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RESUMO

SALLUM, Eduardo El Akkari. Otimização de gerenciamento de recursos de rádio em redes
LoRa. 2020. 61 p. Dissertação, Universidade Tecnológica Federal Do Paraná. Ponta Grossa,
2020.

As redes de longa distância e baixa potência (LPWAN) permitem um número crescente de
aplicativos de Internet das Coisas (IoT) com grande cobertura geográfica, baixa taxa de bits
e requisitos de longa vida útil. LoRa (Long Range) é uma tecnologia LPWAN que utiliza a
camada física proprietária Chirp Spread Spectrum (CSS), enquanto as camadas superiores
são definidas por um padrão aberto - LoRaWAN. Nesta dissertação, propomos um método
simples, porém eficaz, para melhorar a Qualidade-de-Serviço (QoS) das redes LoRaWAN ajus-
tando parâmetros de rádio específicos. Através da formulação de um problema Programação
Linear Inteira Mista (MILP), encontramos as configurações ideais para os parâmetros de rádio
Spreading Factor (SF) e Carrier Frequency (CF), considerando as especificações de tráfego da
rede como um todo, para aumentar o Data Extraction Rate (DER), reduzir a taxa de colisão de
pacotes e o Consumo de Energia de Rede LoRa. A eficácia do procedimento de otimização é
demonstrada por simulações, usando o simulador LoRaSim para diferentes escalas de rede.
Em relação às políticas tradicionais de atribuição de parâmetros de rádio LoRa, nossa solução
obteve a um aumento médio de 6% no DER e uma taxa de colisões de pacotes 13 vezes menor.
Em comparação com redes com políticas de atribuição dinâmica de parâmetros de rádio, há
um aumento de 5%, 2,8% e 2% de DER e um número de colisões 11, 7,8 e 2,5 vezes menor
que distribuição igualitária, Tiurlikova e aleatória, respectivamente. Em relação à métrica
Consumo de Energia da Rede, a otimização proposta obteve um consumo médio semelhante
ao Tiurlikova’s e 2,8 vezes menor que as políticas de alocação dinâmica distribuição igualitária
e aleatória. Além disso, abordamos os aspectos práticos de como implementar e integrar o me-
canismo de otimização proposto no LoRa, garantindo retrocompatibilidade com o protocolo
padrão.

Palavras-chave: Internet das Coisas (IoT). LPWAN. Programação Linear Inteira Mista
(MILP). LoRaWAN. Qualidade de Serviço (QoS). Avaliação de desempenho.



ABSTRACT

SALLUM, Eduardo El Akkari. Optimization of radio resource management in LoRa
networks. 2020. 61 p. Dissertation, Universidade Tecnológica Federal do Paraná. Ponta
Grossa, 2020.

Low Power Wide Area Networks (LPWAN) enable a growing number of Internet-of-Things (IoT)
applications with large geographical coverage, low bit-rate, and long lifetime requirements.
LoRa (Long Range) is a well-known LPWAN technology that uses a proprietary Chirp Spread
Spectrum (CSS) physical layer, while the upper layers are defined by an open standard -
LoRaWAN. In this work, we propose a simple yet effective method to improve the Quality-
of-Service (QoS) of LoRaWAN networks by fine-tuning specific radio parameters. Through a
Mixed Integer Linear Programming (MILP) problem formulation, we find optimal settings
for the Spreading Factor (SF) and Carrier Frequency (CF) radio parameters, considering
the network traffic specifications as a whole, to improve the Data Extraction Rate (DER)
and to reduce the packet collision rate and the energy consumption in LoRa networks. The
effectiveness of the optimization procedure is demonstrated by simulations, using LoRaSim
for different network scales. About the traditional LoRa radio parameter assignment policies,
our solution leads to an average increase of 6% in DER, and a number of collisions 13 times
smaller. In comparison to networks with dynamic radio parameter assignment policies, there
is an increase of 5%, 2.8%, and 2% of DER, and a number of collisions 11, 7.8 and 2.5 times
smaller than equal-distribution, Tiurlikova’s (SOTA), and random distribution, respectively.
Regarding the network energy consumption metric, the proposed optimization obtained an
average consumption similar to Tiurlikova’s, and 2.8 times lower than the equal-distribution
and random dynamic allocation policies. Furthermore, we approach the practical aspects of
how to implement and integrate the optimization mechanism proposed in LoRa, guaranteeing
backward compatibility with the standard protocol.

Key-words: Internet of Things (IoT). Low-Power Wide Area Network (LPWAN). Mixed Inte-
ger Linear Programming (MILP). LoRaWAN. LoRa Simulator (LoRaSim). Quality-of-Service
(QoS). Performance evaluation.
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1 INTRODUCTION

We are at the dawn of the next generation of the Internet, which will be dominated

by trillions of tiny computing devices embedded in everyday objects—the paradigm usually

dubbed as Internet-of-Things (IoT). Many communication technologies can be used to

interconnect IoT devices, e.g., short-range communication technologies such as Bluetooth,

ZigBee, and Z-Wave. However, such technologies face critical challenges in terms of energy,

cost, and complexity when applications require covering large geographical areas and feature

a large number of devices, due to the need for tricky multi-hop routing in potentially harsh

environments. Recent standards/technologies for Low-Power Wide-Area Networks (LPWAN)

are an effective way to overcome such challenges and pave the way for new IoT applications

that cover wide geographical areas over long distances (ANGRISANI et al., 2017).

The research on IoT communication protocols focused on short-range communicati-

ons and applications that cover wide areas still face critical challenges regarding energy, cost,

and complexity. To overcome energy challenges, emerging standards for Low-Power Wide

Area-Networks (LP-WAN) enable long-range communications with low energy consumption,

such that resource-constrained sensors can communicate across kilometers and operate

using batteries for up to 10 years without external power sources (CENTENARO et al., 2016).

The LPWAN protocols supply the requirements of IoT applications that cover large areas with

minimal infrastructure (BARRETO et al., 2016).

LPWAN technologies such as LoRa (Long Range) (COMMITTEE et al., 2017), SigFox

(SIGFOX, 2019), Weightless (WEIGHTLESS SIG, 2019), WAVIoT (WAVIOT, 2019), and Wi-Fi

HaLow (WI-FI ALLIANCE, 2019) compete for an increasing market share among other IoT

technologies, with a projected market worth of 65 Billion USD and smart gas and water

metering applications occupying 20% of the LPWAN market by 2025 (GLOBAL MARKET

INSIGHTS, 2019). Figure 1 shows how LPWAN compares to other wireless technologies in

terms of range and Bandwidth (BW).
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Figure 1 – Mapping radio coverage vs. bandwidth of wireless technologies

Source: Adapted from Egli (2015)

This work focuses on LoRa, a proprietary physical layer protocol that affords low-

power and long-distance communication through Chirp Spread Spectrum (CSS) modulation.

The main advantages of LoRa over other LPWAN technologies are the open-source MAC

protocol LoRaWAN specification, low-cost application availability, and community support

(COMMITTEE et al., 2017). For example, ”The Things Network” is a crowd-sourced community

from 85 countries building public and global IoT networks based on LoRa (THE THINGS

INDUSTRIES, 2019b). Figure 2 illustrates the applications of LoRa technology in a smart city.
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Figure 2 – Applications of LoRa technology in a smart city

Source: Authorship.

According to Figure 2, LoRa applications include leakage and irrigation control,

water level and flood management, waste management, city temperature, street lighting, GPS

tracking for vehicles, smart parking, smoke detectors and smart traffic management.

The configurations of a LoRa device are set to use different propagation factors,

bandwidth settings, encoding rate, and transmission power, resulting in more than 6720

possible parameter settings (BOR; ROEDIG, 2017). The physical layer LoRa implements the

CSS transmission method. The characteristics of LoRa are based on the following configurable

parameters:

Bandwidth (BW): BW is the width of the frequencies in the transmission band.

Higher BW values provide a higher data transfer rate and greater sensitivity to noise. The sets

of BW in LoRa are 125, 250, and 500 kHz.

Spreading Factor (SF): SF is the ratio between the symbol rate and the chip rate,

which can be in the range of 7–12. Higher SF increases the SNR, transmission range, and

packet airtime, therefore it decreases the data rate. SFs are imperfectly orthogonal. However,

for traceability purposes in our experiments, they are considered orthogonal. If different SFs

are used, the gateway can successfully decode multiple simultaneous data packets. LoRa

modulation transmits the data at a chip rate equal to the programmed BW (chip-per-second-

per-Hertz). The symbol rate and the bitrate are proportional to the BW. With CSS, each

LoRa symbol is coded with a spreading code of 2SF chips. Then, it takes 2SF chips (SF =
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SF bi t s ×2SF ) to spread a symbol (NOREEN; BOUNCEUR; CLAVIER, 2017).

