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ABSTRACT

LENZ, Wagner Barth. Neuro-Fuzzy control and particle swarm optimization on
horizontal axis wind turbine. 2019. 100 p. Dissertation (Master’s Degree in
Mechanical Engineer) – Federal University of Technology – Paraná. Ponta Grossa,
2019.

The consumption of electric energy is increasing. This growth stimulates production
that is entirely based on fossil fuels. However, for social, political or environmental
reasons there is a need to change the energy source. Large, medium and low-scale
generation by means of wind turbines is a viable solution. Similar to other generation
methods, the wind turbine needs to be optimized and controlled to function as efficiently
as possible. In this work a particle swarm optimization process optimized a profile
of a wind turbine based on two stretching equations that had as objective the best
coefficient of power for the average speed. We also used a fuzzy neuro controller based
on the maximum for each ratio between speeds (𝑇𝑆𝑅). Three wind speed profiles were
used to analyze the dynamics of the wind turbine. The controller was efficient and kept
the rotation within the expected range. The results show that the controller prevented
the generation above the maximum power, reducing the rotations by up to 12 [rad/s]
above the maximum power, in cases of oscillation in the velocity of the view the control
remained stable with a low standard deviation and reducing the power in at up to 8
[rad/s] for sine waves and up to 9 [rad/s] for random inputs.

Keywords: Wind Turbine. PSO. Neuro-Fuzzy. Optimization. Control.



RESUMO

LENZ, Wagner Barth. Neuro-Fuzzy Controle e Optimização por enxame de
partículas em uma Turbina Eólica de Eixo Horizontal. 2019. 100 f. Dissertação
(Mestrado em Engenharia Mecânica) – Universidade Tecnológica Federal do Paraná.
Ponta Grossa, 2019.

O consumo de energia elétrica vem aumentando. Esse crescimento estimula a pro-
dução que está inteiramente baseada em combustíveis fósseis. Entretanto, por razoes
sociais, politicas ou ambientais há uma necessidade de mudar a fonte energética. A
geração em larga, média e baixa escala por meio de turbinas eólicas é uma solução
viável. Similar a outros métodos de geração, a turbina eólica precisa ser otimizada
e controlada para funcionar da forma mais eficiente possível. Nesse trabalho um pro-
cesso de otimização por enxame de partículas otimizou um perfil de uma turbina eólica
baseado em duas equações de esticão que tinha como objetivo o melhor coeficiente
de potência para a velocidade média. Também utilizou um controlador neuro fuzzy
com base nos máximos para cada razão entre velocidades (𝑇𝑆𝑅). Três perfis de veloci-
dade de vento foram usados para analisar a dinâmica da turbina eólica. O controlador
se mostrou eficiente e manteve a rotação dentro da faixa esperada. Os resultados
mostram que o controlador preveniu a geração acima da potência máxima, reduzindo
as rotação em até 12 [rad/s] acima da potencia máxima, em casos de oscilação na
velocidade do vendo o controle se manteve estável com um baixo desvio padrão e
reduzindo a potencia em ao em até 8 [rad/s] para ondas senoidal e em até 9 [rad/s]
para entradas aleatórias.

Palavras-chave: Turbina Eólica. PSO. Neuro-Fuzzy. Otimização. Controle.
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1 INTRODUCTION

The global consumption of electric energy has been continuously growing, over

the past decade the Earth consumption of electric energy grew 24%, and on the last

twenty years it grew 54% (CHEN; WU, 2017). Currently, this system is extremely de-

pendent on fossil fuel, such as coal, petroleum, and natural gas. Consequently, the

whole world is eager to an unsustainable energy source.

In addition, fluctuation on supply can be caused by war, political crises and en-

vironmental awareness, that are forcing the electric grid to look for a substitute source

of fuel (HANSEN, 2008). Recent international treaties set the tone for the decades to

come. Some countries are leading the way, such as New Zealand and Germany. New

Zealand has a goal to have more than 90% of electric energy produced by renew-

able sources such as wind, solar and geothermal, by 2025 (WHITE; WAKES, 2014;

STEPHENSON et al, 2017; JUNG; SCHINDLER; GRAU, 2018). Germany have one of

the most drastic incentives on green energy and energy efficiency, with higher than the

average on pay-back for consumers and subsidies for solar and wind (BUNDESVER-

BAND WINDENERGIE E.V., 2018).

Proposed as an alternative, on the 1950‘s nuclear energy was considered

cheap, safe and endless. Consequently several nuclear power were built. However,

it lost momentum since 1960 due to several events such as accidents and concerns

regarding safety on the reactors, and since then it has been discredited by government

and local population (MURRAY; HOLBERT, 2015). Mainly because of the major loss

of land in case of accidents and the lack of option regarding long therm storage of

nuclear reactive waste. For instance, Germany already has plans to shut down nuclear

power plants, and after the Fukushima incident, it has been accelerating the program.

Thus, making nuclear a not viable and desirable long-term solution (AUER, 2016; WE-

BER; C., 2018; BUNDESVERBAND WINDENERGIE E.V., 2018; JUNG; SCHINDLER;

GRAU, 2018).

Solar energy is the most abundant renewable energy on the Earth. Usually,

solar panels are installed on the roof in array to increase the voltage to be converted

and connected to the grid. This system has no moving parts and has a high reliability.

Nevertheless, the solar radiation is heterogeneous through the globe and the system is
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sensitive to shades on panels (CHANG; STARCHER, 2019). In addition, the production

time is limited by solar time and the respectability of the whole system compose of

battery and panels (crystalline silicon) are uncertain (XU et al, 2018b) .

