBERT, 1999). A detailed version of this model is shown in the

Section 2.6.2.

Watts and Strogatz also developed a complex network model known as Small World

Network, with a high clustering coefficient (WATTS; STROGATZ, 1998). This model is show

in detail in Section 2.6.3.
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In addition to the models of complex networks developed by Barabási and Albert and

Watts and Strogatz in this study, we will address real-world networks via two distinct case

studies that aim to observe the phenomena described by the mathematical models of complex

networks and the detection of communities in these complex networks.

2.5 REPRESENTING COMPLEX NETWORKS AS GRAPHS

2.5.1 ADJACENCY MATRIX

The Adjacency Matrix A = [xab] for G is a matrix with n rows and n columns and

entries given by: xab = 1 if (a,b) is an edge in G, otherwise it will be equal to 0.

Figure 8 illustrates a graph of size 3 and order 2. The adjacency matrix shown in

Equation 7 illustrates the connections between the vertices of the graph shown in Figure 8.

1

2 3

Figure 8: A small graph of size 3 and order 2.

A =


0 1 1

1 0 0

1 0 0

 (7)

The value that references the vertex itself (self loops) is set as zero. In weighted graphs,

values other than 0 and 1 can be assumed as the weight of the connection.

2.5.2 ADJACENCY LIST

An adjacency matrix A(i j) has i rows and j columns, where i = j. The size of

dimensions i and j corresponds to the size of a graph G. As a result, the number of elements of

the adjacency matrix corresponds to the square of the number of vertices in a graph G.

For large graphs, this representation may not be the most appropriate. Even

unconnected vertices are represented in the adjacency matrix, consuming computational storage

and processing resources.
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To overcome this issue, an adjacency list can be used. In this kind of representation,

row i of the matrix contains the vertices adjacent to vertex i. Each vertex i has a variable d[i]

that keeps the degree of vertex i. Only non-zero values are represented in the list, and self loops

are usually ignored, resulting in a more compact representation, which is desirable for complex

networks with large amounts of data.

The Adjacency List Ali shown in Equation 8 exemplifies the connections between the

vertices of the graph shown in Figure 8.

Ali = {{1,2},{1,3}} (8)

2.6 REAL WORLD NETWORKS AND NETWORK MODELS

Real World networks have properties such as those observed in the small-world

networks. Real World networks show a scale-free degree distribution with clustered local

neighborhoods and low average-shortest path. Such characteristics are derived from preferential

attachment and connectivity distribution that decays as a power law (AMARAL et al., 2000). It

is possible to evaluate whether a complex network corresponds to a real world network through

the calculation of its diameter as a function of network size (WATTS, 1999).

To enable the evaluation of models and algorithms, it is very important to be able to

produce graphs and complex networks in accordance with the already known topology graphs

(BATAGELJ; BRANDES, 2005). In this section the three most well-known network models

implemented in this work are presented.

2.6.1 ERDŐS AND RÉNYI MODEL

The Erdős and Rényi Model (ERDŐS; RÉNYI, 1960) is a model of graphs in which

the connections are made for each pair of nodes with equal probability, independent from other

edges. It is a completely random organization of a network. This model is widely used to test

network properties and metrics.

In this work, we have implemented a random graph generator which follows the Erdős

and Rényi model and receives two values as parameters. The parameters are the number of

vertices n and the probability p. Based on probability, the number of edges incident to each

vertex is set.

Figure 9 shows a network sample generated by the Erdős and Rényi Model produced
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by the Random Network Generator Algorithm presented in Algorithm 2.

Algorithm 2: Random Network Generator Algorithm (BATAGELJ; BRANDES,

2005).
Input: number of vertices n, edge probability 0 > p > 1

Result: G = ({0, ...,n−1},E) ∈ G(n, p)

initialization;

E← 0 ; // Initialize the number of edges.

v← 1 ; // Initialize the number of vertices.

while (v < n) do

draw r ∈ [0,1) uniformly at random;

w← w+1+[log(1− r)/log(1− p)] ; // Calculates the number

of Edges in the graph.

while w≤ v and v < n do

w← w− v;v← v+1 ; // Update the number of vertices

and edges in the graph.

end

if v < n then
E← E ∪{v,w}

end

end

Figure 9: Erdős and Rényi Model network sample.

2.6.2 BARABÁSI AND ALBERT MODEL

Differing from the completely random model of Erdős and Rényi, the Barabási and

Albert (BARABÁSI; ALBERT; BONABEAU, 2003; BARABÁSI; ALBERT, 1999) (BA)

model generates Scale-free random networks in which the connectivity probability follows a
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power-law degree distribution. The algorithm is named for its inventors Albert-László Barabási

and Réka Albert.

The model proposed by Barabási and Albert follows the idea of the rich-get-richer,

which states that a vertex with a high degree has a higher probability of receiving new

connections than vertices with a lower degree. Many of the complex networks in the real world

follow this kind of distribution, using a preferential attachment mechanism, such as the internet,

human-made systems or social interaction. Figure 10 shows a Barabási and Albert scale-free

model network sample created using our implementation of the Barabási and Albert network

generator.

Figure 10: Barabási and Albert scale-free model network sample.

In order to generate instances of Barabási and Albert network we used a generator that

receives a single parameter, which is the number of links per step. The network shown in Figure

10 was created with our Barabási and Albert network generator, as shown in Algorithm 3.
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Algorithm 3: Barabási and Albert Model Network Generator Algorithm

(BATAGELJ; BRANDES, 2005).
Input : Positive integer n > 1 and minimum degree d ≥ 1.

Output: Scale-free network with n vertices.

G← Kn /* vertex set is V = {0,1, . . . ,n−1} */

M← list of length 2nd

for v = 0,1, . . . ,n−1 do

for i = 0,1, . . . ,d−1 do

M[2(vd + i)]← v

r← draw uniformly at random from {0,1, . . . ,2(vd + i)}
M[2(vd + i)+1]←M[r]

end

end

add edge (M[2i], M[2i+1]) to G for i = 0,1, . . . ,nd−1

return G

2.6.3 WATTS AND STROGATZ MODEL

The Watts and Strogatz (WATTS; STROGATZ, 1998) small-world model is a complex

network model designed to generate complex networks with small world properties, including

short average path lengths and a high clustering coefficient. These networks are characterized

by the presence of community structures. Figure 11 shows a Watts and Strogatz Small World

network sample.

Figure 11: Watts and Strogatz Small World network sample.

We also implemented a generator for Watts and Strogatz networks in order to obtain
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graphs with small world characteristics. The three complex network models were used in

order to produce graphs with well-known topology and use the metrics from these networks

in comparison with the metrics computed in the Case Study I and II. The network shown in

Figure 11 was created with our Watts and Strogatz network generator whose pseudo-code is

presented in Algorithm 4.

Algorithm 4: Watts and Strogatz Generator Algorithm.
Input : Positive integer n denoting the number of vertices. Positive even integer

k for the degree of each vertex, where n� k� lnn� 1. In particular, k

should satisfy 0 < k < n/2. Rewiring probability 0 < p≤ 1.

Output: A Watts-Strogatz network with n vertices.

M← nk /* sum of all vertex degrees = twice number of

edges */

r← draw uniformly at random from interval (0,1)

v← 1+ bln(1− r)/ ln(1− p)c
E← contiguous edge list of k-circulant graph with n vertices

while v≤M do

u← draw uniformly at random from [0,1, . . . ,n−1]

if v−1 is even then

while E[v] = u or (u,E[v]) ∈ E do

u← draw uniformly at random from [0,1, . . . ,n−1]

end

else

while E[v−2] = u or (E[v−2],u) ∈ E do

u← draw uniformly at random from [0,1, . . . ,n−1]

end

end

E[v−1]← u

r← draw uniformly at random from interval (0,1)

v← v+1+ bln(1− r)/ ln(1− p)c

end

G← Kn

add edges in E to G

return G
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2.7 SIMILARITY MEASURES

Similarity measures aim to assess how similar or dissimilar two objects are. The

term “similarity” should be understood as mathematical similarity (SPEARMAN, 2010). The

concepts of similarity and distance are the roots for clustering algorithms grouping individuals

or network vertices.

Given the set of objects, the goal of clustering is to assign them to groups, based on

their mutual similarity. In social networks, we can define clusters as a collection of individuals

with dense friendship patterns internally and sparse friendships externally. Vertices assigned

to the same cluster should be highly similar; vertices assigned to different clusters should be

highly dissimilar.

Communities can be also considered as entities with their own autonomy in the graph

(FORTUNATO, 2010). A graph cluster can also be a subgraph, which may or may not be

connected to other clusters or to the graph itself. In the sense of a complex network, a

community is a group of vertices with similarity between them. This measure depends on

which attribute is used to build the edges of the network.

The similarity measures may be based on one or more dimensions of data. Figure 12

shows five distinct clusters of objects in a three-dimensional space organized according to their

similarity.

Figure 12: Five distinct clusters of objects in a three-dimensional space organized according to
their similarity.

In order to evaluate how similar or dissimilar two or more objects are, it is possible

to use correlation measures such as: Spearman’s Rank Correlation, Kendall’s Rank Correlation

and Pearson’s Correlation Coefficient, which are covered in detail in appendices C.1, C.2 and

C.3, respectively.

In addition to correlation methods, clustering algorithms such as K-means may also
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use distance measures such as Manhattan or Chebychev distance between objects as a criterion

for grouping them.

2.8 COMMUNITIES IN COMPLEX NETWORKS

Communities in complex networks can be characterized in several ways depending on

their subject and the context in which they are analyzed. In terms of similarity, communities

can be groups of objects with a high similarity between community members and a high degree

of dissimilarity with objects that are outside the community.

In social network analysis, in addition to similarity measures, it is necessary to evaluate

interactions between individuals.

In other networks, such as telecommunications networks, the identification of

communities is based on which vertices are interconnected, as well as their paths and weights

of connections.

These may also be cases where both items of information are relevant, and it is

necessary to evaluate both similarity measures and the network topology.

“Studies of communities in networks go back at least to the 1970s” (NEWMAN, 2012).

Community detection algorithms are strongly attached to the theories of Graph Partitioning and

Hierarchical Clustering. Many techniques have been employed for clustering data, e.g.: Graph

Degree Linkage, Hierarchical Clustering Algorithms, Nearest Neighbor Clustering and Partition

Algorithms.

At the macroscopic level, there are global properties, such as network distance, graph

diameter, the longest path and the shortest path. At the microscopic level, there are properties

related to the vertices, mainly degree distribution and the clustering coefficient.

Another approach to detecting communities in complex networks is the graph partition

method. A partition is a network divided into clusters, where each vertex belongs to one cluster

at least (FORTUNATO, 2010). A definition for graph partitioning is: given a graph consisting

of vertices and edges, divide the vertices into sets of equal size, so that the number of edges

between these parts is minimized. This technique is also know as Edgecut (BONDY; MURTY,

1976).

We can also cite the hierarchical clustering algorithms, which use an adjacency

matrix to calculate the relation between vertices in a complex network (PORTER; ONNELA;

MUCHA, 2009), as well as several other approaches.
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The problem of detecting communities in complex networks can be formulated as

follow: Given a network, directed or undirected, non-weighted or weighted, generate the

following solution: a reasonable decomposition of the graph into sub-graphs, where in some

sense the vertices in each sub-graph have more similarity to each other than with outsiders.

2.9 COMMUNITY DETECTION ALGORITHMS

In this section, algorithms for clustering and detecting communities in complex

networks, as well as the main characteristics, strengths and drawbacks of each of these methods

will be discussed.

2.9.1 K-MEANS

The K-Means clustering method is numerical, unsupervised, non-deterministic and

iterative. The K-means aims to divide M points with N dimensions into K clusters

(HARTIGAN; WONG, 1979). K-means is a simple and fast clustering algorithm that provides

satisfactory results for many applications.

K-means is a well-known and widely used algorithm to cluster similar subjects in a set,

an algorithm which enables the partitioning of a network into a predefined number of groups

(HUANG, 1998). K-means allows the use of Euclidean distance to evaluate the similarity

between a set of elements by signaling the nearest K centroid of each element in the dataset.

K-Means iteratively allocates the partitions of a dataset into K clusters, locally

minimizing the distance between the vertices to the centroids (MACQUEEN, 1967). We

can formulate the function which minimizes the within-cluster sum of squares as shown in

Equation 9:

C =
k

∑
j=1

n

∑
i=1
‖x j

i − c j‖2, (9)

where ‖x j
i − c j‖2 represents the distance between an element to a centroid. K-means usually

computes the distance between the elements and the centroids using the Euclidean distance, as

shown in Equation 10:
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Ed =

√
n

∑
i=1

(pi−qi)2, (10)

where pi and qi are two distinct points in Euclidean space.