Carrier Frequency (CF): CF is the center frequency and can be programmed in

a range of 137 MHz to 1020 MHz according to current geographic region legislation. For

example, Table 1 shows the range of frequencies for each CF parameter, sub-bands, and

max-duty-cycle (per hour) according to the ETSI EN300.220 European continent standard

(THE THINGS INDUSTRIES, 2019c). In Brazil, the frequency approved by Anatel is 915 MHz

(ANATEL, 2015).

Table 1 – LoRa frequencies, sub-bands, and max-duty-cycle according to CF.

CF Frequency Sub-Band Max-Duty-Cycle

CF1 868.1 MHz g1 1%
CF2 868.3 MHz g1 1%
CF3 868.5 MHz g1 1%
CF4 867.1 MHz g 1%
CF5 867.3 MHz g 1%
CF6 867.5 MHz g 1%
CF7 867.7 MHz g 1%
CF8 867.9 MHz g 1%

Source: Authorship.

Transmission Power (TP): Due to hardware limitations, the TP in a LoRa network

can be configured in steps of 1 dB with a signal power between 2 and 20 dBm and a service

level of 1% from 17 dBm (BOR et al., 2016).

Coding Rate (CR): LoRa modulation adds Forward Error Correction (FEC), protecting

against transmission interference by encoding 4-bit data with 5–8-bit redundancies, allowing

the receiver to detect and correct errors in the message. The CR values are 4/5, 4/6, 4/7, and

4/8, proportional to the FEC. This means that, if the code rate is denoted as k = N , where

k represents useful information, and the encoder generates N number of output bits, then

N −k will be the redundant bits. Higher CR values provide greater interference protection.

However, it increases the air time. LoRa devices with different CR can switch to communicate

with each other through an explicit header stored in the packet header (NAVARRO-ORTIZ et

al., 2018).

1.1 MOTIVATION

According to industry experts, four out of ten long-range IoT connections are expec-

ted to be powered by LPWAN, with LoRaWAN being the dominant technology (IOT ANALY-

TICS, 2020). Also, Semtech® in partnership with Helium® expands LoRaWAN network deploy-

ments, offering connectivity to up to hundreds of millions of LoRa-based devices in more

than 1,000 cities in North America and Europe (GLOBAL MARKET INSIGHTS, 2020). In Brazil,
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the technology company Net Sensors®, specialized in the development of sustainable soluti-

ons for smart cities, launched smart culverts to fight dengue with low-cost LoRa technology

(TERRA, 2020). Also, LoRa technology has helped combat Covid-19 through the development

of an oximeter via LoRa connection for remote monitoring of patients by researchers from

Rio de Janeiro (UFOP, 2020).

The configuration of LoRaWAN networks may be a challenging task, especially as

the network scales up in the number of nodes. The link layer, LoRa, has some specific radio-

related parameters that can be adjusted, such as Carrier Frequency (CF), Spreading Factor

(SF), Bandwidth (BW), Transmission Power (TP), and Coding Rate (CR). These parameters can

be tuned at a device and/or network level to enhance overall network performance, namely

reducing energy consumption, improving radio coverage, and reducing radio interference

and error rates. However, despite the increasing adoption of LoRa in IoT applications, the

tools, methods, and models available to manage and optimize its performance are still scarce.

Therefore, we propose an optimization method for selecting LoRa parameters to assist the

network designer. The effectiveness of the proposed optimization procedure is demonstra-

ted by simulations, using LoRaSim for different network scales, showing that our solution

performs better than standard and other benchmarking radio parameter assignment policies.

1.2 GENERAL OBJECTIVES

The general objective of this work is to improve the management of radio resources

in LoRa networks.

1.3 SPECIFIC OBJECTIVES

Through the formulation of a Mixed Integer Linear Programming problem, which

generates optimal settings for the Spreading Factor and Carrier Frequency parameters, the

specific objectives of this work are:

(i) Increase the Data Extraction Rate (DER), which provides a network-wide measure of

the valid packets received in a numerical range;

(ii) Reduce the number of collisions;

(iii) Reduce the network energy consumption;

Our LoRaWAN-based solution takes as input a list of available CF and SF parameters

to each node, allowing for pruning settings found to be inadequate (e.g., an SF that is unusable

due to distance).
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1.4 CONTRIBUTIONS

The main contributions of this work are:

(i) Definition of a mathematical optimization formulation of the problem of assigning SF

and CF parameters according to the traffic characteristics of LoRa end-devices;

(ii) Definition of an approximation algorithm that leads to results very close to the optimal,

but with an execution time that grows much slower as the number of end-devices in

the network scales;

(iii) Describe an approach to implement and integrate an algorithm for approximating the

radio parameter assignment optimization method, which generates optimal results

shorter execution time in LoRaWAN networks. Also analyzing, the overhead imposed

by this approximation algorithm to guarantee compatibility with the standard protocol;

(iv) Implementation of the proposed optimization algorithms and other baseline policies

(benchmarks to which our method is compared against in Section 4.3), and as well

as of the Adaptive Data Rate (ADR) mechanism (not implemented in LoRaSim) in the

LoRaSim open-source simulator, making our code available to the community (SALLUM

et al., 2019); and

(v) Comparative performance analysis of six radio parameter assignment policies, showing

the merit of the two proposed parameter assignment methods to the other four policies

that we consider as benchmarks.

1.5 PUBLISHED PAPERS AND CONFERENCES ATTENDED

1.5.1 Published Papers

E. Sallum, N. Pereira, M. Alves, and M. Santos, “Performance optimization on LoRa

networks through assigning radio parameters,” In Proc. 2020 IEEE International Conference on

Industrial Technology (ICIT), p. 304-309, Buenos Aires, Argentina, 26-28 Feb. 2020. [(SALLUM

et al., 2020b)].

E. Sallum, N. Pereira, M. Alves, and M. Santos, “Improving Quality-of-Service in LoRa

Low-Power Wide-Area Networks through Optimized Radio Resource Management,” Journal

of Sensor and Actuator Networks, vol. 9, no. 1, pp. 1-26, Mar. 2020 [(SALLUM et al., 2020a)].



18

1.5.2 Conferences Attended

2020 IEEE International Conference on Industrial Technology (ICIT). Buenos Aires,

Argentina, 26-28 Feb. 2020.

1.6 DISSERTATION STRUCTURE

The remainder of the work is structured as follows: Chapter 2 overviews the characte-

ristics of the LoRa communication protocol that are most relevant within the context of this

work. Chapter 3 discusses relevant related work.

Chapter 4 presents a method to select radio parameters of LoRa networks, based on

a formulation using Mixed-Integer Linear Programming, and the Approximation Algorithm,

which can efficiently produce results very close to the optimal. This chapter also presents the

simulation setup, the evaluation metrics, and the parameter assignment policies.

Chapter 5 results achieved through the comparative analysis of our parameter op-

timization method against relevant benchmark policies. Finally, Chapter 6 concludes by

summarizing the main contributions and unveiling future research directions.
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2 LITERATURE REVIEW

This Chapter presents general aspects of Lora, LoRa physical layer, the device classes

of transactions, and the frame structure.

2.1 LORA AND LORAWAN OVERVIEW

LoRa uses a radio frequency technology that allows communication over long distan-

ces, with minimal energy consumption and a proprietary Chirp Spread Spectrum physical

layer and upper layers defined by an open standard—LoRaWAN. The end-devices can be sen-

sors and actuators, while gateways provide the radio connectivity to end-devices and deliver

packets to the network infrastructure composed of network servers and application servers.

Network servers are responsible for functions such as checking addresses of end-devices, chec-

king received frames for authenticity, handling acknowledgments, and forwarding application

payloads. Application servers perform encryption/decryption of application payloads, ma-

nage user authorization, among other related functions (THE THINGS INDUSTRIES, 2019b).

Figure 3 shows the LoRaWAN network architecture, composed by end-devices, gateways,

network servers, and application servers.

Figure 3 – LoRaWAN network architecture.

Source: Authorship.

2.1.1 Protocol Stack

Figure 4 shows the LoRaWAN protocol stack.



20

Figure 4 – LoRaWAN Protocol Stack.

Source: Authorship.

As shown in Figure 4, the top layer is the Application Layer. The bottom layer is

the Physical Layer (PHY), as detailed in Section 2.1.2, responsible for LoRa modulation and

ISM band definition, which depends on the geographic region (COMMITTEE et al., 2017).

Above the PHY layer, is the Data Link Layer (DLL), defined by the LoRa Alliance. To optimize

energy consumption, LoRaWAN uses a pure ALOHA (YOUSUF; ROCHESTER; GHADERI, 2018)

medium access control mechanism, encompassing three classes of end-devices, namely

Classes A–C, as detailed in Section 2.1.3.

2.1.2 LoRa Physical Layer

LoRa has configurable physical layer parameters that control the communication

range and throughput as Spreading Factor and Transmit Power to set the modulation rate and

the network reach, respectively, coding rate and bandwidth. However, if the N end-devices

with the same SF is over one single channel, there will be collisions. The SF impacts time

on-air and the distance. Therefore, the higher the value chosen for the SF a more extended

range is obtained to the detriment of the data rate.