Another option is hydroelectric power. It is a renewable source, without scala-

bility issues to larger production. For example, Brazil produces 76% of its energy from

Hydraulic power. Brazil has one of the biggest Hydraulic power plants installed on the

planet, the Itaipu Dam. It produced more than 100GWh in 2016 alone, and it has been

in operation since 1984. It has accumulated a production of 2.5 billion of MWh, repre-

senting roughly 5% of the installed power in the country. Nevertheless, it has drawback

as well. The initial cost of installation was immense, around U$17.5 billion in 1984, and

it left a vast area of agricultural land useless because of the reservoir size. In addition,

as many renewable energy sources it is susceptible to environment changes. In this

case, long droughts can lead to higher prices and lower production, for example. The

Fig. 1 shows the area affected by the Itaipu dam (RUFFATO-FERREIRA et al, 2017;

ANEEL, 2018; SEMSP, 2018).

Figure 1 – Estimated size of Itaipu dam

Source: Lorenzon et al (2017)

Among the alternative fuel sources, wind is a good option for cleaner and re-

newable source of energy. First, the carbon emission is zero, because it uses the wind

as source of energy. Thus the bulk greenhouse production occurs during the installation

and fabrication phase (90%), already accounting with regular maintenance checks and

end of life recycling and disposal (WANG; WANG; LIU, 2019). In addition, re-powering

is common mechanism to prolong the life of old wind turbines. After the economical re-

quirements are met, old wind turbines are transferred to a new location, and installing a
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new and more efficient turbines at that location (ZIEGLER et al, 2018; SIMÓN-MARTÍN

et al, 2019). Thus, encouraging the rational and efficient use of resource (sites and ma-

terials) and increasing the renewable power installed (LACAL-ARÁNTEGUI, 2019).

Second, the technology involved is similar to many production sources, where

shaft spins and the kinetic energy of the shaft is transformed in electric energy by a

generator. Effectively, creating an inertia to electric power avoiding resonates in volt-

ages and frequency changes as in solar energy (KARIMI et al, 2016; FREITAS; SAN-

TOS; BRITO, 2018). Wind turbines stand out for being used to more then 2000 years.

It was primarily used to grind crops and to pump water. Nowadays, the popular design

is the Danish with three blades. In addition, it can produce in large scales from 200W

to 12MW (WOOD, 2010; SØRENSEN, 2011; GENERAL ELECTRIC, 2018).

Third, the vast amount of designs can make integrable on public sight, near to

the final costumer,such as highways and parks. The main concern of residence are the

price and location (HUI; CAIN; DABIRI, 2018). As a result, it has been vastly used and

can be a substitute to fossil fuels. Fourth, wind turbines industries are associated with

a big portion on the economics.

Wind turbines can be classified by the orientation of the rotate axis, vertical

axis wind turbines (VAWT) and Horizontal axis wind turbines (HAWT), and the main

features can be compared on Table 1 (RUFFATO-FERREIRA et al, 2017).

Table 1 – Comparison on wind turbine types
Characteristics VAWT HAWT

Power Rate 50W - 300KW 200W – 12MW
Axis Orientation Vertical Horizontal

Efficiency 0.10-0.30 0.2-0.58
Public Sight Easily integrable Usually it is not use

Physical Force Drag and Lift Lift
Noise Pollution Lower Higher

𝑇𝑠𝑟 (Tip speed ratio) 0.01 to 0.1 Until 10
Source: Adapted from Wood (2010), Sørensen (2011), Schaf-
farczyk (2014)

As shown in Table 1, the use of VAWT is more adaptable to urban environment

and HAWT is used on large production. VAWT can be further divided on rotor types

and it is shown in Fig. 2 (SCHAFFARCZYK, 2014).
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Figure 2 – Types of VAWT

Source: Schaffarczyk (2014)

Fig. 2 shows the most common types of VAWT. The oldest model is the

Savonius-Rotor, working by Drag, it can be improved using a jet effect (WAHYUDI;

SOEPARMAN; HOEIJMAKERS, 2015; TIAN et al, 2018). On the other hand, the Dar-

rieus models work by lift, they are more efficient and faster. The VAWT has a power

range from 50W to 300kW, usually the most powerful ones are based on the Darrieus-

rotor. One example of VAWT is the wind tree, which is a commercial wind turbine sold

by New Word Wind. It is adaptable to be installed in urban environment. Fig. 3 shows

the prototype (HEIER, 2014; New World Wind, 2018).

Figure 3 – VAWT on the tree of wind

Source: New World Wind (2018)
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It can produce up to 4.3 kW, this prototype educates about renewable energy

and integration of wind energy with the urban environment. However, it requires 63

small wind turbines, and the energy production starts at two meters per second, us-

ing an adapted Savonius’ rotor. Additionally, many researchers investigated the micro-

generation with wind VAWT on rooftop in residential neighborhood, the principal advan-

tages in this location is the local productions, being aesthetic pleasing and low noise

production (MITHRARATNE, 2009; HEIER, 2014; BILIR et al, 2015; New World Wind,

2018).

On the other hand, HAWT are almost banned from human sight. The old gen-

eration use of high Tip speed Ratio (𝑇𝑠𝑟), thus unpleasant and noisy (VAZ; WOOD,

2016; BAKIRCI; YILMAZ, 2018). One strategy to mitigate this issues is using two set-

ting for the 𝑇𝑠𝑟, one for diurnal and another for night periods to avoid excess noise

(WOOD, 2010). Another solution is the substitution for newer generation of wind tur-

bine which uses lower speeds, and noise absorption material will increase the installed

power and at the same time reducing the amount of turbine local community. Because

production depends heavily on the site, many productions site agglomerates HAWT in

farms to extract the most possible power, as can be seen on Fig. 4 (HANSEN, 2008;

SCHAFFARCZYK, 2014).

