### UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE AMBIENTAL CURSO DE ENGENHARIA AMBIENTAL

THAINÁ DAL POZZO DE OLIVEIRA

ENSAIOS COM PRIMERS DE ISSR E PCR PARA ESTUDO DA VARIABILIDADE GENÉTICA DE *Tetragonisca angustula* (Latreille, 1811) (HYMENOPTERA, APIDAE, MELIPONINAE) NA REGIÃO DE CAMPO MOURÃO - PARANÁ.

TRABALHO DE CONCLUSÃO DE CURSO

CAMPO MOURÃO 2015

#### THAINÁ DAL POZZO DE OLIVEIRA

# ENSAIOS COM PRIMERS DE ISSR E PCR PARA ESTUDO DA VARIABILIDADE GENÉTICA DE *Tetragonisca angustula* (Latreille, 1811) (HYMENOPTERA, APIDAE, MELIPONINAE) NA REGIÃO DE CAMPO MOURÃO - PARANÁ.

Trabalho de Conclusão de Curso apresentado à disciplina de Trabalho de Conclusão de Curso 2 (TCC2), do curso de engenharia ambiental, do Departamento Acadêmico de Ambiental (DAAMB), do Câmpus Campo Mourão, da Universidade Tecnológica Federal do Paraná (UTFPR), como requisito parcial para obtenção do título de Bacharel em Engenharia Ambiental.

Orientador: Prof. Dr. Paulo Agenor Alves Bueno



#### Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Campo Mourão

Diretoria de Graduação e Educação Profissional Departamento Acadêmico de Ambiental - DAAMB Curso de Engenharia Ambiental



#### TERMO DE APROVAÇÃO

# ENSAIOS COM PRIMERS DE ISSR E PCR PARA ESTUDO DA VARIABILIDADE GENÉTICA DE *Tetragonisca angustula* (Latreille, 1811) (HYMENOPTERA, APIDAE, MELIPONINAE) NA REGIÃO DE CAMPO MOURÃO - PARANÁ.

por

#### THAINÁ DAL POZZO DE OLIVEIRA

Este Trabalho de Conclusão de Curso foi apresentado em 02 de Fevereiro de 2016 como requisito parcial para a obtenção do título de Bacharel em Engenharia Ambiental. O candidato foi arguido pela Banca Examinadora composta pelos professores abaixo assinados. Após deliberação, a banca examinadora considerou o trabalho APROVADO.

| Prof. Dr. Paulo Agenor Alves Bueno                             |
|----------------------------------------------------------------|
| Prof. Dr. Marcelo Galeazzi Caxambu                             |
| FIOI. DI. Marcelo Galeazzi Caxambu                             |
|                                                                |
|                                                                |
| Prof <sup>a</sup> . Dr <sup>a</sup> . Raquel de Oliveira Bueno |

Dedico este trabalho a minha mãe, Eliete A.

Dal Pozzo de Oliveira e ao meu pai Luiz

Antonio de Oliveira, pela incansável doação, e
por sempre permanecerem ao meu lado, me
dando forças para enfrentar os obstáculos e
acreditar que coisas boas estão sempre por
vir.

#### **AGRADECIMENTOS**

Primeiramente, agradeço a Deus, por tantas graças concedidas durante toda minha vida, por me capacitar a cada desafio, e principalmente por me permitir conviver com tantas pessoas especiais.

Aos meus pais Eliete A. Dal Pozzo de Oliveira e Luiz A. de Oliveira por irem muito além de seus papéis. Agradeço pelo investimento na educação, pelo exemplo de família e moral, pelos valores transmitidos, pelas horas e amor dedicados, por acreditarem em meu potencial, e por compartilharem o mesmo sonho, abdicando de muitas coisas em prol do meu futuro.

Agradeço de forma muito especial ao meu orientador, Prof. Dr. Paulo Agenor Alves Bueno. Obrigada pela confiança, amizade, aprendizado, e por me dar asas para ir além do que poderia imaginar. A orientação tornou-se uma escola com seus conselhos, os quais irão sempre me acompanhar. Despertou em mim o interesse pelo novo e a persistência, e sempre será referência de um excelente pesquisador e professor.

Aos membros da Banca Prof. Dra. Raquel de Oliveira Bueno e Prof. Dr. Marcelo Galeazzi Caxambu, por aceitarem participar da mesma e pelas correções, sugestões e contribuições importantíssimas ao trabalho. Expresso aqui minha grande admiração pelos grandes profissionais que são.

A toda minha família, especialmente minha avó materna Eulalia Parazzi Dal Pozzo, por todos os cuidados e dedicação. Agradeço grandemente pelas orações e por todo o carinho, sempre me confortando com suas palavras de amor e fé.

Sou muito grata também a todos os amigos do laboratório C101, que me auxiliaram no que era preciso, e com a companhia tornaram o trabalho mais prazeroso. Cada um que passou pelo anexo contribuiu para meu crescimento e em especial Carol, Mariana e Rafael, pela amizade, empenho e interesse nas técnicas realizadas. Ivens e professora Elizabete, agradeço por me acompanharem na coleta das abelhas nos ninhos presentes na UTFPR. Sou grata também a Débora, pelos conselhos e correções textuais.

A fundação Araucária pela bolsa de iniciação científica concedida.

A coordenadora do curso de Engenharia Ambiental Prof<sup>a</sup>. Dr<sup>a</sup>. Cristiane Kreutz pelo apoio, atenção e disponibilidade.

A todos os professores da coordenação de Engenharia ambiental, obrigada pela transmissão de conhecimentos, dedicação, e por contribuir para uma educação de qualidade, levando aos alunos senso crítico e capacitação profissional.

A todos os amigos da graduação, muito obrigada pela partilha de conhecimentos e experiências. A convivência com pessoas tão diferentes enriqueceu esses cinco anos. Agradeço minhas amigas do *campus* de Francisco Beltrão Bruna, Mariana, e Marina, por todos momentos que passamos juntas, pela força, apoio e segurança que me passaram, sendo um ombro familiar enquanto estava longe de casa. Agradeço aos amigos Yara e Junior pela pronta disposição a ajudar e por sanar minhas dúvidas quanto às normas e estruturação do trabalho.

Enfim, agradeço a todos que contribuíram para a execução desse trabalho e que passaram pela minha vida, deixando um pouco de si!

"É muito melhor lançar-se em busca de conquistas grandiosas, mesmo expondo-se ao fracasso, do que alinhar-se com os pobres de espírito, que nem gozam muito nem sofrem muito, porque vivem numa penumbra cinzenta, onde não conhecem nem vitória, nem derrota". (Theodore Roosevelt)

#### **RESUMO**

OLIVEIRA, Thainá Dal Pozzo de. Ensaios com primers de ISSR e PCR para estudo da Variabilidade Genética de *Tetragonisca angustula* (Latreille, 1811) (Hymenoptera, Apidae, Meliponinae) na região de Campo Mourão – Paraná. 2015. (50f) Trabalho de Conclusão de Curso. Bacharelado em Engenharia Ambiental. Universidade Tecnológica Federal do Paraná. Campo Mourão, 2015.

As abelhas pertencentes à tribo Meliponini ocupam as regiões tropicais e subtropicais do planeta, abrangendo cerca de 60 gêneros. Seu importante papel é o serviço de polinização, sendo consideradas a peça chave na manutenção de ecossistemas. Tetragonisca angustula é um meliponíneo que distribui-se em praticamente toda a América Latina, adapta-se bem a diferentes substratos para nidificação, aceita manejo pelo homem e produz mel de sabor muito apreciado. Visto a importância desses organismos, os mesmos devem ser conservados, a fim de evitar a endogamia e possível extinção, permitindo com que mantenham assim o maior potencial evolutivo possível. Para tal, a genética torna-se uma aliada, a fim de determinar o grau de diferenciação genética entre eles. O presente estudo teve como objetivo a análise dessa variabilidade em Tetragonisca angustula por meio de marcadores moleculares ISSR. As abelhas foram coletadas nos municípios paranaenses de Iretama e Campo Mourão. Foi analisada uma operária por colônia, em 12 diferentes colônias. Após as coletas, as amostras foram posteriormente submetidas às etapas laboratoriais de Extração de DNA, PCR e eletroforese em gel de agarose. Após estes procedimentos, não foram evidenciadas bandas de DNA migradas no gel de agarose. Portanto, devido a este resultado, 11 diferentes primers ISSR foram testados a fim de encontrar sequências e temperaturas ideais de anelamento para a reação de amplificação do mesmo, e assim visualizar as bandas de DNA, para posteriormente analisar o grau de diferenciação genética desses indivíduos. Para tanto, nenhum dos primers testados responderam de forma esperada, ainda não sendo visualizados quaisquer fragmentos de material genético. Assim, pode-se inferir sobre a não funcionalidade dos primers ISSR utilizados neste trabalho para a espécie em questão e para as temperaturas adotadas para a reação de PCR. Nesse sentido, este trabalho foi adaptado para seleção e otimização das técnicas metodológicas adotadas para o estudo do grau de diferenciação genética dos indivíduos citados, mantendo o foco da importância do estudo genético em populações naturais como biondicadores de fragmentação florestal.

Palavras-chave: Extração de DNA; Marcador ISSR; Variabilidade Genética

#### **ABSTRACT**

OLIVEIRA, Thainá Dal Pozzo de. Trials with primers of ISSR and PCR to study the genetic Variability of Tetragonisca angustula (Latreille, 1811) (Hymenoptera, Apidae, Meliponinae) in the region Campo Mourão – Paraná. 2015. (50f) Trabalho de Conclusão de Curso. Bacharelado em Engenharia Ambiental. Universidade Tecnológica Federal do Paraná. Campo Mourão, 2015.

The bees belonging to *Meliponini* tribe live in tropical and sub-tropical areas in the planet, covering an average of 60 genders. Its importance role is pollination, regarding the key piece of ecosystem maintenance. Tetragonisca angustula is a Meliponini that spread in almost all Latin America, adjusts well to different substrates to nests, accepts been handled by man and produces pleasant sweet taste honey. Due to its importance, they must be conserved, in order to avoid inbreeding and a possible extinction, make it possible keep up with the biggest evolutionary potential. For such, genetic becomes allied with, in order to determine the differential degree of gene between them. This way, the present study aimed to analyze this variability in Tetragonisca angustula throughout molecular marker ISSR. The bees were collected in Iretama and Campo Mourão cities. Its was analyzed a worker bee by colony, in 12 different colonies. After collecting, the samples were put through laboratoty procedures of DNA extraction, PCR and agarose gel electrophoresis, next, there was no evidence DNA band migrate through agarose gel. Therefore, due to this result, 11 different primers ISSR were tested in order to find out ideal sequence and temperature of annealing to its reaction and amplification, and then see the DNA band, after that analyze differential degree of gene of them. To this end, no primers tested replied to what was expected, so it could not be seen any fragment of genetic material. This way, we can infer that ISSR primers functionality used in this work was not successful to the species and to temperatures related to PCR reaction. In this sense, this work was adapted to selection and optimization of methodology techniques adopted to the study of the differential degree of gene cited, keeping up the focus on importance of genetic study in natural population as bioindicators of forest fragmentation.

**Key-words**: DNA Extraction; ISSR Marker; Genetic Variability

#### SUMÁRIO

| 1 INTRODUÇÃO                                                                   | 9    |
|--------------------------------------------------------------------------------|------|
| 2 OBJETIVOS                                                                    |      |
| 2.1 OBJETIVO GERAL                                                             | 11   |
| 2.2 OBJETIVOS ESPECÍFICOS                                                      | 11   |
| 3 REVISÃO DE LITERATURA                                                        | 12   |
| 3.1 OS MELIPONÍNEOS                                                            | 12   |
| 3.2 Tetragonisca angustula (Latreille, 1811) (Hymenoptera, Apidae, Meliponinae | )13  |
| 3.3 FRAGMENTAÇÃO DE HABITATS X VARIABILIDADE GENÉTICA                          | ، de |
| Tetragonisca angustula (Latreille, 1811)                                       | 14   |
| 3.4 MARCADOR <i>INTER SIMPLE SEQUENCE REPEAT</i> (ISSR) PARA ANÁLISI           |      |
| VARIABILIDADE GENÉTICA                                                         |      |
| 4 MATERIAL E MÉTODOS                                                           |      |
| 4.1 DESCRIÇÃO DA ÁREA DE ESTUDO                                                |      |
| 4.2 COLETA DE <i>Tetragonisca angustula</i> (Latreille, 1811)                  |      |
| 4.3 TÉCNICAS LABORATORIAIS                                                     |      |
| 4.3.1 Extração de DNA Genômico                                                 |      |
| 4.3.2 Quantificação das amostras                                               |      |
| 4.3.3 Reação em Cadeia Polimerase (PCR)                                        |      |
| 4.3.4 Eletroforese em gel de agarose                                           |      |
| 5 RESULTADOS E DISCUSSÃO                                                       |      |
| 6 CONCLUSÃO                                                                    | 36   |
| REFERÊNCIAS                                                                    | 37   |
| ANEXO - PROTOCOLOS DE PCR ADAPTADOS DE NOGUEIRA (2009)                         |      |
| FORAM TESTADOS NO PRESENTE TRABALHO                                            | 46   |

#### 1 INTRODUÇÃO

Os meliponíneos, popularmente conhecidos como abelhas sem ferrão, assumem um papel importante nos ecossistemas por meio da polinização (MORGADO et al., 2002). O serviço ecossistêmico dos indivíduos desse grupo é fundamental para o bom desenvolvimento da agricultura, com abrangência global. Devido sua intolerância à perturbações, os meliponíneos podem atuar como indicadores da qualidade de habitats (BROWN e ALBRECHT, 2001). Há evidências de que esses organismos estejam em declínio, como consequência da degradação ambiental (BIESMEIJER et al., 2006).

Apesar do eficiente serviço ecossistêmico desse grupo, Nogueira-Neto (2002) aponta o comprometimento dessas populações por meio de atividades antrópicas, tornando-as mais vulneráveis à fatores externos. Dentre essas atividades, as alterações resultantes da fragmentação de áreas por meio do avanço da agricultura, contribuem para o isolamento de subpopulações, levando-as à endogamia devido à baixa variabilidade genética.

Dentre os meliponíneos, a espécie *Tetragonisca angustula* (Latreille, 1811), popularmente conhecida como Jataí, possui ampla distribuição geográfica, grande capacidade de transporte de pólen, aceita manejo pelo homem, e adapta-se às colmeias racionais (FEIDEN, 1994). Essas características notáveis justificam sua criação doméstica frequente.

Pouco se sabe sobre a variabilidade genética populacional da espécie em questão. Nesse sentido, os parâmetros genéticos são de extrema importância, possibilitando assim, traçar estratégias de conservação para as mesmas, apresentando-se essenciais para a manutenção dessas populações em períodos ecológicos e evolutivos. (COUCEIRO et al., 2011; MOUTOU et al., 2011; FINGER et al., 2007). Através dos marcadores moleculares *Inter Simple Sequence Repeat* (ISSR), torna-se possível o conhecimento da distribuição da variabilidade genética de uma espécie.

Esses marcadores, fenótipos moleculares de polimorfismos específicos na sequência do DNA, apresentam-se em abundância ao longo do genoma dos seres eucariontes, sendo intensamente utilizados em estudos genético populacionais.

Dentre estes estudos, destaca-se principalmente a caracterização de níveis e organização de variabilidade genética dentro e entre espécies afins, subpopulações e grupos de reprodução e progênies. Assim, atuam na amplificação de uma seqüência de DNA delimitada por duas regiões microssatélites invertidas (BENZAQUEM et al., 2009).

Nesse sentido, o estudo da variabilidade genética dessa espécie empregando os marcadores do tipo (ISSR), pode ser bastante informativo complementando o que já se conhece sobre as perturbações em seu habitat e a consequente redução da diversidade genética. Portanto, entre outros objetivos deste estudo, destaca-se a caracterização genético-populacional de abelhas Jataí da região de Iretama e Campo Mourão – Paraná, a seleção de primers ISSR que amplifiquem regiões entre blocos microssatélites entre os indivíduos, e o aperfeiçoamento das condições de amplificação dos mesmos.

#### **2 OBJETIVOS**

#### 2.1 OBJETIVO GERAL

Caracterizar geneticamente as populações de *Tetragonisca angustula* da região de Campo Mourão – Paraná.

#### 2.2 OBJETIVOS ESPECÍFICOS

- Extrair DNA genômico de amostras das populações de Tetragonisca angustula;
- Utilizar marcadores moleculares ISSR para interpretação dos padrões de bandas em gel de eletroforese;
- Testar a temperatura ideal de anelamento de primers marcadores ISSR, já utilizados para o gênero Melipona.

#### **3 REVISÃO DE LITERATURA**

#### 3.1 OS MELIPONÍNEOS

A tribo *Meliponini* compreende cerca de 60 gêneros distribuídos pelas regiões tropicais e subtropicais do mundo (MICHENER, 2007). Os meliponíneos são abelhas sociais, que apresentam um ferrão muito atrofiado, não podendo ser utilizado para defesa, o que deu origem ao seu nome popular: abelhas sem ferrão Esses organismos são responsáveis pela polinização de cerca de 40 a 90% das espécies vegetais, conforme o ecossistema (KERR, CARVALHO e NASCIMENTO, 1996). Assim, são considerados por muitos autores a peça chave na manutenção de diversos ecossistemas em que ocorre, sendo de grande importância o desenvolvimento de estratégias que visem a sua conservação.

Essas abelhas mantêm uma estreita relação co-evolutiva de alta especificidade com as plantas angiospermas, pois devido ao seu tamanho diminuto, muitas vezes são responsáveis únicas pela polinização de plantas que desenvolvem flores pequenas. Além do serviço de polinização, também são importantes do ponto de vista econômico pela produção de mel (MORGADO et al., 2002). Embora o produzam em menor quantidade, o produto se diferencia do mesmo ofertado pela *Apis mellifera* Linnaeus, 1758, apresentando doçura e aroma característicos, atraindo consumidores distintos, dispostos a pagar altos preços pelo produto no mercado (CARVALHO et al., 2005).

Os indivíduos de *Meliponini* apresentam grande fragilidade quando expostos à destruição de habitats (KERR, CARVALHO e NASCIMENTO,1996). Por essa baixa tolerância à perturbações, segundo Brown e Albrecht (2001), podem ser utilizados como bioindicadores de degradação de ambientes. A alta sensibilidade dessas abelhas deve-se a presença de um abdômen que foi desenvolvido em rainhas fecundadas, impedindo-as de voar a longas distâncias, assim, não conseguem fugir de áreas de alta perturbação. O uso excessivo de defensivos agrícolas, devido a seu poder letal, também pode contribuir para a extinção de espécies em muitos locais.

#### 3.2 *Tetragonisca angustula* (Latreille, 1811) (Hymenoptera, Apidae, Meliponinae)

Vulgarmente conhecida por jataí, a espécie *Tetragonisca angustula* possui nicho ecológico peculiar, tratando-se de uma espécie que sobrevive muito bem em locais onde há grande número de colônias de outras abelhas. Sua ampla distribuição geográfica faz com que seja encontrada praticamente em toda a América Latina (NOGUEIRA – NETO, 1997). Caracteriza-se por possuir um corpo pequeno e delgado, de 4 a 5 mm e uma corbícula extremamente pequena que não ocupa toda a largura da tíbia (MICHENER, 2007). Adaptam-se bem a diferentes substratos para nidificação, encontrando-se ninhos no solo, em construções humanas, e em cavidades pré-existentes em troncos de árvores vivas ou mortas (BATISTA, RAMALHO e SOARES, 2003).

Nakasugui, Takasusuki e Falco (2011), destacam além do seu importante papel ecossistêmico como agente polinizador, sua utilização como bioindicadores frente a presença destes produtos tóxicos. Esses organismos podem, então, determinar a qualidade do habitat em relação a presença de agrotóxicos no ambiente e o nível de toxicidade perigosa frente a estes.

A abelha jataí produz mel de sabor muito apreciado, chegando a ser oito vezes mais valorizado do que o mel de *Apis mellifera*, sendo amplamente utilizado na medicina popular (IMPERATRIZ-FONSECA et al.,1984; NOGUEIRA NETO, 1997; FREITAS e SOARES, 2004). Tanto o mel quanto a própolis de *T. angustula* possuem atividade antibacteriana (MIORIN et al., 2003; SGARIGLIA et al., 2010). Essas características peculiares justificam a atratividade dos produtores pelo cultivo doméstico dos indivíduos, seja para fins alimentícios ou para fins econômicos.

A grande importância e abrangência desses indivíduos justifica a realização de estudos referentes à genética dessas populações a fim de incentivar a sua conservação e entender sua dinâmica. Nesse sentido, estudos acerca desses indivíduos são encontrados principalmente próximos à região de estudo. Na Universidade Estadual de Maringá, na unidade de Pós Graduação em genética e melhoramento, trabalhos são realizados para avaliar a estrutura genética entre as populações dessas abelhas.

Baitala (2005a) estudou o polimorfismo molecular entre as populações dessa espécie nas regiões paranaenses de Maringá, Iguatemi e Cianorte, e em

Junqueirópolis – São Paulo. O autor encontrou um isolamento entre as populações do Noroeste do Paraná (Maringá e Cianorte) da população de Junqueirópolis (SP). Em outro estudo, Baitala (2005b), abordando a Tetragonisca angustula fibriegi (Schwarz, 1938), subespécie da *T. angustula*, analisou a variabilidade e estrutura genética dessas populações provenientes de dois meliponários, localizados em Maringá e Cianorte (PR). Por meio das análises pertinentes, obteve altos valores de polimorfismo e fluxo gênico entre as populações, sugerindo que, apesar da distância geográfica entre as mesmas, está ocorrendo hibridização entre as populações de jataí analisadas. Esses resultados são um indicativo que essas abelhas estão se mantendo no ambiente natural apesar da fragmentação das matas, melhores práticas de manejo desses indivíduos podem ser desenvolvidas para polinização e produção de mel. Ribeiro (2011) estudou a amplificação heteróloga e diversidade genética em T. angustula e T. fibriegi de populações pertencentes às localidades de Maringá – PR; Dracena, São Carlos e Santa Cruz do Rio Pardo – SP. A análise populacional apresentou a boa estruturação das populações e a observação de homozigotos em excesso.

#### 3.3 FRAGMENTAÇÃO DE HABITATS X VARIABILIDADE GENÉTICA de Tetragonisca angustula (Latreille, 1811)

O Brasil possui dezenas de espécies de abelhas nativas que apresentam importante papel na fecundação de inúmeras espécies vegetais originais de nossa flora. Porém, a destruição de matas naturais, o extrativismo, e o aumento das áreas agricultáveis contribuem para a redução da diversidade desses organismos (STUCHI, 2008).

A fragmentação de habitat é a modificação de regiões de vegetação natural contínua em porções isoladas, com dimensões, formas e graus de isolamento diversos, sendo consequências da atual dinâmica de uso da terra pelo homem. Os efeitos de borda são os mais importantes fatores que levam às mudanças em comunidades fragmentadas, causando a redução da população de polinizadores, como as abelhas (FERREIRA e GALBIATI, 2008).

Além de eliminar várias espécies vegetais do planeta, essa fragmentação afeta particularmente as populações de abelhas eussociais, como os Meliponinae (Apidae) que utilizam ocos de árvores para nidificarem (ADAIR, 1996). Esse comportamento eussocial causa a diminuição do tamanho da população, pois apesar de existir muitos indivíduos pertencentes ao mesmo ninho, apenas a rainha e o macho são reprodutivos, o que juntamente com sua haplodiploidia, diferença de número de cromossomos entre machos e fêmeas, gerando menos cópias genéticas que populações diplóides, contribuem para a diminuição da variabilidade genética (PAMILO, PEKKA e VARVIO- AHO,1978). Outro fator que também contribui para essa redução em pequenas populações, como a desses organismos, é a deriva genética (alterações aleatórias nas frequências genéticas entre gerações), que causa a perda de alelos raros em uma população (NASCIMENTO, 2008).

Portanto, devido às barreiras impostas, esse isolamento das populações também ocasiona a redução do fluxo gênico, e consequentemente perda da variabilidade genética, já que impedem a troca gênica por não haver possibilidade de migração de machos e rainhas virgens para o acasalamento (ADAIR, 1996). Assim, cada vez mais haverá o acasalamento entre indivíduos aparentados, gerando um incremento na ocorrência de homozigotos na população (GUEDES, 2004). Como resultado da endogamia, pode haver um desaparecimento eventual, causado pela escassez de recursos, competição, ou por ação de organismos invasores (SILVEIRA, MELO e ALMEIDA, 2002).

A baixa variabilidade genética pode representar perigo para as espécies no geral, pois se o ambiente em que vive naturalmente sofrer alguma mudança importante, a população poderá rapidamente se extinguir por não ter variabilidade suficiente para suportá-la (CÂMARA, 2009). Portanto, essa diversidade de genes é crucial para manter a capacidade natural das populações em responder às mudanças climáticas e a todos os tipos de estresses bióticos e abióticos impostos pelo meio (MACHADO, 2008).

A variabilidade genética, em termos de biodiversidade, permeia os representantes de cada espécie. Antes da extinção da espécie, grande parte dessa biodiversidade já se extinguiu em termos de diferenciação genética. Acredita-se que cada espécie possui um número particular viável de indivíduos, que garanta a manutenção da espécie, para que sua biodiversidade de genes não seja erodida pela endogamia e deriva genética. Dessa forma, o diagnóstico da redução dessa

variabilidade é o primeiro sintoma de extinção de uma espécie qualquer (SANTOS, GUIMARAES e REDONDO, 2002).

A deriva genética e o endocruzamento são inversamente proporcionais ao tamanho populacional. Então, as espécies que estejam ameaçadas em extinção, pertencem a um pequeno tamanho populacional, e costumam ter baixos níveis de heterozigosidade. Assim, este nível, além de um alto tamanho populacional, devem ser mantidos (MARQUES, 2003).

No entanto, nem todas as espécies que possuam baixa variabilidade genética necessariamente irão se extinguir. Isso se aplica ao caso da última espécie restante de cavalo selvagem, o cavalo de Przewalski, *Equus przewalskii* Poliakov, 1881, que apesar de sua perda de habitat e redução de seus números populacionais, devido à caça e utilização de terras para agricultura, ainda não entrou em extinção, apesar de sua diversidade genética reduzida (WILLIANS, 2010). Isso, não exclui a necessidade de estratégias para a sua conservação, que já estão sendo realizadas, através de produção seletiva da espécie, programas de melhoramento genético, formação de grupos sociais estáveis, e criação de padrões de comportamento que auxiliem a sobrevivência desses animais na natureza, e posterior realocação dos mesmos.