The airtime of a LoRa transmission is computed according to the payload size and

the combination of SF, BW, and CR. These parameters can make the transmission time vary

significantly. Table 2 exemplifies the different SNR, airtime, and bitrate resulting from the

different SF at a fixed payload length of 20 bytes, BW = 125 kHz, and C R = 4/5.

Table 2 – LoRa Chirps, SNR, airtime, and bitrate according to parameter SF.
SF Chirps / Symbol SNR Airtime Bitrate
7 128 −7.5 56.5 ms 5469 bps
8 256 −10 103 ms 3125 bps
9 512 −12.5 185.3 ms 1758 bps

10 1024 −15 371 ms 977 bps
11 2048 −17.5 741 ms 537 bps
12 4096 −20 1318.9 ms 293 bps

Source: Authorship.

The LoRa PHY frequency varies according to regions and is regulated by duty-cycle,

bandwidth, and maximum Transmit Power of 14dBM. Sensors located closer to the gateway
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can transmit using less airtime and energy. Adjustment of the SF will allow for messages to be

transmitted over a greater distance, as shown in Figure 5.

Figure 5 – Ratio between bitrate and Airtime with antenna proximity.

Source: (THE THINGS INDUSTRIES, 2019b).

2.1.3 Class Transactions

The upper layer protocol, LoRaWAN, defines three classes of end-devices, with bidi-

rectional communication, according to downlink latencies and power requirements. Class A

devices have longer battery life because of higher latency. The downlink occurs within two

windows, both with a specified delay, after an uplink transmission. Figure 6 shows a LoRaWAN

Class A transaction.

Figure 6 – LoRaWAN Class A transaction scheme.

Source: Authorship.

Class B devices schedule downlink receptions from the base station at a pre-established

period, determining when applications can send control messages to the end-devices. Con-

cerning Class A, the Class B transaction has additional downlink windows, which occur at

specific times following a beacon, as illustrated in Figure 7.
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Figure 7 – Class B transaction in up-link direction

Source: Authorship.

Class C devices are grid-powered and always listening to the transmission medium

and thus receive downlink transmissions with the lowest latency (RAZA; KULKARNI; SOO-

RIYABANDARA, 2017). As can be seen in the example shown in Figure 8, it consists of receive

windows that remain almost continuously open (only close during transmission).

Figure 8 – LoRaWAN Class C transaction scheme.

Source: Authorship.

2.1.4 LoRa Medium Access

Low-power sensors transmit the information at low bit-rate asynchronously over a

range of kilometers in an industrial environment. e.g., low-power long-distance networks

such as LPWAN (XIONG et al., 2015). In these environments, pure ALOHA systems are the best

choice for the wide-area random access systems (LoRaWAN) due to the decrease in computer

costs caused by data asynchronous. In LoRaWAN, ALOHA manages access to the medium

and influence on collisions (RAZA; KULKARNI; SOORIYABANDARA, 2017).

To optimize energy consumption, LoRaWAN uses as channel access mechanism

pure ALOHA (YOUSUF; ROCHESTER; GHADERI, 2018). The following example shows the

maximum throughput of pure ALOHA in a frame transmitted successfully. G refer to the

mean used in the Poisson distribution over transmission-attempt amounts. The set of frame

transmission time is T . The probability of there being k transmission-attempts during that
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frame-time is:

Pr ob1F T = Gk e−G

k !
(1)

The average amount of broadcast attempts for 2 successive frame-times is 2G . Therefore, the

probability of successful transmission of a random pair of consecutive frame-times (Pr ob2F T )

(KLEINROCK; TOBAGI, 1975) is:

Pr ob2F T = 2Gk e−2G

k !
(2)

Thus, using Poisson distribution, the throughput (Spur e ) (ABRAMSON, 1970) is expressed

by:

Spur e =Ge−2G (3)

A pure ALOHA achieves a maximum throughput, reached when G = 0.5, is 0.5/e frames per

frame-time, of 18.4% of successful transmissions at T. Therefore, the disadvantages of Pure

ALOHA is the packet loss and the wastage of time (BAIOCCHI; RICCIATO, 2018).

2.1.5 Frame Structure

The preamble, in a range of 6–65535 symbols, initiates the LoRa packet structure. An

optional header, which describes the length and Forward Error Correction (FEC) rate of the

payload, specifies a 16-bit Cyclic Redundancy Check (CRC). The header is transferred with a

4/8 FEC rate. Afterward, there is the payload in the packet structure (BOR et al., 2016). Figure

9 shows the frame structure of LoRa.

Figure 9 – LoRa frame structure.

Source: Adapted from (CASALS et al., 2017)

2.1.6 LoRaWAN Adaptive Data Rate

The Adaptive Data Rate (ADR) mechanism is used to optimize the data transmission

rate and the transmission power of the network nodes, to optimize network scalability and

energy consumption. This mechanism runs asynchronously, with low complexity in the end-

devices and with more complexity in the network server. The ADR should only be enabled by
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end-devices in stable RF conditions and deactivated when the end-device detect unstable RF

conditions. For instance, mobile end-devices must enable the ADR only when they are static

for a certain period.

The appropriate data rate is determined by measurements of uplink messages based

on the frame counter, SNR, and the number of gateways (THE THINGS INDUSTRIES, 2019d).

As specified by the LoRa Alliance Committee et al. (2017), after the ADR bit is set (to 1),

the server analyzes the 20 most recent uplinks. If the ADR bit is reset (to 0), the previous

measurements are discarded and the measurements start again when the ADR is set again.

If uplink messages are not received by the gateway, the ADR algorithm in the end-devices

(ADR-NODE) increases the SF value of the subsequent uplink frame, thereby reducing the

data rate and increasing the probability of reaching a gateway. Algorithm 1 shows the ADR-

NODE algorithm.

Algorithm 1: ADR-NODE (SEMTECH, 2016)
ADR_ACK_LIMIT ← 64

ADR_ACK_DELAY ← 32

ADR_ACK_CNT ← 0

if Uplink transmission then
ADR_ACK_CNT ← ADR_ACK_CNT +1

if ADR_ACK_CNT == ADR_ACK_LIMIT then
Request response from server

if ADR_ACK_CNT ≥ ADR_ACK_LIMIT + ADR_ACK_DELAY then
node_SF ← node_SF +1

if Downlink transmission received then
ADR_ACK_CNT ← 0

The server ADR algorithm (ADR-NET) increases the data rate, consequently decre-

asing the SF, and modifies the TP by measuring the SNR of the received frames, estimated

based on the minimum SNR needed for the demodulation, and adjusted according to the

specific margin of the device. The new parameters values calculated by the algorithm are sent

to the end-device through a downlink frame, to be used in future transmissions (SLABICKI;

PREMSANKAR; FRANCESCO, 2018). Algorithm 2 presents the ADR-NET algorithm.
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Algorithm 2: ADR-NET (SEMTECH, 2016)

Input :dataRate

txPower

SNR

deviceMargin

Output :desiredDataRate

txPower

Linkmar g i n ← SNR - demodulationFloor(dataRate)

SNRmar g i n ← Linkmar g i n - deviceMargin

nStep ← SNRmar g i n/3

drIdx ← getDataRateIndex (dataRate)

for nStep > 0 and drIdx < ADRM axDat aRate do
drIdx ← drIdx +1

nStep ← nStep −1

for nStep > 0 and txPower > txPowermi n do
txPower ← txPower−3

nStep ← nStep −1

for nStep < 0 and txPower < txPowermax do
txPower ← txPower+3

nStep ← nStep +1

ADR is an important mechanism for optimizing the data transfer rate, airtime, and

energy consumption. Understanding its operation is fundamental to make the optimization

of radio parameters proposed in this work backward compatible with the standard LoRa

protocol (therefore with ADR), as explained in Section 4.2.2. Next, Section 4.1 describes the

MILP optimization problem.

2.1.7 Impact Analysis Overhead over LoRa Network

The data rate is the theoretical value that the network can reach since there is no

packet loss or interference. In a LoRa network, considering Spreading Factor,Code Rate and

Bandwidth as input variables, the data rate is calculated by (SEMTECH, 2019):

Rb = SF ∗ [ 4
4+C R ]

[ 2SF

BW ]
∗1000 (4)

Transmission overhead is the main cause of low performance in the communication

link. The right analysis provides designers to establish strategies and algorithms to improve

the entire performance and consequently the full better performance of the distributed
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computer system. Then, throughput is important and metric to measure how good is the

communication and network, i.e., a way to measure the communication performance. The

definition of throughput is the amount of data or payload used by applications that are

successfully sent/received over the communication link. The measuring unit of throughput

can differ from bandwidth due to a range of technical issues, including latency, packet loss,

and jitter.