Figure 4 – HAWT farm

Source: BUNDESVERBAND WINDENERGIE E.V. (2018)

As shown in Fig. 4 , the stack of wind turbines can increase the productivity,

maintenance and take advantage of a good location, to commercial turbines, it can

range from 10kW to 6MW each turbine, in many cases hundreds of wind turbines

can be stack together (WAGNER; MATHUR, 2011; WAGNER, 2013). For example,
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Tararua Wind Farm in New Zealand has 134 turbines with an annual output of 620GWh,

and power installed of 160MW (ELTAYEB, 2013; ASSOCIATION, 2018). Additionally to

impressive power output, it is common to use pitch angle control to avoid over speeding

and allow the production in lower speeds, and improve performance (TJIU et al, 2015;

WALMSLEY; WALMSLEY; ATKINS, 2017) . Thus, providing steady power supply, with

a controller to prevent unnecessary wear and tear at low wind speed. Additionally,

the controller reduces the fluctuations on the rotation shaft, caused by wind gust and

windstorm.

However, the initial cost is high, and there are many options to control and

stabilize the motion, and the selection of the site can lead to low utilization (LUO; VI-

DAL; ACHO, 2014; AGHBALOU et al, 2018). A few known models of regression and

control use variables 𝐾 on the proportional–integral–derivative controller (PID con-

troller). Other way is to use fuzzy and neuro fuzzy for controlling, where there is a

data to support the construction of rules. In addition, hybrid methods based on the

optimum angle for each element are available. All the methods smooth the produc-

tion and allow for bigger turbine. New Zealand and Germany already have big farms

with 8MW wind turbines (BIANCHI; MANTZ; BATTISTA, 2007; LUO; VIDAL; ACHO,

2014; ASHRAFI; GHADERI; SEDAGHAT, 2015; GOUPEE; KIMBALL; DAGHER, 2017;

JUNG; SCHINDLER; GRAU, 2018).

On the other side of the spectrum, small HAWT can provide self-sufficiency

on energy to houses and small towns, especially in remote locations. Working with a

passive controller to regulate the power and rotation speed, a constant load that is

resistor to transform in heat or a converted to household use or battery storage. This

implantation of small wind turbine, with a battery bank can buffer and store energy to

low production periods. Thus, removing the necessity of a generator and diminish the

demand on fossil fuel generators.

Despite the spread use of wind turbine, the design process of the blade is in-

teractive. The inputs to design are required power, wind speeds and desire tip speed

ratio. This variables are going to start the design process to select the twist profile, cord

size, selection of airfoil and radius of the rotor. The principal requirements are struc-

tural, economical and efficiency. Additionally, there is no defined optimization method

or selection on blades airfoils. Thus, many approaches have tried to consolidate on the

literature the methods and optimization tools (LUO; VIDAL; ACHO, 2014; LENZ et al,
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2018; LENZ et al, 2019)

In addition, one of the drawbacks of all renewable energies is the storage.

Because of irregular production, many methods were proposed such as gravity stor-

age, Pumped-storage, hydroelectricity and battery (RICHTER, 2013; REHMAN; AL-

HADHRAMI; ALAM, 2015; LOUDIYI; BERRADA, 2017).

Glauret (1947) created a method to design helicopters and airplane propellers.

On top of his model, many derivative methods of calculation were created to increase

the precision (PRATUMNOPHARAT; LEUNG, 2011; SCHAFFARCZYK, 2014; PINTO;

GONÇALVES, 2017). It decomposes the flows in axial and radial and, it compares

the inlet and outlet speeds. Thus, providing a good estimate and predictability on the

HAWT efficiency (GLAUERT, 1983).

Despite many correction methods, all have a good prediction and fluctuate the

error when compared with different experimental cases. This deviation on the trust,

changes the produced torque and the design of the structure. Because of that, many

optimization for better performance were used and reducing the amount of manufac-

turing material (PRATUMNOPHARAT; LEUNG, 2011; CHEHOURI et al, 2015) .

The first optimization was evolutionary. Previous wind turbines that performed

well were used as a starting point. Optimization on angles on chord bases on airfoils

regressions were the second method (WOOD, 2010). In recent times, optimization

techniques has been used instead, by far Genetic Algorithm (GA) have been used

the most. For example, Yang et al (2016) used GA for selection of blade airfoil, where

structural and financial aspects were computed in one cost function to extract the op-

timum efficiency to a fix pitch angle. Many other optimization can be seen on Diveux

et al (2001), Wang, Wang and Luo (2011), Luo, Vidal and Acho (2014), Chehouri et al

(2015), Lenz et al (2019).

Working similarly as GA, Particle Swarm Optimization (PSO) is an evolution-

ary optimization. By random generation particle and swarming in the all-possible op-

tions, PSO tends to be quicker than GA. Evolutionary optimization works with HAWT,

because it can change and adapt as the particles are zooming in the final solution, re-

gardless of the amount of variables. For example, Endo (2010) used PSO to optimizes

the S809 airfoil to chord to fix Reynolds Numbers. Liao, Zhao and Xu (2012) used PSO

with FAST® to optimizes structural layers in a HAWT blade.

On energy management, PSO has been used to optimize the scheduling of ap-
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pliance and loads on a residential level with Photo-voltaic generation (MA et al, 2018).

Jiang et al (2017) compared different types of PSO for wind site assessment. In addi-

tion, a PSO version was already used to optimize the site location, where sound was a

trade-off with power output (MITTAL; MITRA; KULKARNI, 2017).

Many approaches have been used, for the basic controller until the most ad-

vances. As a practical stand point, the control has the function to protect and avoid

mechanical shocks and electrical noises (SAQIB; SALEEM, 2015). Thus, avoiding sud-

den shaft accelerations due to gust, quick deceleration due to demand on the grid, and

avoiding electrical noise.