Outro caso de animal onde sua baixa variabilidade genética durante anos não os levou à extinção, é a dos *Acinonyx jubatus* (Schreber, 1776), conhecidos por guepardos, na Namíbia, África Austral, resultado de períodos de declínio populacional, intercalados por períodos estáveis, sem sinal de expansão desde 60.000 anos. O estudo de Fabiano (2013), relaciona a baixa variabilidade genética desta população com um declínio gradual, causado por flutuações e reduções de habitat devidas a oscilações climáticas no Pleistoceno e Holoceno, além do aumento da aridez em tempos mais recentes no país. Algumas hipóteses alternativas incluem uma estrutura de metapopulação e a persistência desse tamanho efetivo baixo, que se deve à ocorrência de poliglinia, ocasionando uma alta variância reprodutiva.

No caso de *T. angustula*, torna-se importante manter um número mínimo de colônias no mesmo local, a fim de garantir a manutenção da variabilidade genética, pois apesar da mesma atrair grande quantidade de produtores interessados em seu mel, sua importância vai muito além, pois está diretamente ligada ao importante mecanismo utilizado pela natureza para dar continuidade à vida no planeta, seja pela polinização de vegetais ou pela cópula, aumentando número de indivíduos e a diversidade de genes (ADAIR, 1996).

Vale ressaltar também, que nem todas as plantas são afetadas com a redução da amostra populacional desses polinizadores, pois algumas espécies vegetais, em áreas fragmentadas, desenvolveram novos mecanismos, necessários à sua sobrevivência, como o mecanismo de apomixia, para DALL'AGNOL e SCHIFINO-WITTMANN (2005), a formação de sementes sem fecundação, que ocorre em 15% das famílias das angiospermas (Magnolyophytas). Para Pessoa, Moraes e Silva (2013), a espécie Similax fluminensis Steud, dióica de fragmentos florestais, encontrada no centro oeste do Brasil, realiza apomixia facultativa, estratégia reprodutiva vantajosa, garantindo sua reprodução mesmo na ausência de polinizadores. Rodrigues (2010) destaca o aumento desse evento, juntamente com a poliembrionia, ocorrência de mais de um embrião por semente, no bioma Cerrado, onde ainda predominam sistemas sexuais de reprodução vegetal. Esses mecanismos seriam alternativas de escape das espécies, frente à fragmentação deste habitat, resultado da diminuição da fauna de polinizadores e o fluxo de pólen, ou ainda a redução de populações naturais que inviabilizam a manutenção de espécies por processos sexuais (SCHALL e LEVERICH, 1996).

### 3.4 MARCADOR *INTER SIMPLE SEQUENCE REPEAT* (ISSR) PARA ANÁLISE DA VARIABILIDADE GENÉTICA

Os marcadores moleculares são marcas presentes ao longo do genoma mitocondrial e nuclear, que evidenciam as variações genéticas existentes entre as populações, podendo indicar o grau de distanciamento genético das mesmas (HILSDORF, 2011). Por meio dessas técnicas, torna-se possível, além de detectar a variabilidade de organismos em diferentes níveis de táxons e sua funcionalidade, executar o monitoramento de atividades específicas desses organismos por meio de seu respectivo acompanhamento. (STRALIOTTO, 2006).

Os marcadores ISSR foram desenvolvidos a partir da necessidade de explorar repetições de microssatélites sem a necessidade do conhecimento prévio da sequência – alvo do DNA (ZIETJIEWICZ, RAFALSKI e LABUDA, 1994). Destacam-se dos demais e são frequentemente utilizados em diversas pesquisas, devido ao seu custo relativamente baixo e alto nível de reprodutibilidade e

confiabilidade, combinando a facilidade do *Random Amplified Polymorphic DNA* (RAPD) com a robustez dos marcadores *Amplified Fragment Length Polymorphism* (AFLP) e *Simple Sequence Repeats (*SSR) (TIKUNOV, KRUSTALEVA e KARLOV, 2003). Dessa maneira, o grande número de fragmentos amplificados por uma PCR usando os marcadores em questão pode auxiliar no processo de exploração da estrutura genética de uma espécie.

Para Pessoa da Silva et al.(2011), a *Inter Simple Sequence Repeat* tem se mostrado uma poderosa ferramenta para análise da diversidade genética, utilizando uma sequência simples repetida como oligonucleotídeo iniciador, a fim de amplificar um fragmento de DNA, delimitado por dois microssatélites invertidos, o que gera um alto nível de polimorfismo.

Baseada no princípio da Reação em Cadeia Polimerase (PCR), a aplicação dessas sequências é recomendada para análises de espécies relacionadas evolutivamente, reproduzindo resultados confiáveis devido a sua abundância e dispersão no genoma, gerando locos polimórficos em quantidades satisfatórias. Além disso, apresentam rapidez em seus resultados com custos razoavelmente menores em comparação com outros marcadores. Em contrapartida, são bastante criticados por causa da impossibilidade de distinção entre indivíduos homozigotos e heterozigotos (NOGUEIRA, 2009; RODRIGUES, 2010; DONG et al., 2008).

A técnica da PCR é baseada na capacidade da enzima polimerase replicar a sequência do DNA em certas condições laboratoriais, partindo de um par de pequenos fragmentos iniciadores da fita molde, os chamados primers, que flanqueiam a sequência de interesse a ser amplificada por meio de variações alternadas e cíclicas de temperatura, permitindo assim a desnaturação, o anelamento e extensão de determinadas sequências do material genético, ciclo após ciclo. Assim, será possível a visualização do DNA no gel na forma de banda após sua separação pela etapa de eletroforese (FERREIRA E GRATTAPAGLIA, 1998).

Portanto, os marcadores moleculares proporcionam uma visão mais ampla das características genéticas dos indivíduos, sendo uma importante ferramenta para o estudo da variabilidade genética, essencial para o controle e preservação das populações de abelhas indígenas (STUCHI et al., 2008). Atualmente, os ISSR têm sido utilizados para análise de insetos em estudos genéticos em nível intra e interespecífico, porém, em abelhas, os estudos utilizando os mesmos são menos comuns. Em sua maioria, se restringem a abelhas do gênero *Apis*, sendo *Apis* 

mellifera uma espécie modelo (NASCIMENTO 2008; BARROSO, 2012). Não foram encontrados trabalhos utilizando o marcador ISSR para análise da diversidade genética da espécie *Tetragonisca angustula*. Porém, encontram-se estudos na literatura com a aplicação de outros marcadores, como o de Gurgel (2009), que estudou a variabilidade genética desta espécie por meio da aplicabilidade da técnica dos microssatélites, analisando a resposta dessas populações à heterogeneidade de habitats na costa Atlântica.

Em relação ao marcador em questão, entre estudos encontrados, o mesmo foi utilizado por Nogueira (2009), que baseando-se também pelo protocolo de Nascimento (2008), estudou a variabilidade genética de outro meliponíneo, *Melipona capixaba* Moure e Camargo, 1994, visando subsídios para a conservação da espécie. O autor utilizou 10 primers ISSR, observando grande percentual de locos polimórficos, e por meio de suas análises, obteve baixos valores de distância genética entre as populações, que revelaram uma alta similaridade genética entre as mesmas, sugerindo que compartilham de um mesmo "pool" gênico.

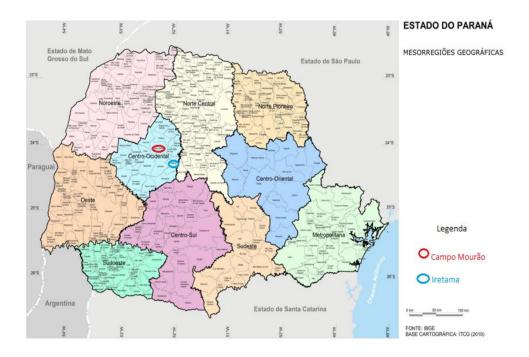
Shouhani et al. (2014) estudou a aplicação desses marcadores para analisar a diversidade genética da *Apis melifera* em algumas regiões do Irã. Todos os primers utilizados mostraram polimorfismo nos locos amplificados, indicando assim uma alta variabilidade genética na maioria das áreas estudadas, porém indica baixos níveis de similaridade entre as raças em cinco províncias diferentes, o que pode ser justificado pelas sucessivas migrações dos indivíduos. O respectivo estudo mostrou que a técnica ISSR é um método adequado para a detecção do polimorfismo na referida espécie.

#### **4 MATERIAL E MÉTODOS**

#### 4.1 DESCRIÇÃO DA ÁREA DE ESTUDO

Para a execução deste estudo foram escolhidos os municípios de Iretama e Campo Mourão (Figura 1a), onde as abelhas foram coletadas.

Segundo a Classificação Climática de Köppen-Geiger, o clima da região de Campo Mourão é sub-tropical úmido mesotérmico com verões quentes e geadas pouco frequentes, com tendência de concentração das chuvas nos meses de verão, sem estação seca definida e a média das temperaturas dos meses mais quentes é superior a 22° C e a dos meses mais frios é inferior a 18° C. Os índices pluviométricos apresentam-se em média entre 1.600 mm e 1.800 mm por ano (CAVIGLIONE et al., 2000).


Em relação a fitogeografia, Iretama encontra-se sob predominante domínio da Floresta Ombrófila Mista Montana, com pequeno fragmento de Floresta Estacional Semidecidual Montana. Campo Mourão também situa-se em uma área de contato entre a Floresta Estacional Semidecidual Montana e a Floresta Ombrófila Mista Montana, mas apresenta algumas manchas de Campos e Cerrado (RODERJAN et al., 2002).

Para Liberali (2013), o relevo que constitui a região de estudo é bastante movimentado em algumas áreas, principalmente na região de Iretama, inviabilizando em grande parte as atividades agrícolas mecanizadas. Existem outras áreas mais planas, ocorrentes em Campo Mourão, que permitem, portanto esse tipo de cultura. Essa organização da paisagem influencia diretamente o tipo de uso do solo, que na mesorregião do estado do Paraná, onde estão inseridos os municípios em questão, encontra-se a agricultura Intensiva, uso misto e cobertura florestal (Figura 1b). Em Iretama destaca-se a atividade agrícola local, constituída por culturas de café, mandioca, plantio de eucalipto, maracujá, dentre outros cultivos. Dessa forma, principalmente na região de Iretama, a estrutura fundiária constitui-se predominantemente pela agricultura familiar, representada em diversos fragmentos. Em Campo Mourão não é muito diferente, destaca-se também a produção agrícola,

principalmente de oleaginosas, juntamente com outras atividades que em menor participação contribuem para o Produto Interno Bruto, como a silvicultura, extração vegetal e pecuária (IBGE, 2010).

A produção de mel também está presente na região de estudo. Em meliponários, abelhas nativas são cultivadas, como a espécie *Tetragonisca angustula*. Assim, torna-se uma atividade de incremento à economia municipal, e incentivo à conservação desses organismos, resultando em uma possível potencialização da produção de mel, e consequentemente produção agrícola, devido à polinização.

Torna-se importante destacar que em Campo Mourão encontra-se a sede de uma das maiores cooperativas agrícolas da América Latina, a COAMO Agroindustrial Cooperativa, incentivando o desenvolvimento de melhores padrões de produção, oferecendo suporte aos cooperados, desde o planejamento do plantio até a comercialização da safra. Assim, como consequência, novas áreas foram destinadas ao uso agrícola para expansão da atividade na região (ONOFRE, 2005). Portanto, essa expansão pode refletir também de forma negativa nas populações de abelhas devido ao seu isolamento e formação de grandes mosaicos agrícolas, referentes aos fragmentos formados tanto em áreas com a agricultura mais desenvolvida, quanto em culturas não mecanizáveis.



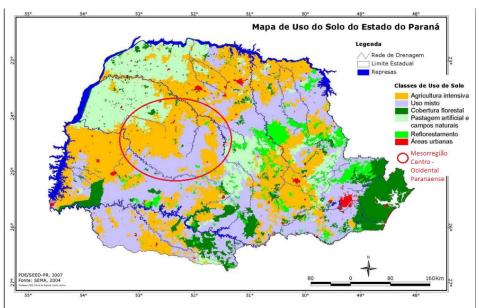



Figura 1a: Localização dos municípios de Campo Mourão, e Iretama no estado do Paraná.

Fonte: Adaptado de IPARDES (2015).

Figura 1b: Mapa de uso do solo da Mesorregião Centro-Ocidental Paranaense, na qual estão incluídos as regiões de Iretama e Campo Mourão.

Fonte: Adaptado de Governo do Estado do Paraná (2015).

#### 4.2 COLETA DE *Tetragonisca angustula* (Latreille, 1811)

Foram coletadas no total 12 operárias adultas de *Tetragonisca angustula* na região de Iretama, e em Campo Mourão, municípios paranaenses, no mês de Agosto de 2015, de forma que uma operária fosse coletada por ninho, em 12 diferentes ninhos, de forma aleatória (Tabela 1). Ao passo que as colônias foram encontradas, os indivíduos foram coletados. As operárias foram armazenadas em frascos contendo álcool 70%, que posteriormente foram acondicionados em freezer.

Tabela 1: Indivíduo, local de coleta, e procedência das 12 operárias de *Tetragonisca angustula* amostradas em Iretama e Campo Mourão – Paraná.

| Indivíduo | Local de Coleta   | Procedência     |
|-----------|-------------------|-----------------|
| 1         | Porteira          | Iretama         |
| 2         | Casa 1            | Iretama         |
| 3         | Igreja            | Iretama         |
| 4         | Casa 2            | Iretama         |
| 5         | Frente da casa 3  | Iretama         |
| 6         | Trás da casa 3    | Iretama         |
| 7         | Galinheiro        | Iretama         |
| 8         | Paiol             | Iretama         |
| 9         | Figueira          | Iretama         |
| 10        | Porteira Donizete | Iretama         |
| 11        | Ninho 1 UTFPR     | Campo<br>Mourão |
| 12        | Ninho 2 UTFPR     | Campo<br>Mourão |

#### 4.3 TÉCNICAS LABORATORIAIS

O material biológico coletado foi processado no Laboratório de Biologia Molecular da Universidade Tecnológica Federal do Paraná, Campus Campo Mourão. Os procedimentos seguiram três etapas laboratoriais: Extração de DNA genômico; PCR, e Eletroforese. Por meio desses processos, objetiva-se o acesso ao DNA da espécie em questão e sua amplificação para possíveis análises.

#### 4.3.1 Extração de DNA Genômico

A etapa de Extração consiste na separação do material genético a partir de restos celulares e de proteínas, principalmente as DNases, degradadoras de moléculas de DNA, tanto em células bacterianas como eucarióticas. Para tanto, diferentes reagentes e substâncias são combinados e utilizados para esse procedimento, variando de acordo com o tipo celular (LIMA, 2008).

Nesse sentido, para extração do DNA genômico dessas operárias pertencentes à diferentes colônias, utilizou-se como base o protocolo de Fernandes-Salomão et al. (2005), com adaptações, a fim de otimizar o processo e obter concentrações viáveis de DNA na quantificação.

Para o acesso ao material genético, cabeça e mesossoma dos indivíduos foram macerados em recipiente de porcelana, e posteriormente foi adicionado 500 µl de Tampão de Extração, composto por diferentes reagentes (Tabela 2). O material biológico juntamente com o Tampão foi acondicionado em tubo tipo eppendorf ® de 1,5 ml e foi incubado em banho seco com agitação (Loccus biotecnologia) durante 20 min, á temperatura de 65 °C, a 600 rpm. O DNA foi desproteinado utilizando uma mistura de clorofórmio e álcool isoamílico na proporção de 24:1. Posteriormente ao processo de desproteinização, o material retornou ao banho seco com agitação para agitação somente, a 200 rpm, durante 15 minutos, a fim de liberar os gases provenientes da reação, evitando que os tubos estourassem na centrífuga. Após este procedimento, os tubos foram para a centrífuga (Daiki), a 12000 rpm durante 10 min. Ao retirar os tubos da centrífuga, o sobrenadante das amostras foi retirado e acondicionado em outro tubo para a realização das próximas etapas. O próximo passo, o de precipitação do DNA, consistiu na adição de 700 µl de Isopropanol, e RNAse, utilizando 1 µl da solução a 20 mg/ml para 100 µl da mistura, onde as amostras foram incubadas a 20 °C negativos em freezer, durante no mínimo 24 horas. Após o tempo determinado, o material foi novamente centrifugado a 12.000 rpm durante 10 min. O precipitado formado foi lavado com etanol 70%. Por fim, adicionou-se 140 µl de água destilada no DNA suspenso, e os mesmos foram acondicionados novamente em freezer até a realização das próximas etapas.

| Tabela 2: Reagentes que compõem o tampão utilizado para extração do DNA de Tetragonisca |
|-----------------------------------------------------------------------------------------|
| angustula.                                                                              |

| Reagente     | Concentração | Volume |  |
|--------------|--------------|--------|--|
| CTAB         | 5%           | 4ml    |  |
| EDTA         | 20Mm         | 0,8ml  |  |
| NaCl         | 5M           | 14ml   |  |
| Proteinase K | 100 ug/ml    | 400 µl |  |
| Tris – HCL   | 1M           | 5ml    |  |

#### 4.3.2 Quantificação das amostras

Após a etapa de extração, foi realizada a quantificação do DNA. As amostras foram ressuspendidas, e dois µl de volume foi colocado no aparelho quantificador de DNA L-Quant (Loccus Biotecnologia) (Figura 2), que através de absorbância de luz que as mesmas apresentavam, mediu a quantidade de material genético presente em cada amostra, encontrada em ng/µl.

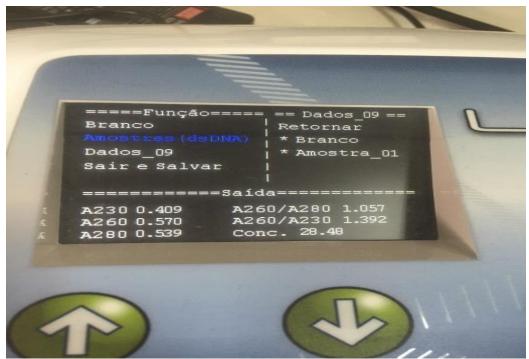



Figura 2: Quantificador L-Quant, equipamento responsável pela leitura da concentração das amostras de DNA extraídas.

#### 4.3.3 Reação em Cadeia Polimerase (PCR)

A Reação em Cadeia Polimerase consiste na amplificação de determinadas regiões do DNA do organismo, proporcionando amostras de qualidade. A técnica utilizada para tal baseou-se na metodologia de Nascimento (2008), com algumas modificações referentes à concentrações e temperatura de incubação das amostras. O material obtido na extração foi adicionado a um mix de reagentes e posteriormente incubado no equipamento termociclador A300 (LongGene) (Figura 3), programado para ciclos, tempo e temperaturas distintas, capaz de realizar gradiente de temperaturas (Figura 4), a fim de otimizar essa condição de anelamento dos primers correspondentes ao processo. O volume de cada reagente contido no mix foi sendo adaptado conforme as reações eram realizadas, para sua otimização, sempre completando o volume final de 25 μl.

Primeiramente, para desnaturação do material, as amostras foram incubadas no equipamento a temperatura de 94 °C durante 1,5 min, seguida de mais 45 segundos a mesma temperatura. Na fase de anelamento, onde os primers se ligam à região alvo da amplificação, as amostras foram submetidas a temperaturas específicas para os respectivos primers testados. Por fim, na fase de extensão, para o posicionamento da enzima taq polimerase e início da nova fita de DNA, as amostras foram incubadas à temperatura de 72 °C durante 6,5 minutos. Após cada ciclo, o processo foi repetido 40 vezes para obtenção de quantidade necessária de material genético.

Cada reação constituiu de um volume total de 25 µl, contendo: DNA, Primer (respectiva sequência do marcador molecular, responsável por delimitar a região de interesse da amplificação), Taq polimerase, Buffer 10x, Dntp, MgCl, e H2O ultrapura. As reações foram acompanhadas por controle negativo contendo todos os componentes, exceto DNA genômico.

Diversas reações de PCR foram testadas. Algumas das receitas adaptadas com as concentrações, volume dos reagentes e as temperaturas de incubação encontram-se nos anexos.



Figura 3: Equipamento Termociclador responsável pela incubação das amostras durante a fase de PCR.

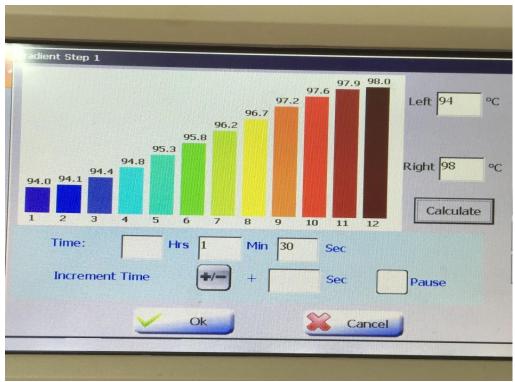



Figura 4: Exemplo de Incubação das amostras no termociclador em gradiente de temperatura.

#### 4.3.4 Eletroforese em gel de agarose

Os produtos da amplificação foram separados por eletroforese em gel de agarose. Nessa etapa, os equipamentos utilizados foram fonte e cuba de eletroforese, que consistem em corrente elétrica aplicada à uma cuba horizontal. Nesta encontrava-se gel de agarose 1,5% (p/v) mergulhado em tampão TBE 1x. As amostras de DNA foram inseridas em pequenos poços do gel (Figura 5), dispostos na cuba. Por meio da voltagem do equipamento, os fragmentos do material genético se separam por tamanho reprodutível e forma, resultado da migração das moléculas.

Também, um marcador de peso molecular de DNA (DNA Ladder da Kasvi 100pb) foi aplicado no gel para determinar o tamanho dos fragmentos gerados, e facilitar a identificação das bandas.

Posteriormente, esse gel foi analisado em um sistema de fotodocumentação L-Pix ex (Loccus Biotecnologia), versão 1.0.1, fotodocumentador provido de transiluminador ultravioleta, capaz de capturar as imagens obtidas para análise de dados.



Figura 5: Amostras de DNA inseridas no gel de agarose presente na cuba de eletroforese.

#### **5 RESULTADOS E DISCUSSÃO**

Em relação à etapa de extração de DNA, dos 12 indivíduos que foram extraídos o material genético, apresentaram as maiores concentrações os indivíduos 4, 5 e 8 (Tabela 3). Já os indivíduos 6, 7 e 10, apresentaram as menores concentrações, abaixo de 5 ng/µl.

Tabela 3: Concentração de DNA obtida por Indivíduo através do equipamento quantificador de DNA.

|           |              | []DNA   |
|-----------|--------------|---------|
| Indivíduo | Cidade       | (ng/µl) |
| 1         | Iretama      | 17.75   |
| 2         | Iretama      | 9.33    |
| 3         | Iretama      | 10.66   |
| 4         | Iretama      | 25.63   |
| 5         | Iretama      | 37.95   |
| 6         | Iretama      | 4.86    |
| 7         | Iretama      | 3.47    |
| 8         | Iretama      | 81.86   |
| 9         | Iretama      | 25.32   |
| 10        | Iretama      | 3.35    |
| 11        | Campo Mourão | 5.26    |
| 12        | Campo Mourão | 13.08   |

Para a realização da extração, todos os indivíduos foram armazenados seguindo a mesma metodologia. Essa diferença entre concentrações deve-se às características de cada indivíduo. O estudo de Machado (2013), referente ao desenho e validação de marcadores SSR para a mamoneira, apresenta em seus resultados que apesar de pertencerem à mesma espécie, e o DNA ser extraído da mesma forma, e com mesma integridade, as particularidades de cada organismo resultam em divergências de concentrações.

Concentrações de DNA obtidas em quantidades inadequadas podem implicar em falhas nas etapas subsequentes. Também, a baixa concentração do mesmo, poderá resultar em amplificação errada ou não amplificação de segmentos com perfis de

eletroforese não reproduzíveis (FERREIRA e GRATTAPAGLIA, 1998). A concentração mínima de DNA para a execução da PCR é de 5 ng/µl de DNA, porém, quantidades bem menores também podem ser utilizadas (VIEIRA, 2006).

Dessa forma, as concentrações de DNA obtidas sugerem que o protocolo de extração adaptado para tal procedimento foi capaz de obter resultados satisfatórios, capazes de serem utilizados para a reação de amplificação. Dessa maneira, podemos inferir sobre a sua funcionalidade, garantindo quantidades adequadas de DNA para as técnicas posteriores a serem realizadas. Porém, a qualidade das mesmas ainda será provada pelas etapas em seguida, já citadas anteriormente.

Em geral, trabalhos envolvendo variabilidade genética dessa espécie em questão não citam as concentrações de DNA encontradas para que haja uma comparação direta. Os referidos trabalhos direcionam os estudos de diversidade genética dessas espécies, abordando diretamente o grau dessa diferenciação e heterozigosidade dos indivíduos. Em abelhas da espécie *Apis mellifera*, Philomeno et al. (2004) avaliou e comparou diferentes metodologias de extração sobre o material genético desses organismos, obtendo para dois diferentes protocolos, as concentrações em média de 31,6 ng/µl e 67,2 ng/µl.

A real comparação da variabilidade genética só poderá ser realizada após a aplicação das amostras amplificadas e consequente obtenção dos géis com padrões de bandas do marcador, finalmente indicando similaridades e reflexos de ações antrópicas, como fragmentação de habitats, endogamia por criação de abelhas, entre outros. Assim, destaca-se a importância de uma amplificação com quantidades adequadas de DNA para tal.

Em relação à PCR, primeiramente, foi utilizado o primer do tipo ISSR 13 (primer de larga utilização), baseando-se nas concentrações de reagentes do protocolo utilizado por Nascimento (2008). Porém, não houve anelamento para a reação de amplificação das amostras para nenhum dos 12 organismos, o que não permitiu a visualização de bandas de DNA desses indivíduos, tornando assim necessário alguns ajustes metodológicos. Então, para este primer, foram alteradas as concentrações e volumes dos reagentes inclusos no Mix. Ainda, foi realizado um teste de gradiente de temperatura testando a resposta de apenas 1 indivíduo, já que cada qual responde de forma singular às condições, para que fosse encontrada a melhor temperatura da fase de anelamento da sequência de primer escolhida. No entanto, as bandas não foram visualizadas em quaisquer testes com as alterações,

o que justifica a aplicação de outros primers como novos testes, para encontrar dentre os primers do estoque laboratorial alguma sequência que apresente anelamento com o material genético da *T. angustula*.

Assim, foram testados neste trabalho 11 diferentes primers, exceto ISSR 13 (Tabela 4), os mesmos utilizados por Nogueira (2009), justamente por já apresentar resultados para o gênero *Melipona*, ou seja, diferentes sequências foram aplicadas às amostras. A finalidade desses testes, como a do primeiro, foi encontrar primers que apresentem anelamento com a sequência do DNA do indivíduo, além de encontrar a temperatura de anelamento ideal para o respectivo marcador, visando qual condição apresenta melhor visualização das banda de DNA na imagem analisada. Cada sequência de marcador exige temperaturas específicas, então, para todos os marcadores utilizou-se um indivíduo para a a aplicação das amostras, e posterior corrida do gel a analisar a melhor temperatura de amplificação.

