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RESUMO

LEITE, Rui Pimentel. Estimativa Automática do Grau de Sopro Cardíaco Canino com Este-
toscópio Eletrônico e Software. 2019. 73 p. Dissertação – Programa de Pós-Graduação em
Engenharia Biomédica, Universidade Tecnológica Federal do Paraná. Curitiba, 2019.

Os sons cardíacos carregam informações sobre a saúde das estruturas cardíacas e sobre a
dinâmica da circulação sanguínea. A auscultação é a atividade dedicada à análise dos sons
produzidos espontaneamente pelos órgãos — inclusive os sons cardíacos. Embora seja impor-
tante para detecção precoce de doenças e para o aprimoramento do emprego de recursos na
área da saúde, tanto humana quanto animal, a prática da auscultação ainda é largamente
subjetiva e dependente de fatores como experiência, técnica e habilidade auditiva do profissional,
bem como de ruídos ambientais e de fricção. O presente trabalho representa um esforço no
sentido de incrementar o ferramental para prática de medicina veterinária ao propor um novo
método para estimar automaticamente o grau de sopro cardíaco canino numa escala de 0
a 6 a partir de uma gravação de sons cardíacos com marcação dos principais batimentos
cardíacos. Tal método inclui a geração de features a partir dessa gravação (através de algorit-
mos especialmente adaptados) e o uso de técnicas de aprendizado de máquina para efetuar a
estimativa. O método proposto foi desenvolvido a partir de um conjunto de gravações de 56
pacientes, tendo cada um dos quais 9 ciclos cardíacos processados. Das 4032 linhas de dados
resultantes do estudo, apenas 0,35% delas não puderam ter o grau de sopro corretamente
estimado. Uma análise do perfil de erro permitiu concluir que a estimativa e o grau real do
paciente nunca atingem uma diferença de 2 graus ou mais, e que técnicas podem ser pesquisa-
das para reduzir o erro ou para aumentar a capacidade de generalização do método desenvolvido.

Palavras-chave: Auscultação. Grau de sopro. Estimativa automática. Aprendizado de máquina.
Estetoscópio eletrônico.



ABSTRACT

LEITE, Rui Pimentel. Automatic Estimation of Canine Heart Murmur with Electronic Stethos-
cope and Software. 2019. 73 p. Dissertation – Graduate Program in Biomedical Engineering,
Federal University of Technology — Paraná. Curitiba, 2019.

Heart sounds carry information about the health of heart structures and about the dynamics
of blood circulation. Auscultation is the activity dedicated to the analysis of sounds produced
spontaneously by organs — which includes heart sounds. Despite being important to detect
diseases early and to improve the use of resources in the health sector, both human and
animal, the practice of auscultation is still largely subjective and dependent on factors such as
experience, technique and auditory ability of the professional, as well as environmental noise
and friction. The present work represents an effort to increase tooling for veterinary medicine
practice by proposing a new method to automatically estimate the degree of canine heart
murmur on a scale of 0 to 6 from a record of heart sounds marked with the position of the main
heartbeats. The method includes the generation of features from this record (through specially
adapted algorithms) and the use of machine learning techniques to make the estimation. The
proposed method was developed from a set of records of 56 patients, each of which had 9
heart cycles processed. Of the 4032 rows of data resulting from the study, only 0.35% of them
could not have the degree of murmur adequately estimated. An analysis of the error profile
allows one to conclude that the estimated and the actual degree of murmur of the patient
never reach a difference of 2 degrees or more, and that further techniques can be researched
to reduce the error even more or to increase the generalization capacity of the developed method.

Keywords: Auscultation. Degree of murmur. Automatic estimation. Machine learning. Electro-
nic stethoscope.
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1 INTRODUCTION

The heart is a muscular organ, present inside the thoracic cavity, which composes
the cardiovascular system together with the blood vessels. Each contraction (systole) and
relaxation (diastole) sequence of heart is denominated heart cycle (REECE et al., 2018).
Such activity imparts a series of vibrations to the surface of the thorax, of which those that
are audible are called heart sounds. As an example, one can mention the most known pair of
heart sounds: the heartbeats S1 and S2, frequently described as “lub” and “dub”, respectively.
As a mechanical result of the dynamics between fluids, muscles, valves, blood vessels and other
tissues, the heart sounds hold important information about blood circulation and the health of
heart structures. Proof of this is the use, until nowadays, of the stethoscope, a centennial
instrument dedicated to the amplification, filtering and projection of sound waves to the human
ear (PAZIN-FILHO; SCHMIDT; MACIEL, 2004; TILKIAN, 2004; FEITOSA, 2008; LENG et
al., 2015; REECE et al., 2018). Auscultation is the name given to the evaluation of sounds
produced spontaneously by the organs (FEITOSA, 2008). It is used in the decision-making
process of application of more expensive technologies, in guidelines for the screening of athletes
and surgical patients in preoperative state (KUMAR; THOMPSON, 2012), and in clinical
practice it becomes an important criterion in determining the need to consult a specialist
(NASSRALLA; ZEIN; HAJJ, 2017). According to Feitosa (2008), when the anamnesis and
the physical examination are well executed, 90% of the cases are correctly diagnosed. Timely
detection of many forms of congenital and acquired diseases, as Kumar and Thompson (2012)
state, can be made through a proficient auscultation. Thus, the cardiac auscultation must be
seen as an auxiliary method to the characterization of clinical syndromes, in addition to other
cardiovascular physical exams and the patient’s clinical history (PAZIN-FILHO; SCHMIDT;
MACIEL, 2004).

In human medicine, heart diseases are the biggest cause of deaths, corresponding
to 17.5 million deaths in 2012 (NARVÁEZ et al., 2017). An even more alarming statistic
is the one that shows that 75% of these deaths are located in underdeveloped countries, in
whose rural areas the limited access to prevention programs, medical assistance, equipment and
specialists prevails (LENG et al., 2015; NARVÁEZ et al., 2017). Therefore, it is not surprising
the abundance of scientific work aiming at promoting improvements in the stethoscope (such
as electronic stethoscope), in aspects of the auscultation (filtering, telemedicine etc.) and in
the processing of heart sounds (automatic event detection and segmentation, among others).
Most of this research comes from underdeveloped countries.

In the case of veterinary medicine, the scenario is worse. Even when specialists and
instruments are available, few tutors are willing to pay for additional exams (ANDRADE, 2018).
All these factors highlight the need to increase the quality of the first contact between the
physician and the patient. The present work represents an additional effort to increase tooling
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for the practice of veterinary medicine.

1.1 PROBLEM

One class of particularly revealing heart sounds is the one of heart murmurs —
noises often associated to the degeneration of heart valves, to the reflux of blood within the
heart and to heart failure. Due to the importance of the detection and analysis of the heart
murmurs, with the advance of medical protocols, measurement scales were developed for
these events. One of these scales is quoted by various authors (FEITOSA, 2008; TILKIAN,
2004; PAZIN-FILHO; SCHMIDT; MACIEL, 2004) and consists of a classification from I to VI
according to the criteria described below:

• Degree I: heart murmur of such a low intensity that requires a long period of auscultation
and high concentration.

• Degree II: small-intensity heart murmur that can be immediately heard by an experienced
professional.

• Degree III: striking heart murmur but not too intense (FEITOSA, 2008).
• Degree IV: intense heart murmur. At this stage a palpable vibration can be present
(TILKIAN, 2004), but according to Andrade (2018) it can propagate to other areas of
auscultation.

• Degree V: very intense heart murmur. Comes with palpable vibration, but it is not
audible when detaching the stethoscope from the patient’s chest (ANDRADE, 2018).

• Degree VI: severe murmur with palpable vibration, and can be auscultated even without
any contact between the stethoscope and the thorax (TILKIAN, 2004).

As can be seen, the auscultation (and, in some aspects, even the scale) is based on
subjective factors. The interpretation of heart sounds itself is largely dependent on details such
as experience, ability and auditory skills of the physician (PAZIN-FILHO; SCHMIDT; MACIEL,
2004; LENG et al., 2015). As Leng et al. (2015) affirm, the difficulty in the analysis of a
small-intensity sound with high and low competing frequencies was, for a long time, diminished
only by the use of the acoustic stethoscope (sometimes also called traditional stethoscope).
Nevertheless, the author recalls the presence of noises in the signal — often caused by the
friction of the equipment over the chest or by environmental factors in the consultation room,
such as voices, vehicles and other equipment.

With the technological progress, other exams were developed; X-ray, electrocardiogra-
phy and echocardiography contribute, each in its own way, to the confirmation of the diagnosis
of cardiovascular diseases (FEITOSA, 2008). While they represent a significant advance in
diagnostic capacity, imaging equipment (which enables the aforementioned examinations) have
brought with them an unwanted consequence: the devaluation of the fundamental diagnostic
technique (PAZIN-FILHO; SCHMIDT; MACIEL, 2004). With the advent of these new instru-
ments, which have never extinguished the importance of auscultation, the new process of
teaching medical professionals has imposed on low- and middle-income countries enormous
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economic costs due to the excessive use of sophisticated diagnostic methods (PAZIN-FILHO;
SCHMIDT; MACIEL, 2004). According to Feitosa (2008), about 40% to 50% of subsidiaries
exams result in normal findings, which (still according to the author) often characterizes clinical
error. All of these complementary exams require specific machinery (often expensive and/or
with restrictions of use) that also gives rise to the need for new consultations and extra costs.
Add to this the aforementioned lack of equipment in the underdeveloped countries and, in
veterinary medicine, the refusal of many tutors to bear the extra costs.

The classic limitations of auscultation, the difficulty of professional training in the
technique and the problems for enabling additional tests bring about, finally, the main problem
to be faced in this work: the deficiency in case monitoring due to the subjectivity of the
auscultation. The impossibility of regular application of imaging tests, despite the objectiveness
of some of their metrics, prevents the monitoring of progress in clinical cases. The physical
examination (of which auscultation is part), on the other hand, is consistently applied during
clinical consultation. Such examination is considered by Feitosa (2008) as "the most useful and
economical tool the physician possesses".

1.2 GENERAL OBJECTIVE

Automatically estimate the degree of canine heart murmur on a scale of 01 to 6 from
a heart sound record marked with the time of heartbeats S1 and S2.

1.3 SPECIFIC OBJECTIVES

As specific objectives, it is listed:
• Develop a set of algorithms that generate features — numerical values that synthesize

characteristics of the records.
• Apply such algorithms to a bank of heart sound records.
• Produce a table aggregating the values of the features for the set of records.
• Automatically estimate the degree of canine heart murmur from the table of features

along with machine learning techniques.