Basic safety controllers use the power output as a threshold, however the pro-

duction can be stagnated with one gust in period of high wind because of false positive.

Other type is the Optimal torque control relies on the torque according to the stan-

dard turbo machine equation (MENEZES; ARAÚJO; SILVA, 2018). More advance con-

trol is the sliding modes, where the controller tracks the ideal 𝑇𝑆𝑅 (OUDAH; I.MOHD;

HAMEED, 2014).

Another mechanic, is springs use to sense the load on the blade and limiting

the production, by changing the pitch angle. Consequently, the blade is self-regulated

and can produce on higher winds periods and avoid damages (LUO; VIDAL; ACHO,

2014). Thus, working as collective pitch control. Because all the blades have the same

orientation.

More advance strategies relies on sensing each blade position due to length

and flexibility of material, providing individual outputs (PETROVIĆ; JELAVIĆ; BAOTIĆ,

2015). This controllers take into account the change in shape of the airfoil and the

increase of the speed on the height.

Different types of controller and strategies have been proposed on the electrial

side, Bai and Wang (2016) defines a strategy where the Maximum Power Point Tracking

(MPPT), associated with any type of control for the turbine and for the generator, to

smooth the power and improve efficiency (MENEZES; ARAÚJO; SILVA, 2018).

Luo, Vidal and Acho (2014), Ashrafi, Ghaderi and Sedaghat (2015) regulate

the angle by an averaging of the optimum 𝐶𝐿/𝐶𝐷 angle of each infinitesimal element.

Other types of controllers are based on a simplified function of coefficient of power with

the generator to reach the max power output (NAGAI; AMEKU; ROY, 2009).

By far the most common combination is the PID controller with another con-
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troller using a dynamic plant to account the non-linearity, or the Gaussian PI. The

results with this kind of combination have been satisfactory (JONKMAN S. BUTTER-

FIELD; SCOT, 2009; LUO; VIDAL; ACHO, 2014).

However, there is a combination with different types of controllers wind farms.

This type of controller has multiple inputs, and monitoring wind speed and directions,

rotation speed, pitch angle and demand of the grid. Providing efficient use of the in-

stallation and extracting most energy possible. One of the challenges is not to produce

enough renewable energy, it is in adequate the supply to the oscillating demands.

In addition to further improve the performance, and mitigate vibration effects

such as fatigue and flutter. Flutter is an interaction with the torsion and longitudinal

vibration mode, due to the long blade interacting with the aeroelastic modes, causing

damage to the blade. This phenomena occurs when the load generates a torsion mo-

ment. Thus self loading and unloading the blade, combining the flapwise and torsion

motions. The values of rotation can be as low as 1[𝑟𝑎𝑑/𝑠] (ZHANG; CHEN; NIELSEN,

2017). This can be achieved by sensing and changing the shape of the airfoil, or forc-

ing the turbine to accelerate and pass the flutter avoid using controllers on the angle

(HAYAT et al, 2016) .

1.1 GENERAL OBJECTIVE

The general objective of this thesis is the optimization and control of horizon-

tal axis wind turbine (HAWT), using Particle Optimization Algorithm (PSO) for a wind

turbine using neuro fuzzy controller to control energy generation.

1.2 SPECIFIC OBJECTIVES

• To optimize the parameters pitch, cord, and blade selection on HAWT using PSO.

• To use the 𝑇𝑆𝑅, rotation and wind speed to control the power output on HAWT.

• To analyze through numerical simulation the efficiency and efficacy of the con-

troller
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1.3 JUSTIFICATION

The continuous increase demand for energy is pushing the electric generation

system toward the carbon off-set and replacement of carbon base fuels to renewable

methods, such as wind. Thus, it is possible to sustain this growing demand without fur-

ther damage the ecosystem (KOOTEN; VRIES, 2013; OLIVEIRA; VARUM; BOTELHO,

2019).

The current projection appoints that between 2025 and 2030, many countries

will change from oil to complete renewable energy. For example, New Zealand expect

90% of electric production from other sources than fossil fuels until 2025 (STEPHEN-

SON et al, 2017).

With the transition from fossil fuel to renewable energy sources, there is a

necessity to have knowledge in wind turbine on the future. Despite of that, there is no

dominated strategy to optimization. Using PSO it is possible to optimize many variable

at the same time, reducing cost, material and improving the efficiency overall. Thus,

leading to a better HAWT, cheaper, and a more reliable energy source.

In addition, it is a standard procedure to deploy the possible option. Thus, an

optimized and controllable wind turbine is a modern requirement. To further improve

the efficiency, many recent researches with the different methods on HAWT has be-

ing published. Despite of being an ancient technology there is relevancy on the sub-

ject, due to complexity and better efficiency (VAZ; PINHO; MESQUITA, 2011; PINTO;

GONÇALVES, 2017; TALAVERA; SHU, 2017).

1.4 THESIS ORGANIZATION

The Master Thesis was divided in five chapters, where the Chapter 1 one has

a brief introduction on energy source, HAWT, how controllers and optimization works

on them.

Chapter 2 will present the HAWT models, PSO optimization and Neuro-Fuzzy

control. Chapter 3 will present the used methodology, the selected variables, airfoils,

the cost function for optimization, and the control technique was expected to behavior.

On Chapter 4 the families of solution are shown, and the behavior with and without the

controller. On Chapter 5 the discussions of the results and future researches.
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2 LITERATURE REVIEW

In this chapter, the literature review will be presented along with mathematical

models to HAWT, the optimization technique PSO and the neuro fuzzy logic to be used

as a controller.

2.1 WIND CHARACTERISTICS

The wind analysis involves two main factors: the high frequency of sampling

and the planetary boundary layer. Because of the elevated frequency, around 100Hz,

the amount of available data introduces noise. Thus, fluctuating the average. To over-

come this problem, it is commonly used a 10 minutes span to average out the peaks.