Tabela 4: Primers ISSR utilizados para testar a amplificação de DNA dos indivíduos de *Tetragonisca angustula*, suas respectivas sequências de nucleotídeos, e o gradiente de temperatura de anelamento por primer a qual as amostras foram submetidas

| Primer/Código | Sequência de Nucleotídeos | Temperatura de<br>Anelamento |
|---------------|---------------------------|------------------------------|
| 13            | ACACACACACACACCC          | 48° - 55°                    |
| 866           | стестестестесте           | 42° - 52°                    |
| Terry         | GTGGTGGTGRC               | 45° - 52°                    |
| 827           | ACACACACACACACG           | 45°- 55°                     |
| 890           | VHVGTGTGTGTGTGT           | 42° - 52°                    |
| С             | GTGGTGGTGGTGRG            | 42° - 52°                    |
| 841           | GAGAGAGAGAGAYC            | 42° - 52°                    |
| 807           | AGAGAGAGAGAGAGT           | 42° - 52°                    |
| 808           | AGAGAGAGAGAGAGC           | 42° - 52°                    |
| 815           | CRCTCTCTCTCTCTG           | 42° - 52°                    |
|               |                           |                              |

Não foram visualizadas bandas de DNA em nenhum dos testes realizados para nenhum dos primers, sendo visualizado apenas na banda 1, os fragmentos do Ladder aplicado (Figura 6). Assim, pode-se constatar que para a espécie utilizada, os primers aplicados não são adequados para a reprodução de bandas.

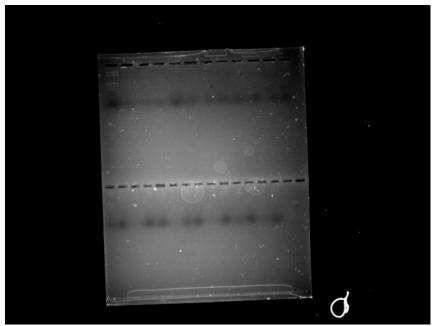



Figura 6: Ausência de fragmentos de DNA produzidos a partir dos primers ISSR selecionados.

Parâmetros para a realização dos testes utilizando a metodologia apresentada foram difíceis de serem traçados, visto que não foram encontrados trabalhos utilizando esses tipos de marcadores para a espécie estudada. Em contrapartida, trabalhos que estudem a variabilidade genética da *T. angustula* envolvendo a aplicação de outros marcadores como o RAPD, Isoenizmas, e microssatélites apresentaram resultados satisfatórios e bandas nitidamente visualizadas em gel de agarose.

Alves (2006) estudou os polimorfismos desses indivíduos por meio dos marcadores RAPD. As reações de amplificação foram realizadas utilizando o volume total de 20 ul, utilizando 2ul de Tampão Tris – KCL 1x, 2,5 mM de MgCl2, 0,3 uM de primer, 0,1 mM de Dntp, 1 unidade de taq polimerase e 20 ng de DNA molde. Iniciando as reações com aquecimento da tampa do termociclador a 105 °C, e programado para 37 ciclos, sendo os três primeiros constituidos a cada ciclo de um minuto a 94 °C, um minuto a 35 °C, e dois minutos a 72 °C. Após a desnaturação inicial, cada ciclo restante constituiu em 10 segundos restantes a 94 °C, 20 segundos a 36°C e dois minutos a 72 °C, e uma extensão final a 72 °C por cinco minutos. Nesse estudo, foram testados 74 primers dos quais foram selecionados 13 deles para a análise. Todos estes reproduziram diferentes padrões de fragmentos RAPD. Baitala (2005a), também com o uso dos marcadores RAPD, avaliou a

estrutura genética em cinco populações (14 colônias) do meliponíneo em questão, utilizando 12 primers que reproduziram 171 fragmentos, dos quais 150 foram polimórficos, destacando a alta variabilidade genética entre os indivíduos

Ruiz (2006) também estudou a genética de populações de *T. angustula*, na região Noroeste do Paraná, por meio de Isoenzimas. Santiago (2013) adotou como marcadores moleculares os microssatélites para a análise da variabilidade genética desses indivíduos em meliponários, contando com dois pares de primers para a amplificação do DNA dos indivíduos, obtendo nove lócus amplificados polimórficos.

Com o uso do ISSR, foram encontrados estudos acerca de espécies vegetais, quanto animais. O estudo de Nogueira (2009), referente à varibilidade genética de *Melipona capixaba* no estado de Minas Gerais, foi um dos trabalhos encontrados em que mais se aproximou taxonomicamente da espécie utilizada. O autor baseou-se também no protocolo de Nascimento (2008), e selecionou os primers 807, 808, 815, 827, 836, 841, 866, 890, C e Terry (Tabela 5) (todos em comum com com este estudo). Através das análises de dados pôde visualizar 118 bandas, possibilitando que chegasse às conclusões de que as amostras de *M. capixaba* analisadas apresentaram alta similaridade genética e estruturação característica de uma espécie endêmica, e que não há aparentemente correação entre a varibilidade genética e as distâncias geográficas das amostras.

O estudo de Nascimento (2008), base para as concentrações de reagentes e temperaturas de anelamento dos primers das reações de amplificação, adaptadas neste trabalho, analisou o grau de diferenciação genética da *Melipona quadrifasciata* Lepeletier, 1836, também no estado de Minas Gerais. Testou 93 primers ISSR para amplificação do DNA, e com base no padrão de amplificação obtido, selecionou 20 primers. Destes 20, 11 foram selecionados para as análises, considerando o número e a resolução das bandas obtidas (Tabela 6). As reações de amplificação foram constituídas de volume total de 25 ul contendo 10 ng de DNA, Dntp's a 100mM, 0,5 unidade de taq polimerase, 50 pmoles de primer, 2,5 ml de tampão 10X e H2O ultrapura. O programa de amplificação constituiu de desnaturação inicial de 3 minutos a 94 °C, seguida de 40 ciclos de 1 minuto a 92 °C, 2 minutos à temperatura de pareamento do primer (variável conforme o primer), 2 minutos a 72 °C e um passo final de 7 minutos a 72 °C. As reações utilizando 11 primers resultavam em 147 bandas identificadas no total. Dentre estes, os primers 807 e 811 produziram o

maior numero de bandas, 19 e 18 respectivamente, enquanto o menor numero foi produzido utilizando-se os primers 836 (8 bandas) e 840 (9 bandas).

Tabela 5: Sequência dos primers ISSR, temperaturas de pareamento utilizadas por Noqueira (2009), e seus respectivos número de bandas obtidas na reação de PCR.

| Primer  | Sequência (5' – 3') Temperatura de N° banda |       | N° bandas obtidas |
|---------|---------------------------------------------|-------|-------------------|
| /Código | Pareamento                                  |       |                   |
| 807     | AGAGAGAGAGAGT                               | 54,8° | 14                |
| 808     | AGAGAGAGGAGGC                               | 49,6° | 12                |
| 815     | CRCTCTCTCTCTCTG                             | 52°   | 16                |
| 827     | ACACACACACACACG                             | 54,8° | 11                |
| 836     | AGAGAGAGAGAGAGYA                            | 55,4° | 13                |
| 841     | GAGAGAGAGAGAYC                              | 50,7° | 9                 |
| 866     | стестестестесте                             | 58,4° | 7                 |
| 890     | VHVGTGTGTGTGTGT                             | 49,6° | 20                |
| С       | GTGGTGGTGGTGRG                              | 53,4° | 8                 |
| Terry   | GTGGTGGTGRC                                 | 54,8° | 8                 |
| Total   |                                             |       | 118               |

Tabela 6: Sequência dos primers ISSR, temperaturas de pareamento utilizadas por Nascimento (2008), e seus respectivos número de bandas obtidas na reação de PCR.

| Primer  | Sequência (5' – 3') | Temperatura de | N° bandas obtidas |
|---------|---------------------|----------------|-------------------|
| /Código | Pareamento          |                |                   |
| 807     | AGAGAGAGAGAGT       | 54°            | 19                |
| 808     | AGAGAGAGGAGGC       | 54°            | 15                |
| 811     | GAGAGAGAGAGAC       | 49°            | 18                |
| 834     | AGAGAGAGAGAGAGYT    | 48°            | 13                |
| 836     | AGAGAGAGAGAGAGYA    | 54°            | 8                 |
| 840     | GAGAGAGAGAGAYT      | 50°            | 9                 |
| 842     | GAGAGAGAGAGAYG      | 56°            | 15                |
| 848     | CACACACACACACACARG  | 56°            | 10                |
| 856     | ACACACACACACACYA    | 48°            | 12                |
| 857     | ACACACACACACACYG    | 50°            | 15                |
| 888     | BDBCACACACACACA     | 49°            | 13                |
| Total   |                     |                | 147               |

Em espécies vegetais, Pepineli et al. (2014) estudaram a seleção de primers para análise de ISSR´s na cultivar de *Vitis vinifera* L., popularmente conhecida como uva itália. Foram testados 15 primers, utilizando-se de 2 ul de DNA purificado, 02 ul de taq polimerase, 0,8 ul de Dntp, 1,6 ul de MgCl2, 2 ul de solução tampão, e água para completar o volume final de 20 ul. Dentre os primers adotados, os que apresentaram número satisfatório de bandas nítidas (106 no total), forram ISSR – 2, ISSR – 3, ISSR – 5, ISSR – 6, ISSR – 7, ISSR – 8, ISSR – 9, ISSR – 11, ISSR – 12, ISSR – 14, ISSR – 14 e ISSR 15, usando 50 °C de temperatura para ligação dos primers na PCR.

Destaca-se que a etapa de Eletroforese em Gel de Agarose foi realizada de forma eficaz e íntegra, já que quando aplicado o Ladder (sequência de DNA que serve como parâmetro para análise das bandas), tornou-se visível nas imagens obtidas, ao contrário das amostras amplificadas.

Portanto, apesar de vários ensaios de ajustes de condições de incubação serem executados com diferentes primers na tentativa de visualizar bandas de DNA no gel de agarose, não houve anelamento dos fragmentos de DNA com as sequências utilizadas. Vale ressaltar que os marcadores moleculares ISSR, adotados neste trabalho funcionaram bem para outras espécies, como no caso da *M. capixaba*, em que os mesmos primers utilizados apresentaram bandas de DNA nas imagens do gel de agarose. Nesse sentido, não são os primers que não são funcionais, e sim a espécie que não apresentou anelamento com as sequências adotadas. Portanto, o fato dos mesmos primers adotados funcionarem bem para outras espécies e não para a *T. angustula*, leva-nos a inferir sobre a não adaptação dessa espécie para a aplicação das sequências em questão.

## 6 CONCLUSÃO

A ausência de trabalhos que estudem a análise da variabilidade genética de *T. angustula* com o uso de marcadores moleculares ISSR impossibilitou a obtenção de parâmetros para a execução deste, já que cada espécie responde de forma singular às sequências as quais são submetidas no processo de amplificação do DNA. Através dos estudos encontrados, pode-se observar que alguns dos primers utilizados nas análises, obtiveram bandas visualizadas para outras espécies, tanto vegetais quanto animais, contribuindo como ferramenta para analisar o grau de distanciamento genético entre os indivíduos, e assim, garantir o entendimento da dinâmica dessas populações, contribuindo assim para auxiliar tanto os agricultores para um bom desenvolvimento de suas culturas, quanto às próprias populações, garantindo um número alto de polimorfismos.

Por meio das técnicas laboratoriais executadas, não foram obtidas bandas de DNA visualizadas nas imagens do gel de agarose, o que não tornou possível analisar o grau de diferenciação genética dos indivíduos. Apesar de diferentes primers do marcador ISSR serem testados, nenhum apresentou anelamento com o material genético da espécie estudada.

Nesse sentido, pode-se inferir sobre a funcionalidade do protocolo de extração adaptado para tal, garantindo quantidades adequadas para a realização da PCR, e que os primers utilizados para esta reação, não são adequados para a espécie analisada. Assim, sugere-se a utilização de outros marcadores, como Isoenzimas, RAPD, e microssatélites, e seus repectivos primers, para atingir finalmente o grau de distanciamento genético, e correlacioná-lo com o distanciamento geográfico, assim, apresentando o potencial bioindicador da *T. angustula*, respondendo através desta ferramenta molecular, à fragmentação de habitats e ao reflexo de alterações ambientais.

## **REFERÊNCIAS**

ADAIR, David S. A mandaçaia: biologia de abelhas, manejo e multiplicação artificial de colônias de Melipona quadrifasciata Lep, (Hymenoptera, Apidae, Meliponinae). Ribeirão Preto: Sociedade Brasileira de Genética, 1996. 104 p.

ALVES, Davi J. **Polimorfismos de RAPD em populações de** *Tetragonisca angustula* L. (Apidae, Meliponinae). 2006. 45 f. Dissertação (Pós graduação em Genética e Melhoramento) – Universidade Estadual de Maringá, Maringá, 2006.

BAITALA, Tatiane V. **Polimorfismo molecular em populações de** *Tetragonisca angustula* **Latreille (Apidae, Trigonini)**. 2005. 52f. Dissertação (Pós graduação em Zootecnia) – Universidade Estadual de Maringá, Maringá, 2005a.

BAITALA, Tatiane V.; CANTAGALLI, Liriana B.; RONQUI, Ludimilla; RUIZ, José B; TAKASUSUKI, Maria C. C.; MANGOLIN, Claudete A.; DE TOLEDO, Vagner A. A. Estrutura genética em populações de Tetragonisca angustula fibriebrigi (Hymenoptera, Meliponinae) no noroeste do Paraná. In: CONGRESSO BRASILEIRO DE GENÉTICA, 51.,2005. ÁGUAS DE LINDÓIA – SÃO PAULO. Anais eletrônicos...Ribeirão Preto: SBG, 2005b. Disponível em: <a href="http://web2.sbg.org.br/congress/CongressosAnteriores/Pdf\_resumos/51/GA77.pdf">http://web2.sbg.org.br/congress/CongressosAnteriores/Pdf\_resumos/51/GA77.pdf</a> >. Acesso em: 15 dez. 2015.

BARROSO, Gustavo. Variabilidade Genética de *Tetragonisca angustula* (Hymenoptera, Apidae, *Meliponini*) de duas áreas urbanizadas. 2012. 105f. Dissertação (Mestrado em Genética) – Universidade de São Paulo, São Paulo, 2012.

BATISTA, Milson A.; RAMALHO, Mauro; SOARES, Ademilson E.E. Nesting sites and abundance of Meliponini (Hymenoptera: Apidade) in heterogenous habitats of the Atlântic Rain Forest, Bahia, Brazil. **Lundiana**, v.4, n.1, p. 19-23, 2003.

BENZAQUEM, Denise C.; FREITAS, Danival V.; VERAS, Ydrielly T.; BARROS, Waldir G.; SAMPAIO, Paulo de T. Seleção de Primers ISSR para análise genético-populacional em espécies do gênero *Aniba*. In: REUNIÃO ANUAL DA SOCIEDADE BRASILEIRA PARA O PROGRESSO DA CIÊNCIA, 61, 2009. Manaus - Amazonas. **Anais eletrônicos...**São Paulo: SBPC, 2009. Disponível em: <a href="http://www.sbpcnet.org.br/livro/61ra/resumos/resumos/4493.htm">http://www.sbpcnet.org.br/livro/61ra/resumos/resumos/4493.htm</a>. Acesso em: 15 dez. 2015.

BIESMEIJER, Jacobus C.; ROBERTS, Stuart P. M.; REEMER, Menno; OHLEMULLER, Ralf; EDWARDS, Mike; PEETERS, Théo M. J.; SCHAFFERS, André P.; POTTS, Simon G.; KLEUKERS, Roy M. J. C.; THOMAS, Chris; SETTELE, Josef; KUNIN, William. Parallel **Declines in Pollinators and Insect-Pollinated Plants in Britain and the Netherlands**, 2006. Disponível em: <a href="http://www.researchgate.net/publication/6927929\_Parallel\_declines\_in\_pollinators\_and\_insect-pollinated\_plants\_in\_Britain\_and\_The\_Netherlands">http://www.researchgate.net/publication/6927929\_Parallel\_declines\_in\_pollinators\_and\_insect-pollinated\_plants\_in\_Britain\_and\_The\_Netherlands</a>. **Acesso em: 15 dez. 2015.** 

BROWN, Christopher. J.; ALBRECHT, Christian. The effect of tropical deforestation on stingless bees of the genus Melipona (Insecta: Hymenoptera: Apidae: *Meliponini*) in central Rondonia, **Brazil Journal Biogeography.** (as *Melipona crinita*, geographic record, habitat deforestation, relative abundance), v.28, p.623-634, 2001.

CÂMARA, Fernando P. Variabilidade e Adaptação: As Bases Genéticas da Teoria Da Evolução, 2009. Disponível em:

<a href="http://www.microbiologia.ufrj.br/documentos/setores/evolucao\_e\_genetica.doc.">http://www.microbiologia.ufrj.br/documentos/setores/evolucao\_e\_genetica.doc.</a>. Acesso em: 22 abr. 2015.

CARVALHO, Carlos. A. L. de.; SOUZA, Bruno de A.; SODRÉ, Geni. S.; MARCHINI, Luís. C.; ALVES, Rogério. M. O. **Mel de abelha sem ferrão: contribuição para a caracterização físico-química.** Cruz das Almas: Universidade Federal da Bahia /SEAGRI-BA, 2005. Disponível em:

<a href="http://www.researchgate.net/profile/Bruno\_Souza11/publication/228436975\_Mel\_de\_abelhas\_sem\_ferro\_contribuio\_para\_a\_caracterizao\_fsico-qumica/links/53f38cd50cf256ab87b27753.pdf">http://www.researchgate.net/profile/Bruno\_Souza11/publication/228436975\_Mel\_de\_abelhas\_sem\_ferro\_contribuio\_para\_a\_caracterizao\_fsico-qumica/links/53f38cd50cf256ab87b27753.pdf</a>. Acesso em: 22 abr. 2015.

CAVIGLIONE, João H.; KIIHL, Laura R. B.; CARAMORI, Paulo H.; OLIVEIRA, Dalziza. **Cartas climáticas do Paraná.** Londrina: IAPAR, 2000.

COUCEIRO, Lucía; MANEIRO, Isabel, I.; RUIZ, José. M.; BARREIRO, Rodolfo. Multiscale genetic structure of an endangered seaweed *Ahnfeltiopsis pusilla* (Rhodophyta): implications for its conservation. **Journal of Phycology**, v.47, p.259-268, 2011.

DALL'AGNOL, Miguel; SCHIFINO-WITTMANN, Maria T. Apomixia, genética e melhoramento de plantas. **Revista brasileira de Agrociência**, Pelotas, v.11, n. 2, p. 127-133, abr. 2005.

DONG, Yuan-Huo.; CHEN, Jin-Ming; ROBERT Gituru W.; WANG, Qing-Feng. Genetic variation in the endangered aquatic fern *Ceratopteris thalictroides* (Parkeriaceae) in China: implications from RAPD e ISSR data. **Botanical Journal of Linnean Society,** v.157, p. 657-671, 2008.

FABIANO, Ezequiel C. **Demografia histórica e contemporânea de guepardos (Acinonyx jubatus) na Namíbia, África Austral**, 2013. Disponível em: <file:///C:/Users/Sony/Desktop/TCC%201/Leitura/FABIANO%202013%20-%20GUEPARDO.html> Acesso em: 29 set 2015.

FEIDEN, Armin. **Desenvolvimento da colônia e hábito da abelha Jataí** (*Tetragonisca angustula* Latreille) em duas florestas estacionais semideciduais. 1994. 103f. Dissertação (Pós Graduação em Engenharia Florestal) - Universidade Federal do Paraná, Curitiba, 1994.

FERNANDES-SALOMÃO, Tânia; ROCHA, Rodrigo B.; CAMPOS, Lucio A. O.; ARAÚJO, Eliseu F. The first internal trasncribed spacer (ITS-') of *Melípona* species (Hymenoptera, Apidae, *Meliponini*): characterization and phylogenetic analysis. **Insectes Sociaux**, v.52, p.11-18, 2005.

FERREIRA, M. E.; GRATTAPAGLIA, D. Introdução ao uso de marcadores moleculares em análise genética. 2 ed. Brasília: Embrapa-Cenargen, 1998. 220 p.

FERREIRA, Michelli B.; GALBIATI, Carla. **Avaliação do efeito da fragmentação de habitat sobre** *Apis mellifera* **e abelhas nativas em vegetação de pantanal, cáceres – mt,** 2008. Disponível em:

http://www.unemat.br/eventos/jornada2008/resumos\_conic/Simples\_00643.pdf. Acesso em: 20 mai. 2015.

FINGER, Luis. F.; CAMPOS, Lúcio. A. de O.; SALOMÃO, Tânia, M.F.; OLIVEIRA, Luis de. **Genética Molecular Aplicada à Conservação**, 2007. Disponível em: <a href="http://www.ufv.br/dbg/resumos/claudineiaMR">http://www.ufv.br/dbg/resumos/claudineiaMR</a>>. Acesso em 20 abr. 2015.

FREITAS, Geusa S. de; SOARES, Ademilson. E. E. (2004). **Procurando Irá: um passeio ecológico.** Ribeirão Preto: FFCL de Ribeirão Preto, Faculdade de Medicina de Ribeirão Preto.

GOVERNO DO ESTADO DO PARANÁ. **Geografia do Paraná,** 2015. Disponível em: <a href="http://www.geografia.seed.pr.gov.br/modules/galeria/uploads/8/1377635363solos\_parana.jpg">http://www.geografia.seed.pr.gov.br/modules/galeria/uploads/8/1377635363solos\_parana.jpg</a>. Acesso em 10 jan. 2015.

GUEDES, Fátima B. **Genética da conservação como uma ferramenta para** avaliar os problemas populacionais da fragmentação de habitat. 2004. 43f. monografia (Estágio em Zoologia) – universidade Federal do Paraná, Curitiba, 2004.

GURGEL, Zafira E. da R. Aplicabilidade de marcadores microssatélites na análise de resposta de populações de Tetragonisca angustula (Apoidea, Hymenoptera) à heterogeneidade de hábitats na costa Atlântica. 2009. 70f. Dissertação (Mestrado em Biotecnologia e Melhoramento) - Universidade Federal da Bahia, Salvador, 2009.

HILSDORF, Alexandre W. S. **Ferramentas Moleculares Aplicadas à Pesca e Aquicultura**, 2011. Disponível em:

<ftp://ftp.sp.gov.br/ftppesca/10Recip/palestras/X\_ReCIP\_p5\_14-17.pdf.>. Acesso
em: 22 abr. 2015.

IBGE - INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. **Cidades, Paraná**. 2010. Disponível em:

<a href="http://cidades.ibge.gov.br/xtras/perfil.php?lang=%20&codmun=410655&search=||infogr%E1ficos:-informa%E7%F5es-completas>. Acesso em: 20 de mai. 2015.

IMPERATRIZ-FONSECA, Vera L.; KLEINERT-GIOVANNINI, Astrid; CORTOPASSI-LAURINO, Marilda; RAMALHO, Mauro. Hábitos de coleta de *Tetragonisca angustula angustula* Latreille (Hymenoptera, Apidae, Meliponinae). **Boletim de Zoologia da USP,** v.8, p.115-131, 1984.

IPARDES – INSTITUTO PARANAENSE DE DESENVOLVIMENTO ECONOMICO E SOCIAL – **Mesorregiões Geográficas (IBGE) - Paraná**. 2015. DisponÍvel em: < http://www.ipardes.gov.br/pdf/mapas/base\_fisica/mesorregioes\_geograficas\_base\_2 010.jpg>. Acesso em: 10 jan. 2015

KERR, Estevam W.; CARVALHO, Gislene A.; NASCIMENTO, Vânia A. **A Abelha uruçu: Biologia, Manejo e Conservação.** Belo Horizonte, Acangau, 1996, 144p. Disponível em: <a href="http://www.abelhasemferrao.com/wp-content/uploads/2013/05/Abelha-Uru%C3%A7u-Warwick-Estevam-Kerr.pdf">http://www.abelhasemferrao.com/wp-content/uploads/2013/05/Abelha-Uru%C3%A7u-Warwick-Estevam-Kerr.pdf</a>. Acesso em: 15 mai. 2015.

LIBERALI, Lucimara. Sistemas agroflorestais: alternativa de renda para agricultura familiar do município de Corumbataí do Sul, Paraná. **Revista Geomae** - Geografia, Meio Ambiente e Ensino. v.04, n.01, 2013.

LIMA, Liziane M. de. **Conceitos básicos de técnicas em Biologia molecular**. 1 ed. Campina Grande: Embrapa-Algodão, 2008. 28 p.

MACHADO, Edna Lôbo; SILVA, Simone Alves. Desenho e validação de iniciadores microssatélites SSR para mamoneira. **Pesquisa agropecuária brasileira**, v.48, v.11, p. 1457 - 1463, Nov. 2013

MACHADO, Altair T. **Manejo da Agrobiodiversidade, Direito dos Agricultores e Propriedade Intelectual**, 2008. Disponível em:

<a href="http://www.encontroagroecologia.org.br/files/Manejo\_Agrobiodiversidade.rtf">http://www.encontroagroecologia.org.br/files/Manejo\_Agrobiodiversidade.rtf</a>. Acesso em: 25 abr. 2015.

MARQUES, Edmundo k.; **Diagnóstico genético-molecular.** Canoas: ULBRA, 2003. 372 p.

MICHENER, Charles. D. **The bees of the World**. 2 ed. London: The Johns Hopbins University Press, 2007. 953p.

MIORIN, Patrícia L.; LEVY JUNIOR, NORTON C.; CUSTODIO, Angela R.; BRETZ Walter A.; MARCUCCI, Maria C.;Antibacterial activity of honey and própolis from Apis mellifera and Tetragonisca angustula against Staphylococcus aureus. **Journal of Applied Microbiology,** v.95, p.913-920, 2003.

MORGADO, Leila. N.; CARVALHO, César. F.; SOUZA, Brígida.; SANTANA Márcia. P. Fauna de Abelhas (HYMENOPTERA: APOIDEA) nas Flores de Girassol Helianthusannus L. em Lavras – MG. **Ciência e agrotecnologia,** n.26, p.1167 - 1177, 2002.