In the LoRa network, for a single user transmitting a data frame, it is used to study the

impact of packet transmission overhead on the throughput. If we disregard the propagation

times of the signal, then the total time is Ti , where the i is the communication link between

base station and node, is expressed in Equation 5:

Ti = ttr,i + tover head (5)

, where ttr,i is the data frame transmission:

ttr,i = L

R
(6)

, and tover h is the constant overhead:

tover h = tpr eambl e + tH ,lent g h + tH ,cr + tH ,cr c + tcr c (7)

In Equation 6, L is the frame length, and R is the data rate. In Equation 7, tpr eambl e is

the inter-frame space. tH ,lent g h , tH ,cr , and tH ,cr c form the header. Moreover, tcr c represents

the CRC in the physical layer, as shown in Figure 9. Above the MAC layer, the useful throughput

is given by (SARKAR, 2011):

T hr oug hput = ttr,i

Ti
× payload

L
(8)

For the throughput analysis of the whole LoRa networks, we have to consider the

transmission overhead of each node over the network that measures the overhead of the frame

based on Equation 8. Our analysis consists of frames of analyzers with minimum payload and

to evaluate the overall performance of the system.

2.1.8 Parameter Assignment Policies

We performed experiments for the following parameter assignment policies:

• Min-airtime: The min-airtime is a default assignment used by LoRa end-devices which

assigns a fixed CF in CF4 (sub-band g) and SF in SF7 so that packets have the minimum

air time (see Table 2). The table in Figure 10 shows an example of allocating SF and CF

parameters of min-airtime policy on a 96-node LoRa network.
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Figure 10 – Example of assignment of min-airtime policy on a 96-node network

Source: Authorship.

According to Figure 10, the network nodes were assigned with parameters SF7 and CF4.

• Random: The random policy dynamically assigns C F,SF pairs randomly, aiming at

reducing concurrent transmissions (that cause packet collision). The table in Figure 11

illustrates an example of allocating SF and CF parameters of the random policy in a

96-node network.

Figure 11 – Example of assignment of random policy on a 96-node network

Source: Authorship.

As shown in Figure 11, the random policy randomly allocated all network nodes between

SF1 to SF7 and CF1 to CF8.

• Equal-distribution: With a similar goal to random, the equal-distribution distributes

the number of end-devices equally between C F,SF pairs. The table in Figure 12 shows

the example of allocating SF and CF parameters of the Equal-distribution policy in a

96-node network.

Figure 12 – Example of assignment of equal-distribution policy on a 96-node network

Source: Authorship.
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According to the table in Figure 12, all SF and CF parameters were assigned equally

between network nodes.

• Tiurlikova: The Tiurlikova policy is based on the work of Tiurlikova, Stepanov e Mikhay-

lov (2018), which creates a dynamic allocation method of SF. This policy determines the

number of nodes distributed in each SF ni through Equation (9), where i is the index of

SF, T is the airtime (according to Table 2), and N is the nodes numbers:

ni =
1

Ti∑SFmax
i=SFmin

1
Ti

·N (9)

It is important to note that the Tiurlikova policy does not specify the allocation of CF

parameters. The table in Figure 13 illustrates the example of the allocation of SF and CF

parameters of the Tiurlikova policy.

Figure 13 – Example of Tiurlikova policy

Source: Authorship.

According to Figure 13, the Tiurlikova policy prioritized the allocation of nodes in SFs

that have less air time. 45 nodes were allocated to SF7, 25 to SF8, 14 to SF9, 7 to SF10,

and only 3 and 2 nodes were allocated to SF11 and SF12, respectively.

• Opt-problem: The opt-problem is the assignment resulting from solving the optimiza-

tion problem presented using the CPLEX ILP solver (in Section 4.1).

• Approx-alg : The approx-alg policy is the result of using the Approximation Algorithm

(in Section 4.2). The table in Figure 14 shows the example of allocating SF and CF

parameters of policy opt-problem and approx-alg.

Figure 14 – Example of opt-problem and approx-alg policies on a 96-node network

Source: Authorship.
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According to Figure 14, policies opt-problem and approx-alg also prioritized the pla-

cement of nodes in SFs that have less air time. As the optimization proposed in this

dissertation specifies the allocation of the CF parameter, more nodes were allocated to

SF7 (SF that has less air time) compared to the Tiurlikova policy.
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3 RELATED WORK

Network performance and scalability are key factors for LoRaWAN network design.

These factors are influenced mainly by the correct choice of radio parameters and by envi-

ronmental conditions (RAZA; KULKARNI; SOORIYABANDARA, 2017). Several researchers

defined a possible formal approach, through the analysis and comparison of performance

and scalability of LoRaWAN networks, for the problem of parameter selection. In this section,

we outline some relevant works that address these aspects.

The performance analysis of long-range transmission and channel attenuation, made

by Petajajarvi et al. (2015), concludes that, in the best scenario, a single gateway configured

using SF 12, 125 MHz BW, and data rate of 1.8 kbps, covers an area of 30 km in peripheral urban

environments. Additionally, this paper concludes that low values of SF are recommended for

urban scenarios due to less interference caused by the Doppler effect.

In an indoor environment, Neumann, Montavont e Noël (2016) did a performance

analysis of the LoRa network with the parameters throughout RSSI, Signal-to-Noise Ratio

(SNR), packet loss, packet error, power consumption, and delay to verify how the average

current consumption of one end-device impacts in the performance of LoRa network with

one device and one gateway. This study concludes that the data rate affects the packet loss.

Bankov, Khorov e Lyakhov (2016) measured the limits of a LoRaWAN network, which

is about 0.1 51-byte (Frame Payload) in a network with three main channels and six data

rates. That corresponds to 5000 end-devices, each node generating two messages per day. A

performance analysis conducted in Mikhaylov, Petaejaejaervi e Haenninen (2016) of LoRaWan

end-device using the metrics uplink, throughput, and transmission time concluded that, in

terms of LoRaWAN scalability, millions of devices can communicate with a reduced transfer.

Toussaint, Rachkidy e Guitton (2016) evaluated over-the-air performance in a Markov

chain model in different traffic conditions, duty cycles, and channel availability. The expected

delay and energy consumption of the LoRa network depends on the number of channels, the

number of sub-bands, and gateway parameters.

The scalability of LoRaWAN networks evaluated in Abeele et al. (2017) in the ns-

3 simulator, in which the error model is based on interference among various concurrent

transmissions, concludes that increasing the gateway density improves the negative effect of

restrained downstream in packet delivery ratio of upstream messages.

Petäjäjärvi et al. (2017) analyzed the performance of LoRa in three experiments.

The first and second experiments were performed in a LoRa end-device under the Doppler

frequency shift. With TP of 14 dBm and SF12, at least 60 of the packets are received from 30 km

distance on the water. The third experiment was performed on an end-device, mounted in

a car, configured with a TP of 14 dBm and SF of 12. This work concludes that, in a mobile

scenario, the LoRa communication worsens in a displacement speed of end-devices around
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40 km/h.

The work of Vatcharatiansakul, Tuwanut e Pornavalai (2017), in a LoRaWAN perfor-

mance evaluation, carried out in internal and external environments concludes that the LoRa

signal range is affected by the properties of the antennas such as antenna gain, directional,

and antenna height.

In the performance analysis of LoRa network performed in Vangelista (2017), with

Additive white Gaussian noise (AWGN), a frequency selective channel of the Frequency Shift

Chirp Modulation (FCSM), and the Frequency-Shift keying modulation (FSK), the authors

concluded that the performance of the FCSM and FSK in an AWGN channel are equivalent.

However, in a frequency selective channel, the FCSM has a superior performance.

The work of Cattani, Boano e Romer (2017) presents an analysis of the performance

of the LoRa about different configurations of PHY and environmental conditions. The analysis

done in a scenario where the network nodes are at the communication limit concludes that

it is more efficient to use the faster PHY configuration and higher transmission power than

slower configurations that maximize the quality of the link because the faster PHY setting

provides 100 times faster effective bit rate than the slower setting scenario, at the cost of a

10% lower average packet reception rate. Also, the work concludes that environmental factors

such as temperature and humidity impact the rate of reception of packets and the intensity of

the received signal. In a controlled environment with a temperature of 15 ◦C, an optimal link

with 100% Packet Reception Rate becomes unusable at 60 ◦C. Over this temperature range,

the received signal strength is reduced by 6 dBm, being 1 dBm per 10 ◦C.

Yousuf, Rochester e Ghaderi (2018) measured how internal and external urban envi-

ronments affect the LoRa signal. In an internal environment of a seven-story building, there

was a minimal packet drop. The external coverage depends on the environment. In this ex-

periment performed in a range of 4.4 km, there was 15% of packet drops and the packet size

alter the signal range.

Reynders et al. (2018) analyzed and compared the performance of LoRa networks

with a proposed MAC layer two-step lightweight scheduling in the ns-3 simulator. The results

conclude that in a scenario with one gateway and 1000 end-devices, the proposed MAC layer

reduces the Packet Error Ratio around 20%.

Lim e Han (2018) made a proposal and schema validation to maximize the average

Packet Success Probability through SF parameters using MATLAB simulator on Massive

Connectivity (MC), respectively. The projected scheme is better for all others MC to Monte

Carlo simulations and analysis. For example, in a 2000 end-devices LoRa network, the method

provides stability for 810 end-devices, an increase of 22% in MC over the Equal-Area-Based

scheme.