(WOOD, 2010).

The planetary boundary layer (PBL) is the layer between the earth and the

free flow of air, it is the livable region of the atmosphere and where the wind turbines

are installed. In the PBL the heterogeneous heating and cooling cycles occurs, on soil

and water, thus creating convection currents, and evaporation. This is the engine to all

the meteorologic effect, in the globe. In other words, it is a larger scale of the laminar

boundary layer flow. PBL depends on geographical location, temperature, evaporation

height and many other variables (HOLTON; HAKIM, 2012). The Fig. 5 shows an exam-

ple of the planetary boundary layer.

Figure 5 – Example of Planetary Boundary Layer

Source: Adapted from National Oceanic and Atmospheric Administration
(2018)

where: dashed black line is the top of PBL, yellow arrows are the radiation from sun,
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blue arrows are the direction of humidity, the red arrows are the raising heat waves,

gray arrows are the change of air composition due to pollution, white arrows are the

cold masses.

As shown in Fig.5, the PBL can affect the meteorology, air transport, agriculture

and many other fields. The density, humidity and air speed change with the landscape,

and it is influenced by cloud formation and rain, heat absorption, creating an unpre-

dictable behavior. Despite of the complex and random behavior there are distributions

that relate the wind behavior.

2.1.1 Rayleigh Distribution

The most used mathematical model to describe wind behavior is Rayleigh dis-

tribution. The Rayleigh distribution is a random distribution with scatter values and with

the average almost on the middle. It has been used for predicting the average life on

products and it is one of the most reliable wind predictions (WOOD, 2010; LUO; VIDAL;

ACHO, 2014). The probability function is shown on Eq. 1 :

⎧⎪⎨⎪⎩𝑃 (𝑣) = 𝑣
𝜎2 𝑒

𝜁

𝜁 = −𝑣2
2𝜎2

(1)

where 𝑃 (𝑣) is the probability of that specific speed, 𝑣 is the wind speed, 𝜎 is the shape

parameter. The shape format can be calculated using the average speed in Eq. 2:

𝜎 = 𝑣

√︂
𝜋

2
(2)

where: 𝑣 is the average speed. This average speed is an important factor on the be-

ginning of the design. Because it will determine the available energy on the air. The

amount of energy is going to estimate the feasibility of the wind turbine site. The avail-

able power on any fluid (𝑃𝑓 ), on a circle section, can be obtained by Eq. 3 (HANSEN,

2008; CHEHOURI et al, 2015).

𝑃𝑓 =
𝜋𝑟2𝑡 𝜌𝑎𝑖𝑟𝑉

3
∞

4
(3)

where 𝑟𝑡 is the radius of the section, 𝜌𝑎𝑖𝑟 is the density of the air, 𝑉∞ is the instantaneous

wind speed. Because the energy grows at third power, a small increase on wind speed
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causes a significant increase on the available power. To better asses the available

power, it is necessary to plot the wind and its probability for two sites as in Fig. 1 .

Graph 1 – Rayleigh probability distribution on different sites, (A) the wind speed, (B) the energy
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As seen on the Graph 1, site 1 has an average of 4 [m/s] and a very concise

distribution. On the other hand, site 2 has a higher average than site 1, of 6 [m/s],

but it is diluted over the wind speed spectrum. Comparing only the amount of energy

available using Eq. 3, site 2 has more energy available. But it is more spread during the

spectrum, thus one of the drawbacks of wind energy. It can pass many days without

producing energy, but it can produce a higher quantity in a short period of time (WOOD,

2010).

To estimate the average wind speed at different heights the power law is used

to estimate the average wind speed, in Eq. 4.

𝑢 = 𝑢𝑟

(︂
𝑧

𝑧𝑟

)︂𝑝

(4)

where 𝑢 is the average speed at the desired height, 𝑢𝑟 is the reference speed, 𝑧𝑟 is the

reference height, 𝑧 is the desired height, and 𝑝 is a landscape factor and usually can

be used as 𝑝 = 1
7

(HSU; MEINDL; GILHOUSEN, 1994; HOLTON; HAKIM, 2012).

The 𝑝 factor is related with the surface roughness and the stability of the site.

Because the site can influence in different forms such as, evaporation, mountains and

pollution from cities. To cities the value increase to 𝑝 = 1
4

(COUNIHAN, 1975; KIKU-

MOTO et al, 2017).
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Another factor to consider is physical limitation of the power plant. A typical

wind turbine works supplying energy to the grid, thus it has to maintain the same stan-

dards of frequency and voltage to supply the power. In addition, the wind power curve

is at third power, and it can easily overcome the power production of a given generator.

Thus, a balance between instant power and available energy must be balanced, for

that some parameter of the wind turbine must be set to avoid overloading and yielding

energy at a reasonable cost (BIANCHI; MANTZ; BATTISTA, 2007; MA, 2015).

Graph 2 – Difference between controlled and uncontrolled
HAWT
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As presented in Graph 2, the available power at the blade is on black, and it

grows at a third power according to Eq. 3. The uncontrolled turbine is passive to wind

speed. Thus, it relies on the optimization, to breaks the inertial quickly and maintain

the correct rotation speed (WOOD, 2010; YANG et al, 2016; PINTO; GONÇALVES,

2017). As wind speed increases, the amount of power that can be extracted grows

significantly until it satures the generator capability of production. It must be regulated,

a common way is shorting the generator to break and avoid over speeding the blades.

Comparing Graph 1 (A), with (B) it is possible to design a wind turbine where

most energy can be between 𝑉𝑠𝑡𝑎𝑟𝑡 and 𝑉𝑚𝑎𝑥. Thus, extracting the most energy possi-

ble using an unregulated turbine, nevertheless it must be oversized to avoid damage

(HEIER, 2014; MA, 2015).