MOUTOU, Katerina. A.; MAMURIS, Zissis.; FIRME, Tania.; KONTOU, Maria.; SARAFIDOU, Theologia.; STOUMBOUDI, Maria. T. Patterns of variability at the major histocompatibility class I and class II loci in populations of the endangered cyprinid Ladigesocypris ghigii. Conservation Genetics, 2011. Disponível em:

<a href="http://www.researchgate.net/profile/Zissis\_Mamuris2/publication/225766082\_Patter ns\_of\_variability\_at\_the\_major\_histocompatibility\_class\_I\_and\_class\_II\_loci\_in\_popu lations\_of\_the\_endangered\_cyprinid\_Ladigesocypris\_ghigii/links/0c960538277cdc407a000000.pdf>. Acesso em: 10 mai. 2015.

NAKASUGUI Lilian F.; TAKASUSUKI Maria C. C. R.; FALCO José R. P. Avaliação das abelhas jataí (hymenoptera; trigonini) como bioindicadores após contaminação com organofosforados, 2011. Disponível em:

<a href="http://www.sbpcnet.org.br/livro/63ra/resumos/resumos/5716.htm">http://www.sbpcnet.org.br/livro/63ra/resumos/resumos/5716.htm</a>. Acesso em: 20 mai. 2015.

NASCIMENTO, Mário A. Variabilidade genética de *Melípona quadrifasciata* (Hymenoptera: Apidae) no Estado de Minas Gerais com marcadores ISSR, 43f. Dissertação (Pós-Graduação em Biologia Celular e Estrutural) – Universidade Federal de Viçosa, Viçosa, 2008.

NOGUEIRA, Juliano. Variabilidade Genética de *Melipona capixaba* Moure e Camargo, 1994 (Hymenoptera: Apidae), Espécie Ameaçada De Extinção: Subsídios Para Sua Conservação, 2009. 66f. Tese (Pós Graduação em Biologia Celular e Estrutural) – Universidade Federal de Viçosa, Viçosa, 2009.

NOGUEIRA-NETO, Paulo. Ainda a questão da variabilidade genética e ecológica das pequenas populações e dos fragmentos florestais. Encontro sobre Abelhas, Ribeirão Preto, 2002. Anais. Ribeirão Preto: Universidade de São Paulo, 2002, p. 15-17.

NOGUEIRA-NETO, Paulo. **Vida e Criação de Abelhas Indígenas Sem Ferrão.** São Paulo, Ed. Nogueirapis. 446 p, 1997.

ONOFRE, Gisele R. **Campo Mourão: Colonização, uso do solo e impactos Sócioambientais**, 2005. 206f. Dissertação (Mestrado em Geografia) – Universidade Estadual de Maringá, Maringá, 2005.

PAMILO, Pekka; VARVIO- AHO, Sirkka L.; PEKKARINEN, Antti. **Low enzyme gene variability in Hymenoptera as a consequence of haplodiploidy**, 1978 Disponível em: < http://onlinelibrary.wiley.com/doi/10.1111/j.1601-5223.1978.tb01607.x/pdf>. Acesso em: 05 out. 2015.

PEPINELI, Afonso C.; STRIOTO, Danuza K.; MARINELLI, Giovana C.; MANGOLIN, Claudete A.; MACHADO, Maria de Fátima P. da. S. Seleção de Primers para Análise de *Inter Simple Sequence Repeats* na cultivar de 'itália' de *Vitis vinífera* L. 2014. **Revista Ciência e Técnica Vitivinícola**, v.29, n.2, ago. 2014. Disponível em: <a href="http://www.ctv-jve-journal.org/articles/ctv/pdf/2014/02/ctv20142902p81.pdf">http://www.ctv-jve-journal.org/articles/ctv/pdf/2014/02/ctv20142902p81.pdf</a> >. Acesso em: 15 dez. 2015.

PESSOA DA SILVA, Kaliny V.; ALVES Alfredo A. C.; MARTINS, Maria I. G.; MELO, Cláusio A. F de.; CARVALHO, Reginaldo de. **Variabilidade genética entre acessos do gênero Manihot por meio de marcadores moleculares ISSR**, 2011. Disponível em: <a href="http://www.scielo.br/scielo.php?script=sci\_arttext&pid=S0100-204X2011000900016&Ing=en&nrm=iso&tlng=pt">http://www.scielo.br/scielo.php?script=sci\_arttext&pid=S0100-204X2011000900016&Ing=en&nrm=iso&tlng=pt</a>. Acesso em: 15 jul. 2015.

PESSOA, Seyla P. M.; MORAES, Juliana Q.; SILVA, Celice A. Apomixia facultativa em *Smilax fluminensis* Steud. (Smilacaceae), espécie dióica de fragmentos florestais, centro oeste do Brasil. **Revista árvore**, vol.37., n.6, Nov. 2013. Disponível em: <C:\Users\Sony\Desktop\TCC 1\Leitura\pessoa, moraes e silva 2013.html>. Acesso em 15 dez. 2015.

PHILOMENO, Fábio; PONTARA, Lucimar P. M.; TAKASUSUKI, Maria C.C.R; POVH, Jayme A.;. MANGOLIN, Claudete. A.; Moreira, Heden L.M; CANALLI, Junior L.C. Avaliação de dois protocolos para extração de DNA genômico de abelhas Apis mellifera Africanizada, 2004. Disponível em: <www.serapis.com.br/site/.../bio\_eco\_aval\_doi s\_extr\_dna\_abel\_afric.pdf>. Acesso em 20 set. 2015.

RIBEIRO, Aline B. Amplificação heteróloga e diversidade genética em Tetragonisca angustula (Latreille, 1811) e Tetragonisca fiebrigi (Schwarz, 1938). 2011. 57f. Dissertação (Pós graduação em Genética e Melhoramento) – Universidade Estadual de Maringá, Maringá, 2011.

RODERJAN, C. V.; GALVÃO, Franklin.; KUNIYOSHI, Yoshiko. S.; HATSCHBACK, Gerdt. **As unidades fitogeográficas do Estado do Paraná. Ciência e Ambiente, Santa Maria**, v. 24, p. 75-92, jan./jun, 2002.

RODRIGUES, Jucelene F. Delimitação de Espécies e Diversidade Genética no Complexo Cattleya Coccínea Lindl. e C. Mantiqueirae (Flowie) Van Der Berg (Orchidaceae) Baseada em Marcadores Moleculares ISSR. 2010. Dissertação de Mestrado, 81f. ESALQ/USP. Piracicaba, 2010.

RUIZ, Juliana B. **Análise Genética de Populações em** *Tetragonisca angustula* **na região Noroeste do Paraná por meio de Isoenzimas**. 2006. 64f. Dissertação (Pós graduação em Genética e melhoramento) – Universidade Estadual de Maringá, Maringá, 2006.

SANTIAGO, Leandro R. Variabilidade Genética de *Tetragonisca angustula* (Hymenoptera, Apidade, *Meliponini*) de meliponários. 2013. 131f. Dissertação (Mestrado em Ciências) – Universidade de São Paulo, São Paulo, 2013.

SANTOS, Fabrício R.; GUIMARAES, Pedro E.M.; REDONDO, Rodrigo A. F.**Bancos de DNA: coleções estratégicas para estudos da biodiversidade**, 2002. Disponível em: <a href="http://labs.icb.ufmg.br/lbem/pdf/bancodedna.pdf">http://labs.icb.ufmg.br/lbem/pdf/bancodedna.pdf</a>>. Acesso em: 15 dez. 2015.

SCHALL, Barbara A.; LEVERICH, Wesley J. **Molecular variation and isolated plant populations**, 1996. Disponível em:

<file:///C:/Users/Sony/Desktop/TCC%201/Leitura/SCHALL%20E%20LEVERICH.htm
>.Acesso em: 15 dez. 2015.

SEOANE, C.; KAGEYAMA, Paulo Y.; RIBEIRO, André; MATIAS, Renato; REIS, Maurício S.; BAWA, Kamal; SEBBENN, Alexandre M. Efeitos da fragmentação florestal sobre a imigração de sementes e a estrutura genética temporal de populações de *Euterpe edulis Mart.* **Revista do Instituto Florestal**, v.5, n.5, p. 25 - 43. 2005.

SGARIGLIA, Melina A.; VATTUONE, Marta A.; SAMPIETRO, María M.V.; SOBERÓN, José R.; SAMPIETRO, Diego A. Properties of honey from *Tetragonisca angustula fiebrigi* and *Plebeia wittmanni* of Argentina. **Apidologie**, v.41, p. 667-675, 2010.

SHOUHANI, Hossein; DOUSTI, Aboufazel; RADJABI, Rouhollah; ZAREI, Mojtaba. Application of ISSR to study the genetic diversity of honeybee (Apis mellifera L.) populations in some areas of Iran. 2014. *Journal of BioScience and Biotechnology*, v.29, n.2, mar. 2014. Disponível em: < http://www.jbb.uni-plovdiv.bg/documents/27807/352486/jbb\_2014-3(2)-pages\_127-131.pdf>. Acesso em: 02 dez 2015.

SILVEIRA, Fernando A.; MELO, Gabriel A.R.; ALMEIDA, Eduardo A.B. **Abelhas brasileiras: sistemática e identificação**. Belo Horizonte, Edição do autor. 2002. 253 p.

STRALIOTTO, Rosângela. Aplicação e Evolução dos Métodos Moleculares no Estudo da Biodiversidade do Rizóbio, 2006. Disponível em: http://www.agencia.cnptia.embrapa.br/recursos/biotacap11ID-Ym45o3LWOj.pdf. Acesso em: 22 mar. 2015.

STUCHI, Ana L.P.B.; TAKASUSUKI, Maria C.C.R.; TOLEDO, Vagner. de. A. Análise da genética de populações em abelhas jataí (tetragonisca angustula latreille) por meio de isoenzimas. **Revista Magistra,** v.20, n.1, p.68-77, Cruz das Almas-BA, jan./mar., 2008.

TIKUNOV, Yuri M.; KHRUSTALEVA Ludmila I.; KARLOV Gennady L. Application of ISSR Markers in the Genus Lycopersicon. **Euphytica**, v.131, p.71–80, 2003.

VIEIRA, Daniel P. **Técnicas de PCR**: **Aplicações e Padronização de Reações**, 2006. Disponível em: < http://www.ebah.com.br/content/ABAAAAjM8AE/tecnicas-pcr>. Acesso em: 29 set. 2015.

WILLIANS, Phillipa. **The Conservation of the Przewalski's Horse**, 2010. Disponível em: <a href="http://www.infertile.com/conservation-przewalskis-horse/">http://www.infertile.com/conservation-przewalskis-horse/</a>. Acesso em: 15 dez. 2015.

ZIETKIEWICZ, Ewa; RAFALSKi, Antoni; LABUDA, Damian .Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification, 1994 Disponível em:

<a href="http://www.lib.ctgu.edu.cn:8080/wxcd/qw/6.pdf">http://www.lib.ctgu.edu.cn:8080/wxcd/qw/6.pdf</a>. Acesso em: 05 out. 2015.

ANEXO – PROTOCOLOS DE PCR ADAPTADOS DE NOGUEIRA (2009) QUE FORAM TESTADOS NO PRESENTE TRABALHO

| INCUBAÇÃO |         |  |  |  |  |  |  |
|-----------|---------|--|--|--|--|--|--|
| °C        | tempo   |  |  |  |  |  |  |
| 94        | 1.5 min |  |  |  |  |  |  |
| 94        | 45 seg  |  |  |  |  |  |  |
| °C anel.  | 45 seg  |  |  |  |  |  |  |
| 72        | 1.5 min |  |  |  |  |  |  |
| 72        | 5 min   |  |  |  |  |  |  |
| ciclos    | 40      |  |  |  |  |  |  |

|                                                                                                          | DIA 15/10/2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                               |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                      |                                                                                                             |                                                                                                                                    |                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| ID                                                                                                       | INDIVÍDUO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | primer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DNA 10ng                                                                                      | primer<br>5pmoles                                                                                        | Polimerase<br>Tag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Buffer<br>10x                                                             | dNTP<br>100mM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MgCl<br>50mM                                                                         | ddH2O                                                                                                       | soma                                                                                                                               | °C anel.                                                                                                                             |
| 1                                                                                                        | 5p1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ISSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                             | 6                                                                                                        | 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,5                                                                       | 2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,75                                                                                 | 11,05                                                                                                       | 25                                                                                                                                 | 48°C                                                                                                                                 |
| 2                                                                                                        | 6p1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ISSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                             | 6                                                                                                        | 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,5                                                                       | 2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,75                                                                                 | 11,05                                                                                                       | 25                                                                                                                                 | 48°C                                                                                                                                 |
| 3                                                                                                        | 7p1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ISSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                             | 6                                                                                                        | 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,5                                                                       | 2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,75                                                                                 | 11,05                                                                                                       | 25                                                                                                                                 | 48°C                                                                                                                                 |
| N                                                                                                        | controle negativo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ISSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                             | 6                                                                                                        | 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,5                                                                       | 2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,75                                                                                 | 11,05                                                                                                       | 25                                                                                                                                 | 48°C                                                                                                                                 |
| 4                                                                                                        | 5p1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ISSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                             | 6                                                                                                        | 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,5                                                                       | 2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,75                                                                                 | 11,05                                                                                                       | 25                                                                                                                                 | 48°C                                                                                                                                 |
| 5                                                                                                        | 5p1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ISSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                             | 6                                                                                                        | 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,5                                                                       | 2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,75                                                                                 | 11,05                                                                                                       | 25                                                                                                                                 | 48°C                                                                                                                                 |
| 6                                                                                                        | 5p1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ISSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                             | 6                                                                                                        | 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,5                                                                       | 2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,75                                                                                 | 11,05                                                                                                       | 25                                                                                                                                 | 48°C                                                                                                                                 |
| 7                                                                                                        | 5p1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ISSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                             | 6                                                                                                        | 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,5                                                                       | 2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,75                                                                                 | 11,05                                                                                                       | 25                                                                                                                                 | 48°C                                                                                                                                 |
|                                                                                                          | DIA 19/10/2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                               |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                      |                                                                                                             |                                                                                                                                    |                                                                                                                                      |
| ID                                                                                                       | INDIVÍDUO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | primer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DNA 10ng                                                                                      | primer<br>5pmoles                                                                                        | Polimerase<br>Taq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Buffer<br>10x                                                             | dNTP<br>100mM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MgCl<br>50mM                                                                         | ddH2O                                                                                                       | soma                                                                                                                               | °C anel.                                                                                                                             |
| 8                                                                                                        | 5p1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ISSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                             | 6                                                                                                        | 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,5                                                                       | 2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,75                                                                                 | 9,05                                                                                                        | 25                                                                                                                                 | 45,5°C                                                                                                                               |
| 9                                                                                                        | 5p1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ISSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                             | 6                                                                                                        | 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,5                                                                       | 2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,75                                                                                 | 9,05                                                                                                        | 25                                                                                                                                 | 49°C                                                                                                                                 |
| 10                                                                                                       | 5p1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ISSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                             | 6                                                                                                        | 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,5                                                                       | 2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,75                                                                                 | 9,05                                                                                                        | 25                                                                                                                                 | 53,8°C                                                                                                                               |
| 11                                                                                                       | 5p1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ISSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                             | 6                                                                                                        | 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,5                                                                       | 2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,75                                                                                 | 9,05                                                                                                        | 25                                                                                                                                 | 58,6°C                                                                                                                               |
| 12                                                                                                       | 5p1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ISSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                             | 6                                                                                                        | 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,5                                                                       | 2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,75                                                                                 | 9,05                                                                                                        | 25                                                                                                                                 | 63°C                                                                                                                                 |
| 13                                                                                                       | 5p1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ISSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                             | 6                                                                                                        | 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,5                                                                       | 2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,75                                                                                 | 9,05                                                                                                        | 25                                                                                                                                 | 65°C                                                                                                                                 |
|                                                                                                          | DIA 21/10/2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                               |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                      |                                                                                                             |                                                                                                                                    |                                                                                                                                      |
| ID                                                                                                       | INDIVÍDUO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | primer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DNA 10ng                                                                                      | primer<br>5pmoles                                                                                        | Polimerase<br>Taq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Buffer<br>10x                                                             | dNTP<br>100mM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MgCl<br>50mM                                                                         | ddH2O                                                                                                       | soma                                                                                                                               | °C anel.                                                                                                                             |
| 14                                                                                                       | 5p1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ISSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8                                                                                             | 6                                                                                                        | 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,5                                                                       | 2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,75                                                                                 | 5,05                                                                                                        | 25                                                                                                                                 | 45,5°C                                                                                                                               |
| 15                                                                                                       | 5p1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ISSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8                                                                                             | 6                                                                                                        | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,5                                                                       | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.75                                                                                 | 5.05                                                                                                        | 25                                                                                                                                 | 49°C                                                                                                                                 |
| 16                                                                                                       | 5p1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ISSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8                                                                                             | 6                                                                                                        | 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,5                                                                       | 2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,75                                                                                 | 5,05                                                                                                        | 25                                                                                                                                 | 53,8°C                                                                                                                               |
| 17                                                                                                       | 5p1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ISSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8                                                                                             | 6                                                                                                        | 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,5                                                                       | 2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,75                                                                                 | 5,05                                                                                                        | 25                                                                                                                                 | 58,6°C                                                                                                                               |
| 18                                                                                                       | 5p1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ISSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8                                                                                             | 6                                                                                                        | 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,5                                                                       | 2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,75                                                                                 | 5,05                                                                                                        | 25                                                                                                                                 | 63°C                                                                                                                                 |
| 19                                                                                                       | 5p1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ISSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8                                                                                             | 6                                                                                                        | 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,5                                                                       | 2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,75                                                                                 | 5,05                                                                                                        | 25                                                                                                                                 | 65°C                                                                                                                                 |
|                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                               |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                      |                                                                                                             |                                                                                                                                    |                                                                                                                                      |
|                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                               |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                      |                                                                                                             |                                                                                                                                    |                                                                                                                                      |
|                                                                                                          | DIA 22/10/2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                               |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                      |                                                                                                             |                                                                                                                                    |                                                                                                                                      |
| ID                                                                                                       | DIA 22/10/2015 INDIVÍDUO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | primer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DNA 10ng                                                                                      | primer<br>5pmoles                                                                                        | Polimerase<br>Taq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Buffer<br>10x                                                             | dNTP<br>100mM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MgCl<br>50mM                                                                         | ddH2O                                                                                                       | soma                                                                                                                               | °C anel.                                                                                                                             |
| ID 20                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | primer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DNA 10ng                                                                                      |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                      | <b>ddH2O</b> 9,3                                                                                            | soma<br>26,5                                                                                                                       | °C anel.                                                                                                                             |
|                                                                                                          | INDIVÍDUO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                               | 5pmoles                                                                                                  | Taq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10x                                                                       | 100mM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50mM                                                                                 |                                                                                                             |                                                                                                                                    |                                                                                                                                      |
| 20                                                                                                       | INDIVÍDUO<br>8p1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ISSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8                                                                                             | 5pmoles<br>3                                                                                             | <b>Taq</b> 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>10x</b> 2,5                                                            | <b>100mM</b> 2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>50mM</b>                                                                          | 9,3                                                                                                         | 26,5                                                                                                                               | 42,2°C                                                                                                                               |
| 20                                                                                                       | INDIVÍDUO<br>8p1<br>8p1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ISSR13<br>ISSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8 8                                                                                           | 5pmoles<br>3<br>3                                                                                        | 7aq<br>0,2<br>0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10x<br>2,5<br>2,5                                                         | 2,5<br>2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50mM<br>1                                                                            | 9,3<br>9,3                                                                                                  | 26,5<br>26,5                                                                                                                       | 42,2°C<br>46,8°C                                                                                                                     |
| 20<br>21<br>22                                                                                           | 8p1<br>8p1<br>8p1<br>8p1<br>8p1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ISSR13<br>ISSR13<br>ISSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8<br>8<br>8<br>8                                                                              | 3<br>3<br>3<br>3                                                                                         | 7aq<br>0,2<br>0,2<br>0,2<br>0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,5<br>2,5<br>2,5<br>2,5<br>2,5                                           | 2,5<br>2,5<br>2,5<br>2,5<br>2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50mM<br>1<br>1                                                                       | 9,3<br>9,3<br>9,3<br>9,3                                                                                    | 26,5<br>26,5<br>26,5<br>26,5                                                                                                       | 42,2°C<br>46,8°C<br>52,2°C<br>57,7°C                                                                                                 |
| 20<br>21<br>22<br>23                                                                                     | 8p1<br>8p1<br>8p1<br>8p1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ISSR13<br>ISSR13<br>ISSR13<br>ISSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8<br>8<br>8                                                                                   | 3<br>3<br>3<br>3<br>3                                                                                    | 7aq<br>0,2<br>0,2<br>0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2,5<br>2,5<br>2,5<br>2,5                                                  | 2,5<br>2,5<br>2,5<br>2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50mM<br>1<br>1<br>1                                                                  | 9,3<br>9,3<br>9,3                                                                                           | 26,5<br>26,5<br>26,5                                                                                                               | 42,2°C<br>46,8°C<br>52,2°C                                                                                                           |
| 20<br>21<br>22<br>23<br>24                                                                               | 8p1<br>8p1<br>8p1<br>8p1<br>8p1<br>8p1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ISSR13<br>ISSR13<br>ISSR13<br>ISSR13<br>ISSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8<br>8<br>8<br>8                                                                              | 3<br>3<br>3<br>3<br>3<br>3                                                                               | 7aq<br>0,2<br>0,2<br>0,2<br>0,2<br>0,2<br>0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5                             | 2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50mM<br>1<br>1<br>1<br>1<br>1                                                        | 9,3<br>9,3<br>9,3<br>9,3<br>9,3                                                                             | 26,5<br>26,5<br>26,5<br>26,5<br>26,5                                                                                               | 42,2°C<br>46,8°C<br>52,2°C<br>57,7°C<br>62,7°C                                                                                       |
| 20<br>21<br>22<br>23<br>24<br>25                                                                         | 8p1<br>8p1<br>8p1<br>8p1<br>8p1<br>8p1<br>8p1<br>8p1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ISSR13<br>ISSR13<br>ISSR13<br>ISSR13<br>ISSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8<br>8<br>8<br>8                                                                              | 3<br>3<br>3<br>3<br>3<br>3                                                                               | 7aq<br>0,2<br>0,2<br>0,2<br>0,2<br>0,2<br>0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5                             | 2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50mM<br>1<br>1<br>1<br>1<br>1                                                        | 9,3<br>9,3<br>9,3<br>9,3<br>9,3                                                                             | 26,5<br>26,5<br>26,5<br>26,5<br>26,5                                                                                               | 42,2°C<br>46,8°C<br>52,2°C<br>57,7°C<br>62,7°C                                                                                       |
| 20<br>21<br>22<br>23<br>24<br>25                                                                         | 8p1<br>8p1<br>8p1<br>8p1<br>8p1<br>8p1<br>8p1<br>8p1<br>8p1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ISSR13<br>ISSR13<br>ISSR13<br>ISSR13<br>ISSR13<br>ISSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8<br>8<br>8<br>8<br>8                                                                         | 5pmoles  3 3 3 3 3 3 7 7 7 7 7 7 7 7 7 7 7 7 7                                                           | Taq 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 Polimerase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10x<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5               | 100mM<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>4,5<br>2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50mM  1 1 1 1 1 1 1 1 MgCl                                                           | 9,3<br>9,3<br>9,3<br>9,3<br>9,3<br>9,3                                                                      | 26,5<br>26,5<br>26,5<br>26,5<br>26,5<br>26,5<br>26,5                                                                               | 42,2°C<br>46,8°C<br>52,2°C<br>57,7°C<br>62,7°C<br>65°C                                                                               |
| 20<br>21<br>22<br>23<br>24<br>25                                                                         | INDIVÍDUO   8p1   DIA 26/10/2015   INDIVÍDUO   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   | ISSR13   I | 8<br>8<br>8<br>8<br>8<br>8<br>8                                                               | 5pmoles  3 3 3 3 3 3 7 7 9rimer 5pmoles                                                                  | Taq 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 Tolumerase Taq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10x<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5               | 100mM<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>4NTP<br>100mM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50mM  1 1 1 1 1 1 1 1 50mM                                                           | 9,3<br>9,3<br>9,3<br>9,3<br>9,3<br>9,3                                                                      | 26,5<br>26,5<br>26,5<br>26,5<br>26,5<br>26,5<br>26,5<br>soma                                                                       | 42,2°C<br>46,8°C<br>52,2°C<br>57,7°C<br>62,7°C<br>65°C                                                                               |
| 20<br>21<br>22<br>23<br>24<br>25<br>ID                                                                   | INDIVÍDUO   8p1   8p1 | ISSR13 ISSR13 ISSR13 ISSR13 ISSR13 ISSR13 ISSR13 ISSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8<br>8<br>8<br>8<br>8<br>8<br>8<br>DNA 10ng                                                   | 5pmoles  3 3 3 3 3 3 7 7 9rimer 5pmoles 1,5                                                              | Taq   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2     Polimerase   Taq   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0 | 10x<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5 | 100mM  2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50mM  1 1 1 1 1 1 1 1 50mM 1                                                         | 9,3<br>9,3<br>9,3<br>9,3<br>9,3<br>9,3<br>10,3                                                              | 26,5<br>26,5<br>26,5<br>26,5<br>26,5<br>26,5<br>26,5<br>soma                                                                       | 42,2°C<br>46,8°C<br>52,2°C<br>57,7°C<br>62,7°C<br>65°C<br>°C anel.<br>42,2°C                                                         |
| 20<br>21<br>22<br>23<br>24<br>25<br>ID                                                                   | INDIVÍDUO   8p1   8p1 | SSR13   ISSR13   IS | 8<br>8<br>8<br>8<br>8<br>8<br>DNA 10ng                                                        | 5pmoles  3 3 3 3 3 3 7 7 9rimer 5pmoles 1,5 1,5                                                          | Taq   0,2   0,2   0,2   0,2   0,2   0,2   0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10x<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5               | 100mM  2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50mM  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                            | 9,3<br>9,3<br>9,3<br>9,3<br>9,3<br>9,3<br>15,3                                                              | 26,5<br>26,5<br>26,5<br>26,5<br>26,5<br>26,5<br>26,5<br>26,5                                                                       | 42,2°C<br>46,8°C<br>52,2°C<br>57,7°C<br>62,7°C<br>65°C<br>°C anel.<br>42,2°C<br>46,8°C                                               |
| 20<br>21<br>22<br>23<br>24<br>25<br>ID<br>26<br>27<br>28                                                 | INDIVÍDUO   8p1   8p1 | SSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9                                                       | 5pmoles  3 3 3 3 3 3 7 7 7 7 8 7 8 8 8 8 8 8 8                                                           | Taq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10x<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5               | 100mM<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50mM  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                            | 9,3<br>9,3<br>9,3<br>9,3<br>9,3<br>9,3<br>15,3                                                              | 26,5<br>26,5<br>26,5<br>26,5<br>26,5<br>26,5<br>26,5<br>26,5                                                                       | 42,2°C<br>46,8°C<br>52,2°C<br>57,7°C<br>62,7°C<br>65°C<br>°C anel.<br>42,2°C<br>46,8°C<br>52,2°C                                     |
| 20<br>21<br>22<br>23<br>24<br>25<br>ID<br>26<br>27<br>28<br>29                                           | INDIVÍDUO   8p1   8p1 | SSR13   ISSR13   IS | 8<br>8<br>8<br>8<br>8<br>8<br>DNA 10ng<br>2<br>2<br>2                                         | 5pmoles  3 3 3 3 3 3 3 7 5pmoles 1,5 1,5 1,5 1,5                                                         | Taq   0,2   0,2   0,2   0,2   0,2   0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10x<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5 | 100mM<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50mM  1 1 1 1 1 1 1 1 50mM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                     | 9,3<br>9,3<br>9,3<br>9,3<br>9,3<br>9,3<br>9,3<br>15,3<br>15,3<br>15,3                                       | 26,5<br>26,5<br>26,5<br>26,5<br>26,5<br>26,5<br>26,5<br>26,5                                                                       | 42,2°C<br>46,8°C<br>52,2°C<br>62,7°C<br>62,7°C<br>65°C<br>°C anel.<br>42,2°C<br>46,8°C<br>52,2°C<br>57,7°C                           |
| 20<br>21<br>22<br>23<br>24<br>25<br>ID<br>26<br>27<br>28<br>29<br>30                                     | INDIVÍDUO   8p1   8p1 | SSR13   SSR1 | 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9                                                       | 5pmoles  3 3 3 3 3 3 3 primer 5pmoles 1,5 1,5 1,5 1,5 1,5                                                | Taq   0,2   0,2   0,2   0,2   0,2   0,2     0,2     0,2     0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2  | 10x<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5 | 100mM<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50mM  1  1  1  1  1  1  50mM  MgCl  50mM  1  1  1  1  1  1  1  1  1  1  1  1  1      | 9,3<br>9,3<br>9,3<br>9,3<br>9,3<br>9,3<br>9,3<br>15,3<br>15,3<br>15,3<br>15,3                               | 26,5<br>26,5<br>26,5<br>26,5<br>26,5<br>26,5<br>26,5<br>25<br>25<br>25<br>25<br>25<br>25                                           | 42,2°C<br>46,8°C<br>52,2°C<br>57,7°C<br>62,7°C<br>65°C<br>°C anel.<br>42,2°C<br>46,8°C<br>52,2°C<br>57,7°C<br>62,7°C                 |
| 20<br>21<br>22<br>23<br>24<br>25<br>ID<br>26<br>27<br>28<br>29<br>30                                     | INDIVÍDUO   8p1   8p1 | SSR13   SSR1 | 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9                                                       | 5pmoles  3 3 3 3 3 3 3 3 7 7 7 8 8 8 8 8 8 8 8                                                           | Taq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10x 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5                               | 100mM   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2, | 50mM  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  MgCl 50mM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 9,3<br>9,3<br>9,3<br>9,3<br>9,3<br>9,3<br>9,3<br>15,3<br>15,3<br>15,3<br>15,3                               | 26,5<br>26,5<br>26,5<br>26,5<br>26,5<br>26,5<br>26,5<br>25<br>25<br>25<br>25<br>25<br>25                                           | 42,2°C<br>46,8°C<br>52,2°C<br>57,7°C<br>62,7°C<br>65°C<br>*C anel.<br>42,2°C<br>46,8°C<br>52,2°C<br>57,7°C<br>62,7°C<br>65°C         |
| 20<br>21<br>22<br>22<br>23<br>24<br>25<br>ID<br>26<br>27<br>28<br>29<br>30<br>31                         | INDIVÍDUO   8p1   8p1 | SSR13   SSR1 | B 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9                                                       | 5pmoles  3 3 3 3 3 3 3 3 7 7 7 7 8 7 8 8 8 8 8                                                           | Taq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10x 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5                               | 100mM<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50mM  1  1  1  1  1  1  1  1  1  1  MgCl 50mM  1  1  1  1  1  1  1  1  1  1  1  1  1 | 9,3<br>9,3<br>9,3<br>9,3<br>9,3<br>9,3<br>9,3<br>15,3<br>15,3<br>15,3<br>15,3<br>15,3<br>15,3               | 26,5<br>26,5<br>26,5<br>26,5<br>26,5<br>26,5<br>26,5<br>26,5                                                                       | 42,2°C<br>46,8°C<br>57,7°C<br>62,7°C<br>65°C<br>*C anel.<br>42,2°C<br>46,8°C<br>52,2°C<br>57,7°C<br>65°C                             |
| 20<br>21<br>22<br>23<br>24<br>25<br>ID<br>26<br>27<br>28<br>29<br>30<br>31                               | INDIVÍDUO   8p1   8p1 | SSR13   SSR1 | 8<br>8<br>8<br>8<br>8<br>8<br>DNA 10ng<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 5pmoles  3 3 3 3 3 3 3 7 7 7 8 8 8 8 8 9 8 9 8 9 8 9 8 9 8 9 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | Taq   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2  | 10x 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5                               | 100mM   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2, | 50mM  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                            | 9,3<br>9,3<br>9,3<br>9,3<br>9,3<br>9,3<br>9,3<br>15,3<br>15,3<br>15,3<br>15,3<br>15,3<br>15,3<br>15,3       | 26,5<br>26,5<br>26,5<br>26,5<br>26,5<br>26,5<br>26,5<br>25,5<br>25                                                                 | 42,2°C<br>46,8°C<br>52,2°C<br>65,7°C<br>65°C<br>°C anel.<br>42,2°C<br>46,8°C<br>52,2°C<br>57,7°C<br>65°C                             |
| 20<br>21<br>22<br>23<br>24<br>25<br>1D<br>26<br>27<br>28<br>29<br>30<br>31<br>1D                         | INDIVÍDUO   8p1   8p1 | SSR13   SSR1 | B 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                       | 5pmoles  3 3 3 3 3 3 3 3 7 7 7 8 8 8 8 8 8 8 8                                                           | Taq   0,2   0,2   0,2   0,2   0,2     Polimerase   Taq   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0 | 10x 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5                               | 100mM   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2, | 50mM  1  1  1  1  1  1  1  1  1  1  MgCl 50mM  1  1  1  1  1  1  1  1  1  1  1  1  1 | 9,3<br>9,3<br>9,3<br>9,3<br>9,3<br>9,3<br>9,3<br>15,3<br>15,3<br>15,3<br>15,3<br>15,3<br>15,3<br>15,3       | 26,5 26,5 26,5 26,5 26,5 26,5 26,5 26,5                                                                                            | 42,2°C 46,8°C 52,2°C 57,7°C 62,7°C 65°C  *C anel. 42,2°C 46,8°C  *C anel. 42,2°C 46,8°C                                              |
| 20<br>21<br>22<br>22<br>23<br>24<br>25<br>ID<br>26<br>27<br>28<br>29<br>30<br>31<br>ID<br>32<br>33<br>34 | INDIVÍDUO   8p1   8p1 | SSR13   SSR1 | B 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                       | 5pmoles  3 3 3 3 3 3 3 3 7 7 7 7 8 7 8 8 8 8 8                                                           | Taq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10x 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5                               | 100mM   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2, | 50mM  1  1  1  1  1  1  1  1  1  MgCl 50mM  1  1  1  1  1  1  1  1  1  1  1  1  1    | 9,3<br>9,3<br>9,3<br>9,3<br>9,3<br>9,3<br>9,3<br>15,3<br>15,3<br>15,3<br>15,3<br>15,3<br>15,3<br>15,3<br>15 | 26,5<br>26,5<br>26,5<br>26,5<br>26,5<br>26,5<br>26,5<br>26,5                                                                       | 42,2°C 46,8°C 52,2°C 57,7°C 62,7°C 65°C  *C anel. 42,2°C 46,8°C 52,2°C 57,7°C 62,7°C 65°C  *C anel. 42,2°C 46,8°C 52,2°C 57,7°C 65°C |
| 20<br>21<br>22<br>23<br>24<br>25<br>ID<br>26<br>27<br>28<br>29<br>30<br>31<br>ID                         | INDIVÍDUO   8p1   8p1 | SSR13   SSR1 | B 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                       | 5pmoles  3 3 3 3 3 3 3 3 7 7 7 8 8 8 8 8 8 8 8                                                           | Taq   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2  | 10x 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5                               | 100mM   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2, | 50mM  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                            | 9,3<br>9,3<br>9,3<br>9,3<br>9,3<br>9,3<br>9,3<br>15,3<br>15,3<br>15,3<br>15,3<br>15,3<br>15,3<br>15,3<br>15 | 26,5<br>26,5<br>26,5<br>26,5<br>26,5<br>26,5<br>26,5<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25 | 42,2°C 46,8°C 52,2°C 65°C  °C anel. 42,2°C 46,8°C 52,7°C 65°C  °C anel. 42,2°C 46,8°C 65°C  °C anel. 42,2°C 65°C                     |
| 20 21 22 23 24 25 ID ID 26 27 28 29 30 31 ID 32 33 34 34                                                 | INDIVÍDUO   8p1   8p1 | SSR13   SSR1 | B 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                       | 5pmoles  3 3 3 3 3 3 3 3 7 7 7 7 8 7 8 8 8 8 8                                                           | Taq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10x 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5                               | 100mM   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2, | 50mM  1  1  1  1  1  1  1  1  1  MgCl 50mM  1  1  1  1  1  1  1  1  1  1  1  1  1    | 9,3<br>9,3<br>9,3<br>9,3<br>9,3<br>9,3<br>9,3<br>15,3<br>15,3<br>15,3<br>15,3<br>15,3<br>15,3<br>15,3<br>15 | 26,5<br>26,5<br>26,5<br>26,5<br>26,5<br>26,5<br>26,5<br>26,5                                                                       | 42,2°C 46,8°C 52,2°C 57,7°C 62,7°C 65°C  *C anel. 42,2°C 46,8°C 52,2°C 57,7°C 62,7°C 65°C  *C anel. 42,2°C 46,8°C 52,2°C 57,7°C 65°C |