Feltrin et al. (2018) characterized experimentally from the link-level viewpoint and

evaluated through simulations the capacity of a LoRaWAN gateway to provide communica-
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tions in large rural environments. In this scenario, a gateway covering an area of 1 km2, the

maximum node density is 185 end-devices/hectare. However, using this gateway in an area

of 46.5 km2, the maximum density decreased to one node/hectare. To maximize the node

density in this large area, four gateways provide 40 end-devices/hectare.

In Tiurlikova, Stepanov e Mikhaylov (2018), the authors proposed an optimized SF

parameter allocation approach, stating that it increases the probability of uplink data delivery

by 20–40% at the cost of increased power consumption by 1–8%, respectively. Due to its

relevance in the context of this paper, we considered this algorithm as a benchmark (dubbed

“Tiurlikova”) in the comparative performance analysis outlined in Section 4.3.

The work of Zorbas e O’Flynn (2019) proposes a collision-free scheduling approach

in which each node autonomously decides when to transmit a packet based on its unique

identifier. The frame size, the execution time of the exhaustive search, and the collision rate are

evaluated in this work using the LoRasim simulator in scenarios of up to 300 network nodes.

In the evaluated network scenarios, the proposed approach obtained a collision rate between

4–35%, a lower rate compared to the native LoRa, which obtained a collision rate between

9–48%. The proposed approach provides high reliability when nodes are synchronized over

networks with a low number of nodes.

In the work of Lee e Youn (2020), the objective is to propose a group-based trans-

mission scheduling scheme (GTSS) to solve the problem of building a massive IoT network

of LoRa devices. The evaluation metric used is LoRaSim. With a number of network nodes

between 20,000 and 120,000, each device sends a message to the gateway once a day. The work

concludes that it is possible to build a massive IoT network of LoRa devices. The proposed

GTSS achieved high data delivery stability in massive IoT environments, with a value Packet

Delivery Rate 5%–10% higher than the LoRa standard.

Differently from the studies presented, this work proposes to optimize the perfor-

mance of LoRaWAN networks through a dynamic assignment policy of SF and CF parameters,

which is backward compatible with the standard protocol and ADR mechanism. The proposed

policy was compared and analyzed against LoRaWAN’s default assignment policy, and the

random, Tiurlikova’s, and equal dynamic assignment policies.
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4 METHODOLOGY

This chapter describes the methodology used for the development of this work.

Figure 15 presents the flowchart of the process stage of the work proposal.

Figure 15 – Process stages flowchart.

Source: Authorship.

Following the steps described in Figure 15, Section 4.1 present a method to select

optimal values to CF and SF radio parameters, based on a formulation using Mixed Integer

Linear Programming. Section 4.2 presents the Approximation Algorithm, which can efficiently

produce results very close to the optimal. Finally, Section 4.3 outlines the simulation setup,

the evaluation metrics, and the parameter assignment policies.

4.1 MILP OPTIMIZATION PROBLEM

To increase the performance of the LoRaWAN network through the optimization

of radio parameters, we developed a formulation using Mixed Integer Linear Programming

(MILP), a formal mathematical optimization framework. Using MILP provides a mathemati-

cal framework that allows solving complex problems by leveraging well-established theory

and solution methods. Similar approaches using a MILP formulation in-network parameter

optimization scenarios can be found in previous work (e.g., Gounaris et al. (2016), Samsatli e

Samsatli (2018)). It is also important to note that the optimization problem is the baseline

for the approximation algorithm, allowing us to benchmark the approximation against an

optimal solution.

Many objectives can be selected to improve the performance of LoRaWAN networks,

e.g. reduce the individual node energy consumption, improve the reliability of data delivery,

or improve overall throughput. For this work, we aim to minimize the number of collisions

and energy consumption of the Lora network by setting the radio parameters of the LoRaWAN

devices in the network. Our performance problem for LoRaWAN, modeled as a MILP problem,
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assigns values to the CF and SF parameters to improve the performance of the network.

Section 4.1.1 presents general aspects of the MILP, Section 4.1.2 introduces the notation and

model used, and Section 4.1.3 presents our MILP problem formulation.

4.1.1 Background on Mathematical Optimization

Mathematical optimization has been used in a great number of fields, such as in Earl

e D’Andrea (2005) for vehicle- control problems, in Méndez, Henning e Cerdá (2001) for short-

term scheduling of resource-constrained multistage flow-shop batch facilities, in Borghetti et

al. (2008) for short-term hydro scheduling and unit commitment with the head-dependent

reservoir, and in Richards e How (2002) for aircraft planning with collision avoidance. Mathe-

matical optimization is also used for automotive applications when optimizing extensibility

Zhu et al. (2010) or task activation modes Zheng et al. (2007). The problems can be expres-

sed by a set of integer, binary and continuous design variables, design parameters, linear

equalities and inequalities representing the constraints on the solution, and a linear objective

function. The main advantage consists in the possibility of leveraging a well-established

theory and solution methods, which includes the availability of efficient solver engines with

controllable solution accuracy and constrained computing time (BORGHETTI et al., 2008).

Linear Programming is a method for solving design problems using the formal mathe-

matical optimization framework. A MILP optimization problem is given for a set of variables,

objective function, and a set of constraints. Solving the problem attempts to find the best

solution for the objective function in the set of solutions that satisfies the constraints. A MILP

problem is given in the form minx cx, subject to Ax ≤ b, where x ∈ Z n ×Rp . In Integer Pro-

gramming Problem, all variables are limited to be an integer. The set S of x ∈ Z n ×Rp which

satisfy the linear constraints Ax ≤ b is the Feasible Set:

S={x ∈ Z n ×Rp , Ax ≤ b} (10)

An element x ∈ Z n is the feasible solution. The optimization problem finds a solution

in the feasible set that yields the best objective value, a feasibility problem finds an element

that satisfies all constraints and restrictions,i.e., find an element in the feasible set.

4.1.2 Notation and Model

Consider a wireless network system with a LoRaWAN gateway and n end-devices.

End-devices transmit with an average transmission rate λ packets/second and an average

length of ξbytes. The time to transmit a packet of length ξ is given by a function ai r t i me(ξ,c f ),
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which computes the time to transmit according to parameters SF, CR, BW, and payload size.

For this model, we assume a fixed BW and CR, which must be taken into account for the

airtime computations.

To model our problem as an MILP problem, we define an array of tuples Ri∈{i ...n} =(
c fi ,C F , s fi ,SF

)
for each end-device, where C F is a list of available CFs and SF is a list of

available SFs. The lists of SFs and CFs as input allow, e.g., reserving certain CF for other

uses. An example input could be C F = 868.1,868.3,868.5 and SF = 7,8,9,10,11,12 indicating

that the algorithm can use three CFs (868.1, 868.3, and 868.5) and 7–12 SFs in each of these

channels. The
(
c fi ,C F , s fi ,SF

)
tuples are arrays of booleans which indicate if an end-device

i is using a given CF or SF. These are the decision variables of our problem and one of the

constraints of our model must restrict the solutions to only having one value of each of the

arrays set to true in each end-device, as each end-device can only have one CF and one SF

value assigned. Figure 16 illustrates the example of LoRa devices and the respective decision

variables connected to the gateway

Figure 16 – Example of LoRa device decision variables

Source: Authorship.

The end-devices of the LoRaWAN networks as N = {N1, N2, N3 . . . Nn} with CF and

SF parameters communicate with gateway G. To increase network performance, multiple

indexes are considered: energy consumption of the end-devices, network range, interference

reduction, and errors rate. In this case, CF and SF are assigned to maximize the probability

of success on a single gateway. As an input, to model the LoRaWAN network as MILP, we are

given variables ∀i ∈ {1 . . . N }C Fn ,SFn where N is equal to the number of end-devices.



36

4.1.3 MILP Problem Statement

Considering that SFs are orthogonal with each other, we want to minimize the colli-

sion probability for each C F,SF pair. Therefore, the decision variables for each node have two

Boolean arrays C Fn and SFn that indicate the CF and SF of each N . For example, the following

arrays indicate that N1 is using C F7 and C F1:

SF1,7 = 1 C F1,0 = 0

SF1,8 = 0 C F1,1 = 1

SF1,9 = 0 C F1,2 = 0

SF1,10 = 0 C F1,3 = 0

SF1,11 = 0 C F1,4 = 0

SF1,12 = 0 C F1,5 = 0

C F1,6 = 0

C F1,7 = 0

To express this in our MILP model, we define in Equation (11) the following objective

function, which minimizes the difference between the utilization of each C F,SF pair, denoted

as Uc f ,s f , resulting in the minimum load for each C F,SF :∑
c f i∈C F

∑
s f j∈s f

(
Uc f i ,s f j −Uc f l ,s f k

)
(11)

c f l : c f l ∈C F ∧ c f i 6= c f l ;

s f k : s f k ∈ SF ∧ s f j 6= s f k;

where

Uc f i ,s f j = Nc f i ,s f j ×ai r t i me(ξ, s f i )×λ; (12)

Uc f l ,s f k = Nc f l ,s f k ×ai r t i me(ξ, s f k)×λ

and

Nc f i ,s f j =
∑n

i c fi ,c f i × s fi ,s f j (13)

Nc f l ,s f k =∑n
i c fi ,c f l × s fi ,s f k

subject to

∑
c f ∈C F

(
c fi ,c f

)= 1 ∀i : 1..n (14)

and

∑
s f ∈SF

(
s fi ,s f

)= 1 ∀i : 1..n (15)
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Equation (12) computes the utilization of the C F,SF pair, as defined by Equation

(13), considering the number of end-devices assigned to that pair. The two constraints in

Equations (14) and (15) limit the assignment CF and SF such that each end-device is only

assigned one CF and one SF.