On the other hand, with control in Graph 2 on blue, the wind turbine has breaks,

and do not start to spin until the wind speed crosses a threshold. Thus, avoiding pre-
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mature wear and tear when it can spin fast enough to produce significant energy. The

active control also will keep the angle of attack to have the most efficient regime. When

the control wind turbine reaches the 𝑉𝑚𝑎𝑥, the control has the task of not overloading

the generator. Thus, it keeps the angle of attack so the power extracted matches the

maximum of the generator. The last threshold is the 𝑉𝑐𝑢𝑡 𝑜𝑓𝑓 , at this wind speed it is

not safe to operate, the aerodynamics loads are greater than the design. Thus, the

controller changes the angles of attack or applies the breaks to stop all the rotation to

secure the HAWT.

2.2 HAWT CHARACTERISTICS

Working as an airplane wing, the blades of HAWT produce lift and drag based

on the amount of air that passes through the blade. First, mathematically modeled by

Glauret (1947), describes the relationship between the axial and radial flow (GLAUERT,

1983). His model was used to design helicopter and airplane rotors. Investigating his

design, it is possible to find the maximum coefficient of power (𝑐𝑃 ), and it can be 16/25

or 59.3%, this values is known as the Beltz limit. Because at an energy level, the turbine

can be simplified and to be consider as a disk, and the efficiency is only related with the

deceleration of wind speed, Fig. 8 shows macro and micro interaction relate through

𝑈𝑇 (HANSEN, 2008).

Figure 6 – Analyses of HAWT, in (A) the Macro, in (B) the Micro

Source: Adapted from Wood (2011)

where 𝑉∞ is the wind speed, 𝑈𝑇 is the resulting speed and 𝑉𝐸 is the outlet speed. As
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shown in Fig. 6 (A) at a macro level, at the intake the speed is higher than at the output.

Passing through the rotor shaft, some energy is extracted, by conserving the mass, the

area must grow to maintain the same speed. To keep operating, the fluid must pass by

the blades and flow. If all the energy on the fluid could be extracted, the outlet speed

would be zero. Thus, having no flow.

The maximum feasible efficiency is on the maximum that the fluid can retard

without stagnating the flow. This speed is determined by the ratio between 𝑉𝐸 and 𝑉∞ is

a third. However, it is hardly possible, for the most of commercial turbine, the maximum

𝑐𝑃 that can reach is 90% of the Beltz limit (HANSEN, 2008; WOOD, 2010).

Looking to the flow at the micro level at Fig. 6 (B) , where the blade can be

break down on dx elements. The axial flow and radial flow can be studied at infinitesi-

mal and after extrapolated to the whole blade. The important angles are on Fig. 6 (B)

are obtained by the Eq. 5.

𝜑 = 𝛼 + 𝜃𝑃 + 𝛽 (5)

where 𝜑 is the angle of flow, 𝛼 is the angle of attack, 𝜃𝑝 is the blade twist angle, and 𝛽

is the angle of control. As a consequence of Fig. 6, the net force can be break down

on axis as follows in Eq. 6.

⎧⎪⎨⎪⎩𝐹𝑥 = 𝐹𝐿𝑐𝑜𝑠(𝜑) + 𝐹𝐷𝑠𝑖𝑛(𝜑)

𝐹𝑦 = 𝐹𝐿𝑠𝑖𝑛(𝜑) − 𝐹𝐷𝑐𝑜𝑠(𝜑)

(6)

where, 𝐹𝐿 is the lift force, 𝐹𝐷 is the drag force, 𝐹𝑥 is the force on the axial direction and

𝐹𝑦 is the force on the radial direction. To overcome the inertial, the force on lift must be

many magnitudes higher than the drag to start the rotation. Also, it is possible to define

the speeds Fig. 6 (B) as Eq. 7.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑈1 = (1 − 𝑎)𝑈0

𝑈2 = (1 + 𝑎′)𝑟Ω

𝑈2
𝑇 = 𝑈2

1 + 𝑈2
2

(7)

where: 𝑎 is the axial coefficient, 𝑎′ is the radial coefficient, 𝑈1 is the axial speed, 𝑈2 is

the radial speed, 𝑟 is the local radius, Ω is the rotation speed. The flow angle can be



30

determined by Eq. 8

𝜑 = 𝑡𝑎𝑛−1

(︂
𝑈1

𝑈2

)︂
(8)

Defining the tip speed ration (𝑇𝑆𝑅) in Eq. 9, a parameter of efficiency used to

determined the optimization speeds, and the Number of Reynolds (𝑅𝐸) on the follow-

ing equations. The 𝑇𝑆𝑅 is an important parameter because it is directly related to the

efficiency and the orientation of the angles. At lower 𝑇𝑆𝑅 the airfoil does not have the

correct orientation of 𝛼 and high 𝑈𝑇 to produce lift. Usually, for commercial turbine it is

used between 7 and 10 for HAWT so the airfoil can have enough flow , values higher

are not aesthetics pleasing and generate excisive noise (WOOD, 2010).