|          | DIA 04/11/2015                        | 1                |          |                   |                   |                |                  |                     |              |              |                    |
|----------|---------------------------------------|------------------|----------|-------------------|-------------------|----------------|------------------|---------------------|--------------|--------------|--------------------|
| ID       | INDIVÍDUO                             | primer           | DNA 10ng | primer            | Polimerase        | Buffer         | dNTP             | MgCl                | ddH2O        | soma         |                    |
|          |                                       | •                | _        | 5pmoles           | Taq               | 10x            | 100mM            | 50mM                |              |              | °C anel.           |
| 38<br>39 | 6p1<br>6p1                            | ISSR13<br>ISSR13 | 4        | 1,5<br>1,5        | 0,2<br>0,2        | 2,5<br>2,5     | 2,5<br>2,5       | 1                   | 13,3<br>13,3 | 25<br>25     | 45°C<br>47°C       |
| 40       | 6p1                                   | ISSR13           | 4        | 1,5               | 0,2               | 2,5            | 2,5              | 1                   | 13,3         | 25           | 53,8°C             |
| 41<br>42 | 6p1                                   | ISSR13           | 4        | 1,5<br>1,5        | 0,2<br>0,2        | 2,5            | 2,5              | 1                   | 13,3         | 25<br>25     | 58,6°C<br>63°C     |
| 42       | 6р1                                   | ISSR13           | 4        | 1,5               | 0,2               | 2,5            | 2,5              | '                   | 13,3         | 25           | 63.0               |
|          | DIA 05/11/2015                        |                  |          |                   |                   |                |                  |                     |              |              |                    |
| ID       | INDIVÍDUO                             | primer           | DNA 10ng | primer<br>5pmoles | Polimerase<br>Taq | Buffer<br>10x  | dNTP<br>100mM    | MgCl<br>50mM        | ddH2O        | soma         | °C anel.           |
| 43       | 7p1                                   | ISSR13           | 4        | 1,5               | 0,2               | 2,5            | 2,5              | 1                   | 13,3         | 25           | 45°C               |
| 44       | 7p1                                   | ISSR13           | 4        | 1,5               | 0,2               | 2,5            | 2,5              | 1                   | 13,3         | 25           | 47°C               |
| 45<br>46 | 7p1<br>7p1                            | ISSR13<br>ISSR13 | 4        | 1,5<br>1,5        | 0,2               | 2,5<br>2,5     | 2,5<br>2,5       | 1                   | 13,3<br>13,3 | 25<br>25     | 53,8°C<br>58,6°C   |
| 47       | 7p1                                   | ISSR13           | 4        | 1,5               | 0,2               | 2,5            | 2,5              | 1                   | 13,3         | 25           | 63°C               |
|          | DIA 00/44/0045                        |                  |          |                   |                   |                |                  |                     |              |              |                    |
|          | DIA 06/11/2015                        |                  |          | primer            | Polimerase        | Buffer         | dNTP             | MgCl                |              |              |                    |
| ID       | INDIVÍDUO                             | primer           | DNA 10ng | 5pmoles           | Taq               | 10x            | 100mM            | 50mM                | ddH2O        | soma         | °C anel.           |
| 48       | 8p1                                   | ISSR13           | 4        | 1,5               | 0,2               | 2,5            | 2,5              | 1                   | 13,3         | 25           | 45°C               |
| 49<br>50 | 8p1<br>8p1                            | ISSR13           | 4        | 1,5<br>1,5        | 0,2<br>0,2        | 2,5<br>2,5     | 2,5<br>2,5       | 1                   | 13,3<br>13,3 | 25<br>25     | 47°C<br>53,8°C     |
| 51       | 8p1                                   | ISSR13           | 4        | 1,5               | 0,2               | 2,5            | 2,5              | 1                   | 13,3         | 25           | 58,6°C             |
| 52       | 8p1                                   | ISSR13           | 4        | 1,5               | 0,2               | 2,5            | 2,5              | 1                   | 13,3         | 25           | 63°C               |
|          | DIA 09/11/2015                        |                  |          |                   |                   |                |                  |                     |              |              |                    |
| ID       | INDIVÍDUO                             | primer           | DNA 10ng | primer            | Polimerase        | Buffer         | dNTP             | MgCl                | ddH2O        | soma         |                    |
| 53       | 9p1                                   | •                | 4        | 5pmoles           | Taq               | 10x            | 100mM            | <b>50mM</b>         |              | 25           | °C anel.<br>45°C   |
| 54       | 9p1                                   | ISSR13<br>ISSR13 | 4        | 1,5<br>1,5        | 0,2<br>0,2        | 2,5<br>2,5     | 2,5<br>2,5       | 1                   | 13,3<br>13,3 | 25           | 45°C               |
| 55       | 9p1                                   | ISSR13           | 4        | 1,5               | 0,2               | 2,5            | 2,5              | 1                   | 13,3         | 25           | 53,8°C             |
| 56<br>57 | 9p1<br>9p1                            | ISSR13<br>ISSR13 | 4        | 1,5<br>1,5        | 0,2<br>0,2        | 2,5<br>2,5     | 2,5<br>2,5       | 1                   | 13,3<br>13,3 | 25<br>25     | 58,6°C<br>63°C     |
|          | ·                                     | 201110           | 7        | .,0               | J,2               | _,0            | _,0              |                     | .5,5         |              | - 55 0             |
|          | DIA 10/11/2015                        |                  |          |                   | Delimeras         | Duffer.        | JANTO            | Maci                |              |              |                    |
| ID       | INDIVÍDUO                             | primer           | DNA 10ng | primer<br>5pmoles | Polimerase<br>Taq | Buffer<br>10x  | dNTP<br>100mM    | MgCl<br>50mM        | ddH2O        | soma         | °C anel.           |
| 58       | 10p1                                  | ISSR13           | 4        | 1,5               | 0,2               | 2,5            | 2,5              | 1                   | 13,3         | 25           | 45°C               |
| 59<br>60 | 10p1<br>10p1                          | ISSR13           | 4        | 1,5<br>1,5        | 0,2<br>0,2        | 2,5<br>2,5     | 2,5              | 1                   | 13,3<br>13,3 | 25<br>25     | 47°C<br>53,8°C     |
| 61       | 10p1<br>10p1                          | ISSR13<br>ISSR13 | 4        | 1,5               | 0,2               | 2,5            | 2,5<br>2,5       | 1                   | 13,3         | 25           | 58,6°C             |
| 62       | 10p1                                  | ISSR13           | 4        | 1,5               | 0,2               | 2,5            | 2,5              | 1                   | 13,3         | 25           | 63°C               |
|          | DIA 11/11/2015                        |                  |          |                   |                   |                |                  |                     |              |              |                    |
| ı,       | INDIVÍDUO                             |                  | DNA 40mm | primer            | Polimerase        | Buffer         | dNTP             | MgCl                | 441120       |              |                    |
| ID       |                                       | primer           | DNA 10ng | 5pmoles           | Taq               | 10x            | 100mM            | 50mM                | ddH2O        | soma         | °C anel.           |
| 2        | P1<br>P2                              | ISSR13<br>ISSR13 | 4        | 6                 | 0,2<br>0,2        | 2,5<br>2,5     | 2,5<br>2,5       | 0,75<br>0,75        | 9,05<br>9,05 | 25<br>25     | 52,8°C<br>52,8°C   |
| 3        | P3                                    | ISSR13           | 4        | 6                 | 0,2               | 2,5            | 2,5              | 0,75                | 9,05         | 25           | 52,8°C             |
|          | DIA 47/44/0045 TAMPÃO COM TRIO LIGI   |                  |          | 18                | 0,6               | 7,5            | 7,5              | 2,25                | 27,15        | 75           | 52,8°C             |
|          | DIA 17/11/2015 - TAMPÃO COM TRIS-HCL  |                  |          | primer            | Polimerase        | Buffer         | dNTP             | MgCl                |              |              |                    |
| ID       | INDIVÍDUO                             | primer           | DNA 10ng | 5pmoles           | Taq               | 10x            | 100mM            | 50mM                | ddH2O        | soma         | °C anel.           |
| 4        | P1<br>P2                              | 827              | 4        | 6                 | 0,2               | 2,5            | 2,5<br>2,5       | 0,75                | 9,05         | 25<br>25     | 47°C<br>47°C       |
| 5<br>6   | P3                                    | 827<br>827       | 4        | 6                 | 0,2<br>0,2        | 2,5<br>2,5     | 2,5              | 0,75<br>0,75        | 9,05<br>9,05 | 25           | 47°C               |
|          |                                       |                  |          |                   |                   |                |                  |                     |              |              |                    |
|          | DIA 18/11/2015 - TAMPÃO COM TRIS-HCL  |                  |          | primer            | Polimerase        | Buffer         | dNTP             | MgCl                |              |              |                    |
| ID       | INDIVÍDUO                             | primer           | DNA 10ng | 5pmoles           | Taq               | 10x            | 100mM            | 50mM                | ddH2O        | soma         | °C anel.           |
| 7        | P1                                    | 827              | 4        | 6                 | 0,2               | 2,5            | 2,5              | 0,75                | 9,05         | 25           | 45°C               |
| 9        | P1<br>P1                              | 827<br>827       | 4        | 6                 | 0,2<br>0,2        | 2,5<br>2,5     | 2,5<br>2,5       | 0,75<br>0,75        | 9,05<br>9,05 | 25<br>25     | 47°C<br>50,6°C     |
| 10       | P1                                    | 827              | 4        | 6                 | 0,2               | 2,5            | 2,5              | 0,75                | 9,05         | 25           | 54°C               |
| 11       | P1                                    | 827              | 4        | 6                 | 0,2               | 2,5            | 2,5              | 0,75                | 9,05         | 25           | 55°C               |
|          | DIA 19/11/2015 - TAMPÃO COM TRIS-HCL  | Ì                |          |                   |                   |                |                  |                     |              |              |                    |
| ID       | INDIVÍDUO                             | primer           | DNA 10ng | primer            | Polimerase        | Buffer         | dNTP             | MgCI                | ddH2O        | soma         |                    |
| 12       | P1                                    | Terry            | 4        | 5pmoles<br>6      | <b>Taq</b> 0,2    | <b>10x</b> 2,5 | <b>100mM</b> 2,5 | <b>50mM</b><br>0,75 | 9,05         | 25           | °C anel.<br>45°C   |
| 13       | P1                                    | Terry            | 4        | 6                 | 0,2               | 2,5            | 2,5              | 0,75                | 9,05         | 25           | 46,4°C             |
| 14       | P1                                    | Terry            | 4        | 6                 | 0,2               | 2,5            | 2,5              | 0,75                | 9,05         | 25           | 48,9°C             |
| 15<br>16 | P1<br>P1                              | Terry<br>Terry   | 4        | 6                 | 0,2<br>0,2        | 2,5<br>2,5     | 2,5<br>2,5       | 0,75<br>0,75        | 9,05<br>9,05 | 25<br>25     | 50,6°C<br>52°C     |
|          | · · · · · · · · · · · · · · · · · · · |                  | · · ·    |                   |                   |                |                  |                     | -,00         |              |                    |
| ID       | INDIVÍDUO                             | primer           | DNA 10ng | primer            | Polimerase        | Buffer         | dNTP             | MgCl                | ddH2O        | soma         | °C                 |
| 14       | 5p1                                   | ISSR13           | 8        | 5pmoles<br>6      | <b>Taq</b> 0,2    | 10x<br>2,5     | <b>100mM</b> 2,5 | <b>50mM</b><br>0,75 | 5,05         | 25           | °C anel.<br>45,5°C |
| 15       | 5p1                                   | ISSR13           | 8        | 6                 | 0,2               | 2,5            | 2,5              | 0,75                | 5,05         | 25           | 49°C               |
| 16       | 5p1                                   | ISSR13           | 8        | 6                 | 0,2               | 2,5            | 2,5              | 0,75                | 5,05         | 25           | 53,8°C             |
| 17<br>18 | 5p1<br>5p1                            | ISSR13<br>ISSR13 | 8        | 6                 | 0,2<br>0,2        | 2,5<br>2,5     | 2,5<br>2,5       | 0,75<br>0,75        | 5,05<br>5,05 | 25<br>25     | 58,6°C<br>63°C     |
| 19       | 5p1                                   | ISSR13           | 8        | 6                 | 0,2               | 2,5            | 2,5              | 0,75                | 5,05         | 25           | 65°C               |
|          | DIA 22/10/2015                        |                  |          |                   |                   |                |                  |                     |              |              |                    |
| ·r.      |                                       |                  | DNA 46   | primer            | Polimerase        | Buffer         | dNTP             | MgCl                | 4.000        |              |                    |
| ID       | INDIVÍDUO                             | primer           | DNA 10ng | 5pmoles           | Taq               | 10x            | 100mM            | 50mM                | ddH2O        | soma         | °C anel.           |
| 20<br>21 | 8p1<br>8p1                            | ISSR13<br>ISSR13 | 8        | 3                 | 0,2<br>0,2        | 2,5<br>2,5     | 2,5<br>2,5       | 1                   | 9,3<br>9,3   | 26,5<br>26,5 | 42,2°C<br>46,8°C   |
| 22       | орт<br>8p1                            | ISSR13           | 8        | 3                 | 0,2               | 2,5            | 2,5              | 1                   | 9,3          | 26,5         | 52,2°C             |
| 23       | 8p1                                   | ISSR13           | 8        | 3                 | 0,2               | 2,5            | 2,5              | 1                   | 9,3          | 26,5         | 57,7°C             |
| 24<br>25 | 8p1<br>8p1                            | ISSR13<br>ISSR13 | 8        | 3                 | 0,2<br>0,2        | 2,5<br>2,5     | 2,5<br>2,5       | 1                   | 9,3<br>9,3   | 26,5<br>26,5 | 62,7°C<br>65°C     |
|          | ορι                                   | JOINTO           |          |                   | ٠,٤               |                | 2,0              | <u> </u>            |              | 20,0         | _ 50 0             |