1.4 JUSTIFICATION

The automatic classification of the degree of murmur introduces objectivity to the
clinical analysis when it confronts the perception of the health professional. Because it consists
of an immutable metric over time, it allows a patient to be evaluated throughout his or her
history with reliability. The proposed methodology is based on widely reproducible artifacts

1The original scale, already quoted, assumes the classification from I to VI, with I being the mildest murmur
and VI the most pronounced one. Here, the metric was extrapolated to start at 0, meaning no murmur; the
other levels correspond to those already present in the original scale.
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(commercial quality electronic stethoscope and software), thus enabling the comparison of
different cases and even the continuity of evaluation of the same case in different clinics.

All these characteristics provide a better basis for the diagnosis and lessen damages
resulting from the non-application of imaging tests. In addition, the use of the electronic
stethoscope is a non-invasive, inexpensive, quick and easy procedure operated by the clinician
himself, which brings with it all the benefits of digital recording of heart sounds — audio
reproducibility, sharing of records and signal visualization as a graphic. It can also provide
greater assistance in the training of new professionals. Studies have suggested that the
electronic stethoscope has the potential to benefit substantially the learning of basic auscultation
techniques (KUMAR; THOMPSON, 2012; MESQUITA et al., 2013). A new application of the
stethoscope — in this case, the automatic classification of the degree of murmur — should
only contribute to this scenario.

1.5 OVERVIEW

The work is based on the use of a common (commercial-line) electronic stethoscope
connected to the analog audio input of a laptop. The audio signal is scanned at 44,100 samples
per second, each with 2 bytes (or 16 bits). At this time, the signal is transmitted as stereo,
although in practice its two channels are identical. In any case, stereo audio is recorded with
the help of the open-source software Audacity2. This entire acquisition process is represented
in Figure 1.

Figure 1 – Acquisition of heart sounds

Source: Own authorship

With the WAV (Waveform Audio File Format) records of the heart sounds of the
patients, their objective clinical data and the times of occurrence of S1s and S2s, features are
produced to be used as input to a classification algorithm, which returns the estimate in the
desired range (0 to 6) as an output.

Each feature can generate a single value per patient (Type 1), or a quantity of
values equal to the number of heart cycles in the WAV record (Type 2), or even a value for
each distinct pair (combination) of heart cycles in the record (Type 3). The mechanism is
summarized in Figure 2. Each of its steps will be timely detailed in this work.

2Cross-platform open-source software for audio recording and editing (Audacity Team, 2019).
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Figure 2 – Generation of features and automatic classification

Source: Own authorship

1.6 METHODOLOGY

The audio files used in this research were recorded by Andrade (2018) in a set of 56
dogs, from September 2017, at the Dog Vet Veterinary Clinic (Curitiba — PR). There was no
distinction of race, gender, age or health condition. The only exclusion criteria adopted were
the size of the animal and the choice of its tutor (large animals or those whose tutors chose not
to participate in the research were not considered). It is emphasized that this data collection
was non-invasive, did not cause suffering to animals (not even trimming of the dog’s fur) and
was previously authorized by the ethics committee Comissão de Ética no Uso de Animais of
the Universidade Tecnológica Federal do Paraná (CEUA-UTFPR), as shown in Anexo A. The
stethoscope used was the Jabes Digital Stethoscope Analyzer. The product has been set to
"W" (wide range) mode, which captures sounds over the entire range from 20 Hz to 1,000 Hz.
The volume for auscultation has been adjusted according to the need, patient to patient. The
stethoscope was positioned at the point of greatest intensity (apex beat) of each patient.

Simultaneously with the auscultation, the stethoscope was connected to a laptop with
the same audio cable that accompanies that device. This allowed the recording on file of the
same sound perceived by the veterinarian. The software used, Audacity, is an open source
software and has been configured for stereo digitalization at 44,100 Hz. For each patient, at
least 10 complete heart cycles of good quality were recorded. Through an auscultation with
acoustic stethoscope, which the veterinarian was familiar with, the degree of heart murmur (if
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any) from I to VI was registered. At the same occasion, a careful anamnesis was performed
and dogs that needed complementary examinations were referred. Other parameters have been
cataloged, such as the name of the tutor, and the name, identification code, breed, age and
weight of the patient. In the present study, these data and the degree of heart murmurs were
named database B — a registry of clinical data of the study patients, all coming directly
from the physical examination and some strongly dependent on the experience of the medical
professional. Figure 3 shows the procedure performed once for each of the 56 patients.

Figure 3 – Clinical consultation and generation of databases A and B

Source: Adapted from Andrade (2018)

Another aspect shown in Figure 3 is the filling of database A. Such a base consists of
the features mentioned in Section 1.3 and in Figure 2. However, they are not generated directly
from the files recorded during the examination. In fact, the files used in the present work are the
post-processed ones with ".wav" extensions as described in Andrade (2018) and summarized
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in Figure 4. In this figure, it is also emphasized that the medical professional’s experience has
generated extremely important artifacts — the so-called "metadata", which consist of the time
markings of the heart sounds S1 and S2 of each heart cycle. Each patient’s metadata is saved
in a ".csv" extension file. The set of the metadata files of the post-processed records (input
audio files) of the patients of this study form the input data of the present study.

It is from the newly defined input data that the features are extracted (as shown
in Figure 5). The Chapter 3 describes them in more detail. With its values finally stored in
database A, the next step was to analyze machine learning algorithms capable of estimating
the degree of a patient’s heart murmur based only on the data generated by the features.

Figure 4 – Post-processing and generation of metadata

Source: Own authorship

1.7 PRESENTATION OF THE DOCUMENT

The document is organized as follows:
• Chapter 2 summarizes the knowledge needed to fully understand this research. Topics
covered include the nature of heart sounds, the limits of human hearing, sound signal
digitalization, and basic and elaborated methods of digital signal processing.

• Chapter 3 describes the procedures for processing the set of available records and
metadata. In particular, the formal definition of the produced features is given in sections
3.2 to 3.4. The performance of such features to estimate the degree of patient’s heart
murmur is discussed in Section 3.5.

• The synthesis of the results achieved with this research is presented in Chapter 4.
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Figure 5 – Overview of feature extraction

Source: Own authorship
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2 LITERATURE REVIEW

The research presented in this document is of multidisciplinary nature, since it involves
a range of subjects reaching from veterinary medicine (topics of anatomy, physiology and
clinical practice), digital signal processing, to finally culminating in classifiers and machine
learning. Therefore, many new knowledges were necessary to make the work feasible, and they
are the key to allow full understanding of it. In the following sections, these knowledges are
shared.

2.1 TOPICS OF HEART SOUND CAPTATION

In the literature, there is controversy regarding the frequency range of heart sounds.
The minimum and maximum registers found are, respectively, 2 Hz (WANG et al., 2007) for
low-pitched sounds and 2 kHz (WEBSTER, 2009) for high-pitched sounds. Concerning the
human ear, however, there is a certain consensus that the range of perception is limited between
20 Hz and 20 kHz — but even for individuals with perfect hearing health, not all of this band
has the same ease of perception (PAZIN-FILHO; SCHMIDT; MACIEL, 2004). The main range
for auscultation of heart sounds, from 20 Hz to 500 Hz, has one of the highest perception
thresholds (PAZIN-FILHO; SCHMIDT; MACIEL, 2004; KUMAR; THOMPSON, 2012), i.e.,
one of the regions of the audible spectrum that are more difficult for the listener to assimilate.

The acoustic stethoscope, traditionally utilized by physicians, uses purely mechanical
phenomena to direct the sound to the ears of the specialist. The electronic stethoscope, on
the other hand, makes use of electromechanical components specialized in converting the
mechanical signal of the heart (heart sounds) into an electrical signal (LENG et al., 2015),
both digital and analog. The stethoscope that was used in the recording of the samples for
the present work, for example, has as output an analog electric signal, and has the ability to
remove the frequency filters — that is, to capture the entire frequency range of heart sounds,
without distinction of sensitivity (at least in theory).

In this type of analog output, the task of digitizing the captured audio is delegated
to the computer. The digital audio can be heard, stored, transmitted, transformed to graph or
processed on the computer. The digitization consists of a sampling of the electrical magnitude
of the signal (usually of its electrical voltage), in a regular time interval, by a device known by
the acronym ADC: Analog-to-Digital Converter (LENG et al., 2015). The regular time interval
determines a frequency called sampling frequency: the number of samples measured per
second from the analog signal (HAYKIN; VEEN, 2001). Thus, a sample rate of 44.1 kHz, for
example, comes down to 44,100 values per second, and is known as "CD quality" (as it is the
same on music CDs). Sampling is an operation that generates a discrete time signal from a
continuous time signal (HAYKIN; VEEN, 2001).
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The digitization also provides for the digital storage of the samples — that is, a coding
of each input in the form of bits. This is because digital storage devices, such as the computer’s
hard disk, do not have the ability to write values to the decimal system — only in the binary
system —, and also have finite write capability — meaning, for example, that values have
to be discretized after their sampling. The amount of bits used in the digitization defines,
in conjunction with the sampling frequency, the quality of the digitization (fidelity of digital
audio with respect to its analog counterpart). Both impact proportionally on the transmission
rate, power consumption and processing time (LENG et al., 2015). In summary, higher quality
audio has more samples per second and more bits per sample, so it consumes more resources
during recording and processing; in this way, the ideal bit and sampling rates are defined by
the designer for the specific application in development.

At this point, the extremely important concept of the aliasing effect is presented.
Aliasing consists of a distortion in the frequency spectrum of the discrete time signal in
comparison to the spectrum of the continuous time signal, and can be avoided by choosing a
sampling frequency at least two times greater than the highest frequency of the analog signal
(HAYKIN; VEEN, 2001). In practice, however, the most common is to apply a high-frequency
removal filter (the so-called "low-pass filter") to this signal before sampling it (LENG et
al., 2015). Filtering is a potentially destructive procedure over the desired data; again, it is
up to the designer to study the frequencies of interest and eliminate unwanted effects on the
recording. In the specific case of the recordings used in the present work, with a sample rate
equal to 44.1 kHz, a maximum frequency of 22,050 Hz was captured without distortions, a
frequency that gives a wide margin in relation to the limits of heart sounds.

The effects of aliasing are the apparent occurrence in the sampled signal of frequencies
non-existent in the continuous time signal, and the non-equivalence (for analysis purposes)
between both signals (HAYKIN; VEEN, 2001; WEBSTER, 2009). At least during the process
of digitization directly on a computer, such as the audios used in the research, all necessary
care for this phenomenon is automatically taken by the audio card in response to the sampling
frequency chosen for recording; however, the concern with aliasing comes up again at performing
a downsampling on the already digitized signal.