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑇𝑠𝑟 = 𝑟Ω

𝑉∞

𝑅𝑒 = 𝜈𝑈𝑇 𝑐

𝜎 = 𝐵𝑐
2𝜋𝑟

(9)

where: 𝜎 is the solidity,𝐵 is number of the blades, 𝑐 is the chord, 𝑟 is the local radius, 𝜈 is

the kinematic viscosity. Because of the discontinuity of the wing, the wing tip generates

a vortexes and it works as a brake. It will be considered the Prant model to infinitesimal

element presented in Eq. 10:

⎧⎪⎨⎪⎩𝐹 = 2
𝜋
𝑎𝑟𝑐𝑜𝑠

(︀
−𝑒𝑇

)︀
,

𝑇 = −𝐵(𝑅−𝑟)
2𝑅𝑠𝑖𝑛(𝜑)

(10)

where, 𝐵 is the number of blades, 𝑅 is length of the blade, 𝑟 is the local radius. The

𝐹 is an efficiency parameter due to the wind tip vortex of the blade. The axial and the

radial coefficients are defined in Eq. 11:

⎧⎪⎨⎪⎩𝐶𝑥 = 𝐶𝐿𝑐𝑜𝑠(𝜑) + 𝐶𝐷𝑠𝑖𝑛(𝜑)

𝐶𝑦 = 𝐶𝐿𝑠𝑖𝑛(𝜑) − 𝐶𝐷𝑐𝑜𝑠(𝜑)

(11)

where, 𝐶𝑥 is the axial coefficient, 𝐶𝑦 is the radial coefficient, 𝐶𝐿 is the lift coefficient,

𝐶𝐷 is the coefficient of drag of the airfoil based on the angle of attack and the Reynold
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Number presented on the Eq.7 and Eq. 9. The 𝑎 and 𝑎′, can be calculated as Eq. 12:

⎧⎪⎨⎪⎩𝑎 = 𝜎𝐶𝑥

4𝐹𝑠𝑖𝑛2(𝜑)+𝐶𝑥𝜎

𝑎′ = 𝜎𝐶𝑥

4𝐹𝑠𝑖𝑛(𝜑)𝑐𝑜𝑠(𝜑)−𝐶𝑦𝜎

(12)

if 𝑎 > 0.4, then:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑎 = 0.5(18𝜎𝐶𝑥+36𝐹 2𝑠𝑖𝑛2(𝜑)−40𝐹𝑠𝑖𝑛2(𝜑)−6

√
𝐶1)

𝐶2

𝐶1 = 18𝐹𝑠𝑖𝑛2(𝜑)𝜎𝐶𝑥 + 36𝐹 4𝑠𝑖𝑛4(𝜑) − 48𝐹 3𝑠𝑖𝑛4(𝜑)

𝐶2 = 9𝜎𝐶𝑥 − 50𝐹𝑠𝑖𝑛2(𝜑) + 36𝐹 2𝑠𝑖𝑛2(𝜑)

(13)

This method is iterative, meaning the initial guess as recommend by the author

as 𝑎 = 0.3, and 𝑎′ = 0.001. If the 𝑎 and 𝑎′ used in Eq. 7 are different from those

obtained in Eq. 12 or 13, this method should be repeated until they converge to an

admissible error ,as recomend, of 10−3. A comparison between model can be seen at

Pratumnopharat and Leung (2011). After that, the torque and power on each element

can be calculated by Eq. 14 :

⎧⎪⎨⎪⎩𝑑𝑇𝑚 = 4𝑎′(1 − 𝑎)𝜌𝑎𝑖𝑟𝑉∞𝜋𝑟
3Ω𝑑𝑟

𝑃𝑡 = 𝑇𝑚Ω

(14)

where, 𝑑𝑇𝑚 is the torque, 𝜌𝑎𝑖𝑟 is the density of the air, 𝑃𝑡 is the power of the turbine.

Thus, it is possible to establish the coefficient of power (𝑐𝑃 ) to the turbine, in Eq. 15:

𝑐𝑃 =
4𝑃𝑡

𝜋𝑅2𝜌𝑎𝑖𝑟𝑉 3
∞

(15)

The 𝑐𝑃 is a function of several factors. Thus, it can be expressed as

𝑐𝑃 (𝑇𝑆𝑅,𝑉∞,Airfoil,𝛽). The 𝛽 effect can be describe as delay angle on the 𝑐𝑃 and it

is described on Wood (2010), Golnary and Moradi (2019). The airfoil selection and the

𝑇𝑆𝑅 are shown on the Graph 3.
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Graph 3 – Efficiency for different NACA profiles
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where NACA 0015,NACA 2415 and NACA 4412 are different types of airfoils. As shown

on Graph 3, for different types of airfoils, each airfoil increase differently, the 𝑐𝑃 in-

creases quickly from zero, because the angles start to get closer to the desires, after

the optimum 𝑇𝑆𝑅 the 𝑐𝑃 decreases, because the rotor starts to work as a motor.

2.2.1 NACA Profiles

As an initiative to improve access to airfoil data they were standardized in 1958

by the National Advisory Committee for Aeronautics(NACA). NACA was the former

agency that gave rise to National Aeronautics and Space Administration (NASA). This

agency made a compilation, with known and reliable data. Because of the complex

shape, many profiles are dimensionless and the equation that describes the boundary

are in relation with the chord length.
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Figure 7 – Shape of NACA airfoils
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As shown in Fig. 7, the tear drop is the shape of the 4𝑡ℎ series. This shape

is bend to achieve the desired output in therms of 𝐶𝐿 and 𝐶𝐷. The dashed line is the

center line. The advantage was the standardization enabled all important information

features and geometry were referenced in the name of the airfoil, such as thickness,

camber angle and location, are on the name of the Airfoil (AERONAUTICS; NASA,

2018). The selection of NACA 4𝑡ℎ series has been investigated by Michos, Berge-

les and Athanassiadis (1983), Ostowari and Naik (1984). The thickness remained the

same through out 0012, 2412, 4412. The only changed variable was the location of the

camber. The standardization can be explained as NACA XYZZ generic airfoil. Where

ZZ means the thickness of the airfoil in relation to the cord, X is the rotation of the

camber angle divided by 100, Y is the location of the camber divided by 10 (WOOD,

2011; AERONAUTICS; NASA, 2018).