|                                                                                 | DIA 26/10/2015                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                  |                                                                                                                                                        |                                                                                                                                                               |
|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ID                                                                              | INDIVÍDUO                                                                                                                                                                                          | primer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DNA 10ng                                                                                                                                       | primer                                                                                                                   | Polimerase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Buffer                                                                                                                      | dNTP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MgCl                                                                                                                                                                                                       | ddH2O                                                                                                                                                                                                                                            | soma                                                                                                                                                   |                                                                                                                                                               |
| 26                                                                              | 8p1                                                                                                                                                                                                | ISSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                              | 5pmoles<br>1,5                                                                                                           | <b>Taq</b> 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10x<br>2,5                                                                                                                  | <b>100mM</b> 2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>50mM</b>                                                                                                                                                                                                | 15,3                                                                                                                                                                                                                                             | 25                                                                                                                                                     | °C anel.<br>42,2°C                                                                                                                                            |
| 27                                                                              | 8p1                                                                                                                                                                                                | ISSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                              | 1,5                                                                                                                      | 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,5                                                                                                                         | 2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                          | 15,3                                                                                                                                                                                                                                             | 25                                                                                                                                                     | 46,8°C                                                                                                                                                        |
| 28                                                                              | 8p1                                                                                                                                                                                                | ISSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                              | 1,5                                                                                                                      | 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,5                                                                                                                         | 2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                          | 15,3                                                                                                                                                                                                                                             | 25                                                                                                                                                     | 52,2°C                                                                                                                                                        |
| 29<br>30                                                                        | 8p1<br>8p1                                                                                                                                                                                         | ISSR13<br>ISSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                              | 1,5<br>1,5                                                                                                               | 0,2<br>0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,5<br>2,5                                                                                                                  | 2,5<br>2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                          | 15,3<br>15,3                                                                                                                                                                                                                                     | 25<br>25                                                                                                                                               | 57,7°C<br>62,7°C                                                                                                                                              |
| 31                                                                              | 8p1                                                                                                                                                                                                | ISSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                              | 1,5                                                                                                                      | 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,5                                                                                                                         | 2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                          | 15,3                                                                                                                                                                                                                                             | 25                                                                                                                                                     | 65°C                                                                                                                                                          |
|                                                                                 | D14 00/40/0045                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                  |                                                                                                                                                        |                                                                                                                                                               |
|                                                                                 | DIA 26/10/2015                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                | primer                                                                                                                   | Polimerase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Buffer                                                                                                                      | dNTP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MgCl                                                                                                                                                                                                       |                                                                                                                                                                                                                                                  |                                                                                                                                                        |                                                                                                                                                               |
| ID                                                                              | INDIVÍDUO                                                                                                                                                                                          | primer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DNA 10ng                                                                                                                                       | 5pmoles                                                                                                                  | Taq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10x                                                                                                                         | 100mM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50mM                                                                                                                                                                                                       | ddH2O                                                                                                                                                                                                                                            | soma                                                                                                                                                   | °C anel.                                                                                                                                                      |
| 32                                                                              | 8p1                                                                                                                                                                                                | ISSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                              | 1,5                                                                                                                      | 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,5                                                                                                                         | 2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                          | 15,3                                                                                                                                                                                                                                             | 25                                                                                                                                                     | 42,2°C                                                                                                                                                        |
| 33                                                                              | 8p1                                                                                                                                                                                                | ISSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                              | 1,5                                                                                                                      | 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,5                                                                                                                         | 2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                          | 15,3                                                                                                                                                                                                                                             | 25                                                                                                                                                     | 46,8°C                                                                                                                                                        |
| 34<br>35                                                                        | 8p1<br>8p1                                                                                                                                                                                         | ISSR13<br>ISSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                              | 1,5<br>1,5                                                                                                               | 0,2<br>0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,5<br>2,5                                                                                                                  | 2,5<br>2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                          | 15,3<br>15,3                                                                                                                                                                                                                                     | 25<br>25                                                                                                                                               | 52,2°C<br>57,7°C                                                                                                                                              |
| 36                                                                              | 8p1                                                                                                                                                                                                | ISSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                              | 1,5                                                                                                                      | 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,5                                                                                                                         | 2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                          | 15,3                                                                                                                                                                                                                                             | 25                                                                                                                                                     | 62,7°C                                                                                                                                                        |
| 37                                                                              | 8p1                                                                                                                                                                                                | ISSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                              | 1,5                                                                                                                      | 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,5                                                                                                                         | 2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                          | 15,3                                                                                                                                                                                                                                             | 25                                                                                                                                                     | 65°C                                                                                                                                                          |
|                                                                                 | DIA 04/11/2015                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                  |                                                                                                                                                        |                                                                                                                                                               |
| ID                                                                              | INDIVÍDUO                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DNA 10ng                                                                                                                                       | primer                                                                                                                   | Polimerase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Buffer                                                                                                                      | dNTP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MgCl                                                                                                                                                                                                       | ddH2O                                                                                                                                                                                                                                            |                                                                                                                                                        |                                                                                                                                                               |
|                                                                                 |                                                                                                                                                                                                    | primer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                                                                                                                                              | 5pmoles                                                                                                                  | Taq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10x                                                                                                                         | 100mM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50mM                                                                                                                                                                                                       |                                                                                                                                                                                                                                                  | soma                                                                                                                                                   | °C anel.                                                                                                                                                      |
| 38<br>39                                                                        | 6p1                                                                                                                                                                                                | ISSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                              | 1,5<br>1,5                                                                                                               | 0,2<br>0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,5<br>2,5                                                                                                                  | 2,5<br>2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                          | 13,3<br>13,3                                                                                                                                                                                                                                     | 25<br>25                                                                                                                                               | 45°C<br>47°C                                                                                                                                                  |
| 40                                                                              | 6p1<br>6p1                                                                                                                                                                                         | ISSR13<br>ISSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                                                                                                              | 1,5                                                                                                                      | 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,5                                                                                                                         | 2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                          | 13,3                                                                                                                                                                                                                                             | 25                                                                                                                                                     | 53,8°C                                                                                                                                                        |
| 41                                                                              | 6p1                                                                                                                                                                                                | ISSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                              | 1,5                                                                                                                      | 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,5                                                                                                                         | 2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                          | 13,3                                                                                                                                                                                                                                             | 25                                                                                                                                                     | 58,6°C                                                                                                                                                        |
| 42                                                                              | 6p1                                                                                                                                                                                                | ISSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                              | 1,5                                                                                                                      | 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,5                                                                                                                         | 2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                          | 13,3                                                                                                                                                                                                                                             | 25                                                                                                                                                     | 63°C                                                                                                                                                          |
|                                                                                 | DIA 05/11/2015                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                  |                                                                                                                                                        |                                                                                                                                                               |
| ID                                                                              |                                                                                                                                                                                                    | primar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DNA 10ng                                                                                                                                       | primer                                                                                                                   | Polimerase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Buffer                                                                                                                      | dNTP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MgCl                                                                                                                                                                                                       | ddH2O                                                                                                                                                                                                                                            | como                                                                                                                                                   |                                                                                                                                                               |
|                                                                                 | INDIVÍDUO                                                                                                                                                                                          | primer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DNA 10ng                                                                                                                                       | 5pmoles                                                                                                                  | Taq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10x                                                                                                                         | 100mM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50mM                                                                                                                                                                                                       |                                                                                                                                                                                                                                                  | soma                                                                                                                                                   | °C anel.                                                                                                                                                      |
| 43<br>44                                                                        | 7p1<br>7p1                                                                                                                                                                                         | ISSR13<br>ISSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                                                                                                              | 1,5<br>1,5                                                                                                               | 0,2<br>0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,5<br>2,5                                                                                                                  | 2,5<br>2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                          | 13,3<br>13,3                                                                                                                                                                                                                                     | 25<br>25                                                                                                                                               | 45°C<br>47°C                                                                                                                                                  |
| 45                                                                              | 7p1<br>7p1                                                                                                                                                                                         | ISSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                              | 1,5                                                                                                                      | 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,5                                                                                                                         | 2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                          | 13,3                                                                                                                                                                                                                                             | 25<br>25                                                                                                                                               | 53,8°C                                                                                                                                                        |
| 46                                                                              | 7p1                                                                                                                                                                                                | ISSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                              | 1,5                                                                                                                      | 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,5                                                                                                                         | 2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                          | 13,3                                                                                                                                                                                                                                             | 25                                                                                                                                                     | 58,6°C                                                                                                                                                        |
| 47                                                                              | 7p1                                                                                                                                                                                                | ISSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                              | 1,5                                                                                                                      | 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,5                                                                                                                         | 2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                          | 13,3                                                                                                                                                                                                                                             | 25                                                                                                                                                     | 63°C                                                                                                                                                          |
|                                                                                 | DIA 06/11/2015                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                  |                                                                                                                                                        |                                                                                                                                                               |
| ID                                                                              | INDIVÍDUO                                                                                                                                                                                          | primer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DNA 10ng                                                                                                                                       | primer                                                                                                                   | Polimerase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Buffer                                                                                                                      | dNTP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MgCl                                                                                                                                                                                                       | ddH2O                                                                                                                                                                                                                                            | como                                                                                                                                                   |                                                                                                                                                               |
|                                                                                 |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                              | 5pmoles                                                                                                                  | Taq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10x                                                                                                                         | 100mM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50mM                                                                                                                                                                                                       |                                                                                                                                                                                                                                                  | soma                                                                                                                                                   | °C anel.                                                                                                                                                      |
| 48<br>49                                                                        | 8p1<br>8p1                                                                                                                                                                                         | ISSR13<br>ISSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                                                                                                              | 1,5<br>1,5                                                                                                               | 0,2<br>0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,5<br>2,5                                                                                                                  | 2,5<br>2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                          | 13,3<br>13,3                                                                                                                                                                                                                                     | 25<br>25                                                                                                                                               | 45°C<br>47°C                                                                                                                                                  |
| 50                                                                              | 8p1                                                                                                                                                                                                | ISSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                              | 1,5                                                                                                                      | 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,5                                                                                                                         | 2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                          | 13,3                                                                                                                                                                                                                                             | 25                                                                                                                                                     | 53,8°C                                                                                                                                                        |
| 51                                                                              | 8p1                                                                                                                                                                                                | ISSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                              | 1,5                                                                                                                      | 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,5                                                                                                                         | 2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                          | 13,3                                                                                                                                                                                                                                             | 25                                                                                                                                                     | 58,6°C                                                                                                                                                        |
| 52                                                                              | 8p1                                                                                                                                                                                                | ISSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                              | 1,5                                                                                                                      | 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,5                                                                                                                         | 2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                          | 13,3                                                                                                                                                                                                                                             | 25                                                                                                                                                     | 63°C                                                                                                                                                          |
|                                                                                 | DIA 09/11/2015                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                  |                                                                                                                                                        |                                                                                                                                                               |
| ID                                                                              | INDIVÍDUO                                                                                                                                                                                          | primer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DNA 10ng                                                                                                                                       | primer                                                                                                                   | Polimerase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Buffer                                                                                                                      | dNTP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MgCl                                                                                                                                                                                                       | ddH2O                                                                                                                                                                                                                                            | soma                                                                                                                                                   |                                                                                                                                                               |
|                                                                                 |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                              | 5pmoles                                                                                                                  | Taq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10x                                                                                                                         | 100mM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50mM                                                                                                                                                                                                       |                                                                                                                                                                                                                                                  |                                                                                                                                                        | °C anel.                                                                                                                                                      |
| 53<br>54                                                                        | 9p1<br>9p1                                                                                                                                                                                         | ISSR13<br>ISSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                                                                                                              | 1,5<br>1,5                                                                                                               | 0,2<br>0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,5<br>2,5                                                                                                                  | 2,5<br>2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                          | 13,3<br>13,3                                                                                                                                                                                                                                     | 25<br>25                                                                                                                                               | 45°C<br>47°C                                                                                                                                                  |
| 55                                                                              | 9p1                                                                                                                                                                                                | ISSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                              | 1,5                                                                                                                      | 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,5                                                                                                                         | 2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                          | 13,3                                                                                                                                                                                                                                             | 25                                                                                                                                                     | 53,8°C                                                                                                                                                        |