The operation of the K-means algorithm is outlined in the pseudocode shown in

Algorithm 5.

Algorithm 5: Pseudo code for the K-means algorithm
initialize(K:centroids) ;
place K centroids in random locations;
while centroids positions changes do

Assign the dataset elements to the nearest centroid;

Recalculate centroid positions based on values of elements attached to the
centroid.;

end

In addition to the usual Euclidean distance, other metrics can be applied to compute

the distances with the K-means algorithm, such as Manhattan distance (NIEDERMEIER;

SANDERS, 1996) or Chebyshev distance (SOUZA; CARVALHO, 2004). The K-means

algorithm usually converges within few interactions. Among the strengths of the algorithm

are its simplicity and low computational cost. However, there also are well known drawbacks,

such as its sensitivity to outliers and to the initialization. To work with noisy data and not clearly

partitioned data or values that are too distinct, it is desirable to consider some of its variants.

Several variants of the K-means algorithms were developed for various purposes,

from improving performance as to meeting certain drawbacks resulting from the original

algorithm. Among these variants we can underline X-means, which aims to find automatically

the number of partitions K (KANUNGO et al., 2002), Fuzzy C-means (FCM) which allows the

overlapping of communities (PAL; BEZDEK, 1995), weighted K-means which aims to submit

each dimension of data to a weighted fashion to evaluate similarity (HUANG et al., 2005;

AMORIM; KOMISARCZUK, 2012), and also the version of Bradley; Fayyad and Reina, which

aims to deal with large amounts of data (FAYYAD; BRADLEY; REINA, 2001).

In the K-means algorithm, every graph vertex is of equal importance in locating the

centroid of the cluster. This characteristic makes K-means very sensitive to outliers, i.e.,

vertices that have values dramatically far from centroid and tend attract the centroid towards
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themselves. The algorithm is also sensitive to the initialization of the centroid, especially with

very heterogeneous cluster sizes and noisy data. To overcome these drawbacks, some variations

of the algorithm have been proposed. These variations will be outlined in following subsections.

Some of the drawbacks for the K-means clustering method are identified as follows:

• Peripheral vertices must be assigned to a community, even if their connection to it is

weak.

• Each vertex is attributed only to one cluster, which could be an unrealistic scenario.

• Results are dependent on initialization; accuracy can be compromised.

• The number of desired clusters must be known in advance.

• Clusters are sensitive to noisy data and outliers.

• Lack of accuracy.

2.9.2 FUZZY C-MEANS

In 1965, the mathematician and computer engineer Lotfi Zadeh introduced fuzzy sets in

order to come closer to the physical world. Fuzzy logic, derived from fuzzy sets, admits ranges

of values between the crisp true or false Boolean values (ZADEH, 1965). Fuzzy clustering

methods followed the creation of fuzzy sets (BEZDEK; EHRLICH; FULL, 1984). These

methods allow vertices to be assigned to different clusters in different degrees consisting of

partial memberships.

The proposition is that vertices with a high degree of similarity are closer to a cluster

than vertices with a low or close to zero degree of similarity to that cluster. Consequently, every

vertex in the network belongs to all clusters with a distinct degree of membership.

When a vertex coincides with the center of the cluster, the maximum degree of

membership is assigned to that vertex. Degrees of membership vary from zero to one

(BEZDEK; EHRLICH; FULL, 1984). It is possible to blur the limits of the clusters by using a

fuzzification constant.

The FCM clustering is obtained by minimizing an objective function, as shown in

Equation 11:
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J =
n

∑
i=1

c

∑
k=1

µ
m
ik |pi− vk|2, (11)

where J is the objective function, n is the number of objects, c is the number of clusters, µ is

the fuzzy membership value from the table, m is a fuzziness factor (a value > 1), pi is the ith

object, vk is the centroid of the kth cluster and |pi− vk| is the Euclidean Distance between pi

and vk.

The fluxogram of steps to perform the algorithm is presented in Figure 13.

Figure 13: The Fuzzy C-means clustering algorithm flowchart.

Figure 14 (a) shows a sample of points with unclustered data. Figure 14 (b) shows the

very same data points clustered using the FCM algorithm into three distinct clusters.

Figure 14: Unclustered data sample (left). Clustered data with three clusters (right).

Unlike from traditional K-means, in which the only expected parameter is the K

number of desired clusters, in order to use FCM the following parameters must be provided:
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the number of clusters, C, the ‘fuzziness’ exponent, m, the termination tolerance, and the norm-

inducing matrix. The fuzzy partition matrix, U , must also be initialized. The number of clusters,

C, similar to regular crisp K-means, represents the number of the partitions desired. Normally,

this is an empirical value. In several situations, fuzzy clustering could be more natural than

hard clustering (CANNON; DAVE; BEZDEK, 1986). Fuzzy C-means also known as FCM

algorithm, it is a powerful unsupervised method for data analysis. It produces better results

than the traditional K-means approach, avoiding the local minima. Fuzzy C-means is also less

sensitive to noisy data that the regular K-means (WU; YANG, 2002).

2.9.3 WEIGHTED K-MEANS

There are several variations for weighted K-means (HUANG et al., 2005; MODHA;

SPANGLER, 2003; WU, 2008).

The analysis of data from interactions among data samples commonly occurs in

different dimensions. It is reasonable to assume that in certain cases some dimensions may

be more relevant (MODHA; SPANGLER, 2003). However, even weak correlations can still

have a significant value for data analysis. Thus, it is convenient to have an algorithm capable of

measuring attributes under different weights (HUANG et al., 2005).

Weighted K-means is also called Minkowski Weighted K-means, with the algorithm

automatically calculating feature weights for each cluster and using the Minkowski metric.

Unlike the Euclidean distance, Minkowski space also has also one ‘timelike’ dimension

(AMORIM; MIRKIN, 2012). Weighted K-means will output the K centroids to a given set

of n data points considering weights when computing the centroids.

Distinct characteristics should have distinct weights, which can constitute a problem

for very similar dimensions. The weights must be non-negative values between zero and one.

As a result, the dimensions are distributed uniformly across the clusters. Dimensions assigned

a smaller weight will be agglutinated near the centroids, while dimensions with a larger weight

(AMORIM; MIRKIN, 2012) will be distant from the centroids.

This balanced characteristic of weighted K-means results in more homogeneous

divisions, since none of the dimensions will lead the partitions in a specific direction.

We propose a different approach to the K-means that provides a weight for each

dimension of data in a supervised fashion. With distinct weights assigned to each dimension of

data, it is possible to change the balance of the equation and obtain an overall modified result. If

an attribute has less importance, we will counterbalance the others, assigning more importance
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to them. The modified version of the weighted K-means with a Euclidean distance subject to

weights is shown in Equation 12:

wEd =

√
(p1−q1)2

w1
+

(p2−q2)2

w2
+ ...+

(pn−qn)2

wn
(12)

Equation 13 shows the Euclidean distance submited to weights in sigma notation.

wEd =

√
n

∑
k=1

(pk−qk)2

wk
(13)

The weights will influence the clustering results only if distinct values have been set

for at least two dimensions of data; otherwise the algorithm will behave like the traditional

K-means.

If there is sufficient change in at least one centroid to reassign at least one vertex

to a different cluster, both centroids (which lose the vertex and receive the vertex) will be

recalculated. This procedure changes centroid positions and may cause new changes to other

vertices. The process is repeated until the centroids are mathematically in the center of each

cluster.

Therefore, it is possible to balance the dimensions without losses. Even the weak

relations can be added to the network with a small weight. This approach is a complementary

way to find communities in graphs with wide dimensions of data, if a distinct dimension has

more or less relevance to the network. This approach minimizes distortions caused by outliers.

2.9.4 GIRVAN AND NEWMAN ALGORITHM

The Girvan and Newman algorithm (GIRVAN; NEWMAN, 2002) is an iterative

process which aims to detect communities in networks. The algorithm explores the concept

in which network nodes are joined together in tightly knit groups, based on the node centrality

explored in section 2.3.1. Figure 15 shows in bold an edge with high betweenness connecting

two distinct groups.
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Figure 15: A Small network with two clusters connected by an edge with high betweenness

(FORTUNATO, 2010).

The Girvan and Newman algorithm detects communities, focusing on betweenness, by

removing edges with the largest centrality, as introduced by Freeman (1979). The betweenness

of a vertex v in a graph G(V,E) with V vertices is computed as shown in Equation 14:

Cb(v) = ∑
s 6=v6=t∈V

σst(v)
σst

, (14)

where σst is the total number of shortest paths from vertex s to vertex t and σst(v) is the number

of those paths that pass through v.

The fluxogram of the Girvan and Newman algorithm is presented in Figure 16.

Figure 16: The Girvan and Newman clustering algorithm flowchart

A modification of the Girvan and Newman algorithm was proposed by (WILKINSON;

HUBERMAN, 2004). We can intuitively note that removing the central edge shown in Figure

15 will detach the two evident clusters presented in this small network.

New partitions can be added depending on recalculations while the algorithm is

executed. Partitions are nested and the process needs to be repeated until the number of
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components meet the maximum number of partitions desired. This will eventually increase

the number of weak components, which are the cohesive subgroups or communities from a

partition of the original data.

The pseudo-code shown in Algorithm 6 illustrates the method proposed by Girvan and

Newman based on betweenness.

Algorithm 6: Pseudo-code of the Girvan and Newman clustering algorithm based

in betweenness.
Data: A Graph G

Result: A clustering solution of G

initialization

E← E(G) // The set of all edges contained in G.

while E 6= /0 do

// While the set of edges is not empty.

foreach e ∈ E do

// For every edge in the set of edges.

Compute Cb(e) // Compute the betweenness for the

edge.

end

e′← maxe∈ECB(e) // Updates the betweenness.

E← E−{e′} // Remove the edge from the set of edges.

end

2.9.5 THE LOUVAIN METHOD BY BLONDEL ET AL

Blondel et al (2008) proposed a method for extracting the community structure of large

networks, a heuristic method based in modularity optimization.

Modularity is a quality index for clusterings. The objective of modularity is to evaluate

the division of a network into modules (NEWMAN; GIRVAN, 2004). Modules will have dense

connections between the vertices within the modules and sparse connections between vertices

what belong to different modules. The modularity of a graph can be computed using Equation

15:

Q =
1

2m ∑
i, j∈V

[
Ai j−

kik j

2m

]
δ (ci,c j), (15)
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where Ai j are elements of the adjacency matrix of G(E,V ), and ki is the out-degree of

node i, and m = |E| and δ (ci,c j) is equal to 1 if i and j belong to the same community, being

equal to 0 otherwise (BRANDES et al., 2008).

High modularity serves as an indicator of the presence of communities within a

complex network. Partition modularity is a scalar value between -1 and 1 that measures the

density of links within communities compared to links between communities.

The algorithm proposed by Blondel et al. (2008) follows the steps related below:

• Each vertex is attached to a different community; thus, the initial partition will have an

equal number of communities and vertices;

• Then each vertex i will consider the neighbors j of i and we evaluate the gain of

modularity that would take place by moving i from its community and placing it in the

community of j;

• The vertex i will be placed in the community where it maximizes modularity, and only if

this gain is positive;

• If moving a vertex does not improve the modularity, the vertex will remain in its own

community;

• The process is repeated for all nodes until no improvement can be achieved;

The gain in modularity δQ is obtained by moving a vertex i into a community C,

which can be computed by Equation 16:

δQ =

[
∑in+Ki,in

2m
−
(

∑tot +Ki

2m

)2
]
−

[
∑in

2m
−
(

∑tot

2m

)2

−
(

ki

2m

)2
]
, (16)

where ∑in is the sum of the weights of all edges in C. ∑tot is the sum of the weights of

the links incident to nodes in C. ki is the sum of the weights of the links incident to node i,ki. It

is the sum of the weights of the links from i to nodes in C, and m is the sum of the weights of all

the links in the network (BLONDEL et al., 2008). The δQ serves as a measure of quality for
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communities, low values means that the community structure it is not relevant, higher values

indicates evidence of relevant community structure.