Practical Issues: Equation (13) is the product of two binary variables, which is nonli-

near. This can however be made linear given

zi ,c f ,s f = c fi ,C F × s fi ,SF (16)

and the following additional constraints:

zi ,c f ,s f ≤ c fi ,c f (17)

zi ,c f ,s f ≤ s fi ,c f (18)

zi ,c f ,s f ≥ c fi ,c f + s fi ,c f −1 (19)

This problem can be solved using one of the many state-of-the-art MILP solvers. In

our experiments, we used the CPLEX optimizer (IBM, 2019) due to the set of different options,

strategic decomposition, and deactivation of heuristics that reduce the time to solve complex

problems (LIMA; GROSSMANN, 2011).

4.2 APPROXIMATION ALGORITHM

The ADR mechanism, as described in Section 2.1.6, improves the data rate, airtime,

and power consumption of each end-device through the TP and SF parameters according

to SF, TP, BW, and SNR. However, the performance of a LoRaWAN network also depends on

the occurrence of simultaneous transmissions with the same SF, determined through the

two-dimensional coordinates of the end-devices and the LoRaWAN network gateways.

To apply the results obtained through the MILP problem formulation, as described

in Section 4.1.1, with backward compatibility in LoRaWAN networks, we rely on the ADR

mechanism to dynamically adjust the settings of end-devices. As indicated by the standard,

only end-devices with a stable RF environment should enable ADR. Our model includes

provisions for defining a list of end-devices for which the SF parameter, determined by

measurements (which are part of the normal LoRaWAN ADR procedure), can be changed.

This is backward compatible with existing LoRaWAN networks and only the LoRa network

server needs to be updated to obtain the radio parameters according to our proposed method.
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4.2.1 Description of the Approximation Algorithm

The time to solve MILP problems grows exponentially as the number of end-devices

increases. Due to scalability issues, we developed the Approximation Algorithm to provide

parameter assignments (Algorithm 3). The approximation is based on a first-fit assignment of

the utilization for each CF and SF combination.

Algorithm 3: Approximation Algorithm.

Input :ξ, the average packet length in bytes

λ, the average packet transmission rate

Array C F of available CFs

Array SF of available SFs, sorted by airtime

Output :Array R of
(
c fi , s fi

)
tuples with the CF and SF settings for node i

forall elements of C F do

forall elements of SF do
Uc f ,s f ← 0

forall elements of V do

Ri ← mi nc f s f (U ); .
(
c fi , s fi

)
tuple

URi ←Uc f ,s f + airtime(ξ,s fi )
1/λ

The Approximation Algorithm in Algorithm 3 receives as input the average packet

length in bytes (ξ), and the average packet transmission rate (λ). It also receives two arrays

with the available CFs and SFs, with the SF array being ordered from the SF with the smallest

resulting airtime to the largest.

Algorithm 3 starts by creating an array of Uc f ,s f to hold the utilization of each (C F,SF )

pair. Then, the algorithm assigns a CF and SF to each end-device by using a mi nc f ,s f (U )

function which takes as input the array Uc f ,s f and returns a
(
c fi , s fi

)
tuple that will result in

the lowest utilization increase. That is, it will return the C F,SF pair that is the mi n(Uc f ,s f +
airtime(ξ, s f ))∀s f : s f ∈ SF . Finally, the algorithm increases the utilization for that C F,SF

pair.

4.2.2 Backward Compatibility with LoRaWAN

The LoRa Server project provides a set of open-source applications for building Lo-

RaWAN networks. It is part of a larger project that encompasses a protocol packet forwarder

broker for MQTT (LoRa Gateway Bridge), and a compatible application server. The mecha-

nisms provided by LoRa Server allow users to manage the gateways in the LoRa network, the
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supported applications, and the devices associated with the applications (LORA SERVER, ).

Reviewing the documentation for sending LoRa server uplink messages (THE THINGS

INDUSTRIES, 2019a; LORA ALLIANCE, 2019), the way to implement the Approximation Al-

gorithm with backward compatibility with the standard LoRa protocol and its mechanisms,

e.g., ADR (as described in Section 2.1.6), is to implement the Approximation Algorithm at the

LoRa application layer of LoRa and devices. Thus, the application layer determines the C F,SF

pair individually for each node. The LoRa Server receives as input parameters the C F,SF pairs

by the application server (that is running the Approximation Algorithm) and transmits to

the end-devices in the downlink. Then, the node executes a corresponding application to

configure the node parameters.

4.3 EVALUATION

To study the performance of different parameter selection strategies, including the

ones assigned by solving the optimization problem presented in Section 4.1 and the algorithm

in Section 4.2, we carried out a simulation study based on the tools developed in Bor et

al. (2016). We aimed at studying the scalability of the network, namely analyzing different

performance metrics according to the number of end-devices and topologies. Building and

analyzing such LoRaWAN networks would be infeasible in practice, so we opted to base our

study in simulation.

Experiments were run on a Linux server with Ubuntu 16.04.4 LTS operating system

with Intel Xeon E5-2637 processor running at 3.50GHz using 64 GB of RAM.

4.3.1 Simulation Setup

The LoRa simulation tool, LoRaSim, allows defining model LoRa networks by setting

the number of end-devices inserted in a two-dimensional area, average packet transmission

rate (Λ), the number of base stations and other radio parameters such as SF, CR, and BW (BOR

et al., 2016). However, LoRaSim does not consider channel hopping and downlink messages.

SFs are imperfectly orthogonal. However, for traceability purposes, in our experi-

ments, we assumed that a single base station can simultaneously decode concurrent signals

on all orthogonal SF and BW settings. This assumption can be supported in practice with

multiple LoRa chips, such as the ® SX1301 (SEMTECH, 2017b). In our simulations, it was consi-

dered that the RF is stable and the network devices are fixed. Table 3 presents the simulations

parameters common to all simulation runs.
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Table 3 – Simulations parameters.

Parameter Value

Code Rate (CR) 4/5
Bandwidth (BW) 125 kHz
Sub-band g and g1
Transmission Power (TP) 14 dBm
Number of base stations 1
Transmission range 99 and 350 m
Payload size ξ 20 bytes
Average packet transmission period 16.6 min
Scenario run time 1 year
Node distribution Randomly distributed
Traffic Model Poisson distribution model
Propagation Model Log-distance path loss model
End-device operating voltage 3 V
Device Class Class A

Source: Authorship.

According to Table 3, the simulated scenarios run time was one year, with all devices

transmitting data at an average send interval of 16.6 min. This means that each end-device

transmitted 86 times a day within one year. We run 30 simulations for each scenario variation,

each with a random uniform node distribution in space.

Also, the reason for the chosen transmission distance, 99 and 350 meters are to

represent applications where there are many LoRa devices in a restricted space. For exam-

ple in buildings and condominiums, where LoRa technology can be applied to water and

energy meters, temperature sensor, parking presence sensor, smoke detectors, etc (KHUTSO-

ANE; ISONG; ABU-MAHFOUZ, 2017). Figure 17 shows a network scenario created with the

parameters shown in Table 3.

Figure 17 – Network scenario created with a transmission range
of 99 meters. The black dot represents the gateway.

Source: Authorship.
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4.3.2 Evaluation Metrics

We used three evaluation metrics to evaluate the performance of a LoRaWAN network

as follows: Data Extraction Rate, number of collisions, and Network Energy Consumption

(NEC).

Data Extraction Rate provides a network-wide measure of the valid packets received

in a numerical range between 0 and 1, wherein for optimal network deployments the value

is equal to 1. Equation (20) shows how the DER can be computed, where N r represents the

number of packets received, C the number of packet collisions, and N s the total number of

packets sent.

DER = N r −C

N s
(20)

The number of collisions provides further insight into the changes in the DER. Packet

collisions occur when two or more network nodes attempt to send data simultaneously, resul-

ting in collisions and possible loss of transmitted data, harming system performance. When

two LoRa transmissions occur at the same time (perceived at the receiver), it is determined

that the receiver can decode received packets simultaneously by analyzing CF, SF, energy, and

time conditions. The collision behavior evaluated in LoRaSim simulations depends on the

following parameters:

• Reception overlap: In LoRaSim, two packets overlap when the reception intervals over-

lap. It is represented by O(x, y).