| 56                                                                              | 9p1                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 -                                                                                                                         | 2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                          |                                                                                                                                                                                                                                                  |                                                                                                                                                        | 58,6°C                                                                                                                                                        |
|                                                                                 | 0.4                                                                                                                                                                                                | ISSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                              | 1,5                                                                                                                      | 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,5                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                            | 13,3                                                                                                                                                                                                                                             | 25                                                                                                                                                     | 2000                                                                                                                                                          |
| 57                                                                              | 9p1                                                                                                                                                                                                | ISSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                              | 1,5                                                                                                                      | 0,2<br>0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,5                                                                                                                         | 2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                          | 13,3<br>13,3                                                                                                                                                                                                                                     | 25<br>25                                                                                                                                               | 63°C                                                                                                                                                          |
| 57                                                                              | 9p1<br>DIA 10/11/2015                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                  |                                                                                                                                                        | 63°C                                                                                                                                                          |
|                                                                                 | DIA 10/11/2015                                                                                                                                                                                     | ISSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                              | 1,5                                                                                                                      | 0,2 Polimerase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2,5                                                                                                                         | 2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1<br>MgCl                                                                                                                                                                                                  | 13,3                                                                                                                                                                                                                                             | 25                                                                                                                                                     |                                                                                                                                                               |
| ID                                                                              | DIA 10/11/2015<br>INDIVÍDUO                                                                                                                                                                        | ISSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DNA 10ng                                                                                                                                       | 1,5  primer 5pmoles                                                                                                      | 0,2 Polimerase Taq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,5  Buffer 10x                                                                                                             | 2,5<br>dNTP<br>100mM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MgCl<br>50mM                                                                                                                                                                                               | 13,3<br>ddH2O                                                                                                                                                                                                                                    | 25<br>soma                                                                                                                                             | °C anel.                                                                                                                                                      |
| ID 58                                                                           | DIA 10/11/2015  INDIVÍDUO  10p1                                                                                                                                                                    | primer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                              | primer 5pmoles                                                                                                           | Polimerase Taq 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,5  Buffer 10x 2,5                                                                                                         | 2,5<br>dNTP<br>100mM<br>2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1<br>MgCl                                                                                                                                                                                                  | 13,3<br>ddH2O                                                                                                                                                                                                                                    | 25<br>soma<br>25                                                                                                                                       |                                                                                                                                                               |
| ID<br>58<br>59<br>60                                                            | DIA 10/11/2015  INDIVÍDUO  10p1  10p1  10p1                                                                                                                                                        | primer  ISSR13  ISSR13  ISSR13  ISSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DNA 10ng  4 4 4                                                                                                                                | 1,5  primer 5pmoles 1,5 1,5 1,5                                                                                          | 0,2  Polimerase Taq 0,2 0,2 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,5  Buffer 10x 2,5 2,5 2,5                                                                                                 | 2,5<br>dNTP<br>100mM<br>2,5<br>2,5<br>2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 MgCI 50mM 1 1 1                                                                                                                                                                                          | 13,3<br>ddH2O<br>13,3<br>13,3<br>13,3                                                                                                                                                                                                            | 25<br>soma<br>25<br>25<br>25<br>25                                                                                                                     | °C anel.<br>45°C<br>47°C<br>53,8°C                                                                                                                            |
| ID<br>58<br>59<br>60<br>61                                                      | DIA 10/11/2015  INDIVÍDUO  10p1 10p1 10p1 10p1 10p1                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DNA 10ng  4 4 4 4                                                                                                                              | 1,5<br>primer<br>5pmoles<br>1,5<br>1,5<br>1,5                                                                            | 0,2  Polimerase Taq 0,2 0,2 0,2 0,2 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2,5  Buffer 10x 2,5 2,5 2,5 2,5                                                                                             | 2,5<br>dNTP<br>100mM<br>2,5<br>2,5<br>2,5<br>2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1<br>50mM<br>1<br>1<br>1                                                                                                                                                                                   | 13,3<br>ddH2O<br>13,3<br>13,3<br>13,3                                                                                                                                                                                                            | 25<br>soma<br>25<br>25<br>25<br>25<br>25                                                                                                               | °C anel.<br>45°C<br>47°C<br>53,8°C<br>58,6°C                                                                                                                  |
| ID<br>58<br>59<br>60                                                            | DIA 10/11/2015  INDIVÍDUO  10p1  10p1  10p1                                                                                                                                                        | primer  ISSR13  ISSR13  ISSR13  ISSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DNA 10ng  4 4 4                                                                                                                                | 1,5  primer 5pmoles 1,5 1,5 1,5                                                                                          | 0,2  Polimerase Taq 0,2 0,2 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,5  Buffer 10x 2,5 2,5 2,5                                                                                                 | 2,5<br>dNTP<br>100mM<br>2,5<br>2,5<br>2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 MgCI 50mM 1 1 1                                                                                                                                                                                          | 13,3<br>ddH2O<br>13,3<br>13,3<br>13,3                                                                                                                                                                                                            | 25<br>soma<br>25<br>25<br>25<br>25                                                                                                                     | °C anel.<br>45°C<br>47°C<br>53,8°C                                                                                                                            |
| ID<br>58<br>59<br>60<br>61                                                      | DIA 10/11/2015  INDIVÍDUO  10p1 10p1 10p1 10p1 10p1                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DNA 10ng  4 4 4 4                                                                                                                              | 1,5 primer 5pmoles 1,5 1,5 1,5 1,5 1,5                                                                                   | 0,2 Polimerase Taq 0,2 0,2 0,2 0,2 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2,5  Buffer 10x 2,5 2,5 2,5 2,5 2,5 2,5                                                                                     | 2,5<br>dNTP<br>100mM<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1<br>MgCI<br>50mM<br>1<br>1<br>1<br>1                                                                                                                                                                      | 13,3<br>ddH2O<br>13,3<br>13,3<br>13,3                                                                                                                                                                                                            | 25<br>soma<br>25<br>25<br>25<br>25<br>25                                                                                                               | °C anel.<br>45°C<br>47°C<br>53,8°C<br>58,6°C                                                                                                                  |
| ID<br>58<br>59<br>60<br>61                                                      | DIA 10/11/2015  INDIVÍDUO  10p1 10p1 10p1 10p1 10p1 10p1 10p1                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DNA 10ng  4 4 4 4                                                                                                                              | 1,5 primer 5pmoles 1,5 1,5 1,5 1,5 1,5 primer                                                                            | 0,2  Polimerase Taq 0,2 0,2 0,2 0,2 0,2 Polimerase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,5  Buffer 10x 2,5 2,5 2,5 2,5 2,5 2,5 2,5                                                                                 | 2,5<br>dNTP<br>100mM<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>4NTP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 MgCl 50mM 1 1 1 1 1 1 1 1 MgCl                                                                                                                                                                           | 13,3<br>ddH2O<br>13,3<br>13,3<br>13,3                                                                                                                                                                                                            | 25<br>soma<br>25<br>25<br>25<br>25<br>25                                                                                                               | °C anel.<br>45°C<br>47°C<br>53,8°C<br>58,6°C<br>63°C                                                                                                          |
| 58<br>59<br>60<br>61<br>62                                                      | DIA 10/11/2015  INDIVÍDUO  10p1 10p1 10p1 10p1 10p1 10p1  DIA 11/11/2015                                                                                                                           | primer   SSR13     SSR13     SSR13     SSR13     SSR13     SSR13     FSR13     FSR14     Frimer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4 4 4 4 4 4                                                                                                                                    | 1,5 primer 5pmoles 1,5 1,5 1,5 1,5 1,5 primer 5pmoles                                                                    | 0,2  Polimerase Taq 0,2 0,2 0,2 0,2 0,2 Polimerase Taq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2,5  Buffer 10x 2,5 2,5 2,5 2,5 2,5 2,5 2,5                                                                                 | 2,5<br>dNTP<br>100mM<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>4NTP<br>100mM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 MgCl 50mM 1 1 1 1 1 1 1 1 1 1 1 50mM                                                                                                                                                                     | ddH2O 13,3 13,3 13,3 13,3 13,3 13,3 ddH2O                                                                                                                                                                                                        | 25                                                                                                                                                     | °C anel.  45°C  47°C  53,8°C  58,6°C  63°C                                                                                                                    |
| ID 58 59 60 61 62 ID 1 2                                                        | DIA 10/11/2015  INDIVÍDUO  10p1 10p1 10p1 10p1 10p1 10p1  10p1  INDIVÍDUO  DIA 11/11/2015  INDIVÍDUO  P1 P2                                                                                        | ISSR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DNA 10ng  4  4  4  4  4  4  4  4  4  4  4  4  4                                                                                                | 1,5 primer 5pmoles 1,5 1,5 1,5 1,5 1,5 6 6 6                                                                             | 0,2  Polimerase Taq 0,2 0,2 0,2 0,2 0,2 Polimerase Taq 0,2 0,2 0,2 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2,5  Buffer 10x 2,5 2,5 2,5 2,5 2,5 2,5 2,5                                                                                 | 2,5  dNTP 100mM 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MgCl<br>50mM<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>0<br>0,75<br>0,75                                                                                                                             | ddH2O 13,3 13,3 13,3 13,3 13,3 13,3 13,3 13,                                                                                                                                                                                                     | 25 soma 25 25 25 25 25 25 25 25 25 25 25 25 25                                                                                                         | °C anel.  45°C  47°C  53,8°C  58,6°C  63°C  °C anel.  52,8°C  52,8°C                                                                                          |
| 58<br>59<br>60<br>61<br>62<br>ID                                                | DIA 10/11/2015  INDIVÍDUO  10p1 10p1 10p1 10p1 10p1 10p1 10p1 10                                                                                                                                   | SSR13   SSR1 | DNA 10ng  4 4 4 4 4 DNA 10ng                                                                                                                   | 1,5 primer 5pmoles 1,5 1,5 1,5 1,5 1,5 6 6 6                                                                             | 0,2  Polimerase Taq 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2,5  Buffer 10x 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5                                                                     | dNTP<br>100mM<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MgCl<br>50mM<br>1<br>1<br>1<br>1<br>1<br>1<br>50mM<br>0,75<br>0,75                                                                                                                                         | ddH2O<br>13,3<br>13,3<br>13,3<br>13,3<br>13,3<br>13,3<br>0dH2O<br>9,05<br>9,05                                                                                                                                                                   | 25 soma 25 25 25 25 25 25 25 25 25 25 25 25 25                                                                                                         | °C anel.  45°C  47°C  53,8°C  58,6°C  63°C  °C anel.  52,8°C  52,8°C  52,8°C                                                                                  |
| ID 58 59 60 61 62 ID 1 2                                                        | DIA 10/11/2015  INDIVÍDUO  10p1 10p1 10p1 10p1 10p1 10p1  10p1  INDIVÍDUO  P1 P2 P3                                                                                                                | SSR13   SSR1 | DNA 10ng  4  4  4  4  4  4  4  4  4  4  4  4  4                                                                                                | 1,5 primer 5pmoles 1,5 1,5 1,5 1,5 1,5 6 6 6                                                                             | 0,2  Polimerase Taq 0,2 0,2 0,2 0,2 0,2 Polimerase Taq 0,2 0,2 0,2 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2,5  Buffer 10x 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5                                                                             | 2,5  dNTP 100mM 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MgCl<br>50mM<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>0<br>0,75<br>0,75                                                                                                                             | ddH2O 13,3 13,3 13,3 13,3 13,3 13,3 13,3 13,                                                                                                                                                                                                     | 25 soma 25 25 25 25 25 25 25 25 25 25 25 25 25                                                                                                         | °C anel.  45°C  47°C  53,8°C  58,6°C  63°C  °C anel.  52,8°C  52,8°C                                                                                          |
| ID 58 59 60 61 62 ID 1 2 3                                                      | DIA 10/11/2015  INDIVÍDUO  10p1 10p1 10p1 10p1 10p1 10p1  10p1  P1 P2 P3  DIA 17/11/2015 - TAMPÃO COM TRIS-HCL                                                                                     | SSR13   SSR1 | DNA 10ng  4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                  | 1,5 primer 5pmoles 1,5 1,5 1,5 1,5 1,5 6 6 6                                                                             | 0,2  Polimerase Taq 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2,5  Buffer 10x 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5                                                                     | dNTP<br>100mM<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MgCl<br>50mM<br>1<br>1<br>1<br>1<br>1<br>1<br>50mM<br>0,75<br>0,75                                                                                                                                         | ddH2O<br>ddH2O<br>13,3<br>13,3<br>13,3<br>13,3<br>13,3<br>13,3<br>2,0<br>ddH2O<br>9,05<br>9,05<br>9,05<br>27,15                                                                                                                                  | 25  soma 25 25 25 25 25 25 25 30 30 30 30 30 30 30 30 30 30 30 30 30                                                                                   | °C anel.  45°C  47°C  53,8°C  58,6°C  63°C  °C anel.  52,8°C  52,8°C  52,8°C                                                                                  |
| ID 58 59 60 61 62 ID 1 2 3                                                      | DIA 10/11/2015  INDIVÍDUO  10p1 10p1 10p1 10p1 10p1 10p1  DIA 11/11/2015  INDIVÍDUO  P1 P2 P3  DIA 17/11/2015 - TAMPÃO COM TRIS-HCL INDIVÍDUO                                                      | SSR13   SSR1 | DNA 10ng  4 4 4 4 4 4 4 4 DNA 10ng  4 4 4 DNA 10ng                                                                                             | 1,5 primer 5pmoles 1,5 1,5 1,5 1,5 1,5 6 6 18 primer 5pmoles 6 18                                                        | 0,2  Polimerase Taq 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2  Polimerase Taq 0,2 0,2 0,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,5  Buffer 10x 2,5 2,5 2,5 2,5 2,5 2,5 2,5  Buffer 10x 2,5 2,5 7,5  Buffer 10x                                             | 2,5  dNTP 100mM 2,5 2,5 2,5 2,5 2,5 2,5  dNTP 100mM 2,5 2,5 7,5  dNTP 100mM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MgCl<br>50mM<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>50mM<br>0,75<br>0,75<br>0,75<br>2,25                                                                                                          | ddH2O<br>ddH2O<br>13,3<br>13,3<br>13,3<br>13,3<br>13,3<br>0dH2O<br>9,05<br>9,05<br>9,05<br>27,15<br>ddH2O                                                                                                                                        | 25  soma 25 25 25 25 25 25 25  soma 25 25 5 25 75                                                                                                      | °C anel.  45°C 47°C 53,8°C 58,6°C 63°C  °C anel. 52,8°C 52,8°C 52,8°C 52,8°C °C anel.                                                                         |
| ID 58 59 60 61 62 ID 1 2 3 3                                                    | DIA 10/11/2015  INDIVÍDUO  10p1 10p1 10p1 10p1 10p1 10p1 10p1 10                                                                                                                                   | SSR13   SSR1 | DNA 10ng  4  4  4  4  4  4  4  DNA 10ng  4  DNA 10ng  4  4  4  DNA 10ng                                                                        | 1,5  primer 5pmoles 1,5 1,5 1,5 1,5 1,5 1,5 6 6 6 18  primer 5pmoles 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6               | 0,2   Polimerase   Taq   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,6   Polimerase   Taq   0,2   0,6   Polimerase   Taq   0,2   0,2   0,6   Polimerase   Taq   0,2   0,2   0,6   Polimerase   Taq   0,2   0,2   0,2   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   | 2,5  Buffer 10x 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 Buffer 10x 2,5 2,5 2,5 Buffer 10x 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5   | dNTP<br>100mM<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MgCl<br>50mM<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>50mM<br>0,75<br>0,75<br>0,75<br>2,25<br>MgCl<br>50mM                                                                                                    | ddH2O<br>13,3<br>13,3<br>13,3<br>13,3<br>13,3<br>13,3<br>13,3<br>2<br>13,3<br>13,3                                                                                                                                                               | 25  soma  25  25  25  25  25  25  25  5oma  25  5oma  25  25  25  25  25  25  25  25  25  2                                                            | °C anel.  45°C  47°C  53,8°C  58,6°C  63°C  °C anel.  52,8°C  52,8°C  52,8°C  52,8°C  7°C anel.  47°C                                                         |
| ID 58 59 60 61 62 ID 1 2 3                                                      | DIA 10/11/2015  INDIVÍDUO  10p1 10p1 10p1 10p1 10p1 10p1  DIA 11/11/2015  INDIVÍDUO  P1 P2 P3  DIA 17/11/2015 - TAMPÃO COM TRIS-HCL INDIVÍDUO                                                      | SSR13   SSR1 | DNA 10ng  4 4 4 4 4 4 4 4 DNA 10ng  4 4 4 DNA 10ng                                                                                             | 1,5 primer 5pmoles 1,5 1,5 1,5 1,5 1,5 6 6 18 primer 5pmoles 6 18                                                        | 0,2  Polimerase Taq 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2  Polimerase Taq 0,2 0,2 0,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,5  Buffer 10x 2,5 2,5 2,5 2,5 2,5 2,5 2,5  Buffer 10x 2,5 2,5 7,5  Buffer 10x                                             | 2,5  dNTP 100mM 2,5 2,5 2,5 2,5 2,5 2,5  dNTP 100mM 2,5 2,5 7,5  dNTP 100mM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MgCl<br>50mM<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>50mM<br>0,75<br>0,75<br>0,75<br>2,25                                                                                                          | ddH2O<br>ddH2O<br>13,3<br>13,3<br>13,3<br>13,3<br>13,3<br>0dH2O<br>9,05<br>9,05<br>9,05<br>27,15<br>ddH2O                                                                                                                                        | 25  soma 25 25 25 25 25 25 25  soma 25 25 5 25 75                                                                                                      | °C anel.  45°C 47°C 53,8°C 58,6°C 63°C  °C anel. 52,8°C 52,8°C 52,8°C 52,8°C °C anel.                                                                         |
| ID 58 59 60 61 62 ID 1 2 3 ID 4 5                                               | DIA 10/11/2015  INDIVÍDUO  10p1 10p1 10p1 10p1 10p1 10p1 10p1 10                                                                                                                                   | SSR13   SSR1 | DNA 10ng  4 4 4 4 4 4  DNA 10ng  DNA 10ng  4 4 4 4  DNA 10ng  DNA 10ng  4 4 4                                                                  | 1,5 primer 5pmoles 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5                                                               | 0,2  Polimerase Taq 0,2 0,2 0,2 0,2 0,2 0,2 0,2  Polimerase Taq 0,2 0,2 0,6  Polimerase Taq 0,2 0,2 0,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2,5  Buffer 10x 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5  Buffer 10x 2,5 2,5 7,5  Buffer 10x 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 | 2,5  dNTP 100mM 2,5 2,5 2,5 2,5 2,5 2,5 2,5  dNTP 100mM 2,5 2,5 7,5  dNTP 100mM 2,5 2,5 2,5 7,5 2,5 2,5 7,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MgCl<br>50mM<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>50mM<br>0,75<br>0,75<br>2,25<br>MgCl<br>50mM<br>0,75                                                                                               | ddH2O<br>13,3<br>13,3<br>13,3<br>13,3<br>13,3<br>13,3<br>0dH2O<br>9,05<br>9,05<br>27,15<br>ddH2O<br>9,05<br>9,05                                                                                                                                 | 25  soma  25  25  25  25  25  25  soma  25  25  5  25  25  25  25  25  25  25                                                                          | °C anel.  45°C  47°C  53,8°C  58,6°C  63°C  °C anel.  52,8°C  52,8°C  52,8°C  52,8°C  47°C  47°C                                                              |
| ID 58 59 60 61 62 ID 1 2 3 ID 4 5                                               | DIA 10/11/2015  INDIVÍDUO  10p1 10p1 10p1 10p1 10p1 10p1 10p1 10                                                                                                                                   | SSR13   SSR1 | DNA 10ng  4 4 4 4 4 4  DNA 10ng  DNA 10ng  4 4 4 4  DNA 10ng  DNA 10ng  4 4 4                                                                  | 1,5 primer 5pmoles 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5                                                               | 0,2  Polimerase Taq 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 Polimerase Taq 0,2 0,2 0,6  Polimerase Taq 0,2 0,2 0,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,5  Buffer 10x 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5                                                                     | 2,5  dNTP 100mM 2,5 2,5 2,5 2,5 2,5 2,5 2,5 4NTP 100mM 2,5 2,5 2,5 7,5 4NTP 100mM 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MgCl<br>50mM<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>50mM<br>0,75<br>0,75<br>2,25<br>MgCl<br>50mM<br>0,75<br>2,25                                                                                  | ddH2O<br>13,3<br>13,3<br>13,3<br>13,3<br>13,3<br>13,3<br>0dH2O<br>9,05<br>9,05<br>27,15<br>ddH2O<br>9,05<br>9,05                                                                                                                                 | 25  soma  25  25  25  25  25  25  soma  25  25  5  25  25  25  25  25  25  25                                                                          | °C anel.  45°C  47°C  53,8°C  58,6°C  63°C  °C anel.  52,8°C  52,8°C  52,8°C  52,8°C  47°C  47°C                                                              |
| ID 58 59 60 61 62 ID 1 2 3 ID 4 5                                               | DIA 10/11/2015  INDIVÍDUO  10p1 10p1 10p1 10p1 10p1 10p1 10p1 10                                                                                                                                   | SSR13   SSR1 | DNA 10ng  4 4 4 4 4 4  DNA 10ng  DNA 10ng  4 4 4 4  DNA 10ng  DNA 10ng  4 4 4                                                                  | 1,5  primer 5pmoles 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 6 6 6 6 6 18  primer 5pmoles 6 6 6 6 7 8  primer 5pmoles 6 6 6 6 7 8 | 0,2   Polimerase   Taq   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,6   Polimerase   Taq   0,2   0,6   Polimerase   Taq   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   Polimerase   Polimera | 2,5  Buffer 10x 2,5 2,5 2,5 2,5 2,5 2,5  Buffer 10x 2,5 2,5 7,5  Buffer 10x 2,5 2,5 7,5  Buffer 10x 2,5 2,5 7,5             | dNTP<br>100mM<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MgCl<br>50mM<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>50mM<br>0,75<br>0,75<br>0,75<br>2,25<br>MgCl<br>50mM<br>0,75<br>0,75<br>0,75<br>0,75<br>0,75<br>0,75<br>0,75<br>0,75 | ddH2O<br>13,3<br>13,3<br>13,3<br>13,3<br>13,3<br>13,3<br>0dH2O<br>9,05<br>9,05<br>27,15<br>ddH2O<br>9,05<br>9,05                                                                                                                                 | 25  soma  25  25  25  25  25  25  soma  25  25  5  25  25  25  25  25  25  25                                                                          | °C anel.  45°C  47°C  53,8°C  58,6°C  63°C  °C anel.  52,8°C  52,8°C  52,8°C  52,8°C  47°C  47°C                                                              |
| ID 58 59 60 61 62 ID 1 2 3 3 ID 4 5 6                                           | DIA 10/11/2015  INDIVÍDUO  10p1 10p1 10p1 10p1 10p1 10p1 10p1  DIA 11/11/2015  INDIVÍDUO  P1 P2 P3  DIA 17/11/2015 - TAMPÃO COM TRIS-HCL INDIVÍDUO  P1 P2 P3  DIA 18/11/2015 - TAMPÃO COM TRIS-HCL | SSR13   SSR1 | DNA 10ng  4 4 4 4 4 4 4 DNA 10ng  4 0 DNA 10ng 4 4 4 4 4 4 DNA 10ng 4 4 4 4 DNA 10ng                                                           | 1,5 primer 5pmoles 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5                                                               | 0,2  Polimerase Taq 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 Polimerase Taq 0,2 0,2 0,6  Polimerase Taq 0,2 0,2 0,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,5  Buffer 10x 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5                                                                     | 2,5  dNTP 100mM 2,5 2,5 2,5 2,5 2,5 2,5 2,5 4NTP 100mM 2,5 2,5 2,5 7,5 4NTP 100mM 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MgCl<br>50mM<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>50mM<br>0,75<br>0,75<br>2,25<br>MgCl<br>50mM<br>0,75<br>2,25                                                                                  | ddH2O 13,3 13,3 13,3 13,3 13,3 13,3 13,3 13,                                                                                                                                                                                                     | 25  soma  25  25  25  25  25  25  25  25  soma  25  25  25  25  25  25  25  25  25  2                                                                  | °C anel.  45°C 47°C 53,8°C 58,6°C 63°C  °C anel. 52,8°C 52,8°C 52,8°C  °C anel. 47°C 47°C 47°C                                                                |
| ID 58 59 60 61 62 ID 1 2 3 3 ID 4 5 6                                           | DIA 10/11/2015  INDIVÍDUO  10p1 10p1 10p1 10p1 10p1 10p1 10p1 10                                                                                                                                   | SSR13   SSR1 | DNA 10ng  4 4 4 4 4 DNA 10ng  4 4 4 4  DNA 10ng  4 4 4  DNA 10ng  4 4 4 4  DNA 10ng  4 4 4 4                                                   | 1,5                                                                                                                      | Polimerase   Taq   0,2   0,2   0,2   0,2   0,2   0,2   0,6   Polimerase   Taq   0,2   0,2   0,6   Polimerase   Taq   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0 | 2,5  Buffer 10x 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5                                                                     | dNTP   100mM   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2 | MgCl<br>50mM<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                | ddH2O 13,3 13,3 13,3 13,3 13,3 13,3 13,3 13,                                                                                                                                                                                                     | 25  soma  25  25  25  25  25  soma  25  25  75  soma  25  25  soma  25  25  25  25  25  25  25  25  25  2                                              | °C anel.  45°C 47°C 53,8°C 58,6°C 63°C  °C anel. 52,8°C 52,8°C 52,8°C 47°C 47°C 47°C 47°C 45°C 47°C 47°C                                                      |
| ID 58 59 60 61 62 ID 1 2 3 3 ID 4 5 6 ID 7 8 8 9                                | DIA 10/11/2015  INDIVÍDUO  10p1 10p1 10p1 10p1 10p1 10p1 10p1 10                                                                                                                                   | SSR13   SSR1 | DNA 10ng  4 4 4 4 4 4  DNA 10ng  4 4 4 4  DNA 10ng  4 4 4 4 4  DNA 10ng  4 4 4 4 4  DNA 10ng                                                   | 1,5                                                                                                                      | O,2   Polimerase   Taq   O,2   O,2 | 2,5  Buffer 10x 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5                                                                     | 2,5   dNTP   100mM   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2 | MgCl 50mM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                            | ddH2O  13,3  13,3  13,3  13,3  13,3  13,3  13,3  13,3  6dH2O  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05                                                                                                                         | 25  soma  25  25  25  25  25  25  25  25  25  2                                                                                                        | °C anel.  45°C  45°C  53,8°C  58,6°C  63°C  °C anel.  52,8°C  52,8°C  52,8°C  47°C  47°C  47°C  47°C  47°C  50,6°C                                            |
| ID 58 59 60 61 62 ID 1 2 3 3 ID 4 5 6                                           | DIA 10/11/2015  INDIVÍDUO  10p1 10p1 10p1 10p1 10p1 10p1 10p1 10                                                                                                                                   | SSR13   SSR1 | DNA 10ng  4 4 4 4 4 DNA 10ng  4 4 4 4  DNA 10ng  4 4 4  DNA 10ng  4 4 4 4  DNA 10ng  4 4 4 4                                                   | 1,5                                                                                                                      | Polimerase   Taq   0,2   0,2   0,2   0,2   0,2   0,2   0,6   Polimerase   Taq   0,2   0,2   0,6   Polimerase   Taq   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0 | 2,5  Buffer 10x 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5                                                                     | dNTP   100mM   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2 | MgCl<br>50mM<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                | ddH2O 13,3 13,3 13,3 13,3 13,3 13,3 13,3 13,                                                                                                                                                                                                     | 25  soma  25  25  25  25  25  soma  25  25  75  soma  25  25  soma  25  25  25  25  25  25  25  25  25  2                                              | °C anel.  45°C 47°C 53,8°C 58,6°C 63°C  °C anel. 52,8°C 52,8°C 52,8°C 47°C 47°C 47°C 47°C 45°C 47°C 47°C                                                      |
| ID 58 59 60 61 62 ID 1 2 3 3 ID 4 5 6                                           | DIA 10/11/2015  INDIVÍDUO  10p1 10p1 10p1 10p1 10p1 10p1 10p1 10                                                                                                                                   | SSR13   SSR1 | DNA 10ng  4 4 4 4 4 4 4  DNA 10ng                                  | 1,5  primer 5pmoles  1,5  1,5  1,5  1,5  1,5  1,5  1,5  1,                                                               | O,2   Polimerase   Taq   O,2   O,2   O,2   O,2   O,2   O,2   O,2   O,2   O,6   Polimerase   Taq   O,2   O, | 2,5  Buffer 10x 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5                                                                     | 2,5   dNTP   100mM   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2 | MgCl<br>50mM<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                              | ddH2O 13,3 13,3 13,3 13,3 13,3 13,3 13,3 13,                                                                                                                                                                                                     | 25  soma  25  25  25  25  25  25  25  25  25  2                                                                                                        | °C anel.  45°C 47°C 53,8°C 58,6°C 63°C  °C anel. 52,8°C 52,8°C 52,8°C 47°C 47°C 47°C  °C anel. 45°C 47°C 50,6°C 55,6°C 54°C                                   |
| ID 58 59 60 61 62 ID 1 2 3 3 ID 4 5 6                                           | DIA 10/11/2015  INDIVÍDUO  10p1 10p1 10p1 10p1 10p1 10p1 10p1 10                                                                                                                                   | SSR13   SSR1 | DNA 10ng  4 4 4 4 4 4 4  DNA 10ng                                  | 1,5  primer 5pmoles  1,5  1,5  1,5  1,5  1,5  1,5  1,5  1,                                                               | O,2   Polimerase   Taq   O,2   O,2   O,2   O,2   O,2   O,2   O,6   Polimerase   Taq   O,2   O, | 2,5  Buffer 10x 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5                                                                     | dNTP<br>100mM<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MgCl<br>50mM<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                              | ddH2O 13,3 13,3 13,3 13,3 13,3 13,3 13,3 13,                                                                                                                                                                                                     | 25  soma  25  25  25  25  25  25  25  25  25  2                                                                                                        | °C anel.  45°C 47°C 53,8°C 58,6°C 63°C  °C anel. 52,8°C 52,8°C 52,8°C 47°C 47°C 47°C  °C anel. 45°C 47°C 50,6°C 55,6°C 54°C                                   |
| ID 58 59 60 61 62 ID 1 2 3 3 ID 4 5 6                                           | DIA 10/11/2015  INDIVÍDUO  10p1 10p1 10p1 10p1 10p1 10p1 10p1 10                                                                                                                                   | SSR13   SSR1 | DNA 10ng  4 4 4 4 4 4 4  DNA 10ng                                  | 1,5 primer 5pmoles 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5                                                               | O,2   Polimerase   Taq   O,2   O,2 | 2,5  Buffer 10x 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5                                                                     | 2,5   dNTP   100mM   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2 | MgCl<br>50mM<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                              | ddH2O 13,3 13,3 13,3 13,3 13,3 13,3 13,3 13,                                                                                                                                                                                                     | 25  soma  25  25  25  25  25  25  25  25  25  2                                                                                                        | °C anel.  45°C 47°C 53,8°C 58,6°C 63°C  °C anel. 52,8°C 52,8°C 52,8°C 47°C 47°C 47°C  °C anel. 45°C 47°C 50,6°C 55,6°C 54°C                                   |
| ID 58 59 60 61 62 ID 1 2 3 3 ID 4 5 6 ID 7 8 8 9 10 11                          | DIA 10/11/2015  INDIVÍDUO  10p1 10p1 10p1 10p1 10p1 10p1 10p1 10                                                                                                                                   | SSR13   SSR1 | DNA 10ng  4 4 4 4 4 4 4  DNA 10ng  4 4 4 4  DNA 10ng  4 4 4  DNA 10ng  4 4 4  DNA 10ng  4 4 4 4  DNA 10ng  4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 1,5  primer 5pmoles  1,5  1,5  1,5  1,5  1,5  1,5  1,5  1,                                                               | O,2   Polimerase   Taq   O,2   O,2   O,2   O,2   O,2   O,2   O,6   Polimerase   Taq   O,2   O, | 2,5  Buffer 10x 2,5 2,5 2,5 2,5 2,5 2,5 7,5  Buffer 10x 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5                             | dNTP   100mM   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2,5   2 | MgCl<br>50mM<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                | ddH2O  13,3  13,3  13,3  13,3  13,3  13,3  13,3  13,3  6dH2O  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05                                                                                           | 25  soma  25  25  25  25  25  25  25  25  25  2                                                                                                        | °C anel.  45°C  47°C  53,8°C  58,6°C  63°C  °C anel.  52,8°C  52,8°C  52,8°C  47°C  47°C  47°C  47°C  47°C  47°C  45°C  55,6°C  54°C  55°C                    |
| ID 58 59 60 61 62 ID 1 2 3 ID 4 5 6 ID 7 8 9 9 10 11 ID 11 11 ID 12 13          | DIA 10/11/2015  INDIVÍDUO  10p1 10p1 10p1 10p1 10p1 10p1 10p1 10                                                                                                                                   | SSR13   SSR1 | DNA 10ng  4 4 4 4 4 4  DNA 10ng  4 4 4 4  DNA 10ng  4 4 4 4  DNA 10ng  4 4 4 4 4  DNA 10ng  4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                | 1,5 primer 5pmoles 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5                                                               | Polimerase   Taq   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2 | 2,5  Buffer 10x 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5                                                                     | Care    | MgCl<br>50mM<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                              | ddH2O  13,3  13,3  13,3  13,3  13,3  13,3  13,3  ddH2O  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05 | 25  soma  25  25  25  25  25  25  soma  25  25  5  soma  25  25  25  25  25  25  25  25  25  2 | °C anel.  45°C 47°C 53,8°C 58,6°C 63°C  °C anel. 52,8°C 52,8°C 52,8°C 47°C 47°C 47°C 47°C 47°C 47°C  °C anel. 45°C 44°C 55°C  °C anel.                        |
| ID 58 59 60 61 62 ID 1 2 3 3 ID 4 5 6 6 ID 1 1 1 1 ID ID 1 1 1 1 1 ID 1 1 1 1 1 | DIA 10/11/2015  INDIVÍDUO  10p1 10p1 10p1 10p1 10p1 10p1 10p1 10                                                                                                                                   | SSR13   SSR1 | DNA 10ng  4 4 4 4 4 4 4 DNA 10ng  4 4 4 4  DNA 10ng  4 4 4 4  DNA 10ng  4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                    | 1,5  primer 5pmoles  1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,                                                              | O,2   Polimerase   Taq   O,2   O,2 | 2,5  Buffer 10x 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5                                                                     | Color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 MgCl SomM O,75 O,75 O,75 O,75 O,75 O,75 O,75 O,75                                                                                                                                                        | ddH2O  13,3  13,3  13,3  13,3  13,3  13,3  13,3  13,3  13,3  13,3  ddH2O  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  ddH2O  ddH2O  ddH2O  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05    | 25  soma  25  25  25  25  25  25  25  25  25  2                                                                                                        | °C anel.  45°C 47°C 53,8°C 58,6°C 63°C  °C anel. 52,8°C 52,8°C 52,8°C 47°C 47°C 47°C 47°C 47°C 47°C 50,6°C 54°C 50,6°C 54°C 55°C  °C anel. 45°C 46,4°C 48,9°C |
| ID 58 59 60 61 62 ID 1 2 3 3 ID 4 5 6 ID 7 8 8 9 10 11 ID 11 11 ID 11 12 13     | DIA 10/11/2015  INDIVÍDUO  10p1 10p1 10p1 10p1 10p1 10p1 10p1 10                                                                                                                                   | SSR13   SSR1 | DNA 10ng  4 4 4 4 4 4  DNA 10ng  4 4 4 4  DNA 10ng  4 4 4 4  DNA 10ng  4 4 4 4 4  DNA 10ng  4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                | 1,5 primer 5pmoles 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5                                                               | Polimerase   Taq   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2   0,2 | 2,5  Buffer 10x 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5                                                                     | Care    | MgCl<br>50mM<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                              | ddH2O  13,3  13,3  13,3  13,3  13,3  13,3  13,3  ddH2O  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05  9,05 | 25  soma  25  25  25  25  25  25  soma  25  25  5  soma  25  25  25  25  25  25  25  25  25  2 | °C anel.  45°C 47°C 53,8°C 58,6°C 63°C  °C anel. 52,8°C 52,8°C 52,8°C 47°C 47°C 47°C 47°C 47°C 47°C  °C anel. 45°C 44°C 55°C  °C anel.                        |