The pseudo-code shown in Algorithm 7 describes the method proposed by Blondel et

al based on modularity.
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Algorithm 7: Pseudo-code of the Louvain method proposed by Blondel et al.
Data: A Graph G

Result: The clustering of G

initialization;

C← 0;

; // The set of clusters is initialized as zero.

foreach i ∈V (G) do

; // For each vertex i in the graph G

C←C∪{i} ; // Vertex i is joined to the cluster.

ai← d(i)
2|E(G)| ; // The ai matrix is updated with the degree

of vertex i added.

end

foreach i, j ∈ E(G) do

; // For each edge in G

if i is connected to j then

δQi j← 1
2|E(G)| −

d(i)d( j)
|E(G)|2 ; // If i is connected to j

modularity for i j is updated.

else

δQi j← 0 ; // If i is not connected to j modularity

for i j is set to 0.

end

end

while |C|> 1 do

Select the higher δQi j ; // Select the highest modularity

for two specific vertices.

Merge the clusters i and j ; // Merge the cluster of i with

the cluster of j.

Update δQi j and the Matrix ai ; // Recomputed ai modularity

after merge.

Update row and column j and remove row and column i from the matrix ai ;

end
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Table 1 shows comparisons between the algorithms presented in this section with their

respective computational complexity.

Table 1: Comparative table for clustering and community detection algorithms features and
computational complexity.

Algorithm Purpose Metric Used Complexity
K-means Clustering Euclidean distance O(3NK)

Fuzzy C-means Clustering Euclidean distance O(n2

s )
W-kmeans Clustering Euclidean distance O(3NK)

The Girvan and Newman Algorithm Community detection Betweenness O(n3)
The Louvain Method Community detection Modularity nlog(n)
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3 MATERIALS AND METHODS

This chapter discusses the methodology used to detect communities in complex

networks. Techniques of clustering and community detection algorithms are employed to

identify the communities in complex networks.

Figure 17: Methodology Workflow

3.1 METHODOLOGY WORKFLOW

The workflow is organized in accordance with the steps presented in Figure 17 detailed

as follows:

1. Obtaining data for analysis. In Case Study I - Detecting Cartels in public bids, we

worked with data provided from Court of auditors of the Paraná State (TCE-PR), the

extraction of supplementary data from third-part databases such as the Brazilian Institute

of Geography and Statistics (IBGE), public governmental websites, public records from
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the Secretariat of the Federal Revenue of Brazil. This process consisted of obtaining all

information needed and organizing it as an open-source relational database.

In Case Study II - Representing gene expression data as graphs, the datasets were formed

by large matrices of microarrays for several samples, which led to large datasets with

millions of records. The goal for this step was establish a methodology capable of reading

and representing datasets as graphs and complex networks.

2. Noise removal and data normalization. This step was performed to remove noisy

data, null values, incomplete records which can lead to misinterpretation, malformed data

records and truncated values. This step created the expectation of being able to to apply

foreign keys to the tables of a relational database to ensure consistency of data.

3. Storage of pre-processed data in an open graph file format. In order to manipulate

and apply distinct algorithms of clustering, the pre-processed data was stored in an open

graph file format such as Graph Modelling Language (GML) or XML-based graph file

format (GraphML), shown in detail in Appendix A.

4. Application of clustering algorithms. This was the procedure for the application and

experimentation of several clustering algorithms with distinct features are performed.

5. Updating graph partitions. Updates of the graph partitions according to the results

obtained in the clustering process.

6. Application of community detection algorithms. The most important step in the

process is at this stage, with one or more algorithms to detect communities in graphs.

7. Updating communities. Updating the graph communities according to results obtained

in the community detection process.

8. Performing the layout algorithms. Graph Layout algorithms aimed to present the graph

in a more aesthetic and pleasant way. This was especially desirable for Case Study I when

the post processed data was presented to the general public.

9. Updating the layout. Updates of the graph layout according to the results obtained from

the graph layout algorithms.
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3.2 EMPLOYING A SIMILARITY MEASURE

As already addressed in detail in section 2.7, similarity measures are one way to assess

how similar or how different two objects of a complex network are. Vertices assigned to same

cluster should be considered highly similar; vertices assigned to distinct clusters should be

highly dissimilar. The term assortativity is used to describe the phenomena of Social Network

Analysis, which also states that a network vertex prefer to be attached to others that are similar

in some way (NEWMAN, 2003a).

To evaluate the similarity between vertices in a Social Network we used a weighted

variation of the K-means algorithm outlined in section 2.9.3, where N dimensions of data were

measured in an Euclidean Space. Thus, similar elements were close to each other, and non-

similar elements were distant from each other.

The number of attributes submitted to the Euclidean space depends on the number of

variables that are part of the problem. However, distinct dimensions can have distinct degrees

of importance according to the context.

Similarity measures are the basis for comparisons between elements of social networks

formed by the companies participating in public bids objects of the Case Study I. Particularly in

this Case Study, the dimensions of data meant, allowing a semi-supervised clustering approach.

However, in some situations the relevant data of each dimension were unknown, or

simply all sizes of data were of equal importance, which most accurately reflected the data from

Case Study II. For this particular Case Study used correlation measures such as Spearman’s

Rank Correlation, Kendall’s Rank Correlation and Pearson’s Correlation Coefficient, which are

further outlined in Appendix C.

3.3 THE DYNAMIC ASPECT OF COMPLEX NETWORKS

Most of the tools and techniques used for Social Network Analysis focus on the

topological aspects of static networks. Most often ignore the dynamic aspects of these networks

(SANTORO et al., 2011).

However, Social Networks have dynamic aspects that provide an inadequate the

analysis of a snapshot of the network. Members often change their connections, starting to

participate in new groups that are not involved in their activities. New members can join the

network and members can leave the network (CASTEIGTS et al., 2012).
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In other complex networks, this phenomena can also be observed. Food chains can be

modified by the introduction of new predators, chemical reactions could be observed from an

initial state to several interactions to become to a final state. Gene Data Expression could be

changed due to interaction with pathogenic organisms or diseases, and so forth.

The dynamic aspect of the network can vary according to the context of the network.

This may can be related to time itself, e.g.; hours, days, weeks or other metrics. It is also can

be related to events that occur in the network. The following graph events represent atomic

changes in graphs:

• Creation (or joining) of a vertex;

• Removal (or disjoint) of a vertex;

• Creation of an edge;

• Removal of an edge;

• Weight increase for an edge;

• Weight decrease for an edge.

To overcome this issue all interactions between two distinct vertices over time as

a metric of strength for the connection between two vertices were taken into account. The

proposed methodology is described in Sub-section 3.3.1.

3.3.1 A MEASURE OF STRENGTH FOR CONNECTIONS IN DYNAMIC COMPLEX
NETWORKS

Besides the similarity of its members, connections between community members are

usually stronger than the connections to members outside the community (GRANOVETTER,

1973; PORTER; ONNELA; MUCHA, 2009).

Considering the dynamic aspects of complex networks, a metric was proposed that

enables the measurement of the strength of the connections over time for connections.

Correlations of strength and intensity in complex networks have been studied over time

with different purposes (GRANOVETTER, 1973; PARSHANI; BULDYREV; HAVLIN, 2010;

XIANG; NEVILLE; ROGATI, 2010).

Given an undirected weighted graph G(V,E,w), equation 17 is a simple formula for

calculating the weight of a connection between the vertices (x,y) over time,
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w(x,y) =

t
∑

i=1
w(xi,yi)

t
, (17)

where w(x,y) is the weight between edges x and y, t is the number of changes in whole

graph and not only for a specific vertex. Consequently, the number of interactions of each

vertex will be considered for calculating the edge weights. Figure 18 illustrates the process of

measuring strength over time.

Figure 18: Clusters in a graph based on strength measures over repetitions in time.

The variable t can be set as other metrics, number of interactions, time-sample,

recurrence, etc. As a result, communities that maintain their links between members unchanged

over time will be more evident. Communities which receive or lose members frequently will

be less evident. By applying the concept of repetition as a measure of strength it is possible to

observe in Figure 18 the result by considering three different moments in time. After processing,

the results can be expressed in the forms of Cluster A and Cluster B.
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4 EXPERIMENTS AND RESULTS

4.1 CASE STUDY I - DETECTING CARTELS IN PUBLIC BIDS

The Brazilian government keeps its data from public bids with the support of computer

programs such as databases and digitalized documents which are searchable and indexable. In

2009, the Federal Integrated System of Financial Administration (SIAFI) registered one billion

of financial transactions in twenty four thousand administrative units (SILVA; RALHA, 2011).

In this work are computed data from the public bids of Paraná state as an agreement

between the Federal University of Technology of Paraná (UTFPR) and The Court of Auditors

of the State of Paraná (TCE/PR) in an effort to establish a methodology for detecting possible

cartels and other non-compliances in public bids.

4.1.1 PUBLIC BIDS

Public procurement can be briefly described as processes whereby public institutions

undertake the procurement of goods, products and services. Bidding processes are subject to

regulatory instructions, rules, laws and the whole apparatus that aims to prevent individuals or

corporations from obtaining illicit commercial and financial advantages as a result of trading

goods, products or services with public agencies.

In order to inhibit abusive and predatory practices, in Brazil law No. 12,529 at

November 30, 2011 (BRASIL, 2011) was passed various devices providing for the prevention

and repression of offenses against the economy using a number of legal devices.

4.1.2 CARTELS IN PUBLIC BIDS

One way to defraud free competition is the formation of groups of companies that

coordinate their operation in violation of the principles of the fair market.

The most common forms of cartel activity include: the turnover of winners and the
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combination of pricing and proposals by fraudulent companies for the sole purpose of meeting

the minimum legal requirements in terms of numbers that will not effectively provide the

product or service subject to bidding.

The operation of cartels substantially hinders efforts to employ the country’s resources

fairly, thus, hindering the development of the nation. Companies take unfair advantage, by

conspiring among themselves, to cheat the competitive nature of the bidding.

The classification of the type of offense to the economic public order is given

from some concepts, such impeding free competition and free enterprise, domination of the

relevant goods or services, arbitrary settings of profit levels and abusive exercise of dominance

(CARVALHO, 2005).

For this reason it is necessary to observe what is provided in Chapter II of Law 12.529

(BRASIL, 2011) regarding infractions. Article 36 states that:

Article 36. It is a violation of economic order, regardless of the fault, to conduct
any actions of whatever kind, for the pursue of or resulting in the following effects,
although they may be not achieved:

I - limit, restrain or in any way impede open competition or free enterprise;
II - dominate the market of relevant goods or services;
III - arbitrarily increase profits; and
IV - abusively exercise a dominant position.

Due to these issues, it is evident that there is a need to identify cartel formations. With

this information, competent organs will be able to prevent such practices and ensure compliance

with current legislation in the country.

The Office of Fair Trading, a governmental body from United Kingdom (OFT Office

of Fair Trading, 2013) defines a cartel as: “an agreement between businesses not to compete

with each other. The agreement is usually secret, verbal and often informal.” Furthermore,

“Typically, cartel members may agree on:”

• Prices;

• Output Levels;

• Discounts;

• Credit Terms;

• Which Customers They Will Supply;
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• Which Areas They Will Supply;

• Who Should Win a Contract (Bid Rigging).

4.1.3 COHESIVE GROUPS

For a cartel to be effective it is necessary to maintain a cohesive group of companies

(HUCK; NORMANN; OECHSSLER, 2001). The groups who share characteristics in public

bids and are directly related need to be small in order to keep themselves under control and

profitable (LEVENSTEIN; SUSLOW, 2006).

In terms of complex networks, cohesive groups or cohesive subgroups can be described

thus: “A community or cluster, or cohesive subgroup is a subset of individuals among whom

there are relatively strong, direct, intense ties” (FORTUNATO; LATORA; MARCHIORI,

2004).

Both concepts encompass the problem of Case Study I, detecting a small strongly

connected cohesive group of companies acting together for a common purpose. That

assumption supports the problem in a methodological approach.

4.1.4 HYPOTHESIS

Cartels in public biddings are a way to infringe free competition. It can be argued that

groups of companies acting as cartels systematically operate to gain an advantage over the other

contestants who are not part of the cartel.

In order to verify wheter members of a group are taking advantage by acting as a

community, we proposed an index successfully capable of measuring the success rate of the

cartel participants. The proposed success rate is illustrated in Equation 18 and can be defined

as the ratio between the number of participations in public bids and the number of victories,

Ip =
Vp

Pp
, (18)

where Ip is a value between 0 and 1 representing the index, Vp represents the number of

victories for the participant p, and Pp is the number of participations for participant p.