2.2 BASIC DIGITAL SIGNAL PROCESSING OPERATIONS

As already mentioned, the sampling frequency impacts the processing time. Therefore,
prior to computationally costly procedures, it is very common to perform an operation known as
downsampling, whose concept can be understood, in a simplified way, as a new sampling, now
on the discretized signal (HAYKIN; VEEN, 2001), in order to reduce the number of samples
to be processed. A key concept here is the downsampling rate — the factor that indicates
how many samples of the input vector corresponds to a certain amount of samples in the
output vector. For example, the 16/1 (“16 to 1”, or simply "16") downsampling rate, used in
this study, indicates that every 16 originally recorded samples match to only 1 sample in the
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downsampled audio.
It is worth noting, however, that it is not always just a simple re-sampling ("choosing"

some samples and "ignoring" the others). The S factor downsampling on a discrete sampling
frequency signal fS [Hz] is an operation that simulates a sampling of fDS [Hz] on the original
continuous signal, according to Equation (1). Thus, the discussion of aliasing in Section 2.1
remains valid: fDS should be at least twice as large as the largest frequency of the original
signal. However, it is very common that (as with the audios in this study) the continuous signal
is no longer accessible — which is why a downsampling is performed, firstly, because in the
presence of the original signal a new simple sampling at fDS [Hz] would suffice. When only
the discrete signal is accessible, the solution is to apply a low-pass digital filter over it prior to
the downsampling, thus eliminating the frequencies that would cause the aliasing effect on the
downsampled vector.

fDS = fS

S
(1)

In addition to downsampling, another operation that was widely used in the work is the
calculation of the energy of a discrete signal x[n]. This energy is defined by Equation (2)
(WICKERT, 2013).

Ex = lim
N→∞

N∑
n=−N

|x[n]|2 (2)

If x[n] is a vector of L real values, as is the case of the samples used in the present
work, the equation can still be simplified to the form of Equation (3).

Ex =
L−1∑
n=0

x[n]2 (3)

2.3 EMPIRICAL MODE DECOMPOSITION

Empirical Mode Decomposition (EMD) is a decomposition that can be seen as an
expansion of a data vector into a collection of other vectors called Intrinsic Mode Functions, or
IMFs (HUANG et al., 1998), in the time domain — that is, it generates a series of signals
(the IMFs) from the original signal, all in the time domain. According to its authors, this is a
non-linear and non-stationary analysis method.

Haykin and Veen (2001) affirm that a signal is said to be "non-stationary" if its
intrinsic characteristics vary over time. As for linearity, the same authors point out that a
nonlinear system is one that violates the principle of superposition — on which they write:

It is said that a system is linear if it satisfies the principle of superposition.
That is, the response of a linear system to a weighted sum of input signals is
equal to the same weighted sum of output signals, each output signal being
associated to a particular input signal acting on the system independently
of all other input signals (HAYKIN; VEEN, 2001, p. 69).
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Heart sounds are considered non-stationary because of changes in their characteristics
over time (VIKHE; HAMDE; NEHE, 2009). Many phenomena of nature are prone to non-
linearity, and the production of heart sounds is no exception. According to Leng et al. (2015)
and Barma et al. (2014), these sounds constitute a class of strictly non-linear biological signals.
Moreover, as Huang et al. (1998) remember, even a perfectly linear phenomenon is often
perceived as non-linear due to imperfections in the measuring instruments used to assess it.

For all of this, the EMD proved to be an adequate tool for computational analysis
of the audio signals of the research. The effect of EMD decomposition on the heart sound
record of a healthy and young patient can be seen in Figure 6. In this example, the heart cycle
(represented in red) was decomposed, generating 8 IMFs (indices 0 to 7) plus one residual
function, all shown in green. IMFs of indices 3, 4, 5 and 6 were hidden for space saving but,
following the trend already indicated by the visible modes, they have gradually smaller amplitude
and frequency. The sum of all these products (IMFs and residual function) results in the signal
represented in blue, which corresponds exactly to the original signal.

2.4 HILBERT VIBRATION DECOMPOSITION

The Hilbert Vibration Decomposition (HVD) is another decomposition dedicated to
the problem of non-stationary broadband vibration analysis (FELDMAN, 2006). According to
the author, unlike methods such as EMD, only the Hilbert Transform (HT) and other simple
mathematical tools are used, without involving advanced techniques of digital signal processing.

Feldman (2006) states that components extracted via EMD or HVD (called "intrinsic
oscillatory modes") consist of monocomponent signals — those with only one maximum
or minimum value between each zero crossing. As examples, slow frequency-modulated and
narrow-band vibration signals are mentioned. The IMFs shown in Figure 6, being intrinsic
modes, illustrate this behavior.

Figure 7 shows the HVD decomposition for the same patient. As noted, the first
monocomponent isolated from the original signal contains the largest amplitude. The energy
of the extracted modes drops gradually with each new mode. The residual function was not
illustrated in this example because it has even lower energy than the 5th extracted mode (Mode
4), but in the same way as with the EMD, the sum of the components and the residual function
reconstructs the original signal.

2.5 TOPICS OF MACHINE LEARNING

Machine learning is the area of knowledge that is concerned with the application of
generic algorithms and techniques to the process of obtaining knowledge from data (KALUŽA,
2016). It includes the processing of available data to construct models capable of predicting
new data (GOLLAPUDI; LAXMIKANTH, 2016). Models are usually representations of data,
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Figure 6 – EMD decomposition of the audio record of a heart cycle

Source: Own authorship
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Figure 7 – HVD decomposition of the audio record of a heart cycle

Source: Own authorship

and are a product of the application of a machine learning algorithm to the available dataset
(GOLLAPUDI; LAXMIKANTH, 2016).

In the scope of machine learning, the dataset corresponds to a table in a database
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or in a spreadsheet, because it consists of lines (instances) made of a group of columns
(attributes) (BOUCKAERT et al., 2018). Each instance represents a different record —
for instance, data from the acquisition of a certain product, or samplings from the climate
conditions on a certain spot. Each attribute, on the other hand, represents a known variable
(feature) of the instance (the price of the product, the date and time, the client’s identification
number, the temperature, the air humidity, and so on). “Variable”, “field” or “feature” are all
synonyms of attribute (GOLLAPUDI; LAXMIKANTH, 2016).

A class of problems commonly addressed in machine learning is the one called super-
vised learning, that can be summarized as the obtaining of a function f capable of mapping
elements of a set X in corresponding elements of a set Y (KALUŽA, 2016) — in other words,
f : X → Y . In this kind of problem, the columns of the dataset are divided by the technician
in two groups: the input attributes and the output attributes. Given this separation, the
values of the instances of the dataset are interpreted by the machine learning algorithm as
examples of the sets X and Y , respectively, and its role is to speculate a function f — that is, a
model that maps combinations of input values to output values (GOLLAPUDI; LAXMIKANTH,
2016). The process of generation of the model from the instances is known as training.

A subclass of the supervised learning problems is the one of regression, in which Y
consists of an attribute of continuous value. This way, according to Kaluža (2016), regression is
understood as a process that allows one to comprehend how the values of a group of features
(input attributes) affect a continuous target variable. The problem studied in the present work
is an example of this subclass: it is desired to determine the relationship between inputs (like
weight and features extracted from the heart sound records of small dogs) and a continuous
output (the degree of heart murmur).

A regression model allows outputs to be estimated for arbitrary inputs, i.e., inputs
that extrapolate the known dataset. This way, resuming the previous example, once determined
a functional regression model for the degree of murmur, one can (at least in theory) input it
with data from a dog which was never studied before and still obtain an estimate of its degree
of heart murmur. However, models generated by machine learning algorithms produce errors in
their estimates. In fact, an error can be observed even by feeding the model with the instances
— the so called training set — that were used to create it, in the first place. Error can be
measured in several ways, depending on the class of algorithms used. In the specific case of
the present work, two metrics that were compatible with the regression problem were selected.

The correlation coefficient represents a measure of similarity between the estimates
produced by the model and the expected outputs (known values) for the same instances. Its
calculation is made possible by Equation (4) (KALUŽA, 2016), where X and Y represent the
expected outputs and the estimates, respectively. The bar notation denotes the arithmetic
mean of the variable for the instances, whose index (i) varies from 1 to the number of known



Chapter 2. LITERATURE REVIEW 34

cases (n).

CCXY =
∑n

i=1(Xi −X)(Yi − Y )√∑n
i=1(Xi −X)2

√∑n
i=1(Yi − Y )2

(4)

As it follows from the equation, if all the estimates (Yi) are perfectly proportional
to the expected outputs (Xi), the correlation coefficient will be equal to 1 (highest possible
value), indicating a perfect and direct linear relationship between these variables. A correlation
coefficient of -1 (lowest possible value) would also indicate a perfect linear relationship between
them, but at an inverse proportion (one grows to the exact ratio at which the other reduces).
Thus, it is said that a value close to the extremes signals a quasi-linear relationship between
the variables, and a value close to 0 denotes absence of relation between them. Because of
this, a correlation coefficient closer to 1 is almost always sought.

The second error metric for regression models that is important for the present work is
the mean absolute error (MAE). It is defined as the mean of the absolute difference between
the estimates and the expected outputs (GOLLAPUDI; LAXMIKANTH, 2016; KALUŽA, 2016).
Its value is given by Equation (5).

MAE(X, Y ) = 1
n

n∑
i=1
|Xi − Yi| (5)

While many other metrics may be used, these have interpretation per se, even if there
is no information on the statistical distribution of the data, although the existence of such
information would allow further analysis. In addition, they are not as sensitive to outliers, that
is, instances with discrepant data (GOLLAPUDI; LAXMIKANTH, 2016; KALUŽA, 2016).

The measurement of the estimation error plays an important role in the analysis
of another crucial aspect of the model: its generalization capacity. Generally speaking,
generalization consists of the ability of a model to maintain a low estimation error even when
applied to inputs that do not exist in the training set. In this situation, the error is given
a special name: generalization error. Because it depends on future data (i.e., unavailable
during model training), the actual generalization error can not be determined, only an estimate
of it (KALUŽA, 2016).