|                                                                                                    | DIA 20/11/2015 - TAMPÃO COM TRIS-HCL                                                                                |                                                                       |                                                                                                                                  |                                                                                                                      |                                                                           |                                                                                                   |                                                                                            |                                                                                                                    |                                                                                      |                                                                                     |                                                                                                                                           |
|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| ID                                                                                                 | INDIVÍDUO                                                                                                           | primer                                                                | DNA 10ng                                                                                                                         | primer<br>5pmoles                                                                                                    | Polimerase<br>Taq                                                         | Buffer<br>10x                                                                                     | dNTP<br>100mM                                                                              | MgCl<br>50mM                                                                                                       | ddH2O                                                                                | soma                                                                                | °C anel.                                                                                                                                  |
| 17                                                                                                 | P1                                                                                                                  | 866                                                                   | 4                                                                                                                                | 6                                                                                                                    | 0,2                                                                       | 2,5                                                                                               | 2,5                                                                                        | 0,75                                                                                                               | 9,05                                                                                 | 25                                                                                  | 41°C                                                                                                                                      |
| 18                                                                                                 | P1                                                                                                                  | 866                                                                   | 4                                                                                                                                | 6                                                                                                                    | 0,2                                                                       | 2,5                                                                                               | 2,5                                                                                        | 0,75                                                                                                               | 9,05                                                                                 | 25                                                                                  | 46,4°C                                                                                                                                    |
| 19                                                                                                 | P1                                                                                                                  | 866                                                                   | 4                                                                                                                                | 6                                                                                                                    | 0,2                                                                       | 2,5                                                                                               | 2,5                                                                                        | 0,75                                                                                                               | 9,05                                                                                 | 25                                                                                  | 48,9°C                                                                                                                                    |
| 20                                                                                                 | P1<br>P1                                                                                                            | 866                                                                   | 4                                                                                                                                | 6                                                                                                                    | 0,2                                                                       | 2,5                                                                                               | 2,5                                                                                        | 0,75                                                                                                               | 9,05                                                                                 | 25                                                                                  | 50,6°C                                                                                                                                    |
| 21                                                                                                 | PI                                                                                                                  | 866                                                                   | 4                                                                                                                                | 6                                                                                                                    | 0,2                                                                       | 2,5                                                                                               | 2,5                                                                                        | 0,75                                                                                                               | 9,05                                                                                 | 25                                                                                  | 52°C                                                                                                                                      |
|                                                                                                    | DIA 23/11/2015 - TAMPÃO COM TRIS-HCL                                                                                |                                                                       |                                                                                                                                  |                                                                                                                      |                                                                           |                                                                                                   |                                                                                            |                                                                                                                    |                                                                                      |                                                                                     |                                                                                                                                           |
| ID                                                                                                 | INDIVÍDUO                                                                                                           | primer                                                                | DNA 10ng                                                                                                                         | primer<br>5pmoles                                                                                                    | Polimerase<br>Taq                                                         | Buffer<br>10x                                                                                     | dNTP<br>100mM                                                                              | MgCl<br>50mM                                                                                                       | ddH2O                                                                                | soma                                                                                | °C anel.                                                                                                                                  |
| 22                                                                                                 | P1                                                                                                                  | 890                                                                   | 4                                                                                                                                | 6                                                                                                                    | 0,2                                                                       | 2,5                                                                                               | 2,5                                                                                        | 0,75                                                                                                               | 9,05                                                                                 | 25                                                                                  | 41°C                                                                                                                                      |
| 23                                                                                                 | P1                                                                                                                  | 890                                                                   | 4                                                                                                                                | 6                                                                                                                    | 0,2                                                                       | 2,5                                                                                               | 2,5                                                                                        | 0,75                                                                                                               | 9,05                                                                                 | 25                                                                                  | 46,4°C                                                                                                                                    |
| 24                                                                                                 | P1                                                                                                                  | 890                                                                   | 4                                                                                                                                | 6                                                                                                                    | 0,2                                                                       | 2,5                                                                                               | 2,5                                                                                        | 0,75                                                                                                               | 9,05                                                                                 | 25                                                                                  | 48,9°C                                                                                                                                    |
| 25                                                                                                 | P1                                                                                                                  | 890                                                                   | 4                                                                                                                                | 6                                                                                                                    | 0,2                                                                       | 2,5                                                                                               | 2,5                                                                                        | 0,75                                                                                                               | 9,05                                                                                 | 25                                                                                  | 50,6°C                                                                                                                                    |
| 26                                                                                                 | P1                                                                                                                  | 890                                                                   | 4                                                                                                                                | 6                                                                                                                    | 0,2                                                                       | 2,5                                                                                               | 2,5                                                                                        | 0,75                                                                                                               | 9,05                                                                                 | 25                                                                                  | 52°C                                                                                                                                      |
|                                                                                                    | DIA 24/11/2015 - TAMPÃO COM TRIS- HCL                                                                               | 1                                                                     |                                                                                                                                  |                                                                                                                      |                                                                           |                                                                                                   |                                                                                            |                                                                                                                    |                                                                                      |                                                                                     |                                                                                                                                           |
| ID                                                                                                 | INDIVÍDUO                                                                                                           | primer                                                                | DNA 10ng                                                                                                                         | primer                                                                                                               | Polimerase                                                                | Buffer                                                                                            | dNTP                                                                                       | MgCl                                                                                                               | ddH2O                                                                                | soma                                                                                |                                                                                                                                           |
|                                                                                                    |                                                                                                                     |                                                                       | ū                                                                                                                                | 5pmoles                                                                                                              | Taq                                                                       | 10x                                                                                               | 100mM                                                                                      | 50mM                                                                                                               |                                                                                      |                                                                                     | °C anel.                                                                                                                                  |
| 27                                                                                                 | P1                                                                                                                  | 836                                                                   | 4                                                                                                                                | 6                                                                                                                    | 0,2                                                                       | 2,5                                                                                               | 2,5                                                                                        | 0,75                                                                                                               | 9,05                                                                                 | 25                                                                                  | 42°C                                                                                                                                      |
| 28                                                                                                 | P1                                                                                                                  | 836                                                                   | 4                                                                                                                                | 6                                                                                                                    | 0,2                                                                       | 2,5                                                                                               | 2,5                                                                                        | 0,75                                                                                                               | 9,05                                                                                 | 25                                                                                  | 44°C                                                                                                                                      |
| 29<br>30                                                                                           | P1<br>P1                                                                                                            | 836                                                                   | 4                                                                                                                                | 6                                                                                                                    | 0,2<br>0,2                                                                | 2,5<br>2,5                                                                                        | 2,5<br>2,5                                                                                 | 0,75<br>0,75                                                                                                       | 9,05<br>9,05                                                                         | 25<br>25                                                                            | 46,4°C<br>50°C                                                                                                                            |
| 31                                                                                                 | P1                                                                                                                  | 836<br>836                                                            | 4                                                                                                                                | 6                                                                                                                    | 0,2                                                                       | 2,5                                                                                               | 2,5                                                                                        | 0,75                                                                                                               | 9,05                                                                                 | 25                                                                                  | 50°C                                                                                                                                      |
| 31                                                                                                 | 11                                                                                                                  | 830                                                                   | 4                                                                                                                                |                                                                                                                      | 0,2                                                                       | 2,0                                                                                               | 2,0                                                                                        | 0,73                                                                                                               | 3,00                                                                                 | 23                                                                                  | 32.0                                                                                                                                      |
|                                                                                                    | DIA 25/11/2015 - TAMPÃO COM TRIS-HCL                                                                                | 1                                                                     |                                                                                                                                  |                                                                                                                      |                                                                           |                                                                                                   |                                                                                            |                                                                                                                    |                                                                                      |                                                                                     |                                                                                                                                           |
| ID                                                                                                 | INDIVÍDUO                                                                                                           | primer                                                                | DNA 10ng                                                                                                                         | primer<br>5pmoles                                                                                                    | Polimerase<br>Taq                                                         | Buffer<br>10x                                                                                     | dNTP<br>100mM                                                                              | MgCl<br>50mM                                                                                                       | ddH2O                                                                                | soma                                                                                | °C anel.                                                                                                                                  |
| 32                                                                                                 | P1                                                                                                                  | С                                                                     | 4                                                                                                                                | 6                                                                                                                    | 0,2                                                                       | 2,5                                                                                               | 2,5                                                                                        | 0,75                                                                                                               | 9,05                                                                                 | 25                                                                                  | 42°                                                                                                                                       |
| 33                                                                                                 | P1                                                                                                                  | С                                                                     | 4                                                                                                                                | 6                                                                                                                    | 0,2                                                                       | 2,5                                                                                               | 2,5                                                                                        | 0,75                                                                                                               | 9,05                                                                                 | 25                                                                                  | 44°                                                                                                                                       |
| 34                                                                                                 | P1                                                                                                                  | С                                                                     | 4                                                                                                                                | 6                                                                                                                    | 0,2                                                                       | 2,5                                                                                               | 2,5                                                                                        | 0,75                                                                                                               | 9,05                                                                                 | 25                                                                                  | 46,4°                                                                                                                                     |
| 35                                                                                                 | P1                                                                                                                  | С                                                                     | 4                                                                                                                                | 6                                                                                                                    | 0,2                                                                       | 2,5                                                                                               | 2,5                                                                                        | 0,75                                                                                                               | 9,05                                                                                 | 25                                                                                  | 50°                                                                                                                                       |
| 36                                                                                                 | P1                                                                                                                  | С                                                                     | 4                                                                                                                                | 6                                                                                                                    | 0,2                                                                       | 2,5                                                                                               | 2,5                                                                                        | 0,75                                                                                                               | 9,05                                                                                 | 25                                                                                  | 52°                                                                                                                                       |
|                                                                                                    | DIA COMATONE TAMPÃO COM TRICUIO                                                                                     | -                                                                     |                                                                                                                                  |                                                                                                                      |                                                                           |                                                                                                   |                                                                                            |                                                                                                                    |                                                                                      |                                                                                     |                                                                                                                                           |
| ID                                                                                                 | DIA 26/11/2015 - TAMPÃO COM TRIS-HCL                                                                                | primer                                                                | DNA 10ng                                                                                                                         | primer                                                                                                               | Polimerase                                                                | Buffer                                                                                            | dNTP                                                                                       | MgCl                                                                                                               | ddH2O                                                                                | soma                                                                                |                                                                                                                                           |
|                                                                                                    |                                                                                                                     | primer                                                                | DIA TONG                                                                                                                         | 5pmoles                                                                                                              | Taq                                                                       | 10x                                                                                               | 100mM                                                                                      | 50mM                                                                                                               | uurizo                                                                               | Soma                                                                                | °C anel.                                                                                                                                  |
|                                                                                                    |                                                                                                                     |                                                                       |                                                                                                                                  |                                                                                                                      |                                                                           |                                                                                                   |                                                                                            |                                                                                                                    |                                                                                      |                                                                                     |                                                                                                                                           |
| 37                                                                                                 | P2                                                                                                                  | 808                                                                   | 4                                                                                                                                | 6                                                                                                                    | 0,2                                                                       | 2,5                                                                                               | 2,5                                                                                        | 0,75                                                                                                               | 9,05                                                                                 | 25                                                                                  | 42°                                                                                                                                       |
| 38                                                                                                 | P2                                                                                                                  | 808                                                                   | 4                                                                                                                                | 6                                                                                                                    | 0,2                                                                       | 2,5                                                                                               | 2,5                                                                                        | 0,75                                                                                                               | 9,05                                                                                 | 25                                                                                  | 44°                                                                                                                                       |
| 38<br>39                                                                                           | P2<br>P2                                                                                                            | 808<br>808                                                            | 4                                                                                                                                | 6<br>6                                                                                                               | 0,2<br>0,2                                                                | 2,5<br>2,5                                                                                        | 2,5<br>2,5                                                                                 | 0,75<br>0,75                                                                                                       | 9,05<br>9,05                                                                         | 25<br>25                                                                            | 44°<br>46,4°                                                                                                                              |
| 38<br>39<br>40                                                                                     | P2<br>P2<br>P2                                                                                                      | 808<br>808<br>808                                                     | 4<br>4<br>4                                                                                                                      | 6<br>6<br>6                                                                                                          | 0,2<br>0,2<br>0,2                                                         | 2,5<br>2,5<br>2,5                                                                                 | 2,5<br>2,5<br>2,5                                                                          | 0,75<br>0,75<br>0,75                                                                                               | 9,05<br>9,05<br>9,05                                                                 | 25<br>25<br>25                                                                      | 44°<br>46,4°<br>50°                                                                                                                       |
| 38<br>39                                                                                           | P2<br>P2                                                                                                            | 808<br>808                                                            | 4                                                                                                                                | 6<br>6                                                                                                               | 0,2<br>0,2                                                                | 2,5<br>2,5                                                                                        | 2,5<br>2,5                                                                                 | 0,75<br>0,75                                                                                                       | 9,05<br>9,05                                                                         | 25<br>25                                                                            | 44°<br>46,4°                                                                                                                              |
| 38<br>39<br>40                                                                                     | P2<br>P2<br>P2                                                                                                      | 808<br>808<br>808                                                     | 4<br>4<br>4                                                                                                                      | 6<br>6<br>6                                                                                                          | 0,2<br>0,2<br>0,2<br>0,2<br>0,2                                           | 2,5<br>2,5<br>2,5<br>2,5<br>2,5                                                                   | 2,5<br>2,5<br>2,5<br>2,5<br>2,5                                                            | 0,75<br>0,75<br>0,75<br>0,75                                                                                       | 9,05<br>9,05<br>9,05                                                                 | 25<br>25<br>25                                                                      | 44°<br>46,4°<br>50°                                                                                                                       |
| 38<br>39<br>40                                                                                     | P2<br>P2<br>P2<br>P2<br>P2                                                                                          | 808<br>808<br>808                                                     | 4<br>4<br>4                                                                                                                      | 6<br>6<br>6                                                                                                          | 0,2<br>0,2<br>0,2                                                         | 2,5<br>2,5<br>2,5                                                                                 | 2,5<br>2,5<br>2,5                                                                          | 0,75<br>0,75<br>0,75                                                                                               | 9,05<br>9,05<br>9,05                                                                 | 25<br>25<br>25                                                                      | 44°<br>46,4°<br>50°                                                                                                                       |
| 38<br>39<br>40<br>41<br>ID                                                                         | P2 P2 P2 P2 P2 P2 DIA 01/12/2015 - TAMPÃO COM TRIS-HCL INDIVÍDUO P2                                                 | 808<br>808<br>808<br>808<br>Primer                                    | 4<br>4<br>4<br>4<br>DNA 10ng                                                                                                     | 6<br>6<br>6<br>6<br>primer<br>5pmoles                                                                                | 0,2<br>0,2<br>0,2<br>0,2<br>0,2<br>Polimerase<br>Taq<br>0,2               | 2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>Buffer<br>10x<br>2,5                                           | 2,5<br>2,5<br>2,5<br>2,5<br>2,5<br><b>dNTP</b><br>100mM                                    | 0,75<br>0,75<br>0,75<br>0,75<br>0,75<br><b>MgCl</b><br><b>50mM</b>                                                 | 9,05<br>9,05<br>9,05<br>9,05<br>9,05<br><b>ddH2O</b><br>9,05                         | 25<br>25<br>25<br>25<br>25<br>soma                                                  | 44° 46,4° 50° 52°  °C anel. 42°                                                                                                           |
| 38<br>39<br>40<br>41<br><b>ID</b><br>42<br>43                                                      | P2 P2 P2 P2 P2 P2 DIA 01/12/2015 - TAMPÃO COM TRIS-HCL INDIVÍDUO P2 P2 P2                                           | 808<br>808<br>808<br>808<br><b>primer</b><br>807<br>807               | 4<br>4<br>4<br>4<br>DNA 10ng                                                                                                     | 6<br>6<br>6<br>6<br>9<br>primer<br>5pmoles<br>6                                                                      | 0,2<br>0,2<br>0,2<br>0,2<br>0,2<br>Polimerase<br>Taq<br>0,2<br>0,2        | 2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>Buffer<br>10x<br>2,5<br>2,5                                    | 2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>4NTP<br>100mM<br>2,5<br>2,5                             | 0,75<br>0,75<br>0,75<br>0,75<br>0,75<br><b>MgCl</b><br><b>50mM</b><br>0,75<br>0,75                                 | 9,05<br>9,05<br>9,05<br>9,05<br>9,05<br>ddH2O<br>9,05<br>9,05                        | 25<br>25<br>25<br>25<br>25<br>25<br><b>soma</b><br>25<br>25                         | 44° 46,4° 50° 52°  °C anel. 42° 44°                                                                                                       |
| 38<br>39<br>40<br>41<br><b>ID</b><br>42<br>43<br>44                                                | P2 P2 P2 P2 P2 P2 P1 DIA 01/12/2015 - TAMPÃO COM TRIS-HCL INDIVÍDUO P2 P2 P2 P2 P2                                  | 808<br>808<br>808<br>808<br>808<br><b>primer</b><br>807<br>807        | 4<br>4<br>4<br>4<br>DNA 10ng<br>4<br>4                                                                                           | 6<br>6<br>6<br>6<br>9<br>primer<br>5pmoles<br>6<br>6                                                                 | 0,2<br>0,2<br>0,2<br>0,2<br>0,2<br>Polimerase<br>Taq<br>0,2<br>0,2        | 2,5<br>2,5<br>2,5<br>2,5<br>2,5<br><b>Buffer</b><br>10x<br>2,5<br>2,5<br>2,5                      | 2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>4NTP<br>100mM<br>2,5<br>2,5<br>2,5                      | 0,75<br>0,75<br>0,75<br>0,75<br>0,75<br><b>MgCl</b><br><b>50mM</b><br>0,75<br>0,75                                 | 9,05<br>9,05<br>9,05<br>9,05<br>9,05<br>ddH2O<br>9,05<br>9,05<br>9,05                | 25<br>25<br>25<br>25<br>25<br>25<br>soma<br>25<br>25<br>25<br>25                    | 44° 46,4° 50° 52°  °C anel. 42° 44° 46,4°                                                                                                 |
| 38<br>39<br>40<br>41<br>ID<br>42<br>43<br>44<br>45                                                 | P2 P2 P2 P2 P2 P2 DIA 01/12/2015 - TAMPÃO COM TRIS-HCL INDIVÍDUO P2 P2 P2 P2 P2 P2 P2                               | 808<br>808<br>808<br>808<br>808<br><b>primer</b><br>807<br>807<br>807 | 4<br>4<br>4<br>4<br>DNA 10ng<br>4<br>4<br>4<br>4                                                                                 | 6 6 6 6 6 6 6                                                                                                        | 0,2<br>0,2<br>0,2<br>0,2<br>0,2<br>Polimerase<br>Taq<br>0,2<br>0,2<br>0,2 | 2,5<br>2,5<br>2,5<br>2,5<br>2,5<br><b>Buffer</b><br>10x<br>2,5<br>2,5<br>2,5                      | 2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>4NTP<br>100mM<br>2,5<br>2,5<br>2,5<br>2,5        | 0,75<br>0,75<br>0,75<br>0,75<br>0,75<br>MgCl<br>50mM<br>0,75<br>0,75<br>0,75                                       | 9,05<br>9,05<br>9,05<br>9,05<br>9,05<br><b>ddH2O</b><br>9,05<br>9,05<br>9,05<br>9,05 | 25<br>25<br>25<br>25<br>25<br>25<br><b>soma</b><br>25<br>25<br>25<br>25             | 44° 46,4° 50° 52°  °C anel. 42° 44° 46,4° 50°                                                                                             |
| 38<br>39<br>40<br>41<br><b>ID</b><br>42<br>43<br>44                                                | P2 P2 P2 P2 P2 P2 P1 DIA 01/12/2015 - TAMPÃO COM TRIS-HCL INDIVÍDUO P2 P2 P2 P2 P2                                  | 808<br>808<br>808<br>808<br>808<br><b>primer</b><br>807<br>807        | 4<br>4<br>4<br>4<br>DNA 10ng<br>4<br>4                                                                                           | 6<br>6<br>6<br>6<br>9<br>primer<br>5pmoles<br>6<br>6                                                                 | 0,2<br>0,2<br>0,2<br>0,2<br>0,2<br>Polimerase<br>Taq<br>0,2<br>0,2        | 2,5<br>2,5<br>2,5<br>2,5<br>2,5<br><b>Buffer</b><br>10x<br>2,5<br>2,5<br>2,5                      | 2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>4NTP<br>100mM<br>2,5<br>2,5<br>2,5                      | 0,75<br>0,75<br>0,75<br>0,75<br>0,75<br><b>MgCl</b><br><b>50mM</b><br>0,75<br>0,75                                 | 9,05<br>9,05<br>9,05<br>9,05<br>9,05<br>ddH2O<br>9,05<br>9,05<br>9,05                | 25<br>25<br>25<br>25<br>25<br>25<br><b>soma</b><br>25<br>25<br>25                   | 44° 46,4° 50° 52°  °C anel. 42° 44° 46,4°                                                                                                 |
| 38<br>39<br>40<br>41<br>ID<br>42<br>43<br>44<br>45                                                 | P2 P2 P2 P2 P2 P2 DIA 01/12/2015 - TAMPÃO COM TRIS-HCL INDIVÍDUO P2 P2 P2 P2 P2 P2 P2                               | 808<br>808<br>808<br>808<br>808<br><b>primer</b><br>807<br>807<br>807 | 4<br>4<br>4<br>4<br>DNA 10ng<br>4<br>4<br>4<br>4                                                                                 | 6 6 6 6 6 6 6                                                                                                        | 0,2<br>0,2<br>0,2<br>0,2<br>0,2<br>Polimerase<br>Taq<br>0,2<br>0,2<br>0,2 | 2,5<br>2,5<br>2,5<br>2,5<br>2,5<br><b>Buffer</b><br>10x<br>2,5<br>2,5<br>2,5                      | 2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>4NTP<br>100mM<br>2,5<br>2,5<br>2,5<br>2,5        | 0,75<br>0,75<br>0,75<br>0,75<br>0,75<br>MgCl<br>50mM<br>0,75<br>0,75<br>0,75                                       | 9,05<br>9,05<br>9,05<br>9,05<br>9,05<br><b>ddH2O</b><br>9,05<br>9,05<br>9,05<br>9,05 | 25<br>25<br>25<br>25<br>25<br>25<br><b>soma</b><br>25<br>25<br>25<br>25             | 44° 46,4° 50° 52°  °C anel. 42° 44° 46,4° 50°                                                                                             |
| 38<br>39<br>40<br>41<br>ID<br>42<br>43<br>44<br>45                                                 | P2 P2 P2 P2 P2 P2 P1 DIA 01/12/2015 - TAMPÃO COM TRIS-HCL INDIVÍDUO P2 P2 P2 P2 P2 P2 P2 P2                         | 808<br>808<br>808<br>808<br>808<br><b>primer</b><br>807<br>807<br>807 | 4<br>4<br>4<br>4<br>DNA 10ng<br>4<br>4<br>4<br>4                                                                                 | 6 6 6 6 6 6 6                                                                                                        | 0,2<br>0,2<br>0,2<br>0,2<br>0,2<br>Polimerase<br>Taq<br>0,2<br>0,2<br>0,2 | 2,5<br>2,5<br>2,5<br>2,5<br>2,5<br><b>Buffer</b><br>10x<br>2,5<br>2,5<br>2,5                      | 2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>4NTP<br>100mM<br>2,5<br>2,5<br>2,5<br>2,5        | 0,75<br>0,75<br>0,75<br>0,75<br>0,75<br>MgCl<br>50mM<br>0,75<br>0,75<br>0,75                                       | 9,05<br>9,05<br>9,05<br>9,05<br>9,05<br><b>ddH2O</b><br>9,05<br>9,05<br>9,05<br>9,05 | 25<br>25<br>25<br>25<br>25<br>25<br><b>soma</b><br>25<br>25<br>25<br>25             | 44° 46,4° 50° 52°  °C anel. 42° 44° 46,4° 50°                                                                                             |
| 38<br>39<br>40<br>41<br>ID<br>42<br>43<br>44<br>45<br>46                                           | P2 P2 P2 P2 P2 P2 DIA 01/12/2015 - TAMPÃO COM TRIS-HCL INDIVÍDUO P2             | 808<br>808<br>808<br>808<br>808<br>808<br>808<br>807<br>807<br>807    | 4<br>4<br>4<br>4<br>4<br>DNA 10ng<br>4<br>4<br>4<br>4<br>4                                                                       | 6<br>6<br>6<br>6<br>7<br>8<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 | 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2                                   | 2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>Buffer<br>10x<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5 | 2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5                         | 0,75<br>0,75<br>0,75<br>0,75<br>0,75<br>0,75<br><b>MgCI</b><br>50mM<br>0,75<br>0,75<br>0,75<br>0,75                | 9,05<br>9,05<br>9,05<br>9,05<br>9,05<br>9,05<br>9,05<br>9,05                         | 25<br>25<br>25<br>25<br>25<br>25<br><b>soma</b><br>25<br>25<br>25<br>25<br>25<br>25 | 44° 46,4° 50° 52°  °C anel. 42° 44° 46,4° 50° 52°                                                                                         |
| 38<br>39<br>40<br>41<br>ID<br>42<br>43<br>44<br>45<br>46<br>ID                                     | P2 P2 P2 P2 P2 P2 DIA 01/12/2015 - TAMPĂO COM TRIS-HCL INDIVÍDUO P2             | 808<br>808<br>808<br>808<br>808<br>808<br>807<br>807<br>807<br>807    | 4<br>4<br>4<br>4<br>DNA 10ng<br>4<br>4<br>4<br>4<br>4<br>4<br>DNA 10ng                                                           | 6<br>6<br>6<br>6<br>7<br>8<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 | 0,2<br>0,2<br>0,2<br>0,2<br>0,2<br>0,2<br>0,2<br>0,2<br>0,2<br>0,2        | 2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5                                | 2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>4NTP<br>100mM<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5 | 0,75<br>0,75<br>0,75<br>0,75<br>0,75<br><b>MgCI</b><br><b>50mM</b><br>0,75<br>0,75<br>0,75<br>0,75<br>0,75<br>0,75 | 9,05<br>9,05<br>9,05<br>9,05<br>9,05<br>9,05<br>9,05<br>9,05                         | 25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>2     | 44° 46,4° 50° 52°  *C anel. 42° 44° 46,4° 50° 52°  *C anel. 42° 44° 46,4° 50° 52°                                                         |
| 38<br>39<br>40<br>41<br>ID<br>42<br>43<br>44<br>45<br>46<br>ID<br>47<br>48<br>49                   | P2 P2 P2 P2 P2 P2 P2 DIA 01/12/2015 - TAMPÃO COM TRIS-HCL INDIVÍDUO P2          | 808<br>808<br>808<br>808<br>808<br>808<br>807<br>807<br>807<br>807    | 4<br>4<br>4<br>4<br>4<br>DNA 10ng<br>4<br>4<br>4<br>4<br>4<br>DNA 10ng<br>4<br>4<br>4                                            | 6<br>6<br>6<br>6<br>7<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9                     | 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2                                   | 2,5 2,5 2,5 2,5 2,5  Buffer 10x 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5                           | 2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5                         | 0,75<br>0,75<br>0,75<br>0,75<br>0,75<br>0,75<br>0,75<br>0,75                                                       | 9,05<br>9,05<br>9,05<br>9,05<br>9,05<br>9,05<br>9,05<br>9,05                         | 25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>2     | 44° 46,4° 50° 52°  *C anel. 42° 44° 46,4° 50° 52°  *C anel. 42° 44° 46,4°                                                                 |
| 38<br>39<br>40<br>41<br>ID<br>42<br>43<br>44<br>45<br>46<br>ID<br>47<br>48<br>49<br>50             | P2 P2 P2 P2 P2 P2 P2 DIA 01/12/2015 - TAMPÃO COM TRIS-HCL INDIVÍDUO P2          | 808<br>808<br>808<br>808<br>808<br>808<br>807<br>807<br>807<br>807    | 4<br>4<br>4<br>4<br>4<br>DNA 10ng<br>4<br>4<br>4<br>4<br>DNA 10ng<br>4<br>4<br>4                                                 | 6<br>6<br>6<br>6<br>7<br>5pmoles<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6                                             | 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2                                   | 2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5                                | 2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5                         | 0,75 0,75 0,75 0,75 0,75 0,75  MgCl 50mM 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75                                   | 9,05<br>9,05<br>9,05<br>9,05<br>9,05<br>9,05<br>9,05<br>9,05                         | 25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>2     | 44° 46,4° 50° 52°  *C anel. 42° 444° 46,4° 50° 52°  *C anel. 42° 444° 46,4° 50° 52°                                                       |
| 38<br>39<br>40<br>41<br>ID<br>42<br>43<br>44<br>45<br>46<br>ID<br>47<br>48<br>49                   | P2 P2 P2 P2 P2 P2 P2 DIA 01/12/2015 - TAMPÃO COM TRIS-HCL INDIVÍDUO P2          | 808<br>808<br>808<br>808<br>808<br>808<br>807<br>807<br>807<br>807    | 4<br>4<br>4<br>4<br>4<br>DNA 10ng<br>4<br>4<br>4<br>4<br>4<br>DNA 10ng<br>4<br>4<br>4                                            | 6<br>6<br>6<br>6<br>7<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9                     | 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2                                   | 2,5 2,5 2,5 2,5 2,5  Buffer 10x 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5                           | 2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5                         | 0,75<br>0,75<br>0,75<br>0,75<br>0,75<br>0,75<br>0,75<br>0,75                                                       | 9,05<br>9,05<br>9,05<br>9,05<br>9,05<br>9,05<br>9,05<br>9,05                         | 25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>2     | 44° 46,4° 50° 52°  *C anel. 42° 44° 46,4° 50° 52°  *C anel. 42° 44° 46,4°                                                                 |
| 38<br>39<br>40<br>41<br>ID<br>42<br>43<br>44<br>45<br>46<br>ID<br>47<br>48<br>49<br>50             | P2 P2 P2 P2 P2 P2 P2 DIA 01/12/2015 - TAMPÃO COM TRIS-HCL INDIVÍDUO P2          | 808<br>808<br>808<br>808<br>808<br>808<br>807<br>807<br>807<br>807    | 4<br>4<br>4<br>4<br>4<br>DNA 10ng<br>4<br>4<br>4<br>4<br>DNA 10ng<br>4<br>4<br>4                                                 | 6<br>6<br>6<br>6<br>7<br>8<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 | 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2                                   | 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5                                                           | 2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5                         | 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75                                                                            | 9,05<br>9,05<br>9,05<br>9,05<br>9,05<br>9,05<br>9,05<br>9,05                         | 25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>2     | 44° 46,4° 50° 52°  *C anel. 42° 444° 46,4° 50° 52°  *C anel. 42° 444° 46,4° 50° 52°                                                       |
| 38<br>39<br>40<br>41<br>1D<br>42<br>43<br>44<br>45<br>46<br>1D<br>47<br>48<br>49<br>50<br>51       | P2 P2 P2 P2 P2 P2 DIA 01/12/2015 - TAMPÃO COM TRIS-HCL INDIVÍDUO  P2            | 808<br>808<br>808<br>808<br>808<br>808<br>807<br>807<br>807<br>807    | 4<br>4<br>4<br>4<br>4<br>DNA 10ng<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4 | 6 6 6 7 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                              | 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2                                   | 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5                                                           | 2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5                         | 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75                                                                            | 9,05<br>9,05<br>9,05<br>9,05<br>9,05<br>9,05<br>9,05<br>9,05                         | 25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>2     | 44° 46,4° 50° 52°  *C anel. 42° 44° 46,4° 50° 52°  *C anel. 42° 44° 46,4° 50° 52°  *C anel. 42° 44° 46,4° 50° 52°                         |
| 38<br>39<br>40<br>41<br>1D<br>42<br>43<br>44<br>45<br>46<br>1D<br>1D<br>47<br>48<br>49<br>50<br>51 | P2 DIA 01/12/2015 - TAMPÃO COM TRIS-HCL INDIVÍDUO P2 | 808<br>808<br>808<br>808<br>808<br>808<br>807<br>807<br>807<br>807    | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                      | 6<br>6<br>6<br>6<br>7<br>8<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 | 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2                                   | 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5                                                           | 2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5                         | 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75                                                                            | 9,05<br>9,05<br>9,05<br>9,05<br>9,05<br>9,05<br>9,05<br>9,05                         | 25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>2     | "C anel.  42° 46,4° 50° 52°  "C anel. 42° 46,4° 50° 52°  "C anel. 42° 46,4° 40° 50° 52°  "C anel. 42° 44° 44° 44° 44° 44° 44° 44° 44° 44° |
| 38<br>39<br>40<br>41<br>1D<br>42<br>43<br>44<br>45<br>46<br>1D<br>47<br>48<br>49<br>50<br>51       | P2 P2 P2 P2 P2 P2 P2 DIA 01/12/2015 - TAMPĂO COM TRIS-HCL INDIVÍDUO P2          | 808<br>808<br>808<br>808<br>808<br>808<br>807<br>807<br>807<br>807    | DNA 10ng  DNA 10ng  4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                          | 6 6 6 6 7 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 8 8 8 8                                                                      | 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2                                   | 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5                                                           | 2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5                         | 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75                                                                            | 9,05<br>9,05<br>9,05<br>9,05<br>9,05<br>9,05<br>9,05<br>9,05                         | 25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>2     | "C anel.  "C anel.  42° 444° 46,4° 50° 52°  "C anel. 42° 44° 46,4° 50° 52°  "C anel. 42° 44° 46,4° 50° 52°                                |
| 38<br>39<br>40<br>41<br>1D<br>42<br>43<br>44<br>45<br>46<br>1D<br>1D<br>47<br>48<br>49<br>50<br>51 | P2 DIA 01/12/2015 - TAMPÃO COM TRIS-HCL INDIVÍDUO P2 | 808<br>808<br>808<br>808<br>808<br>808<br>807<br>807<br>807<br>807    | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                      | 6<br>6<br>6<br>6<br>7<br>8<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 | 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2                                   | 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5                                                           | 2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5                         | 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75                                                                            | 9,05<br>9,05<br>9,05<br>9,05<br>9,05<br>9,05<br>9,05<br>9,05                         | 25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>2     | "C anel.  42° 46,4° 50° 52°  "C anel. 42° 46,4° 50° 52°  "C anel. 42° 46,4° 40° 50° 52°  "C anel. 42° 44° 44° 44° 44° 44° 44° 44° 44° 44° |