We observed empirically that the companies with a highest rate of winning bids are
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also the most connected, i.e., vertices with a higher degree in the graph.

However, comparing the proportion of wins of a company does not provide a complete

metric. For example, a company with 1 share and 1 victory will have a success rate of 100%.

Yet, a company with 10 stakes and 7 wins will have a rate of 70%, although the relevance of the

second company to be greater in the context of the problem.

To overcome this problem we used a weighted approach to compute the number of

wins, number of participations in bids and the total number of bids, as defined by the Equation

19,

wIp =
(

Vp
Pp
)

T
, (19)

where wIp is a value between 0 and 1 representing the success rate for a company p and

T is the total number of participations for all participants in public bids. Consequently, it is

possible to compute a ranking in terms of sucessfull, average or failing companies by means of

a weighted index based on the number of wins and number of participations in public bids.

In order to simplify the observation of this index, the variables were discretized

according to the values shown in Table 2.

Table 2: Discretizated values for sucess rate
Value Discretizated Values

>= 70% High success rate

30% ><70% Average success rate

<= 30% Low success rate

The success rate index allows an evaluation of which companies are most influential in

the network and can trace their success or failure winning public bids. Moreover, it is possible

to evaluate wheter network hubs are directly connected to high success vertices or with very

low success vertices. This provide us a glimpse of companies taking advantage of ‘ghost’

competitors in public bids.

4.1.5 OBTAINING DATA FOR ANALYSIS

The information regarding public bids is public, but it is not available to the general

public as a structured data. The datasets from public bids in the State of Paraná, Brazil, from
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2005 to 2012 were provided to due a cooperative effort between The Court of Auditors from

Paraná State (TCE/PR) and the Federal University of Technology - Paraná (UTFPR).

Public bids in Brazil can occur at three levels of government: local, state and federal.

Our study focuses on the state level. The first step was to transfer the information from an MS-

SQL Server Database to an open-source database. The MySQL Database and coma separated

values (.csv) files, were chosen as the standard for this work.

Five dimensions of data were used to build a similarity measure between companies,

which are listed as follows:

1. Public bids occurred in Paraná State - This feature provides information regarding the

time and subject for the public bids which are generating the complex networks.

2. Participation in public bids by companies - This dimension of data provides the

information about the connections between companies within the complex network.

3. Companies which won public bids - Determine which are the major winners in

quantitative terms it is relevant to evaluate similarity within the communities and if these

communities are experimenting advantages in relation to the complex network average

success rates.

4. Companies which lost public bids - This feature evaluates the existence of companies

which are participating to favor other companies, successively participating with

overpriced offers or quitting the competition.

5. The correlation between who won and who lost - This dimension of data evaluates if

major winners has strong connections with frequent losers, this can be an indication that

frequent losers are participating to favor the winners.

4.1.6 REPRESENTING PUBLIC BIDS BY MEANS OF COMPLEX NETWORKS

Employing the five dimensions of data presented in section 4.1.5, the complex network

produced by the participation of the companies in public bids in Paraná State have the following

structure:

• Each company represents a vertex of the graph;

• If two or more companies are participating in the same public bid, these connections are

used to generate the edges;
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• The process is repeated for each company present in each public bid.

If two distinct companies i and j are participating in the same bid, the value for the

edge i j in the Adjacency Matrix is set as 1; otherwise is set as 0. Self loops are always set as 0.

Table 3 shows the connections for public bids from 1 to 4 and companies from A to D.

Table 3: Matrix A0 from public bids 1 to 4 for companies A to D.
Bid 1 Bid 2 Bid 3 Bid 4

Company A 0 1 1 1

Company B 1 1 1 1

Company C 0 0 0 1

Company D 1 1 1 0

The dynamic aspect is approached by considering every interaction between two

distinct companies. The weight of the edge is the sum of all interactions between the two

vertices. In order to obtain an undirected weighted graph G(V,E,w), where w means the weight

of the edges, the values of the Matrix A0 are submitted to Equation 20,

w(x,y) =
n

∑
n=1

A( ji, ji′), (20)

where i is the correspondent line for the vertex x in the matrix and i′ is the correspondent

line for vertex y and n corresponds to the number of columns in the matrix. As a result, the

adjacency matrix A shown in Table 4 was generated.

Table 4: Resulting adjacency matrix A for a weighted graph G(V,E,w).
Company D Company C Company B Company A

Company A 2 1 3 0

Company B 3 1 0

Company C 0 0

Company D 0

As already presented in Section 4.1.4, in this case study, unveiling the winner of the

public bid is highly relevant. The complex network theories already show that similar subjects

tends to cluster together (SPEARMAN, 2010; GRANOVETTER, 1973; GIRVAN; NEWMAN,

2002), while very dissimilar subjects tends to be split.
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Knowing the major winners and losers aims to answer practical questions such as:

• Do the winners have an advantage over companies that always lose?

• Are the winners clustered together?

• Will a company have a better success rate the more it participates?

• How many companies there in of a cartel?

Levenstein and Suslow (2006) point out that the number of companies in a cartel must

be small to enable the collusive organization of the cartels.

We built a success rate simply by computing the average number of victories which

corresponds to the total number of victories over the total number of participations in public

bids. This can be mathematically formulated as shown in Equation 21:

Sr =

ρ

∑
i=1

ϑ

ρ
, (21)

where Sr is the success rate, ρ is the total number of participations and ϑ is the number

of victories. This results in a value between 0 and 1, which corresponds to the percentage of

victories for each public bid participant.

In order to produce clear partitions this variable Sr was discretized according to the

criteria shown in Table 2. The criteria to use the values presented in Table 2 are based

on the theory that the existence of cartels is based on some companies taking advantage

over other companies. The network partition was set to provide the three elements related

to this hypothesis, that are: companies within a cartel have higher success rates than the

average. Companies that are favoring the cartel have lower success rates than the average.

And companies that are not operating or cooperating with a cartel will show regular average.

In this particular case study the aesthetic and visualization aspects of graphs were

considered. We targeted the general public that may not be familiar with the mathematical

characteristics of complex networks. To represent the graphs, three distinct dimensions for

vertices and edges were adopted. The three dimensions are listed as follows:
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• Vertex degree is analogous to the size of the vertex. Vertices with a high degree are bigger

than vertices with a low degree.

• The strength of connections is represented by edge weights; thus, higher weights are

noticed as bold connections: otherwise, weak connections are observed as thin lines.

• To easily spot winners or losers we used grey-scale values; black for winners, grey for

average and white for losers.

Although this representation was driven by very simple concepts, the final result

provided an opportunity to visualize the network in a pleasant aesthetic way, in which the

vertices are more influential in the network and how they are connected to other vertices. Figure

19 shows a simple example of this representation.

Figure 19: The resulting non directed weighted complex network

The aesthetic aspects added to the networks have no implication in the network

topology or other features. The only purpose is to produce a visualization which any audience

can interpret easily.

4.1.7 EXPERIMENTS PERFORMED

For the first experiment, 101 public bids were selected encompassing 117 distinct

companies. In this dataset, there are only public bids from construction and engineering services

in the city of Curitiba - PR - Brazil for the year of 2011, as a sample of data. These summarized

data are shown in Table 5.

Figure 20 shows a complex network from this partial dataset. The connections between

the companies, however, are relative to the entire period of time available in the databases. If

two distinct vertices are not connected, this means that, they are never connected. If two distinct
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Table 5: Public Bids for Construction and Engineering Services in Curitiba in 2011.
Number of public bids 101

Companies that participate in public bids 117

Companies that won at least one public bid 97

Companies that did not win at least one public bid 20

companies have co-participated frequently, the edge between these companies will be more

evident.

Figure 20: Partial group of companies that participate in public bids for Construction and

Engineering Services at Curitiba - PR - Brazil in 2011.

The chart shown in Figure 21 displays the degree distribution for the complex network

in Figure 20. The network follows a power-law degree-distribution.
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Figure 21: Degree distribution for the complex network in Figure 20.

The topology of the network observed in this first experiment provided a clue that

community structures were present in the networks. The degree distribution and the presence

of hubs showed the existence of communities among the elements of the networks.

The focus of Case Study I was the public bids conducted in the State of Paraná. The

State of Paraná is a unit of the Federation of Brazilian States composed of 399 municipalities.

This state is also divided geographically into 10 mesoregions, 1 as shown in Figure 22.

Figure 22: Mesoregions of Paraná State (Laboratório de Cartografia Tátil Escolar - UFSC, 2012).

To reduce processing time we divided the dataset according to the meso-regions shown

in Figure 22.

Given the positive results obtained in the first experimentation, we proceeded to

1http://www.ipardes.gov.br/pdf/mapas/base_fisica/relacao_mun_micros_
mesos_parana.pdf
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replicate the same methodology for an entire meso-region. The complex network shown in

Figure 23 illustrates the complete group of companies which participated in public bids for

construction and engineering services in Curitiba - PR - Brazil in 2011 and their relationships.

Figure 23: Complete group of companies which participated in public bids for Construction and
Engineering Services in Curitiba - PR - Brazil in 2011 (left). Degree distribution for this network
(right).

The complex network shown in Figure 23 has three partitions detected by the weighted

K-means clustering algorithm. These partitions were obtained using the success rate as a

measure of similarity. To store the partitions, an attribute was added to the vertices that identifies

to which partition it belongs. At a later stage, we used the Louvain Method to detect the

communities in the network. The complex network in Figure 23 has the following statistics,

as presented in Table 6.

Table 6: Statistics for the Complex Network presented in Figure 23.
Size 544

Order 3129

Average Degree 11.50

Diameter 11

Modularity 0.718

Clustering Coefficient 0.521

Connected Components 35

The attribute which indicates to which group each vertex belongs was then updated

and a graph layout algorithm applied.
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4.1.8 RESULTS

Since the communities were evident in the graph, we isolated a very strongly connected

community as a sample in order to analyze the participation and victories of each company for

that particular community. Figure 24 shows a strongly attached group, suggesting a community

or a cartel. This group of six companies is labeled as: A, B, C, D, E and F, with each element

representing a distinct company. Table 8 shows the summarized data for this group.

Figure 24: Indication of a community

It is very important point out that a mere connection between companies does not

characterize a cartel. It is necessary to conduct an extensive evaluation of the public bids

in which these companies participated to confirm or refute the hypothesis of a cartel. We

highlighted as evidence of cartel formation: the number of companies ranging from 4 to 6

in the cartel; the increasing success rate in public bids that the group participates compared

with its members where competing alone, and the repetition of the presence of the same group

over time.

Table 7 shows the success rate for these companies labeled as A, B, C, D, E and

F, referred to as Group-1, highlighted in Figure 24. Only B,C and D won public bids for

‘Construction and engineering services’ at Curitiba in 2011.

Table 8 shows the summarised data for companies A to F for all coincident

participation in public bids from 2005 to 2011.

The triad corresponding to the three winners in this portion of data represented by the

companies B, C and D had 26 repetitions over time.

For this group the winnings in public bids added up to 28 for 26 distinct public bids.

There were 7 bids that none of the companies from this group won and there were 19 public
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Table 7: Success rate of Group-1
Company Participation Number of Victories Success Rate

A 2 0 0%
B 7 2 29%
C 8 2 25%
D 2 1 50%
E 5 0 0%
F 5 0 0%

Average 4.83 0.83 17%
Std. Dev. 2.48 0.98 0.21

Table 8: Summarised data from 2005 to 2011 for Group-1
Company Number of participations Number of Victories Success Rate

A 39 15 38%
B 236 73 31%
C 264 79 30%
D 134 48 36%
E 281 92 33%
F 187 52 28%

Means 190.17 59.83 33%
Std. Dev. 91.45 27.52 4%

bids in which at least one member of the group won.

The average success rate for the companies in Group-1 participating detached from the

group was 33%, as shown in Table 8. The average success rate for the companies of group-1

acting as a group is 77%. This represents an increase of 44% in the success rate.

The main evidence of the analogous behavior of a cartel identified through our

methodology was:

• Increased rate of use in relation to individual participants;

• Presence of hubs in communities;

• Repetition of the same community over time;

• High similarity between community members (winners bind to winners and losers bind

to losers);

• Companies with many participations in public bids proportionally tend to win more than

companies with few holdings in public tenders.

These procedures were repeated for the ten mesoregions shown in Figure 22. Similar
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results were observed for each mesoregion. The results were presented to the Court of Auditors

of the State of Paraná (TCE/PR) through a specific report with several confirmations for the

results presented.