A common technique is to not use all instances known as a training set; a small
part of them is separated into what is called the test set. According to Kaluža (2016), when
calculating the estimation error for the test set, an estimate for the generalization error is
obtained. According to the author, a common proportion for the number of instances in the
training and test sets respectively is 70:30, however there is no closed formula for defining it.
This approach has two problems. First, the number of instances remaining in the training set
may be so low that the quality of the model produced can be affected. Second, it is necessary
to use mechanisms that ensure that the test set is representative of the training set, that is,
that it bears similarity with the training set (KALUŽA, 2016).
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To mitigate these problems, the approach employed in this work is that of cross-
validation. In it, the instances are divided not in two parts but in an arbitrary number k of
sets of approximately the same size. The major difference of cross-validation, however, lies in
the fact that k models are produced — each time using only one of the different sets as a test
set, and the rest of the instances as the training set (KALUŽA, 2016). Thus, k estimate errors
are calculated, and their arithmetic mean gives the estimate of the generalization error. Unlike
the previous method, each instance is used both in the test step (once) and in the training
step (k − 1 times).
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3 DEVELOPMENT

Section 1.6 presented the input data of the work — post-processed WAV records and
markings of the S1 and S2 — and introduced the concept of feature type (1, 2 or 3), which
basically indicates how many values the feature produces. Chapter 2 has systematized several
useful knowledges to understand the work developed, especially for the calculation of features,
which will be enumerated and will have their algorithms detailed in this chapter.

However, before describing the features, it is necessary to present the software frame-
work that allowed them to be generated; in particular, it is important to understand how the
data contained in the input files is translated into variables for calculation.

3.1 PROCESSING SCRIPT

As shown in Figure 2, feature generation is a complex process executed once for each
pair of input audio and metadata file.

To facilitate the development of these features, gulp was used, which is defined as a
set of tools to automate painful or time-consuming tasks in the workflow (GULP, 2019b). It is
an open source software (GULP, 2019a) with the ability to integrate with many other popular
technologies today, such as NodeJS, Python and the command line interface of the operating
system.

The main feature of gulp is the file "gulpfile.js", the entry point of the automation
script. Usually, the tasks to be performed are defined directly in this file. Each task consists
of a stream of one or more content transformations over a group of input files. A content
transformation can be as simple as reading or removing certain data from the file, or as complex
as compressing an image, just to mention a few. Each task handles a generally different
set of input files, and usually outputs another set of files. Tasks may have other tasks as
requirements for execution.

The concepts of tasks, requirements and transformations are illustrated in the example
in Figure 8. In it, "task1" has a transformation that takes each input file and generates
two output files. "task2" has two chained transformations. "task3", which depends on the
products of the previous tasks, transforms a set of input files into a single output file. Finally,
"task4" waits for completion of "task3" and then clear temporary files. The timeline indicates
the execution sequence of the tasks; it is interesting to note that since "task1" and "task2"
have no dependence on each other, both are executed in parallel.

The transformations are declared in their own source code files, often (but not always)
distributed in the form of NPM (NodeJS Package Manager) modules — a package manager
specialized in JavaScript libraries entitled the largest software registry in the world (NPM, Inc.,
2019). The versions of NodeJS and NPM used in this work are 6.9.5 and 4.2.0, respectively.
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Figure 8 – Example of execution of gulp tasks with requirements

Source: Own authorship

In addition to those already mentioned, gulp characteristics that are especially useful
for the present work are:

• Native functions for manipulating files, such as in-memory loading and copying to another
directory.

• Possibility of creating custom transformations by the user (for example, those described
in Subsection 3.1.1, which operate on the metadata).

• gulp-text-simple plugin (KIERTSCHER, 2018), an NPM module that makes it easy to
create transformations in text files (such as the metadata files).

• gulp-newer plugin (SCHAUB, 2019), an NPM module that prevents repeated file
processing (makes processing occur only to unprocessed files), which is particularly
advantageous when new input data is added for processing.

Thus, the project corresponding to the generation of the features of the present work
has the following structure (shown in Figure 9):

• "gulpfile.js" file (entry point).
• "package.json" file, which declares the list of required NPM modules for the project

installation (mainly gulp plugins).
• "wav" directory, which contains a copy of the input audios (to avoid corruption of the

original files).



Chapter 3. DEVELOPMENT 38

• "csv" directory, which contains a copy of the metadata files (for the same reason).
• "emd.py" file, which consists of a Python script for EMD decomposition of each heart

cycle in the "wav" directory.
• Directory "emd", which contains the EMD decompositions generated by the Python

script.
• Directory "emd.c", which contains the audio and graphic files resulting from the seg-
mentation of IMFs through the method proposed by Boutana, Benidir and Barkat
(2014).

• "lib" directory, which contains the Octave script for HVD decomposition of each heart
cycle of the "wav" directory, as well as ".js" extension files that declare common
functions and file transformation functions detailed below.

• "hvd" directory, which contains the HVD decompositions generated by the Octave script.

Figure 9 – Architecture of the project for input data feature extraction

Source: Own authorship

"gulpfile.js" is the file that declares the gulp tasks that perform all the operations
mentioned above:

• "copy-wav-files", which is responsible for detecting new input audios and for backing
them up to the "wav" directory.

• "copy-csv-files", which requires the execution of the previous task. It is responsible
for locating new metadata files, creating a backup of them to the "csv" directory and
triggering the custom transformations described in subsections 3.1.1 and 3.1.2. Such
transformations can be performed safely, because the task requirement ensures that the
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input audios from the previous task are already available.
• "copy-emd-files", which requires the execution of the previous task. It takes care of

moving the new EMD decomposition files (generated by the "copy-csv-files" task)
into the "emd" directory.

• "default" (main task), which requires the previous task — and, as a consequence, all
other tasks. It triggers the custom transformations of Subsection 3.1.1, and then the
main transformation of Subsection 3.1.3.

3.1.1 Metadata loading transformations

The metadata files, as presented in the work of Andrade (2018), inform the time
instants (in seconds) in which heart sounds (S1 and S2) occur in their respective input audios.
However, the metadata files are CSV formatted and require transformation to be usable in
calculations after being loaded into memory. Another issue concerns the loading of an input
audio (WAV) into memory, when it becomes a vector of numbers (samples). In this vector, the
positions of their S1s and S2s are addressed through sample indices (functions of the sampling
rate). Therefore, positions in seconds need to be translated into sample indices. Moreover,
before the most costly transformation (described in Subsection 3.1.2), downsampling is applied
on this vector in order to obtain another vector with fewer samples. In this new vector, the
positions of S1s and S2s have different indices. Finally, when processing a heart cycle, it is
often useful to know not only the S1 and S2 indices of this cycle, but also the S1 index of
the next one — since each new S1 effectively marks the end of the previous cycle and the
beginning of a new one. An example of this is the very definition of "end" of a heart cycle in
the auscultation domain: each S1 marks the end of one cycle and the beginning of the next
one1.

In order to create a summary of this information useful for each heart cycle and also to
indicate the 9 cycles of each patient that will be effectively processed, a set of transformations
were created that act on each CSV file of the "copy-csv-files" task and on its input WAV
audio (represented by the sample vector x[j], where j indicates the sample index2). These
transformations summarize, for each heart cycle:

• fS: input audio sampling rate (44,100 Hz for all audios used).
• fDS: sampling rate after downsampling (2,756.25 Hz).
• tS1;i and tS2;i: times of occurrence of S1 and S2 of a cycle in the input audio, where i

corresponds to the cycle index (as shown in Figure 10).
• jS1;i and jS2;i: corresponding indices in the input audio vector.
1Because of this, and since 10 or more pairs of S1 with S2 were recorded for each patient, one can only

guarantee that each patient has 9 complete heart cycles.
2At this point, it is useful to introduce the convention adopted in the rest of this work. In addition to the

letters x (always denoting samples loaded directly from a record or a segment of it) and j (index for samples
under the same conditions), k was used to address samples of vectors originated by downsampling. The asterisk
symbol (∗) was used to mark indices of vectors corresponding to segments of other vectors. For instants of
time, always measured in seconds, the letter t was used.
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• kS1;i and kS2;i: corresponding indices in the downsampled vector.
• tS1;i+1: time (in seconds) of occurrence of S1 in the next cycle of the input audio.
• jmaxS1;i and jmaxS2;i: indices of the samples with the maximum absolute value in the
vicinity of S1 and S2. By "vicinity”, it is meant the set of samples temporarily distant
from tS1;i or tS2;i by a maximum of 50 ms (highlighted green and purple segments in
Figure 10).

• kmaxS1;i and kmaxS2;i: corresponding indices in the downsampled vector.
• x[jmaxS1;i] and x[jmaxS2;i]: maximum sample value in the vicinity of S1 and S2 in the

input audio vector.
• tsta;i and tend;i: start and end times of the cycle in the input audio, also illustrated in
Figure 10. Consider that each cycle starts 50 ms before its S1, and ends 50 ms before
the next S1 (which results in tsta;i+1 = tend;i).

• jsta;i and jend;i: corresponding indices in the input audio vector.
• ksta;i and kend;i: corresponding indices in the downsampled vector.
• xi[j∗]: segment corresponding to the heart cycle in the input vector, which equals the
samples of x[j] with jsta;i <= j < jend;i. Since it is a segment of x[j], we have that
j∗ = j − jsta;i.

Figure 10 – Audio segment with two heart cycles and some of the summarized data

Source: Own authorship

This data will be used in the transformations described in the following subsections. In
addition, if the EMD and HVD decompositions of the incoming audio heart cycles are already
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available (details in Subsection 3.1.2), the summary of each of them also carries the following
data3:

• yl;i[k∗]: vectors resulting from the EMD decomposition of the downsampled heart cycle
(where k∗ is the sample index and l varies from 0 to Li − 1, with Li equal to the
number of IMFs in the cycle plus 1). Each vector yl;i[k∗] represents a different IMF or
the residual function (in the case of the index l = Li − 1) and can be understood as
a simple numerical vector with the same amount of elements as xDS;i[k∗] (defined in
Subsection 3.1.2).

• ∑Li−1
l=0 yl;i[k∗]: sum of the vectors corresponding to the IMFs and the residual function,

resulting in the vector of the original samples of the heart cycle after downsampling
(xDS;i[k∗], where DS stands for downsampling).

• h0;i[j∗]: vector of samples of the main component of the HVD decomposition of the
heart cycle.

3.1.2 Decomposition transformations

Several of the features described in the present work are based on EMD or HVD
decompositions. However, the generation of these decompositions depends on the data made
available as a result of the metadata loading transformations of Subsection 3.1.1 — in particular,
the start and end indices of heart cycles. In addition, decompositions are computationally costly
operations, which translates into a high processing time. Thus, it was decided to implement the
decomposition operations as one of the transformations of the task "copy-csv-files"; since
such a task acts only on new input files, the decomposition transformations are performed only
once for each of them.