• Carrier Frequency: It is evaluated whether transmissions with the same CF and BW pa-

rameters but different SFs can be successfully decoded. Importantly, they are available

assuming two reception paths. CF collision is expressed by CC F (x, y).

• Spreading Factor: Transmissions with different SF (and same CF and BW) can thus be

successfully decoded. SF collision is expressed by CSF (x, y).

• Power (capture effect): In our simulations, the capture effect was considered, which

is modeled on LoRaSim to match a ® SX1272. It is defined when two signals occur

simultaneously at the receiver and the weakest signal is suppressed by the strongest. It

is determined by Cpwr (x, y).

• Timing: Experiments conducted by Bor et al. (2016) conclude that packages can overlap

as long as there are at least five preamble symbols intact. This defines the transmis-

sion interval that two transmission packets collide within their critical section. It is

represented by Ct i mi ng .



42

Given these parameters, LoRaSim assumes that two packets x and y collided if Equa-

tion (21) is true:

C (x, y) =O(x, y)∧CC F (x, y)∧CSF (x, y)∧Cpwr (x, y)∧Ct i mi ng (x, y) (21)

More information on collision behavior in LoRa can be found in Bor et al. (2016).

Network Energy Consumption (NEC) is defined as the energy spent by the network to

extract a message successfully, considering all network nodes. It depends on parameters such

as SF, BW, CR, and TP. By definition, the NEC metric evaluates the network as a whole, not just

individual node behavior, and grows proportionally as the number of end-devices increases.

A low value of NEC means that the network parameters have been set efficiently (VOIGT et

al., 2017). Equation (22) describes the calculation of NEC in Joules, where V is the operating

voltage, defined as 3 V according to Table 3. N s is the total number of packets sent, i is the

end-device index, T X is the transmission power consumption of each end-device in mA, and

ai r t i me depends on the parameters SF, CR, BW, and payload size of each end-device.

N EC =∑n
i=0(ai r t i mei ∗ (T Xi ))∗V ∗N s (22)
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5 RESULTS AND DISCUSSIONS

This chapter shows the results and discussions obtained in this work. Section 5.1

shows a network scalability analysis obtained by the assignment policies (see Section 2.1.8).

Section 5.2, 5.3, and 5.4 show the results obtained from DER, number of collisions, and Network

Energy Consumption, respectively.

Section 5.5 shows the analysis and comparison of the ADR mechanism, described in

Section 2.1.6, in the approx-alg and random assignment policies. Section 5.6 analyzes the

Lora data rate, analyzing and comparing the theoretical throughput of the standard protocol

with other assignment policies. Finally, Section 5.7 shows the analysis of the circumstances

brought about by the optimization proposed in the standard Lora protocol.

5.1 ANALYSIS OF NETWORK SCALABILITY OF ASSIGNMENT POLICIES

According to the ETSI EN300.220 standard, in Europe, the max-duty-cycle for g

(863.0–868.0 MHz) and g1 (868.0–868.6 MHz) bands is 1% (see Table 1). The limit of utilization

of these subbands is represented mathematically by Equations (23) and (24), where i is the

index of each node, T is the airtime (according to Table 2), and N is the nodes numbers:

sumn∈{1..N }
∑

c f ={C F 4,C F 5,C F 6,C F 7,C F 8}

∑
s f ={SF 7,..,SF 12}

(C Fi ,c f .SFi ,s f .TSF ∗Λ) ≤ 0.01 (23)

sumn∈{1..N }
∑

c f ={C F 1,C F 2,C F 3}

∑
s f ={SF 7,..,SF 12}

(C Fi ,c f .SFi ,s f .TSF ∗Λ) ≤ 0.01 (24)

Considering a network scenario with the configuration parameters in Table 3, Table

4 shows the maximum number of nodes that can be allocated for each assignment policy,

resulting from calculating the sub-band use of each pair of CF, SF through Equations (23) and

(24).

Table 4 – Network scalability according to allocation policy.

Policy Sub-Bands Maximum Number of Nodes

equal-distribution g and g1 72 nodes
Tiurlikova g and g1 128 nodes
min-airtime g or g1 176 nodes
random g and g1 353 nodes in best-case
opt-problem/approx-alg g and g1 353 nodes

Source: Authorship.

The results in Table 4 show that the policies that best scaled the network are opt-

problem and approx-alg. This is due to the optimization to dynamically assign to each node
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the (C F,SF ) pair leading to the shortest airtime, considering the use of sub-bands g and g1. As

a result, the opt-problem and approx-alg policies allow the best scaling of the network, with

a maximum number of 353 nodes. The Tiurlikova allocates 64 nodes per sub-band. Using

sub-bands g and g1, the number of nodes that can be allocated is 128.

In the best-case scenario, the maximum number of nodes that can be allocated with

the random policy is 353 nodes if the randomly generated CF and SF values for all nodes are

the same as opt-problem and approx-alg policies (regardless of their ordering). However, the

random policy allows only six nodes to be allocated in the worst-case scenario, which is all

nodes allocated in SF12 using only one of the sub-bands (g or g1).

The min-airtime assignment policy allocates a maximum of 176 nodes, respecting

the max-duty- cycle limit of 1%, with all nodes configured in SF7 using the g sub-band.

Importantly, policy min-airtime uses only the sub-band. If sub-band g1 is enabled, network

scalability results are similar to opt-problem and approx-alg policies, with 353 nodes. Finally,

the maximum number of nodes that can be allocated with the equal-distribution policy is 66

nodes.

To represent the difference between assignment policies, the network scenarios used

in our simulations range up to 1500 nodes with no duty-cycle restrictions. The chosen trans-

mission range is 99 m radius, which represents a transmission range in built environments,

and 350 m radius, a range chosen due to the limitation of the min-airtime policy (which uses

SF7) based on the experiments performed with the simulation parameters in Table 3.

5.2 DER

Figure 18 shows the results of DER as a function of the number of end-devices with a

gateway transmission range of 99 m radius.
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Figure 18 – DER as a function of the number of nodes in the 99 m radius scenario.

Source: Authorship.

As shown in Figure 18, the policies opt-problem (green line) and approx-alg (navy

blue line) show the highest DER performance with an average increase of 7.14%, 5.19%,

3.03%, and 2.82% in relation to the min-airtime (orange line), equal-distribution (brown

line), Tiurlikova (silver line), and random (red line), respectively.

Figure 19 presents the results of DER as a function of the number of end-devices with

a gateway transmission range of 350 m.
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Figure 19 – DER as a function of the number of nodes in the 350 m radius scenario.

Source: Authorship.

According to Figure 19, the opt-problem shows the highest DER performance with

an average increase of 6.63%, 5.04%, 2.95%, 1.95%, and 0.1% in relation to the min-airtime,

equal-distribution, Tiurlikova, random, and approx-alg, respectively.

Figures 18 and 19 show that, as the number of nodes increases, the DER value

decreases. This demonstrates how increasing the number of nodes affects the performance of

LoRa networks.

5.3 NUMBER OF COLLISIONS

Figure 20 illustrates the number of collisions according to the number of nodes with

a gateway transmission range of 99 m radius.
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Figure 20 – Number of collisions according to the number of nodes in the 99 m radius scenario.

Source: Authorship.

The results in Figure 20 show that opt-problem and approx-alg cause the lowest

number of collisions, being the curves represented in the graph practically equivalent. The

policies min-airtime, equal-distribution, Tiurlikova, and random lead to average collision

rates 13.3, 12.7, 7.8 and 7.4 times higher, respectively, in relation to opt-problem and approx-

alg. Figure 21 demonstrates the number of collisions according to the number of nodes with

gateway transmission range of 350 m.
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Figure 21 – Number of collisions according to the number of nodes in the 350 m radius scenario.

Source: Authorship.

The results in Figure 21 indicate that opt-problem and approx-alg have the smal-

lestnumber of collisions, with equivalent results. The policies min-airtime, equal-distribution,

Tiurlikova, and random have average collision rates 15.4, 11.7, 8.3 and 2.5 times higher, res-

pectively, in relation to opt-problem and approx-alg.

The results shown for a radius of 99 m differ from 350 m in the number of collisi-

ons. The number of packet collisions for 350 m is about 12% higher, and this is reflected in

the DER (as shown in Equation (20), DER is a function of the number collisions).

5.4 NETWORK ENERGY CONSUMPTION

The results for the 99 and 350 m scenarios are similar, because the calculation of

Network Energy Consumption, as shown in Equation (22), depends on the number of packets

sent, which is similar in the 99 and 350 m scenarios. Therefore, Figure 22 presents the Network

Energy Consumption in mJ as a function of the number of nodes with a gateway transmission

range of 99 m.
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Figure 22 – Energy consumption as a function of the number of nodes in the 99 m radius scenario.

Source: Authorship.