4.2 CASE STUDY II - REPRESENTING MICROARRAY DATA AS GRAPHS

In the last decade, a massive volume of complex network data has been produced

with surprising and unexpected results. The identification of essential principles common

to complex networks are among these studies. The life-sciences and biology communities

are active actors behind this revolution, using complex network analysis to help understand

biological phenomena, diseases, epidemics and genetics (BOCCALETTI, 2009).

Several biological conditions including cancer and Alzheimer’s disease have been

studied through gene expression data. Techniques such as filtering data, cluster analysis

and representation by means of complex networks can be employed to discover relationships

between genes related to diseases and biological conditions (FINOCCHIARO et al., 2007).

The identification of regulatory gene networks are significant in order to understand

diseases and biological conditions (LOPES; JR; COSTA, 2011). By using microarray data,

it is possible to evaluate the correlation between tens of thousands of genes (MOSCATO;

BERRETTA; MENDES, 2005). In Figure 25, some clustered data from microarray gene

expression data are shown.

Figure 25: Heatmap of gene expression data from mice samples used to investigate the correlation
between gene expression and arterial hypotension and arterial hypertension. - (PUIG et al., 2010).

Through DNA microarray analysis, it is possible to study distinct genes, groups of

genes or even an entire genome. Gene expression data are usually represented by a matrix that
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contains the genes identification as well their corresponding values of expression for a small

number of samples.

In Case Study II, we analyzed microarray data to investigate the group of genes

correlated to Alzheimer’s disease with the following goals.

• Evaluate wheter the methodology presented and used in case study I is suitable for a

distinct problem.

• Identify the group of genes with major changes for each stage of Alzheimer’s disease.

• Identify the presence of communities of genes for each stage of Alzheimer’s disease and

how they as the disease progresses.

4.2.1 SIMILARITY MEASURES IN MICROARRAY DATA

Similarity measures in gene expression data play a key role in representing this

information by means of complex networks (ALLOCCO; KOHANE; BUTTE, 2004). It is

crucial to establish a similarity measure which allows distinct genes to be correlated according

to a grouping criterion. This procedure enables the revelation of relationships among these

groups of genes.

Similarity measures were used to compare subjects in Complex Networks for several

distinct purposes. For instance, Blondel et al. (2004), used a measure of similarity between

graph vertices applied to “synonym extraction” and web searching. Comparisons between two

graphs were studied by Melnik, Garcia-Molina and Rahm (2002).

In this work, we are particularly interested in two dimensions: the macro-scale, where

similarity comparisons will be made between graphs: and the micro-scale, where comparisons

are drawn between vertices.

At the macro-scale, the intention was to establish comparisons between gene

expression data and verify previously classified groups of genes found in the complex networks.

The hypothesis was to identify communities of closely related genes present in one of the classes

which are not present in other classes, thereby defining which set of genes is related to the

progression of the pathology.

On the micro-scale, comparisons of genes were represented by means of graph vertices

and their relationships are evaluated. Community detection algorithms were employed and

some metrics for complex networks computed, such as: similarity, connectivity, clustering

coefficients, etc.
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4.2.2 EXPERIMENTS PERFORMED

In this case study we conducted experiments with a microarray dataset concerning

the expression profiling of brain hippocampi from 22 postmortem subjects with Alzheimer’s

Disease (AD) with varying stages of severity, with 7, 8, and 7 subjects diagnosed with incipient,

moderate and severe respectively. The results provide insight into mechanisms underlying the

early pathogenesis of AD.

Alzheimer’s is a form of dementia that affects ten percent of the population over 65

years old and almost fifty percent of the population over 85 years old (MOSCATO et al., 2005).

It is a progressive disease which worsens as it evolves. It is treatable but can not be cured. The

pathologic characteristics are the degeneration of the nerve cells, presence of neuritic plaques

and neurofibrillary tangles. It was first described by German psychiatrist and neuropathologist

Alois Alzheimer in 1906, after whom it was named (MCKHANN et al., 1984).

The dataset was obtained from the Gene Expression Omnibus (GEO), 2 a public

functional genomics data repository from the National Center for Biotechnology Information

(NCBI) 3. The dataset is composed of 31 records (patient samples), comprising 22,283 probes,

with 14,093 distinct genes.

The first step was to download the dataset, extract the headers and establish a proper

identification of which case is related to each stage of Alzheimer’s disease. GEO databases

have the following structure: in the header section there is information about, the number of

samples collected, number of genes, what classes are present as well as to which class each of

the samples contained in the dataset belongs, plus the origin of samples, etc.. In the data table

section, the values of expression for each gene of each sample are represented by means of a

matrix n×n, as shown in Table 9.

Table 9: Sample data structure for gene expression data.
Sample 1 Sample 2 Sample N

Gene 1 1.3 2.9 1.9
Gene 2 2.1 1.8 0.1
Gene N 1.7 1.4 1.5

The same methodology used in the Case Study I, presented in the workflow shown in

Figure 17 in Section 3.1 was adopted here to represent gene expression data from microarrays

by means of complex networks.

2http://www.ncbi.nlm.nih.gov/geo/
3http://www.ncbi.nlm.nih.gov/
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The second step was data preparation and normalization. We performed the

normalization of the values by substituting the absolute gene expression values for the base-

10 logarithm of the values, thus avoiding the sensibility to outliers and obtaining a normalized

dataset. This procedure is usual when dealing with microarray data because the data can be in

a large range of values.

In the third step, the dataset was divided according to the number of classes. Each

class resulted in a distinct graph file. This approach allows the comparison of several metrics

for each class.

Defining a criterion for the relationship between the vertices of a complex network is

one of the features that most influences the final topology of the network. The criterion defining

whether a relationship exists or not between two vertices may vary according to the network

subject. For complex networks derived from gene expression data, one approach is to evaluate

the correlation strength between two genes. If two genes show a strong correlation of their

expression values, they receive an edge connecting them; otherwise there is no connection.

In the fourth step a similarity measure for evaluating the correlation between the

vertices of the graph is established. Usually Pearson, Spearman or Kendall correlation metrics

are employed. These metrics produce values between -1 and 1. Values close to -1 or 1 indicate

strong, negative or positive correlations, respectively. Most tools suited for the analysis of

complex networks as well as most of the algorithms for detecting community in complex

networks do not support negative values for edge weights, so that the most common approach

is to consider the absolute value of the correlation, converting negative values to positive. An

edge between two vertices of the graph (representing genes) is set if the correlation between the

expression of the corresponding genes is above a given threshold.

Steps five to eight outlined in Section 3.1 aim to identify communities inside the

complex networks. Given the large dimension of the networks, the algorithm proposed by

Blondel et al (BLONDEL et al., 2008) which was further discussed in Section 2.9.5, presented

a suitable performance to analyze complex networks constructed with microarray data.

The final step in our methodology deals with the presentation of complex networks

by graph layout algorithms. For large graphs, with thousands or more vertices, the visual

representation provides little or no relevant information concerning the structure and topology

of the graph. For the Case Study in question, this step has little or no relevance.
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4.2.3 RESULTS

In this section we present results obtained from the analysis of the graphs generated

by the microarray datasets used in Case Study II. It was stated that two distinct genes are

connected by an edge if the correlation of the gene expressions throughout the cases is strong

enough. Here, the meaning of strength is related to values that exceed a predefined threshold,

as mentioned before.

A threshold equal to zero produces a fully connected graph, a considerable amount

of noise and most connections with no meaning at all. Threshold value close to 1 produce

less connected complex networks with more relevant connections. There is no pre-established

threshold value. The proper adjustment of the threshold value depends on the subject and

the problem modeling. Several authors (TROYANSKAYA et al., 2001; MEI et al., 2002;

MCCLINTICK; EDENBERG, 2006) have established threshold value empirically according

to the experimentation results.

The plots shown in Figure 26 gather information relative to the average degree of the

complex networks for each stage of Alzheimer’s disease, with the threshold ranging from 0 to

1. The continuous line represents the data itself and the dotted line represent the trend-line with

the respective r2 value. The threshold value used to produce the networks in this section is

0.85. This value was empirically set based on several results obtained during the course of the

experiments.
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Figure 26: Average degree for each Alzheimer’s disease stage with threshold ranging from 0 to 1.

(a) Control group, (b) Incipient stage of AD, (c) Moderate stage of AD and (d) Severe stage of AD.

The four complex networks representing each stage of Alzheimer’s disease are shown

in Figure 27. This graphic representation was created using Gephi (BASTIAN; HEYMANN;

JACOMY, 2009), a software for complex network visualization.

Figure 27: (a) complex network relative to the control group, (b) complex network relative to

the Incipient stage of AD, (c) complex network relative to the Moderate stage of AD (d) complex

network relative to the Severe stage of AD.

For networks with such complexity, no visual inference can be made that provide clues
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about the distinctions between the four graphs. Accordingly, it is necessary to gather metrics

and statistics that provide evidence of changes in the network for each of the classes presented.

Table 10 contains statistics for the four complex networks shown in Figure 27.

Table 10: Metrics of complex networks for the classes shown in the graphs of Figure 27.

Vertices Edges AVG Degree Modularity Clustering Coefficient # Communities

Control 22215 1554337 140.11 0.579 0.307 12

Incipient AD 22215 8202414 738.45 0.501 0.396 9

Moderate AD 22215 2414388 217.36 0.586 0.332 11

Severe AD 22215 5949661 535.64 0.505 0.398 8

Table 10 shows the differences in the complex networks topology for each stage

of Alzheimer’s disease. In the Incipient AD and Severe AD classes we observed the most

significant changes, with the highest average degrees in accordance with the highest number

of edges. The number of communities is based on the network modularity and is computed

using the Louvain method for community detection in large networks (BLONDEL et al., 2008)

outlined in Section 2.9.5.

The average clustering coefficient was computed by using the algorithm of Latapy

(2008). Another metric used to evaluate complex networks is the degree distribution network.

Figure 28 contains the degree distribution for each complex network shown in Figure 27.



75

Figure 28: Degree Distribution for the classes Control, Incipient, Moderate and Severe from the

Alzheimer’s disease dataset.

In figure 28, the continuous lines represent the data itself while the dashed lines

represent the trend-lines with respective R2 values.

By submitting the complex networks to the algorithm for community detection

proposed by Blondel et al. (2004) we identified communities for each stage of Alzheimer’s

disease as well for the control group. The number and dimensions of the identified communities

are represented in Table 11.
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Table 11: Comparative table of the size of communities for each Alzheimer’s disease stage.

Control Incipient Moderate Severe

# Size Vertices # Size Vertices # Size Vertices # Size Vertices

1 14.95% 2107 1 36.05% 5081 1 44.98% 6339 1 23.66% 3334

2 14.83% 2090 2 15.39% 2169 2 7.47% 1053 2 16.41% 2313

3 14.16% 1996 3 12.62% 1779 3 7.22% 1018 3 13.84% 1950

4 13.23% 1865 4 10.20% 1437 4 6.94% 978 4 11.35% 1600

5 10.27% 1447 5 9.13% 1287 5 6.93% 977 5 9.52% 1342

6 9.10% 1282 6 8.33% 1174 6 6.86% 967 6 8.60% 1212

7 8.39% 1182 7 8.27% 1165 7 6.60% 930 7 8.51% 1199

8 7.21% 1016 - - - 8 6.56% 925 8 8.12% 1144

9 6.72% 947 - - - 9 6.40% 902 - - -

Although interesting, the observation of these metrics does not provide a clear answer

to the problem related to this dataset, that is, the identification of the group of genes related to

the development or evolution of this pathology.

A possible approach to identifying the subset of genes related to a specific pathology

is to identify the genes that have undergone major changes according to the progression of the

disease. It is consistent to say that isolating the connections that are common to the control

class from the other classes will filter out a relevant amount of data.

In order to evaluate the proportion of the complex network directly related to

Alzheimer’s disease, the group of edges and consequently vertices that are present in the Control

class were removed from the analysis.

The Venn-diagram shown in Figure 29 illustrates the four distinct classes present in

the dataset and the respective intersections.
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Figure 29: Venn diagram of the classes Identified as; C for Control, I for Incipient, M for Moderate

and S for Severe, and the corresponding intersections.

By removing the intersection between the classes Incipient AD, Moderate AD and

Severe AD which intersect with the Control class represented in the Venn-Diagram in Figure

29 by the intersections [C,I], [C,S], [C,I,S], [C,I,M], [C,M,S] and [C,I,M,S] three new complex

networks were obtained. The three new complex networks are shown in Figure 30.