For the EMD decomposition, a transformation was created that processes the segments
corresponding to the heart cycles (xi[j∗]) of each input audio. The transformation sends
each segment to the Python script "emd.py", which decomposes the samples vector using
the PyEMD library (LASZUK, 2019). The integration between the JavaScript and Python
files takes place through the NPM module pytalk (NPM, Inc., 2016). Due to the high
computational cost of the EMD, before effectively decomposing the heart cycle, the Python
script downsamples the audio with factor 16/1, resulting in the vector xDS;i[k∗] of
sampling frequency equal to 2,756.25 Hz. Among the EMD decomposition functions available
in the library, the simple "emd" was chosen. Of the parameters used in the call ("std_thr",
"svar_thr", "total_power_thr" and "range_thr"), only the first parameter was modified
(to "20.0") from the default value ("0.2"), as an additional measure to reduce the execution time.
The remaining parameters remained unchanged ("0.001", "0.005" and "0.001", respectively).
As a result of the decomposition, for each heart cycle of each incoming WAV audio file, a file
(of ".npy" extension) containing the IMFs and the residual function and a graphic (".png"

3In addition to the aforementioned convention, the letters y (to denote vectors originated by EMD
decomposition) and h (similarly, to HVD decomposition) are added here.
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extension) for inspection of these signals are generated. NPY is a simple format for writing
Python vectors to disk (The SciPy community, 2019), and can be read again in both Python
and any other programming language capable of executing the reading routine. It is through a
JavaScript implementation adapted from Abdennur (2016) that the vectors (yl;i[k∗]) of the
IMFs and the residual function, once created, can be made available for reading as described
at the end of Subsection 3.1.1.

Similarly, a transformation was created for the HVD decomposition. However, the
existing implementation of this decomposition consists of a Matlab/Octave script (FELDMAN,
2019). In this case, integration with the program was done through an Octave command line
call from a ".js" script file. Each heart cycle (xi[j∗]) is sent to the Matlab script for low-pass
pre-filtering with cutoff frequency of 2 kHz. The filter used is a 12th-order IIR Butterworth.
The beginning and end of each heart cycle are identified exactly as in the EMD transformation.
Then, the HVD decomposition is called to generate 5 components (hm;i[j∗], with m ranging
from 0 to 4). The parameter "fp" was determined experimentally for the value that imposed
maximum sensitivity ("0.0051") — that is, it kept the frequency band of the main component as
small as possible, transferring the energy of other frequency bands to the following components.
Finally, the decomposition of each heart cycle is saved in a WAV file containing 5 channels
(one for each generated component).

3.1.3 Main task

When the main task is executed, all directories except "emd.c" and "emd.se" are
already populated. Each file needed to generate the features is created, including those resulting
from the decomposition transformations mentioned in Subsection 3.1.2. Therefore, all data
listed in Subsection 3.1.1 is available.

Thus, the "default" task starts loading the metadata and sample vectors and
proceeds to the main transformation, which effectively calculates values for the features in
sections 3.2, 3.3 and 3.4.

3.2 BASIC FEATURES

All features whose calculation is immediate from the input audios and their metadata
were considered basic. All of them are of type 2 (as defined in Section 1.5).

The first basic feature is the duration of the heart cycles (CD — Cycle Duration).
Each value is given by Equation (6), is measured in seconds and is related to the patient’s
heart rate.

CDi = tend;i − tsta;i (6)

The second is systole-relative time (SRT). This is a ratio between the duration of
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systole and the duration of the complete cycle. This feature is given by Equation (7).

SRTi = tS2;i − tS1;i

tS1;i+1 − tS1;i
(7)

The last basic feature concerns the ratio between the maximum values in the regions of
S1 and S2 (RA12 — Relative Amplitude of the Peaks of S1 and S2). It is given by Equation (8).

RA12i = x[jmaxS1;i]
x[jmaxS2;i]

(8)

3.3 FEATURES BASED ON THE LITERATURE

A second category of features is based on existing algorithms. During the literature
review, methods to express metrics of a record (represented by the vector x[j]) that could be
correlated to the degree of murmur were searched. The metrics found were converted into type
2 features.

The first one is the number of vectors yl;i[k∗] (NIMF — Number of IMFs) generated in
the EMD decomposition of the downsampled vector of each heart cycle (xDS;i[k∗]). Equation (9)
expresses the value of the feature in the notation used in Subsection 3.1.1. Although it is an
apparently trivial value, it is necessary to remember that the IMFs produced are the components
found by the EMD technique in the input signal, and therefore more complex signals (with
more components) tend to generate more IMFs.

NIMFi = Li (9)

The second feature based on algorithms in the literature refers to the energy of the
heart cycle (CE — Cycle Energy). Two variants were implemented: the energy of the cycle after
downsampling (CE.DS), represented by Equation (10), and the energy of the main component
of the cycle after the HVD decomposition (CE.HVD), of Equation (11).

CE.DSi = ExDS;i (10)

CE.HV Di = Eh0;i (11)

The next features are based on an algorithm presented by Boutana, Benidir and Barkat
(2014) to segment sounds and murmur in a heart cycle. For this, the correlation coefficient of
each IMF with the vector that generated it (vector of the cycle before EMD decomposition) is
determined by Equation (12).

ρl;i =
∑

k xDS;i[k∗] · yl;i[k∗]√∑
k x

2
DS;i[k∗]

∑
k y

2
l;i[k∗]

(12)

Next, the index l of the IMF with the highest correlation coefficient with the cycle
is found (and denominated lmax). Finally, IMFs of index less than lmax are summed to form
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a vector of samples considered to contain only noise (either murmur or ambient), and the
other IMFs are summed in a vector considered as containing only pure heart sounds. These
two vectors are given by equations 13 and 14, respectively. At this point, WAV audios and the
segmentation graph in the "emd.c" directory are also generated for inspection purposes.

xN.C;i[k∗] =
lmax−1∑

l=0
yl;i[k∗] (13)

xHS.C;i[k∗] =
L−1∑

l=lmax

yl;i[k∗] (14)

The following features are produced from the results of segmentation by correlation:
• NNIMF.C (Number of Noise IMFs based on the Correlation method): number of IMFs

considered "noise" by the segmentation method by correlation.
• NSR.C (Noise to Signal Ratio based on the Correlation method): ratio between the

energy of xN.C;i[k∗] and the energy of the vector before decomposition.
• HSSR.C (Heart Sound to Signal Ratio based on the Correlation method): ratio between

the energy of xHS.C;i[k∗] and the energy of the vector before decomposition.

3.4 PAIR-COMPARISON FEATURES

The last features produced consist of a kind of comparison between pairs of cycles
of the same input audio. More precisely, they express the minimum possible energy of error
between cycles (subtraction of cycles) — hence their name, MICE (Minimum InterCycle
Error). As a result, these features are of type 3. In all, 6 MICE variants were generated
(MICE.DS, MICE.HVD, MICES1.DS, MICES1.HVD, MICES2.DS and MICES2.HVD), each
with particularities that will be explained as the general algorithm is described next.

The first step in the calculation of the MICE consists of the choice of the beginning
and end samples of the mandatory comparison region of each heart cycle. The MICE
algorithm guarantees that at least this region will be included in the calculation of the error,
affecting the value of the feature. In addition, a sample necessarily between the beginning and
the end of the cycle is chosen as the search pivot. The process of comparing a pair of cycles
can be understood as a sliding of one cycle over the other in search of the position in which
they best overlap while keeping a maximum distance between the two pivots, as will be made
clear in the sequence. The times corresponding to the beginning, pivot and end of each heart
cycle for each MICE variant are listed in Table 1 and illustrated in Figures 11 and 12 for the
MICE.HVD and MICES1.HVD variants, respectively. The table also shows the vectors (derived
from the cycle) from which the samples are extracted for the next steps.

The second step is the determination of all possible pairs of heart cycles; for this, each
cycle was combined once with each of its successors in the audio. The number of possible
pairs as a function of the number of heart cycles in a record is given by Equation (15). Table 2
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Table 1 – Parameters of the comparison region for each variant of the MICE feature.

Variant Start [s] Pivot [s] End [s] Vector Step
MICE.DS

tsta;i
tS1;i

tend;i
xDS;i[k∗] 1 sample

MICE.HVD h0;i[j∗] 16 samples
MICES1.DS

tS1;i − 0.05 tS1;i + 0.05 xDS;i[k∗] 1 sample
MICES1.HVD h0;i[j∗] 16 samples
MICES2.DS

tS2;i − 0.05 tS2;i tS2;i + 0.05 xDS;i[k∗] 1 sample
MICES2.HVD h0;i[j∗] 16 samples

Source: Own authorship

Figure 11 – Visualization of the parameters of the MICE.HVD variant

Source: Own authorship

Figure 12 – Visualization of the parameters of the MICES1.HVD variant

Source: Own authorship
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shows the pairs generated for an input audio with 9 heart cycles; the numbers in the row and
column headings correspond to the indices of the cycles, while the numbered cells indicate the
index of the pair formed by those cycles. Unnumbered cells indicate invalid combinations, i.e.,
those already produced before and those of a cycle with itself.

p(c) = c · (c− 1)
2 (15)

Table 2 – Example of pairs generated for an audio with 9 heart cycles.

Indices 0 1 2 3 4 5 6 7 8
0 - 0 1 2 3 4 5 6 7
1 - - 8 9 10 11 12 13 14
2 - - - 15 16 17 18 19 20
3 - - - - 21 22 23 24 25
4 - - - - - 26 27 28 29
5 - - - - - - 30 31 32
6 - - - - - - - 33 34
7 - - - - - - - - 35
8 - - - - - - - - -

Source: Own authorship

For each pair of cycles generated, the MICE algorithm iterates over the distance
between the two pivot points. That is, conceptually keeps one of the two vectors stopped while
sliding the other from left to right — starting with a distance equivalent to 25 ms of samples
between their pivots (about 1100 samples), gradually reducing that difference until the moment
of their perfect alignment (0 distance samples between pivots), and then the sliding continues
in the same direction (again increasing the difference to a sample amount equivalent to 25
ms). Figure 13 illustrates these iterations for a maximum distance between pivots of three
samples (equivalent to only 68 µs of the input audio). The pivotal samples of the heart cycles
involved in the calculation are marked with an "X". In practice, due to performance issues, the
samples are not moved in memory (the distance is only counted in a variable). The amount of
samples conceptually "slided" at each iteration (step chosen) can also be found in Table 1,
and was shown in Figure 13 as being of three samples. At each iteration, the error between the
two cycles (blue vectors of the figure) is established by its subtraction (resulting in the red
vector). The vector of the difference between two cycles is always generated with the same
length for the same pair — a number of samples sufficient to cover at least the two mandatory
comparison regions (larger squares in the figure), regardless of the specific iteration. Therefore,
for each pair of cycles, depending on the length of the comparison regions and the position of
their pivots, samples not belonging to the comparison regions are required for the calculation
of the feature. These samples were represented by smaller squares in the figure, and may even
belong to adjacent heart cycles if necessary. Another observation from Figure 13 is that the
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beginning of the vector of the difference must always be in line with the beginning of one of
the other two vectors.