The results in Figure 22 demonstrate that equal-distribution has a three times higher

energy consumption rate as opt-problem and it is 2.94 greater than approx-alg. The ran-

dom policy resulted in an average energy consumption 2.84 and 2.76 times higher than

opt-problem and approx-alg, respectively. Equal-distribution and random achieved simi-

lar energy consumption, being 5.5% greater for equal-distribution. The difference in the

average energy consumption between opt-problem and approx-alg is 2.7%. Tiurlikova achi-

eved energy consumption similar to opt-problem and approx-alg. Both obtained an average

consumption 2.9 times greater in relation to the min-airtime. Using this policy, SF is set

to SF7, which has the lowest energy consumption, as reported in Section 2.1. However, in

opt-problem and approx-alg, dynamic values of SF are assigned to the network nodes.

Figure 23 shows the Network Energy Consumption in mJ as a function of the number

of nodes with a gateway transmission range of 350 m.
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Figure 23 – Energy consumption as a function of the number of nodes - 350 m radius scenario.

Source: Authorship.

The results in the Figure 23 demonstrates that equal-distribution has 8.65, 3.7, 3,

2.92 times more NEC than min-airtime, Tiurlikova, opt-problem and approx-alg, respecti-

vely. equal-distribution obtained a 7.6% higher NEC value than random. approx-alg, opt-

problem and Tiurlikova obtained a NEC value of 2.96, 2.88 and 2.81 times higher than min-

airtime. The dynamic policy with the best NEC value is the Tiurlikova policy, with an NEC

5.2% and 2.2% lower than the approx-alg and opt-problem, respectively.

The radio parameter assignment policies proposed in this work—opt-problem and

approx-alg—proved to be better than policies random, min-airtime, Tiurlikova, and equal-

distribution in relation to DER and number of collisions. The results show that opt-problem

and approx-alg obtained DER values above 0.98 and 0.83 for the 99 m and 350 m scena-

rios, respectively. The number of collisions was minimal in relation to random, min-airtime,

Tiurlikova, and equal-distribution. In addition, the energy consumption of the proposed

optimization schemes is similar to Tiurlikova and lower when compared to other methods of

dynamic assignment of values of SF and CF: random and equal-distribution.
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5.5 ADR ANALYSIS AND COMPARISON IN APPROX-ALG AND RANDOM POLICIES

As explained in Section 4.2.2, the optimization of LoRaWAN network radio parame-

ters proposed in this work is compatible with the standard LoRa protocol, which includes

the ADR mechanism. In this context, we implemented the ADR mechanism in the LoRaSim

simulator to analyze its impact on the random and approx-alg dynamic assignment poli-

cies, using, according to the DER, number of collisions and Network Energy Consumption

evaluation metrics.

To represent a more overloaded network scenario, keeping the network simulation

settings in Table 3, the average packet transmission period was changed from 16.6 min to

1 min with a transmission range of 99 m. Figures 24–26 illustrate the DER, the number of

collisions, and the Network Energy Consumption, respectively, according to the number of

nodes.

Figure 24 – DER as a function of the number of nodes in the 99 m radius scenario.

Source: Authorship.

According to Figure 24, the improvement of the random policy with the ADR me-

chanism is 1.43% compared to without ADR. The difference in approx-alg was smaller, only

0.23%. Therefore, it was the random policy that obtained the highest gain of DER with the

ADR mechanism.
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Figure 25 – Number of collisions according to the number of nodes in the 99 m radius scenario.

Source: Authorship.

Figure 25 shows that the network packet collision rate decreased around 2.79% in

the random and 1.89% in the approx-alg.

Figure 26 – Energy consumption as a function of the number of nodes in the 99 m radius scenario.

Source: Authorship.
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Figure 26 shows that average NEC decreased 1.25% in the random. Therefore, the

NEC value was very close in approx-alg with and without ADR. The results demonstrate

that the random policy benefited from the ADR mechanism. However, the ADR mechanism

difference in approx-alg is only noticeable in the collision rate.

5.6 THEORETICAL DATA RATE ANALYSIS

Applying Equation 4, the theoretical data rate in bps according to the number of

nodes of the assignment policies is present in the graph of Fig. 27.

Figure 27 – Data rate according to the number of nodes

Source: Authorship.

According to the graph of Fig. 27 , the average data rate of the opt-problem and

approx-alg assignment policies is 3683.29 bps and 3538.06 bps, respectively. The static min-

airtime assignment policy obtained the highest average data rate of 5468.75 because the

value of the SF parameter is fixed in SF7 for all nodes. Regarding the dynamic policies, the

opt-problem obtained data rate of 2.9 and 1.75 times greater than equal-distribution and

random, with a mean data rate of 1266.47 bps and 2046.18 bps, respectively.
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5.7 ANALYSIS OF OVERHEADS INFERRED BY THE OPTIMIZATION PROPOSED IN THE

STANDARD LORA PROTOCOL

The microcontroller in a LoRaWAN terminal processes sensor data and interfaces

with the radio chip to transmit data over the network. The microcontroller must have enough

memory for radio chip drivers, sensor drivers, and application code. Based on the recommen-

ded requirements for a microcontroller in a LoRaWAN terminal using the ® SX1267x radio

chip, namely microcontroller 16 bit or 32 bit CPU, 16 KB RAM, and 256 KB flash memory

(SEMTECH, 2017a), we analyze the possible overheads for end-device communication with

the Approximation Algorithm application running on the LoRa Server caused by additional

programming code:

(i) Computation Time: The Approximation Algorithm (Algorithm 3) has a linear comple-

xity time O(n) = 111n +57, in the worst-case. Thus, since the Approximation Algorithm

is expected to run in the LoRaWAN Application Layer and end-devices with a time

complexity that is similar to the ADR mechanism (Algorithms 1 and 2), our optimization

scheme causes no significant computation (time) overhead, neither in the end-devices

nor in the LoRa Server. This is the best possible complexity in cases where the algorithm

should sequentially read all of its input (CORMEN et al., 2009)

(ii) Storage space: The most significant part of the (optimization) algorithm runs in the

LoRa Server, accounting for approximately 70 lines of code, while the extra code in the

end-devices is around 60 lines. Overall, the implementation of our algorithm takes less

than 20 kB of storage space (4 kB in average, 20 kB worst-case, considering different situ-

ations), which is not significant considering that most commercial off-the-shelf nodes

have at least 128 kB of programming/non-volatile memory (minimum requirements for

a LoRaWAN microcontroller (SEMTECH, 2017a));

(iii) Energy consumption: The proposed optimization scheme achieves lower Network

Energy Consumption compared to other dynamic allocation policies. The way the

Approximation Algorithm assigns end-devices pairs of (C F,SF ), ordered from lowest

to highest airtime, results in an improved network scalability (maximum number of

nodes) ratio for lower power consumption. Regarding the min-airtime policy, which

has shorter airtime due to using the SF parameter fixed in SF7, the simulation results

show that the Approximation Algorithm consumed on average three times more energy.

(iv) Communications: Considering with Approximation Algorithm input an array of valid

(SF, CF) pairs, end-devices only receive the (SF and CF) parameter values once (ge-

nerated by the Approximation Algorithm). Our simulations show that the proposed

optimization has a lower network packet send rate, as well as number of collisions,

compared to the assignment policies min-airtime, equal-distribution, and random.
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Therefore, the optimization proposal of this work causes no additional communication

overhead.
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6 CONCLUSION

We propose a simple yet efficient methodology to improve the performance of Lo-

RaWAN networks by fine-tuning their SF and CF radio parameters, through Mixed Integer

Linear Programming optimization approach. This enables the LoRaWAN network designer

to choose the best network configuration. Importantly, these parameter assignment poli-

cies are backward compatible with the LoRa standard protocol, meaning that they can be

implemented in commercial off-the-shelf LoRa devices.

Simulation results show that our methodology optimizes the assignment of CF and SF

pairs with an average increase of 6.6% of DER about the standard LoRaWAN assignment, which

assigns fixed CF and SF values between the End-devices so that the packets have the minimum

air time. In comparison to networks where CF and SF pairs are dynamically assigned by the

gateway, there is an increase of 5%, 2.9%, and 1.9% of DER to the Tiurlikova’s, egalitarian and

random distribution, respectively. Furthermore, our method leads to a number of collisions

that is 13.3, 12.7, 7.8, and 7.4 times smaller than standard LoRaWAN, egalitarian, Tiurlikova’s,

and random distribution, respectively. In relation to the average energy consumption, the

scenario with the standard LoRaWAN assignment, whose SF value set at 7, obtained an energy

consumption 2.9 times lower than the proposed optimization. However, our optimization

obtained a result similar to Tiurlikova’s method, 3.92 and 2.73 times lower energy consumption

than random distribution and egalitarian, respectively.

We are currently addressing the practical aspects of how to implement and integrate

the proposed optimization mechanism in LoRa, guaranteeing backward compatibility with

the standard protocol. Issues at stake are e.g. if/how this optimization can be made dynami-

cally (run-time), with a predefined periodicity for all network nodes (in a synchronous way)

or performed individually by each node.
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