Figure 30: Complex networks from (a) Incipient AD, (b) Moderate AD and (c) Severe AD without

in-common edges with the Control group.

Table 12 contains metrics and statistics for the complex networks resulting from the

subtraction of the edges that are common to the Control group with the Incipient, Moderate and

Severe stages of the Alzheimer’s disease.
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Table 12: Metrics of complex networks shown in Figure 30.

Size Order Average Degree Modularity Clustering Coefficient # Comunities

Incipient AD 14093 3085273 437.84 0.287 0.335 5

Moderate AD 14093 770046 109.28 0.408 0.241 11

Severe AD 14093 2175637 155.79 0.361 0.306 9

Computing the degree distribution for each of complex network generated, it is

possible to observe that these complex networks also follow a power-law degree distribution

as shown in Figure 31. The solid line represents the degree-distribution and the dotted line

represents a power-law trend-line with corresponding r2 value.

Figure 31: Degree distribution for the complex networks shown in Figure 30.

By observing the degree distribution of these three complex networks it is very clear

that there are few vertices, under 10%, with a very high degree, while the majority, over 90%

with a lower degree. Taking the connectivity of the vertices as a metric of importance in the

network, the top 100 most connected vertices for each Alzheimer’s disease stage were selected.

Figure 32 shows the three complex networks relative to these groups of genes.
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Figure 32: (a) Top-100 most connected genes for the group with Incipient AD, (b) top-100 most

connected genes for the group with Moderate AD and (c) top-100 most connected genes for the

group with Severe AD.

The repetition of a particular connection was used as a metric of strength for the

connections. The stages Incipient, Moderate and Severe were considered for computing the

weight of the edges, simply adding the repetitions, the connections in the control group were

previously filtered and did not need to be computed at this stage. This procedure resulted in

edge weights ranging from 1 to 3. The resulting complex network is shown in Figure 33.
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Figure 33: Complex network from the interaction between the top-100 most connected genes in all

stages of Alzheimer’s disease

Taking this complex network as a result of the combination of all the genes present in

each stage of Alzheimer’s disease, the communities present among these genes were computed

according the modularity of the genes by the Blondel et al. (2004) algorithm showing 4

communities of genes listed as A, B, C and D. These genes and their respective communities

are listed in Table 15 in the appendix D. The proportion of these communities relative to the

entire network is listed in Table 13.

Table 13: Communities detected in the complex network for the combination of the top-100 genes

for all stages of Alzheimer’s disease.

Comunity A Comunity B Comunity C Comunity D

55 Genes 31 Genes 47 Genes 55 Genes

29% 16% 25% 29%
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As an alternative approach, data relative to the intersection [I,M,S] identified in the

Venn Diagram of Figure 29 were selected as result of the intersection between the groups

labeled as I for incipient Alzheimer’s disease, M for Moderate Alzheimer’s disease and S for

severe Alzheimer’s disease. The connections within this intersection and those that are not

present in the Control class were selected in order to include the genes which were present in

all stages of Alzheimer’s disease and which are not present in the Control group. These genes

and their respective connections are illustrated by the complex network shown in Figure 34.

Figure 34: Complex network relative to the group of genes present in all stages of Alzheimer’s

disease and not present in the control group and its respective degree distribution chart.

By computing the clustering coefficient for the complex network presented in Figure

34 a total of 298 connected components were identified. The distribution of components

constitutes a large component equivalent to 70.39% of the complex network and 297 small

components with a portion of 0.05% or less.

By computing the modularity for the complex network presented in Figure 34 a total of

294 modularity classes were computed, with a large class encompassing 70.4% of the complex

network and with 293 small classes with a size equal or less than 0.37% of the network.

For a simplified representation, the largest components are presented in light color and

all other components are presented as black in Figure 34.

In order to obtain a reasonable small-set of genes, the same methodology of selecting

the top-100 most connected genes was used. These genes are illustrated in the complex network

presented in Figure 35.
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Figure 35: Top-100 most connected genes in complex network from intersection of Incipient AD,

Moderate AD and Severe AD which are not part of the Control Group.

This group of genes is totally contained in the large component that overlaps the large

modularity class presented in Figure 34.

4.2.4 EVALUATION OF RESULTS

Geneticists have conducted several studies in order to identify which genes are

associated with human diseases with substantial progress. Once identified a gene or a group of

genes associated with a specific disease, it is possible to develop new drugs and treatments. The

fast evolution of research related to the human genome combined with the considerable attention

given to Alzheimer’s disease in recent decades has led to important advances regarding the

identification of which genes are directly linked or correlated to the development of Alzheimer’s

disease.

The vast literature on this topic points to discoveries encompassing from a small group

of genes composed by four or five genes to datasets with thousands of genes correlated to

Alzheimer’s disease.

The top-100 most connected genes presented in Table 14 in Appendix D for the group

of subjects identified with Incipient AD has 74 genes listed in The Comparative Toxicogenomics
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Database (CTD) 4 (DAVIS et al., 2013). Class Moderate AD has 88 genes listed and class Severe

AD has 80 genes listed. The average of matching in genes present in Figure 32 and the dataset

The Comparative Toxicogenomics Database (CTD) is 80,66%.

Furthermore, in the group present in the complex network shown in Figure 13 there are

twelve genes present in all stages of Alzheimer’s disease, as follows: APBB2, CFLAR, FGFR2,

GNA11, GNAS, HFE, PML, PTGER3, PVR, RUNX1, SLC6A2 and TCF3.

In all the analyse we observed that, the phase with the highest genetic changes was

the early stage of Alzheimer’s disease, which is consistent with the results observed by Blalock

et al. (2004). “These studies reveal that widespread changes in genomic regulation of multiple

cellular pathways are major correlates of incipient AD”.

Harold et al. (2009) conducted a study that identified variants at CLU or APOJ

associated with Alzheimer’s disease. These associations were replicated in stage 2 (2,023 cases

and 2,340 controls), producing compelling evidence for association with Alzheimer’s disease.

Genes CLU, CR1 and PICALM were also highlighted as compelling evidence for association

with Alzheimer’s disease by Harold et al. (2009), both of which are present in complex network

shown in Figure 34.

Genes CELF1, FERMT2, INPP5D, MEF2C, also present in the complex network

shown in Figure 34, were identified as susceptibility loci for late-onset Alzheimer’s disease

by Lambert et al. (2013).

Genes HFE hemochromatosis, APBB2 amyloid beta (A4) precursor protein-binding,

family B, member 2, BLMH bleomycin hydrolase, MPO myeloperoxidase, and NOS3 nitric

oxide synthase 3 (endothelial cell) are also positively identified in the group of genes in the

complex network shown in Figure 34. According to Bird (2014), these genes are also associated

whit Alzheimer’s disease.

The genes presented in the complex network shown in Figure 34 include 16 genes

listed in the previously cited studies, and with 1764 of 2411 which corresponds to 73% of

matching with genes listed in The Comparative Toxicogenomics Database (CTD) (DAVIS et

al., 2013).

The results obtained by the alternative approach, which consists of selecting the genes

which are present at the Incipient, Moderate and Severe stages of Azheimer’s disease and

are not present in the Control group relative to the complex network presented in Figure

35. This complex network has a majority of the 73% of its genes listed in The Comparative

4http://ctdbase.org/downloads
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Toxicogenomics Database (CTD).

All 73% of the genes positively matched with the (CTD) are within the large

component which also coincides with the largest modularity class. Likewise, the majority of

the genes presented in (HAROLD et al., 2009; LAMBERT et al., 2013; BIRD, 2014) that are

positively matched with this complex network are outside the large component. The list of top-

100 most connected genes in complex networks from intersection of Incipient AD, Moderate

AD and Severe AD which are not part of the Control Group is presented in Table 16 in appendix

D.
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5 CONCLUSIONS AND FUTURE WORK

In this dissertation two distinct case-studies were addressed in order to illustrate

a methodology by means of complex network for representing datasets and detecting

communities among these data.

5.1 CASE STUDY I - DETECTING CARTELS IN PUBLIC BIDS

In Case Study I, the representation of public bids by means of complex networks

allowed the discovery of companies acting as a tight group of members analogous to cartels.

Metrics of strength based on repetitions over time were employed, as well as algorithms

for detecting communities in order to unveil these groups of companies. The problem was

addressed by representing the relationships between companies similar to a Social Network,

allowing the employment of Social Network Analysis tools and algorithms to answer the

questions stated in the problem.

Case Study I was conducted under an agreement with the Court of Auditors of Paraná

State, Brazil that provided data from the public bids in Paraná State. In return, a report with the

findings relative to this case-study was provided to the Court of Auditors of Paraná State which

had several positive results that corroborated the accuracy of the methodology employed here.

The following answers were obtained for the questions addressed to the Case Study I.

• Do the winners have an advantage over companies that always lose? As per the

information presented in Section 4.1.8 we were able to observe strong connections

between major winners and companies with very low success rates, thus, demonstrating

evidence of the presence of ghost companies in public bids in the State of Paraná.

• Are the winners clustered together? It is possible to observe that similar subjects tends to

be clustered. The experimentations and results shown that companies with higher success

rates tend to be grouped. Companies with lower success rates also appears clustered

within the complex networks. The companies with average success rate are present in
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both communities and only a few number of very low success rate are connected to

successful companies.

• Will a company have a better success rate the more it participates? The number of

participations show a correlation with the success rates, we were able to observe that as

more a company participates, higher the success rate.

• How many companies there in of a cartel? According the literature cartels are small

and cohesive groups of companies acting together to obtain advantages in public bids or

auctions preventing the free concurrence. The number of companies within a cartel it

is estimated between three and six. We were able to observe groups of companies with

strong connections ranging with the same number of companies. However, sometimes

this number is slightly larger.

5.2 CASE STUDY II - REPRESENTING MICRO ARRAY DATA AS GRAPHS

In Case Study II, the main goal was to evaluate the methodology proposed in this

dissertation through a distinct problem and dataset. Microarray gene expression data related to

Alzheimer’s disease was represented by means of complex networks. Correlation measurements

were used to establish network connections.

The result of this procedure was large complex networks composed of thousands of

vertices and millions of edges, which constituted a computational challenge itself.

Community detection algorithms were also employed in order to unveil the presence

of groups of genes for each stage of the Alzheimer’s disease. The comparison of the results

found with previously published works corroborates the findings obtained by the methodology

presented in this dissertation.

The following answers were obtained for the questions addressed to the Case Study II.

• The methodology presented and used in case study I is suitable for a distinct

problem? The same methodology of case Study I was used for the Case Study II with

good results. For the Case Study II the graphical representation of the complex networks

it is not relevant due the network dimensions, thus, the optional steps eight and nine are

not performed.

• It is possible to identify the group of genes with major changes for each stage of

Alzheimer’s disease? The results found in the Case Study II were compared with the
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The Comparative Toxicogenomics Database (CTD) with an average matching of 80.66

percent. The groups of genes identified with the methodology suggests strong evidence

to be correlated with the Alzheimer’s disease.

• It is possible to identify the presence of communities of genes for each stage of

Alzheimer’s disease and how they as the disease progresses? Two distinct approaches

were performed to evaluate the progression of Alzheimer’s disease and in both case is

possible correlate the progression of each phase to a distinct group of genes.

5.3 PRODUCTS

During the course of this study academic material, software and technical report were

produced as a result of this research. In this section are listed the major productions related to

this work.

5.3.1 SOFTWARE

The software produced during this study consists in a graphical interface and a set

of algorithms capable to deal with the complex networks presented in this dissertation. The

software comprise the three artificial network generators for random network, Barabási and

Albert model and Erdős and Rényi network model.

The software is able to deal with open graph file formats such as .gml and .graphml.

Further information about the Open Graph File Format is available in Appendix A.

For visualization of the complex networks the GraphStream Java library 1 was used.

For correlation and statistics, The Apache Commons Mathematics Library 2 was used, aside

with, The Gephi Toolkit 3 for community detection algorithms.

5.3.2 TECH REPORT

A tech report entitled ‘Relatório de Atividades Relativo ao Convênio TCE/PR e

UTFPR Referente ao Estudo de Caso de Identificação de Cartéis por Meio de Redes Complexas’

(Gabardo et al., 2014) was produced and delivered to the Court of Auditors of Paraná State as

result of the cooperative effort accomplished during the Case Study I.