Figure 13 – Example of MICE for both step and maximum distance of three samples

Source: Own authorship

Finally, the energy of each error vector is calculated, and the lowest error energy found
for the respective pair of cycles is adopted as the value of the feature.

In this way, one can summarize the process by asserting that the MICE.DS and
MICE.HVD variants consist of a comparison of complete cycles for each possible pair; variants
MICES1.DS and MICES1.HVD compare only the regions of S1; finally, MICES2.DS and
MICES2.HVD compare only the regions of S2. The three DS variants make use of samples
after downsampling (without additional filters); the other three only use samples of the main
HVD component of the cycle.
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3.5 RESULTS

The feature-processing gulp script was run on the input data of the 56 patients on a
laptop with a Linux Mint 17.3 Cinnamon 64-bit operating system, with an Intel Core i7-3520M
2.9 GHz processor and 8 GB of memory. The total execution time was 4 hours and 25 minutes.
Of these, 29 minutes were consumed by the "copy-csv-files" task, mostly for the EMD
decomposition of downsampled audio of each heart cycle, and 2 seconds by "copy-emd-files"
(which moves files resulting from decomposition to a directory of its own). Most of the time
(3 hours and 56 minutes) was used by the main task ("default") to effectively generate the
features, which corresponds to about 89% of the total execution.

Since only 9 heart cycles of each patient were effectively processed, an average of 31.5
s per heart cycle was obtained. However, the runtime of the MICE feature variants increases
nonlinearly with the number of cycles — in fact, the amount of generated values progresses
quadratically according to Equation (15). In addition, this feature set accounted for around
97% of the main task time (73% for MICE.HVD, and an additional 24% for other variants).
Thus, its share in the total execution time is approximately 86%, which means that the impact
on the average execution time per cycle should change considerably if the presented features
are implanted in an application with a higher or lower number of cycles per patient.

The data produced in response to the input data from the 56 patients are described
in Table 3. Table 4 exemplifies the output format of the processing script for a single patient.
Most of the data was omitted for space reasons, so ellipses ("...") were used to indicate missing
segments.

Then, to make the visualization and the in-depth analysis of the results feasible, the
need arose to convert the data to a tabular format. This means that the output format of
the processing script (a list of values for each patient) must be converted to a table, in which
each line must represent a vector of distinct features associated with the same heart cycle. As
the script generated more than one type of value (namely types 2 and 3), and how one can
understand each patient’s clinical attributes — age, weight, sex, clinical signs and degree of
murmur — as a feature of type 1, it was necessary to apply a criterion of union of values of
features, summarized in the following set of rules:

• Each feature corresponds to a column of the table.
• Each pair of heart cycles produces two table rows (one for each cycle of the pair).
• Feature of type 1: Each value is repeated on all rows relative to patient cycles.
• Feature of type 2: Each value is repeated on all rows relative to the cycle with which

the value matches.
• Feature of type 3: Each value is repeated only on the two lines relative to the cycle

pair.
An example of union of 6 fictitious features of 4 heart cycles belonging to the same

patient is shown in the diagram of Figure 14. On the left is a list of values resulting from
the processing script (similar to the actual values shown in Table 4). On the right, the table
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Table 3 – Quantity of values produced by feature.

Feature Type Values per patient Values (total)
CD 2 9 504
SRT 2 9 504
RA12 2 9 504
NIMF 2 9 504
CE.HVD 2 9 504
CE.DS 2 9 504
NNIMF.C 2 9 504
NSR.C 2 9 504
HSSR.C 2 9 504
MICE.HVD 3 36 2016
MICE.DS 3 36 2016
MICES1.HVD 3 36 2016
MICES1.DS 3 36 2016
MICES2.HVD 3 36 2016
MICES2.DS 3 36 2016
TOTAL 297 16632

Source: Own authorship

resulting from the union of the represented features. It should be noted that the values of
the two features of type 1 are repeated in all rows of the table, since all rows in the example
belong to the same patient to whom those values refer. The values of the two features of type
2 appear three times each, since this is the number of pairs from which each cycle participates
(in the specific case of 4 heart cycles). Finally, the values of the two features of type 3 are
repeated only in the two lines referring to their respective pair of cycles.

Using this same procedure, a single table was generated, in CSV format, containing
the values of the 56 patients of the study. The 20 columns corresponding to the features were:

• Weight: in kilograms;
• Age: in years;
• Gender: 0 for "female", 1 for "male";
• Presence of clinical signs: 0 for "no", 1 for "yes";
• CD: cycle duration in seconds;
• SRT: systole relative time in the cycle, without unit;
• RA12: relative amplitude of S1 compared to S2, without unit;
• NIMF: number of IMFs in the cycle;
• CE.HVD: energy of the main HVD component of the cycle;
• CE.DS: heart cycle energy after downsampling;
• NNIMF.C: number of IMFs considered "noise" by the correlation method;
• NSR.C: ratio between noise energy (according to the correlation method) and signal

energy;
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Table 4 – Features generated for a patient.
Feature[cycle index] Value Unit

CD[000] 0.39473922902494335 [seconds]...
CD[008] 0.5166439909297056 [seconds]

SRT[000] 0.37409967980164444 ratio...
SRT[008] 0.2857148389245382 ratio

RA12[000] 3.155739828971236 ratio...
RA12[008] 1.9462574549353346 ratio

NIMF[000] 9 [IMFs]...
NIMF[008] 9 [IMFs]

CE.HVD[000] 143361393774 normalized energy...
CE.HVD[008] 145872042932 normalized energy

CE.DS[000] 13386328881.263596 normalized energy...
CE.DS[008] 13724180088.009422 normalized energy

MICE.HVD[000] 299054067055 normalized energy...
MICE.HVD[035] 99111380205 normalized energy

MICE.DS[000] 27220506308.418636 normalized energy...
MICE.DS[035] 9986981795.928823 normalized energy

MICES1.HVD[000] 157747451410 normalized energy...
MICES1.HVD[035] 23024550143 normalized energy

MICES1.DS[000] 13987740875.395214 normalized energy...
MICES1.DS[035] 2099924885.6990712 normalized energy

MICES2.HVD[000] 27782714021 normalized energy...
MICES2.HVD[035] 8774660887 normalized energy

MICES2.DS[000] 2329522992.5461106 normalized energy...
MICES2.DS[035] 768094647.4241908 normalized energy

NNIMF.C[000] 2 [IMFs]...
NNIMF.C[008] 1 [IMFs]

NSR.C[000] 0.26621420772672416 ratio...
NSR.C[008] 0.38460120055497865 ratio

HSSR.C[000] 0.6588263347411786 ratio...
HSSR.C[008] 1.283908184226331 ratio

Source: Own authorship
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Figure 14 – Example of joining the values of 4 cycles of the same patient in a table

Source: Own authorship

• HSSR.C: ratio between the energy of the heartbeat sounds (according to the correlation
method) and the energy of the signal;

• MICE.HVD: minimum energy between each pair of cycles after HVD filtering;
• MICE.DS: minimum energy between each pair of cycles after downsampling;
• MICES1.HVD: minimum energy between each pair of S1s after HVD filtering;
• MICES1.DS: minimum energy between each pair of S1s after downsampling;
• MICES2.HVD: minimum energy between each pair of S2s after HVD filtering;
• MICES2.DS: minimum energy between each pair of S2s after downsampling;
• Degree of murmur: 0 for "without murmur", and integer of 1 to 6 for the degree of

murmur.
The resulting table has 4032 rows, 72 for each patient. Its CSV file was imported into

the Weka software, which is defined as a collection of machine learning algorithms for data
mining (FRANK; HALL; WITTEN, 2016). The version used was 3.8.3.

3.5.1 Analysis on the Weka software

After importing the CSV table, the "degree of murmur" feature was temporarily
converted to a nominal type (used by Weka to represent non-numeric attributes whose values
must come from a predetermined list of values). This allowed the initial inspection of the
distribution of the columns, as shown in Figure 15. The upper part of the figure exposes the
filter ("NumericToNominal") applied on the column "degree of murmur" (option "-R 20"),
while the lower one shows the graph of the distribution of the selected attribute ("age") degree.
The blue color was chosen by the software to express degree equal to 0. Immediately, therefore,
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it was perceived that the analysis should proceed with caution regarding age, since none of the
studied patients with murmur was 7 years old or less — which could lead the machine learning
algorithms to make improper predictions, since this is a sampling phenomenon that does not
reflect the reality of the population. The other clinical attributes do not present this problem,
as it is clear in the first line of Figure 16, which presents all the distributions (including age’s
one).

Figure 15 – Visual inspection of the attribute "age" according to the degree of murmur

Source: Own authorship

Another common observation that can be made about the graphs presented by Weka
software is that no attribute can be used alone to classify the degree of murmur (shown in the
last column of the last line). This means that the problem necessarily depends on a subset of
mutually complementary attributes to enable a regression to the degree of murmur. This is
precisely the role of the data table generated in the present work — to act as a training set so
that a regression algorithm is able to find a model capable of estimating the degree of heart
murmur of new patients.

After visual inspection of the available attributes, the conversion of the column
"degree of murmur" to the nominal type was undone (restoring it to the numerical type),
and then proceeded to the investigation of regression algorithms. Through experimentation,



Chapter 3. DEVELOPMENT 53

Figure 16 – Visualization of all attributes according to degree of murmur

Source: Own authorship

algorithms were found that, even in the standard Weka configurations, established correlation
coefficient greater than 0.99 between the degree of murmur and its estimate according to the
model generated. These are: "trees.M5P", "rules.M5Rules", "rules.DecisionTable"
and "functions.MultilayerPerceptron". The left half of Figure 17 shows the correlation
coefficients at the end of training for the algorithms searched, with default settings, by providing
them with the complete table (20 attributes), the table without the "age" column (19 attributes)
and without clinical indicators (16 attributes, i.e., all except weight, age, sex and presence of
clinical signs). In any case, the last column fed to these algorithms is always the "degree of
murmur" (variable to which regression is intended). This column acts merely as an output
variable, that is, it is never used by the algorithms to produce an estimate of the degree of
murmur. The right half displays the MAEs at the end of the training for the same scenarios. The
higher the correlation coefficient and the lower the mean absolute error, the better the algorithm
performance. The "functions.LinearRegression" was used as a basis for comparison. Its
performance is not good by acting simply by establishing a linear combination of the input
columns — that is, each column is simply associated with a scalar multiplier, and then all of
them are summed and added of one final scalar to constitute the regression of the output
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column.
As can be seen in the two graphs, the performance of most of the algorithms is

significantly reduced in the absence of the attribute "age", which shows great dependence on the
phenomena occurred during the sampling phase and may also reflect a reduced generalization
capacity — that is, the algorithm’s ability to make accurate predictions even when confronted
with a completely unknown line (never used for training purposes). It is worth mentioning that
whenever the table of only 16 attributes was used, the only information that the algorithm
has to calculate the degree of murmur estimate are the features generated with the processing
presented in this work.