1http://graphstream-project.org/
2http://commons.apache.org/proper/commons-math/
3http://gephi.github.io/toolkit/
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5.3.3 PUBLICATIONS

The following publications were produced during the course of this study:

• Scientific Journal - Gabardo, A. C., & Pérez, M. (2013). Classificação de dados relativos

á cirurgia de câncer de mama, um comparativo entre solução por Redes Neurais e Fuzzy.

REAVI-Revista Eletrônica do Alto Vale do Itajaı́, 2(2), 50-59.

• Book Chapter - Gabardo, A. C., & Lopes, H. S. (2014). Clustering Methods for

Detecting Communities in Networks. In M. Khosrow-Pour (Ed.), Encyclopedia of

Information Science and Technology, Third Edition (pp. 3507-3516). Hershey, PA:

Information Science Reference. doi:10.4018/978-1-4666-5888-2.ch344

• Conference Presentation - Gabardo, A. C., & Lopes, H. S. (2014). Using Social

Network Analysis to Unveil Cartels in Public Bids. in Proceedings of The First European

Network Intelligence Conference.

5.4 CONCLUSION

Both case studies show that complex networks are a powerful tool for representing

complex data relationships. Several techniques can be employed to reveal communities and

groups of subjects with a high degree of similarity. The information related to community

discovery in complex networks seems to be a reliable methodology for several fields of study,

pervading a wide range of sciences, from Social Network Analysis to biological data, and

beyond to other possible applications.

5.5 FUTURE WORK

Future work should include experiments with other biological datasets, with special

interest in gene expression data. The methodology and findings obtained in this study will be

gathered in scientific publications at an appropriate time.

Another direction for future research could be focused on the discovery of strength

metrics for the relationships between vertices for relationships and the dynamic aspects of

complex networks.
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A THE GRAPHML FILE FORMAT

The interest in Graph Theory, Complex Networks, and Social Network Analysis it

is increasing arguably. It is also increasing the number of software’s related to graphs and

complex networks for several purposes. This diversity also leads to a wide variation in the way

of representing graphs and complex networks.

Some of the possible representations are:

•Adjacency Matrix - Let G = (V,E) be a graph with n vertices. The adjacency matrix for

G it is a n×n bi-dimensional matrix, denoted by A, where A(i, j) = 1 if the edge (i, j) is

present in G. And A(i, j) = 0 if the edge (i, j) is not present in G.

•Adjacency List - In this representation, the row i of the matrix contains the vertices

adjacent to vertex i. Each vertex i has a variable d[i] that keeps the degree of vertex i.

Only non zero values are represented in the list, self loops are usually ignored, resulting

in a more compact representation, which is desirable for complex networks with large

amount of data.

•Incident Matrix - Let G = (V,E) be a graph with n vertices and m edges. The incidence

matrix for G is a two-dimensional n×m matrix, denoted by A, where A(i, j) = 1 if j is

focused in the node i in G.

Besides representing the vertices itself and the connections between vertices, complex

networks could have various dimensions of data as attributes. For example, if we take a social

network as a database possibly there will be data dimensions such as gender, age, geographical

location, ethnicity, etc. As for a network that represents a food chain there may be data

dimensions as phylum, order, class, etc. Such data may be categorical, textual, numeric, etc.

In addition, there is still the possibility of assigning the vertices visual elements such as size,

color, position, etc.
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Figure 36: A GraphML source code and the respective graph.

To enable the construction of graphs with such features many file formats have been

developed, such as .csv (comma-separated values), .net from the Pajek software 1, .gml a widely

used graph exchange format (non-XML) suitable for Gephi software 2, .vna from the NetDraw

software 3 among several others.

GraphML file format was used in this work to represent the complex networks

presented in Case Study I, this file format is suitable for mostly the graph visualization

softwares and graph manipulation software’s. GraphML is an XML-based file format for

graphs (BRANDES et al., 2002; BRANDES; PICH, 2005) with a language core to describe the

structural properties of a graph and a flexible extension mechanism to add application-specific

data. The GraphML 4 format main features include:

•Directed, Undirected, and Mixed Graphs.

•Hhypergraphs.

•Hierarchical Graphs.

•Graphical Representations.

•References to external Data.

•Application-specific Attribute Data.

•Light-weight Parsers.
1http://pajek.imfm.si
2https://gephi.org
3https://sites.google.com/site/netdrawsoftware
4http://graphml.graphdrawing.org/
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A GraphML file consists of an XML syntax file with a graph, within a sequence of

nodes and edges. Each node element should have a distinct id attribute, and each edge element

has source and target attributes that identify the endpoints of an edge by having the same value

as the id attributes of those endpoints. Figure 36a illustrates a source of a GraphML file and

Figure 36b illustrates his respective graph.

All generated graphs for the experiments of the case study I presented in this work

were modeled according to this pattern file. It is important to note that certain types of complex

networks are composed of millions of vertices and edges and that the use of the structural

elements of XML will result in a significant increase in file size, by consequence, increasing its

complexity and requiring more time to process.
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B GRAPH LAYOUT ALGORITHMS

Graph layout is an important field of graph and complex network studies. Graph

drawing algorithms are algorithms which aim to present graphs in a more pleasant and

comprehensible way. The complexity of this kind of algorithm depends in which kind of graph

must be drawn. In this work we focus in 2D graphs, however, is possible to apply some of those

algorithms to 3D structures such as trees and complex structures.

On Figure 37 is shown three layout examples, figure 37-A shows the random layout,

37-B shows a Fruchterman-Reingold layout which is based in force-directed layout and 37-C

shows the same graph organized under the Yifan-Hu graph layout which is also based in force-

directed layout.

Figure 37: Graphs organized under the force-direct layout algorithms

The purpose of the graph layout algorithms is positioning the vertices of a graph into a

space in which vertices and edge are a representation of its values equally (FRUCHTERMAN;

REINGOLD, 1991). Some layout algorithms are able to depict the proximity of vertex and even

the agglutination of communities, which is the focus of this dissertation. For these reasons, we

focus in force directed layouts, which produces most accurate results for 2D undirected graphs.

The concepts adopted by Frutchermand and Reingold are based in nuclear bonds in

analogy to electric binds between protons.
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These algorithms consider strongly connected elements tend to be close, acting with

a force of attraction. Those vertices who have weak connections, or have no connections must

be apart, acting with a force of repulsion. This concepts lead to two very simple principles

(FRUCHTERMAN; REINGOLD, 1991).

1.Vertices connected by an edge should be drawn near each other.

2.Vertices should not be drawn too close to each other.

The pseudo-code shown in algorithm 8 describes the basic operation of a graph layout

force-directed algorithm.

Algorithm 8: Pseudo-code for a force-directed algorithm.

Input: Graph G;

Output: Straight-line drawing of G;

Initialize Positions: place vertices of G in random locations;

for i = 1toM do

calculate the force acting in each vertex;

move the vertex ∗ (force in vertex);
end

draw a filled circle for each vertex;

draw a straight-line segment for each edge;

The optimal distance between vertices k defined as

k =C
√

a
n

(22)

Where k is the distance between two vertices, a is the area and n is the number of

vertices.

The attractive forces function is defined as fa(d) = d2/k, and the repulsive forces

function is defined as fr(d) = −k2/d,. The algorithm 9 (KOBOUROV; WAMPLER, 2005)

shows an implementation of Frutchermand & Reingold algorithm.
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Algorithm 9: Frutchermand & Reingold algorithm

area←W ∗L ; // frame: width W and length L

initialize G = (V, E) ; // place vertices at random

K←
√

area/|V | ; // compute optimal pairwise distance

function fr(x) = k2/x ; // compute repulsive force

for i = 1 to iterations do

for each v ∈V do

v.disp := 0 ; // initialize displacement vector

for u ∈V do

if u 6= v then

4← v.pos−u.pos ; // distance between u and v

v.disp← v.disp+(4/|4|)∗ fr(|4|) ; // displacement

end

end

function fa(x) = x2/K ; // compute attractive force

for each e ∈ E do

4← e.v.pos− e.u.pos ; // e is ordered vertex pair .v

and .u

e.v.disp← e.v.disp− (4/|4|)∗ fa(|4|);
e.u.disp← e.u.disp− (4/|4|)∗ fa(|4|);

end

for each v ∈V ; // limit max displacement to frame; use

temp. t to scale

do

v.pos← v.pos+(v.disp/|v.disp|)∗min(v.disp, t);;

v.pos.x← min(W/2,max(−W/2,v.pos.x));;

v.pos.y← min(L/2,max(−L/2,v.pos.y));

end

t← cool(t) ; // reduce temperature for next iteration

end

The drawbacks of Frutchermand-Reingold algorithm are the computational cost; either

sometimes the algorithm does not converge, resulting in an unstable graph.

A desired characteristic of graph layout algorithms is the capacity of organize the graph

minimizing edge crossing. This allows a clean and intuitive visualization.



106

Another force-directed layout algorithm implemented in this work is the Yifan-Hu

Multilevel layout. The algorithm combines high performance with multilevel coarsening to

reduce the complexity. One of the goals for the Yifan-Hu algorithm is visualizing cluster

relationships as maps, offering an intuitive way to represent communities and denote the

relationships between them. It also desired to maintain readability and aesthetics.

A difference between the Frutchermand-Reingold and Yifan-Hu is that, in Yifan-Hu,

each vertex is updated as soon the forces of the vertex is calculated, instead wait for the whole

system to be updated.

The pseudocode for the iterative force-directed layout algorithm is shown in algorithm

10 (HU, 2005).

Algorithm 10: Iterative force-directed layout algorithm

function MultilevelLayout(G,x, tol);

• Coarsest graph layout;

if (ni+1 < MinSizeorni+1/ni > ρ) then

xi = random initial layout;

xi = ForceDirectedAlgorithm(Gi,xi, tol);

return xi ;

end

• The coarsening phase:;

setup the ni×ni+1 prolongation matrix Pi ;

Gi +1 = PiT GiPi;

xi+1 = MultilevelLayout(Gi+1, tol);

• The prolongation and refinement phase:;

Prolongate to get initial Layout: xi = Pixi+1;

Refinement: xi = ForceDirectAlgorithm(Gi,xi, tol);

Return xi;

In the Algorithm 10 ni = |V i| is the number of vertices in the graph, xi is the coordinate

vector for the vertices in V i. Prolongation operation for Gi+1 to Gi is also represented by a

matrix Pi, of dimension ni×ni+1. MinSize is defined as 2 and ρ is defined as 0.75.
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C CORRELATION MEASURES

Correlation measures are an effective way to evaluate the relationship between two

sets of values. Their similarity or dissimilarity. Used in various areas of knowledge such as

psychology, sociology and the statistical correlation measures aimed at providing an assessment

of proximity or similarity between two sets of values.

Correlation analysis between two or more variables provides a number that summarizes

the degree of linear relationship between variables.

In this section, three measures of correlation often used to assess the relationship between

variables are outlined.

C.1 SPEARMAN RANK CORRELATION

Spearman Rank Correlation is a non-parametric test that is used to measure the degree

of association between two variables (SPEARMAN, 2010). Often denoted by the Greek letter

ρ (rho) or as ρ . This is a nonparametric method that uses only the ranks, and not make

any assumptions. Essentially all it does is calculate the Pearson correlation coefficient of the

ranks. Rank is the position in which a number within a list occupies when the data is sorted in

ascending order.

The Spearman correlation coefficient is less sensitive than Pearson’s correlation

coefficient to very far from expected values, being more suitable for application to datasets

which present outliers (IMAN; CONOVER, 1982).

The Spearman ρ coefficient varies between -1 and 1. As much near are the correlation

from the extremes the greater is the association between the variables. Negative correlation

values means that the correlation variables vary in the opposite direction.

A formula for calculating the Spearman coefficient ρ is presented in Equation 23,
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ρ = 1−
6

n
∑

i=1
d2

i

n3−n
, (23)

where n is the number of pairs (xi,yi), and di = (xi posts from the values of x)−
(yi posts from the y values) (CHEN; POPOVICH, 2002).

Figure C.1 shows three data samples for which the Spearman correlation was

calculated.

Figure 38: On the left, a dataset with negative Spearman correlation, at center a dataset with low

Spearman correlation and on the right a dataset with high Spearman correlation.

C.2 KENDALL RANK CORRELATION

Kendall Rank Correlation Coefficient is a non-parametric test that measures the

strength of dependence between two variables developed by Maurice Kendall in 1938

(KENDALL, 1948, 1938).

Kendall coefficient of correlation is obtained by normalizing the symmetric difference
such that it will take values between -1 and +1 with -1 corresponding to the largest
possible distance (obtained when one order is the exact reverse of the other order) and
+1 corresponding to the smallest possible distance (equal to 0, obtained when both
orders are identical) (ABDI, 2007).

The Figure 39 shows four examples of Kendall’s Rank Correlation Coefficient for a

series of values.
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Figure 39: Kendall’s Correlation examples for a series of values (MATLAB, 2010).

Kendall Rank Correlation Coefficient between two random variables with n

observations is defined as shown in Equation 24

τ =
nc−nd

1
2n(n−1)

(24)

Where n is the number of observations, nc is the number of concordant pairs and nd is

the number of discordant pairs.

•If the agreement between the two rankings is perfect the coefficient has value 1.

•If the disagreement between the two rankings is perfect the coefficient has value -1.

•If X and Y are independent, then is expect that the coefficient is approximately zero.

C.3 PEARSON’S CORRELATION COEFFICIENT

Pearson’s Correlation Coefficient is widely used in statistics to measure the degree of

the relationship between linear related variables. Given a series of values for X and Y Pearson’s

Correlation Coefficient will measure the degree of strength of the linear relationship between

these two variables. The resultant value will range between -1 and 1 (PEARSON, 1895).



110

If coefficient values are 1 or -1, there will be perfect linear relationship between
the variables. Positive sign with coefficient value shows positive (direct, or
supportive), while negative sign with coefficient value show negative (indirect,
opposite) relationship between the variables. The Zero value implies the absence of a
linear relation and it shows that variables are independent.

Figure 40 shows three examples of Pearson’s Correlation Coefficient with values

ranging between 4 and -4.

Figure 40: Examples of Pearson’s Correlation Coefficient (PEARSON, 1895).

One possible approach to represent gene expression data through graphs it is to use

the value of the Pearson’s correlation between two vertices as a weight for the edge connecting

them.

In this approach must take into consideration that graphs cannot receive negative values

as weights for the edges and the values generated by Pearson’s correlation vary between -1 and

1.
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D TOP-100 GENES RELATED TO ALZHEIMER’S DISEASE
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Table 14: Top-100 Genes Related to each stage of Alzheimer’s Disease.
GENE I-AD M-AD S-AD GENE I-AD M-AD S-AD GENE I-AD M-AD S-AD GENE I-AD M-AD S-AD GENE I-AD M-AD S-AD

APBB2 YES YES YES RIOK3 YES YES DR1 YES MAPK11 YES RIN3 YES

CFLAR YES YES YES SMARCA4 YES YES DST YES MARCKS YES RPL13 YES

FGFR2 YES YES YES SPTBN1 YES YES EGFR YES MAU2 YES RPS6 YES

GNA11 YES YES YES SQSTM1 YES YES EIF4B YES MAX YES RTEL1 YES

GNAS YES YES YES TRD YES YES EPHB2 YES MTAP YES RUNX1T1 YES

HFE YES YES YES AAK1 YES EPM2A YES MUC4 YES SCAPER YES

PML YES YES YES ABHD2 YES ERAP1 YES MYO7A YES SEPT9 YES

PTGER3 YES YES YES ABHD6 YES EZR YES MYOZ2 YES SERP1 YES

PVR YES YES YES ACRV1 YES FGFR1 YES NAP1L1 YES SERPINB13 YES

RUNX1 YES YES YES AGRN YES FKSG49 YES NCAPH2 YES SFTPB YES

SLC6A2 YES YES YES AK026847 YES FZR1 YES NCOR1 YES SH2D1A YES

TCF3 YES YES YES ALDOB YES GEMIN2 YES NR2F6 YES SLC24A1 YES

AK2 YES YES AMBRA1 YES GGA2 YES OASL YES SLC7A8 YES

AKAP13 YES YES ANAPC5 YES GGT1 YES OGFR YES SMURF1 YES

APLP2 YES YES ARPP19 YES GH2 YES PAIP1 YES SNTB2 YES

CALD1 YES YES ASB4 YES GJB3 YES PAK2 YES SNW1 YES

COL6A1 YES YES ASMT YES GOLGB1 YES PAPOLA YES SOGA1 YES

CSH1 YES YES ATF7IP YES GORASP2 YES PAX8 YES SON YES

DCBLD2 YES YES ATP2A3 YES GPLD1 YES PCSK6 YES SOX4 YES

DICER1 YES YES ATP5C1 YES GRIN1 YES PDGFB YES SPDEF YES

EDA YES YES ATP6V0E1 YES GTF3C2 YES PDX1 YES SRCAP YES

EIF1 YES YES BAIAP2 YES GUSBP11 YES PGF YES SRRT YES

EIF5B YES YES BAZ2A YES HAB1 YES PHF3 YES STS YES

ESR1 YES YES BMP7 YES HLADRB4 YES PKP4 YES SYNCRIP YES

ESR2 YES YES BUB1 YES HNRNPA3 YES PMS2P1 YES SYNJ2 YES

ETV1 YES YES C21orf2 YES HNRNPDL YES POLR2A YES TACC1 YES

EXOC7 YES YES CA12 YES HNRNPH1 YES PPP2R1B YES TAF6L YES

GH1 YES YES CALM1 YES HRK YES PPP2R4 YES TARP YES

GIMAP5 YES YES CASP2 YES IDS YES PRDX2 YES TCF4 YES

GLP1R YES YES CC2D1A YES IL13RA1 YES PRKCSH YES TCF7L2 YES

IGHV323 YES YES CDC14B YES IL6ST YES PRLR YES TELO2 YES

IGLV140 YES YES CDC27 YES ILF3 YES PRRC2C YES TFPI YES

L3MBTL1 YES YES CDH6 YES IQCK YES PSG1 YES TIA1 YES

LAMA4 YES YES CDKN1C YES ISG20L2 YES PTCRA YES TRIM14 YES

LARP4B YES YES CES2 YES ITGB1 YES PTGER1 YES TRIO YES

LDLR YES YES CGGBP1 YES ITGB3 YES PTP4A2 YES TTC38 YES

LOC100133862 YES YES COBLL1 YES JAK3 YES PTPN1 YES TTLL5 YES

LOC727787 YES YES COPS6 YES KAT6B YES QKI YES USP34 YES

LZTS1 YES YES CSH2 YES KCNQ1 YES RAB27A YES VIPR2 YES

MBD4 YES YES CSHL1 YES KDM4B YES RAB2A YES WNK1 YES

NF1 YES YES CSNK1A1 YES KIF2C YES RAB3GAP2 YES WT1 YES

NKTR YES YES CTSB YES KLHL22 YES RABEP2 YES ZC3H7B YES

NTRK3 YES YES CYP2A6 YES KMT2A YES RARB YES ZFAND5 YES

PCNXL2 YES YES CYP2C9 YES LPAR1 YES RBM25 YES ZNF500 YES

PDLIM5 YES YES DBT YES LRRFIP1 YES RGS12 YES DOCK6 YES

PIDD YES YES DGCR14 YES LSM14A YES RGS6 YES MAP4 YES

PTMA YES YES DOCK10 YES MAN1A2 YES RHEB YES RHOBTB3 YES

RAB7A YES YES (I-AD = Incipient Alzheimer’s Disease, M-AD = Moderate Alzheimer’s Disease, S-AD = Severe Alzheimer’s Disease)
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Table 15: Communities identified from the interaction between the top-100 most connected genes

for each stage of Alzheimer’s disease.

COMUNITY A COMUNITY B COMUNITY C COMUNITY D

CALD1 CFLAR EXOC7 WT1 AAK1 FGFR2 ATP2A3 PSG1

DST COL6A1 KMT2A LPAR1 AK2 HNRNPA3 CDKN1C ABHD6

IQCK CTSB L3MBTL1 MYO7A BUB1 MBD4 CES2 AKAP13

KDM4B DBT PHF3 SYNJ2 EIF1 PAK2 CSH1 BMP7

PAIP1 GORASP2 SYNCRIP BAIAP2 HFE PDX1 CSNK1A1 DOCK6

RAB2A IL6ST ESR1 PKP4 MAP4 RARB CYP2C9 FGFR1

SMARCA4 ISG20L2 EZR PTMA NAP1L1 EDA EPHB2 GH1

SPTBN1 MAN1A2 SPDEF ITGB3 PAPOLA TRIO EPM2A GLP1R

TAF6L MUC4 WNK1 GRIN1 SMURF1 KCNQ1 ESR2 LRRFIP1

TCF7L2 PDLIM5 CA12 RGS12 SON LARP4B GIMAP5 RIOK3

ZC3H7B PML PTGER3 IDS TCF4 NKTR GNAS ATF7IP

APBB2 PRRC2C SLC6A2 KAT6B TFPI MAX JAK3 SNTB2

CALM1 PTGER1 CDH6 PTP4A2 ABHD2 ARPP19 KIF2C SQSTM1

CASP2 RPL13 NTRK3 GPLD1 ATP5C1 COBLL1 LAMA4 SOGA1

DICER1 SFTPB RIN3 ASB4 EIF4B HNRNPDL LDLR ANAPC5

GEMIN2 TIA1 RPS6 - ITGB1 HNRNPH1 NF1 DCBLD2

ILF3 NCOR1 - - PAX8 RUNX1T1 PCSK6 PDGFB

QKI MTAP - - PTPN1 GTF3C2 RABEP2 PRDX2

RBM25 CDC14B - - RHEB POLR2A RHOBTB3 AMBRA1

RUNX1 ERAP1 - - TCF3 RAB27A SLC7A8 NR2F6

SOX4 GNA11 - - DR1 RAB3GAP2 SNW1 RAB7A

STS PPP2R1B - - EGFR SEPT9 TRIM14 CGGBP1

AGRN FZR1 - - MARCKS SLC24A1 TTC38 PRKCSH

APLP2 IL13RA1 - - CYP2A6 - ALDOB BAZ2A

ATP6V0E1 ZFAND5 - - - - CSHL1 PGF

C21orf2 COPS6 - - - - GGT1 HRK

CDC27 DOCK10 - - - - MAPK11 VIPR2

TACC1 SERP1 - - - - PRLR -
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Table 16: Top-100 most connected genes in complex network from intersection of Incipient AD,
Moderate AD and Severe AD which are not part of the Control Group.

Gene Match Gene Match Gene Match Gene Match
TCF3 YES TCF4 YES RNGTT - HNRNPDL YES

TRD - KDM4B YES SPTBN1 YES HOXA11 YES

HFE YES RABEP2 YES UBE2C YES IGHV323 -

CFLAR YES WNK1 YES CSNK1A1 YES N4BP2L1 YES

AKAP13 YES ZNF160 - DICER1 YES PLEKHG3 YES

FGFR2 YES ACRV1 - EIF1 YES PRRC2C YES

RUNX1 YES CSH1 YES ETV1 - RAB7A YES

IGLV140 - CYP2C9 YES FGFR1 YES SMARCD1 YES

LZTS1 - GGA2 - HMGXB4 - TFPI YES

PML YES OGFR - LOC727787 - TPSAB1 YES

LRRFIP1 YES SMARCA4 YES RIN3 YES ZNF500 -

SRRT - TNXB YES SERPINB13 - AAK1 YES

GNA11 YES EEF1D YES TNPO1 YES ACVR1B -

APBB2 YES GUSBP11 - UBE2D4 - AGRN YES

GNAS YES LDLR YES 216414 at - AK026847 -

EDA YES PTGER3 YES 220905 at - ATF7IP YES

LOC100133862 - SH2D1A - BUB1 YES CASP2 YES

COL6A1 YES SLC6A2 YES CC2D1A - CGGBP1 YES

GH1 YES WNT6 YES CDKN1C YES CSH2 -

L3MBTL1 YES ALDOB YES ESR2 YES DGCR14 -

LAMA4 YES DBT YES GAS7 YES DNASE2 YES

RIOK3 YES ERAP1 YES GLYR1 YES EHD2 YES

TRIO YES MAP4 YES HNRNPA3 YES PVR -

PRKAR2A YES NTRK3 YES HNRNPC YES RAB2A YES

ESR1 YES HNRNPL YES ITGB3 YES GJB3 -

A gene is labeled with ‘YES’ value in the match column if that particular gene is listed

as related to Alzheimer disease in The Comparative Toxicogenomics Database (CTD) (DAVIS

et al., 2013).