Figure 17 – Correlation and error of regression algorithms for different sets of features

Source: Own authorship

The "lazy.IBk" classifier was one of those with a very high correlation coefficient
(0.9999) in standard configurations and with all attributes (20 columns), together with mean
absolute error of 0.0005 — meaning that the training was concluded with estimates of the
degree of murmur (floating-point numbers) that, on average, were 0.0005 degrees above
or below the actual degree (integer). This allows one to conclude that the vast majority of
estimates will correspond to the true degree of murmur after rounding. However, some even
more interesting properties were perceived in IBk. The first concerns maintaining its good
performance by removing the "age" column — indeed, a correlation coefficient of 0.9834
and a MAE of 0.0361 were obtained even by eliminating all 4 clinical indicators. Second,
good performance was also maintained by varying the parameter K, which basically reflects
the generalization of the model produced by the algorithm (GOLLAPUDI; LAXMIKANTH,
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2016). Finally, the IBk is actually the implementation in the Weka of the already known k-NN
(k-Nearest Neighbors) algorithm, which allows the fine-tuning of the generalization not only
through parameter K ("number of nearest neighbors"), but also via the distance calculation
algorithm.

The k-NN works for regression by assigning as the estimated output for an input
(whose actual output may be unknown) the average of the already known outputs for the
K training set instances closest to that input, according to the chosen distance calculation
algorithm (GOLLAPUDI; LAXMIKANTH, 2016). The K shortest instances for which the
estimation is desired are called the "K" nearest neighbors, and consist of the training set
records most similar to the new line. The distance algorithm may be that of the Euclidean
distance (expressed by Equation (16)), the Manhattan distance (Equation (17)) or basically
any other able to establish a metric (or pseudo-metric) between two vectors (in the formulas,
vA[i] and vB[i]) of the same dimension (D). The dimension, in turn, corresponds to the
number of attributes (columns) whose values are always known, both in the case of the new
entry and in the case of the records of the training set. For example, being vl[i] the vector of
attributes (except degree of murmur) of the l-th line of the features table, the degree prediction
for a new vector vNOV O[i] (features whose degree of murmur is unknown), for K = 3 and
Manhattan distance is given by the mean of the degrees of the 3 lines (indices lP , lQ and
lR) whose respective distances dMANHAT T AN(vNOV O, vl) are the smallest within the already
known table (training set). That is, in this example, the 3 lowest distances found would be
dMANHAT T AN (vNOV O, vlP ), dMANHAT T AN (vNOV O, vlQ) and dMANHAT T AN (vNOV O, vlR), and
therefore the estimate of the degree of murmur for the new line would correspond to the
arithmetic mean of the degrees (already known) of lines lP , lQ and lR.

dEUCLIDIANA(vA, vB) =

√√√√D−1∑
d=0
|vA[d]− vB[d]|2 (16)

dMANHAT T AN(vA, vB) =
D−1∑
d=0
|vA[d]− vB[d]| (17)

Due to its less dependence on the clinical attributes (outcome of a greater use
of the features resulting from the processing) and the possibility of adjusting parameters
to obtain greater or lesser generalization, IBk was selected for application in the present
work. Its default settings on Weka are K = 1 and Euclidean distance. Figure 18 shows the
correlation coefficients (left) and the MAEs (right) of the base of comparison algorithm,
"functions.LinearRegression" (in default settings), and the IBk with several distance
calculation algorithms. In all graphs, the abscissa axis indicates the quantities of neighbors
("K", from 1 to 7) specified for the IBk runs, always in odd numbers. The first pair of graphs
corresponds to runs with all 20 columns; the middle pair, to the executions in which the age
of the patients was excluded; the latter, to the executions in which the regression was made
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only with features coming from the processing. Again, in any case, the last column of the data
table provided to the algorithm is that of the variable to be regressed ("degree of murmur").

In the figure, it is clear that any configuration of IBk has performance superior to
that of the base of comparison — that is, all have higher correlation coefficient and lower
MAE. Moreover, at least while all 20 attributes were supplied to the regression algorithm
and the number of neighbors was limited to 7, the MAE of all IBk variations remained below
0.0819 degrees (more than ten times less than the 0.8799 degrees of the base of comparison).
This means that while the default "functions.LinearRegression" settings are expected
to cause mostly erroneous degree of murmur estimates, any IBk configuration can be used to
produce estimates (floating-point) that can be rounded to the correct (integer) degree in most
cases.

However, as columns are being removed from the input of the algorithms, the perfor-
mance of the studied variations of the IBk deteriorates (even exceeding the baseline algorithm
by a large margin). In fact, it is found in the third pair of graphs that the IBk configuration
with Chebyshev distance and K = 7 is the first to result in MAE of more than 0.5 degrees —
in practice, indicating that most of the estimates can no longer be accurately rounded to the
actual degree of murmur.

The last observation resulting from Figure 18 concerns the higher efficiency of the
IBk with Minkowski distance in the tests performed. The formula of the Minkowski distance is
given by Equation (18). In it, it is noted that P is a parameter represented by a real scalar.
When P = 2, it is easy to conclude that the Minkowski distance equals Euclidean distance;
when P = 1, the Minkowski distance equals the Manhattan distance. In particular, the graphs
seem to indicate that the error is reduced as the parameter P of the Minkowski distance tends
to zero.

dMINKOW SKI(vA, vB) = P

√√√√D−1∑
d=0
|vA[d]− vB[d]|P (18)

Figure 19 shows the correlation coefficient and MAE for IBk runs with Minkowski
distance, with P ranging from 1 (Manhattan distance) to 0.03125. In the specific case of
this figure, all executions had access the complete data table (20 columns). The number of
neighbors was alternated from 1 to 15, in odd numbers. The scale was adjusted to allow
differentiation between the series, which were extremely close to each other. As can be seen,
with the complete table, the performance of IBk with Minkowski distance was better with
P = 0.25 both in terms of correlation coefficient and MAE — respectively, 0.9980 and 0.0204
degrees for 15 neighbors (the worst scenario studied). The Minkowski distance with lower values
(P = 0.125, P = 0.0625 and P = 0.03125) had intermediate performance (worse correlations
than those obtained for P = 0.5 and P = 0.25 but greater than that for Manhattan distance,
and mean errors similar to those observed for all executions except Manhattan distance).

The experiment was then repeated without using the patient’s age. The result is shown
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Figure 18 – IBk correlation and error for 20, 19 and 16 columns according to the number of
neighbors

Source: Own authorship
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Figure 19 – Performance of IBk with 20 attributes and Minkowski distance of varied P

Source: Own authorship

in Figure 20. In it, the performance with P = 0.25 was always intermediate, and with lower
P values, higher correlation coefficient and lower error were obtained. With 19 columns, the
best configuration of the Minkowski distance was achieved with P = 0.0625, with correlation
coefficient equal to 0.9908 and MAE of 0.0655 degrees of murmur in the worst studied scenario.

Finally, Figure 21 shows the performance of the same IBk configurations with Minkowski
distance, but now in the case of the removal of the 4 clinical attributes. In this scenario, as already
commented, the regression is based only on the features generated through the processing
of the WAV records and their associated metadata. Here, the performance deterioration of
the configurations with P = 0.0625 and P = 0.03125 is noticeable in relation to that of the
other configurations as the number of neighbors exceeds the mark of 9. With this, once again
P = 0.25 is the adjustment with the highest correlation coefficient (0.8899) and lower MAE
(0.7477 degrees), in the worst case scenario.

With these experiments, it was verified that the most consistent regression algorithm
for the studied data set was IBk’s, configured with Minkowski distance and P = 0.25.

Thus, to make a final evaluation of the quality of the features generated and to
also extract the best configuration for the parameter "K" (number of neighbors), the IBk
with distance Minkowski and P = 0.25 was selected for a more detailed evaluation on Weka.
By "best configuration" of this parameter, one can understand the maximum number of
neighbors that allow the error to remain smaller than a value considered to be low — since
this would mean that the generalization of the regression would be the best possible within
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Figure 20 – Performance of IBk with 19 attributes and Minkowski distance of varied P

Source: Own authorship

Figure 21 – Performance of IBk with 16 attributes and Minkowski distance of varied P

Source: Own authorship
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the acceptable limit. The error limit, in turn, did not have an a priori definition, even because
the indicators provided by the Weka (correlation coefficient, MAE and some others) only have
statistical significance if the studied variable (in this case, the error between the estimated
degree of murmur and the actual degree) follow a normal distribution. As will be shown
below, the error distribution was not normal, and therefore the error limit setting is not as
straightforward as simply choosing a maximum MAE value, for example. It is enough to note
that in terms of MAE, the effect of 12 errors by half-degree of murmur (all small errors) is the
same as of that of a single error by 6 degrees of murmur (an unacceptable error).

Thus, the degrees of murmur were once again estimated for 20, 19 and 16 attributes
from the regressions with "K" of 5, 7 and 9. Then, the estimates produced were individually
analyzed. The absolute difference between each estimated value and the corresponding actual
degree was determined. The mean of these errors in the first analysis has already been illustrated
in Figures 19, 20 and 21. The values obtained in the reanalysis are summarized in Table 5.

Table 5 – Mean absolute error for selected IBk settings.

5 neighbors 7 neighbors 9 neighbors
20 attributes 0.0000 0.0007 0.0057
19 attributes 0.0000 0.0039 0.0298
16 attributes 0.0010 0.0545 0.2893

Source: Own authorship

The next step was the counting of absolute errors greater than 0.5, 1.5 and 2.5 degrees.
The explanation is that, for each occurrence of an absolute error greater than 0.5 degrees
and less than 1.5, in the case of rounding to the nearest whole degree — for example, if a
veterinarian attempts to interpret the measurement based on the original scale presented in
Section 1.1 — the resulting degree will be increased or reduced by 1 in relation to the actual
patient’s degree of murmur. Between 1.5 and 2.5 degrees, the error will be of 2 degrees after
rounding (in practice, a high difference). Estimation differences greater than 2.5 degrees will
result in 3 or more degrees of difference (a completely misleading classification that should be
avoided to the maximum extent).

Table 6 lists the level of error of the estimated grade after rounding. As can be
seen, the total number of errors with 9 neighbors when using only the features generated via
processing sum almost 30% considering all levels. 2% of the total classification errors is of 2 or
more degrees of murmur — that is, extremely significant errors.

With 7 neighbors, on the other hand, the total number of post-rounding errors reduces
to around 6%, with only about 0.2% of the errors reaching 2 degrees of difference. It is
worth remembering, however, that this would be the case only if all the clinical attributes
were neglected (that is, the most difficult classification scenario). With the clinical parameters
considered (20 attributes), only 0.05% of classification error was calculated for the studied
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Table 6 – Error level after rounding for the selected IBk settings.

Error level 5 neighbors 7 neighbors 9 neighbors

20 attributes
1 degree 0.0000% 0.0496% 0.4712%
2 degrees 0.0000% 0.0000% 0.0248%
3+ degrees 0.0000% 0.0000% 0.0000%

19 attributes
1 degree 0.0000% 0.3472% 2.5298%
2 degrees 0.0000% 0.0000% 0.1488%
3+ degrees 0.0000% 0.0000% 0.0000%

16 attributes
1 degree 0.0992% 5.9772% 27.8274%
2 degrees 0.0000% 0.1984% 1.8353%
3+ degrees 0.0000% 0.0000% 0.1240%

Source: Own authorship

patients — once again remembering that the "age" column presented a sampling phenomenon
that may be able to distort the results. Thus, by eliminating this column, a number of errors is
achieved of approximately 0.35% of the estimates after rounding (all of these errors being of
only 1 degree of murmur).

Table 7 lists all absolute estimation errors greater than 0.5 degrees for 19 columns,
K = 7 and P = 0.25. From the table, it is easy to see the undesirable effect on the rounding
— because in all the lines displayed, the rounding of the estimated degree would move it away
from the actual one by exactly 1 degree (in the specific case of the mentioned configuration). It
is also noted that the 14 post-rounding errors occur with 8 different patients; patients 25, 6 and
7 are the most impaired, with 2, 3 and 4 of these errors, respectively. However, since all patients
are associated with 72 lines (each) in the present study, it follows that techniques such as the
averaging of all estimates obtained for the same patient would have the effect of overriding the
observed errors. Therefore, this configuration — IBk with 7 neighbors and Minkowski distance
with P = 0.25 — was considered the most indicated for the studied dataset.

For comparison purposes, Table 8 lists some of the absolute estimation errors of less
than 0.5 degrees. As one can see, after rounding the estimated degree, the actual degree is
obtained. Similar results were obtained for 4018 of the 4032 lines of the present study.

Figure 22 shows the diagram of the estimated variable (estimated degree of murmur)
by the real variable (actual degree of murmur) as generated by Weka. The vast majority of
points are coincident, that is, the estimated degree is exactly the actual one; this type of point
can not be easily viewed unless a small jitter (noisy displacement) is applied, as shown in
Figure 23.

A particularly revealing way of observing errors after rounding is through Table 9,
which displays the confusion matrix for the classifications using the chosen settings. As one
can see, in only 5 of the 14 errors the estimated degree of murmur is less than the actual one.
In the other 9, the estimated degree is greater than the actual one. These 9 instances are also
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Table 7 – Absolute error per patient for regression with IBk of P = 0.25 and K = 7: all errors
after rounding.

Patient Estimated degree Actual degree Absolute error
30 0.57 0 0.57

25 0.71 0 0.71
0.71 0 0.71

24 0.71 0 0.71

6
0.71 0 0.71
0.71 0 0.71
1.43 0 1.43

1 0.86 0 0.86
17 0.86 0 0.86
36 4.29 5 0.71

7

5.14 6 0.86
5.14 6 0.86
5.14 6 0.86
5.14 6 0.86

Source: Own authorship

Figure 22 – Chart generated by Weka correlating the estimated degree with the actual one

Source: Own authorship
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Table 8 – Absolute error per patient for regression with IBk of P = 0.25 and K = 7: some of
the accurate classifications after rounding.

Patient Estimated degree Actual degree Absolute error
10 0 0 0.00
12 0 0 0.00
16 0 0 0.00
17 0 0 0.00
19 0 0 0.00
27 0 0 0.00
34 0 0 0.00
35 0 0 0.00
38 0 0 0.00
40 0 0 0.00
43 0 0 0.00
44 0 0 0.00
47 0 0 0.00
49 0 0 0.00
50 0 0 0.00
54 0 0 0.00
23 0.857143 1 0.14
9 5.142857 5 0.14
18 5.142857 5 0.14
5 4.285714 4 0.29
13 0.285714 0 0.29
39 0.285714 0 0.29
21 1.714286 2 0.29

Source: Own authorship

called false positives, that is, patients for whom the proposed technique accuses murmur
when, in reality, there are none.

Table 9 – Confusion matrix after rounding.
Estimate 0 1 2 3 4 5 6Actual

0 2799 9 - - - - -
1 - 72 - - - - -
2 - - 216 - - - -
3 - - - - - - -
4 - - - - 72 - -
5 - - - - 1 359 -
6 - - - - - 4 500

Source: Own authorship

Finally, Figure 24 is used to demonstrate that there is no greater number of neighbors
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Figure 23 – Chart generated by Weka correlating the estimated degree with the actual one
(with jitter)

Source: Own authorship

than the one chosen that can lead to better performance. In fact, taking the reasoning to the
limit, it is easy to conclude that the error assumes a very high value when "K" is maximum
(4032, the very amount of records in the training set), since it means that, regardless of the
new line being evaluated, the estimate of the degree of murmur will simply equal the arithmetic
mean of the degrees of all known instances. This case is illustrated in the figure; it is the lowest
correlation coefficient (-0.0378) and the highest mean absolute error (1.9544) regardless of
the number of columns analyzed — exactly because only one column influences the estimate:
the "degree of murmur" column. Although, in a certain point of view, the generalization of
the model is the maximum in this case (because it will exhibit exactly the same performance
pattern during and after training), on the other hand it is proven that this performance is quite
poor. This means that the criterion adopted when choosing the best configuration, the one of
the largest possible amount of neighbors while keeping a margin of error considered acceptable,
is correct. With the chosen configuration, the model remains as generic as possible without
causing too much misclassification.
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Figure 24 – IBk performance with 19 attributes and Minkowski distance of P = 0.25

Source: Own authorship
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4 CONCLUSIONS

The present study presented the problem of the subjective measurement of heart
murmurs from the limitations of the stethoscope and the difficulties of training medical
professionals for proficient auscultation. However, it highlighted the importance of the technique,
especially in veterinary medicine and in underdeveloped countries. As a result, the document
proposed automatic classification of canine murmur on the existing scale — extrapolating it in
a way that a value 0 denoted the absence of murmur — from a record made with an electronic
stethoscope.

From the set of 56 audio recordings and their metadata, outcomes of the research
of Andrade (2018), 16632 values of 15 different features were obtained. These values were
combined with the clinical attributes of the patients (age, weight, sex, presence of clinical signs
and degree of murmur) in a table of 20 columns (the 5 clinical attributes and 15 features)
and 4032 lines — 72 lines for each patient. The analysis of this table on the Weka software
allowed the finding of an algorithm capable of performing regression to the degree of murmur
from the 19 other attributes. The IBk classifier obtained better results for the dataset in the
configuration of 7 neighbors and Minkowski distance of constant P = 0.25; however, several
other combinations are possible, so fine tuning can be accurately performed for new (and
potentially larger) training sets.

Two main performance indicators were evaluated during the choice of the regression
algorithm: the correlation coefficient between the produced estimate and the actual degree
of murmur, and the mean absolute error of these estimates. In the chosen configuration, the
IBk classifier obtained a correlation coefficient of 0.9999 when using all columns, 0.9999 when
excluding the column "age" (which presented a phenomenon potentially detrimental to the
generalization of the regression), and 0.9946 when using only the features produced in the
present work to estimate the degree of murmur. The mean absolute error in the same scenarios
was 0.0009, 0.0051 and 0.0647, respectively. The configuration was tested again (obtaining
MAE of 0.0007, 0.0039 and 0.0545), and the estimation errors for 19 columns were studied in
detail — revealing that the 14 absolute errors greater than 0.5 degrees existing had origin in
the data of 8 different patients. In this situation, which is probably the closest to the desired
use for the features and clinical attributes studied, only 0.35% of the estimates can not be
associated back to the actual degree of murmur (differing by 1 entire degree on the original
scale). However, it was pointed out that because of the error profile — that is, the low number
of high error estimates per patient — future improvements as the average between estimates
can be applied in a way to further reduce the error (or to maintain it at acceptable levels after
increasing the generalization capacity, for example through the K parameter).

The chosen configuration, in the worst simulated case (in which all clinical attributes,
except degree of murmur, are removed), obtained post-rounding estimation error of around
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6% for 1 degree of murmur and of about 0.2% for 2 degrees. With this, it can be affirmed
that the set of features produced has great impact on the regression, since even without the
support of clinical attributes they could provide reasonably reliable estimates. Classification
errors even smaller than these are expected in future studies with a larger set of training data.

Finally, the proposed automatic classification scale may be able to make the classi-
fication of the degree of murmur more objective, as it makes use of market equipment and
easily reproducible algorithms. It bears similar resemblance to the existing scale, familiar to
veterinary clinicians, and has potential for use in training. In addition, the estimates generated
by it should not be influenced by factors such as time passing, professional in charge or, to
some degree, physical attributes of the consulting room. Moreover, future studies can make
the scale useful even in continuous mode — that is, without having to relate the reading of the
estimates to the discrete degrees of the original scale. Finally, it should be noted that only free
software, mostly open source, was used in the research, so that as many barriers as possible
were removed for future work.

For all this, it is evaluated that the objective of the work has been reached, and that
the perspectives for the technology developed are promising.

4.1 FUTURE WORKS

Several aspects of the work presented in this document can be improved.
The research made use of records and metadata previously manually processed by a

veterinarian. Some steps in this preprocessing can be automated quite simply, such as mono-
mode capture, since neither the recording equipment nor the feature-generating algorithms
have support for 2 or more channels. Audio normalization is also a step that does not require
human interference. On the other hand, marking of heart sounds is the most sensitive stage of
all preprocessing, and may only be automated with the use of advanced algorithms described in
the literature. Finally, the patient’s input of weight, age, sex, and clinical signs is not susceptible
to automation.

In the field of features, several others can be searched and the generalization of
extracted features should be analyzed with more patients. All aspects of the regression,
including parameters and the regression algorithms themselves, can be studied to obtain less
error inside and outside the training set. As already commented, a continuous scale can be
explored from the configuration suggested here and/or through unpublished techniques. Finally,
the shipment of these technologies directly in the hardware can be probed, mainly for the
reduction in the execution time of the applied algorithms.
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