2.2.2 S Airfoil

The S profiles are a selection of airfoil design and used on by HAWT. Despite

of having a similar performance of the NACA 4𝑡ℎ series, the S series is quitter than the

NACA 4𝑡ℎ series. Thus, alleviating the noise pollution that causes harm to animals and

the acceptability on the urban site.
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Figure 8 – Shape of S airfoil
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Comparing Fig. 7 with Fig. 8, it is clear that NACA airfoils are thinner than S airfoils.

In addition, the S series is thoroughly studied by the National renewable energy labo-

ratory (NREL). The NREL is a national laboratory of the U.S. Department of Energy,

Office of Energy Efficiency & Renewable Energy, providing airfoil licensing and data

information, to popularize this airfoils and raise awareness on wind and water power

technologies (TANGLER; SOMERS, 1995; GRIFFIN, 2000; SELIG; MCGRANAHAN,

2004; SOMMERS, 2005; GHASEMIAN; ASHRAFI; SEDAGHAT, 2017).

2.2.3 Aerodynamics of Airfoils

An airfoil on a flow generates two forces, as shown on the Fig. 6. The lift (𝐹𝐿)

and the drag (𝐹𝐷) forces are quantified in Eq. 16 (PRITCHARD, 2011; ANDERSON,

2011; GERHART, 2016).

⎧⎪⎨⎪⎩𝐹𝐿 =
𝐶𝐿𝑐𝜌𝑈

2
𝑇

2

𝐹𝐷 =
𝐶𝐷𝑐𝜌𝑈

2
𝑇

2

(16)

where 𝐶𝐿 is the lift coefficient, 𝐶𝐷 is the drag coefficient, 𝜌 is the density of the fluid,

𝑈𝑇 is the resultant speed over the airfoil. Because of the complexity of the 𝐶𝐿 and

𝐶𝐷 are functions of the shape of the airfoil, angle of attack and Reynolds number. It

can be rewritten as 𝐶𝐿(type,𝑅𝐸,𝛼) and 𝐶𝐷(type,𝑅𝐸,𝛼). Thus, the use of Computational
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fluid dynamics (CFD) is a very common strategy, instead of wind tunel experiments

(KUMAR; ALI; AROCKIARAJAN, 2018; SURESH; RAMESH; PARAMAGURU, 2015).

Graph 4 – Characteristic of an airfoil, on A the Lift, on B the Drag and C the relation
between Lift and Drag Coefficient
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Comparing the two airfoils in Fig. 4 (A) and (B) between NACA 0012 and S822,

it shows similar performance. However, when analyzing the 𝐶𝐿/𝐶𝐷 in Fig. 4 (C), it

shows different maximun at different angles. This optimum angles are important be-

cause they need to be aligned with the flow, so the HAWT can be efficient. Additionally,

higher 𝐶𝐿/𝐶𝐷 leads to more efficient airfoils, i.e. 𝐶𝐿/𝐶𝐷 is the ratio of energy to gen-

erate torque and the energy to slow the airfoil. HAWT usually have higher 𝐶𝐿/𝐶𝐷 than

airplanes, because airplanes are designed to have lower drag, where as HAWT to

produce torque (WOOD, 2011; SURESH; RAMESH; PARAMAGURU, 2015).

2.2.4 Viterna Lift and Drag Extrapolation

In order to compute the whole range of angles of attack (𝛼) in wind turbine,

an extrapolation from the simulated or wind tunnel data is required. This is necessary,

because the range of angle of attack starts at 90∘ as the wind direction is perpendic-

ular to the airfoil. As rotational speed increases the angle reduces. Thus, the airfoil is
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in a stall, then the 𝐶𝑙 and 𝐶𝑑 can be approximated by the Eq. 17 (GLAUERT, 1983;

MAHMUDDIN et al, 2017).

𝐶𝐿 = 𝐷1𝑠𝑖𝑛(2𝛼) +𝐷2
𝑐𝑜𝑠2(𝛼)

𝑠𝑖𝑛(𝛼)
(17)

𝐶𝐷 = 𝐸1𝑠𝑖𝑛
2(𝛼) + 𝐸2𝑐𝑜𝑠(𝛼)

where 𝐶𝐷𝑚𝑎𝑥 = 1.11 + 0.018𝐴𝑅, 𝐴𝑅 = 𝑐
𝑅

is the aspect ratio, 𝐷1 =
𝐶𝐷𝑚𝑎𝑥

2
, 𝐸1 = 𝐶𝐷𝑚𝑎𝑥,

𝐷2 = (𝐶𝐿𝑠𝑡𝑎𝑙𝑙
−𝐸1𝑠𝑖𝑛(𝛼𝑠𝑡𝑎𝑙𝑙)𝑐𝑜𝑠(𝛼𝑠𝑡𝑎𝑙𝑙))

𝑠𝑖𝑛(𝛼𝑠𝑡𝑎𝑙𝑙)
𝑐𝑜𝑠2(𝛼𝑠𝑡𝑎𝑙𝑙)

, 𝐸2 = 𝐸1(1−𝑠𝑖𝑛2(𝛼𝑠𝑡𝑎𝑙𝑙))
𝑐𝑜𝑠(𝛼𝑠𝑡𝑎𝑙𝑙)

. Thus, it is possible

to establish the whole range required to simulation, only using the range where the CFD

are precise.

2.2.5 Blade of HAWT

The blade is responsible for transferring the wind energy to the shaft. Subjected

to bending and torsion forces due to aerodynamic forces. In a simplified way, a blade

works like a wing on an airplane. The net torque between the lift and drag generates

the torque.

The primitive wind turbine had blade built from wood and shape by hand. More

recent models use material developed for this purpose, such as aluminum and carbon

fiber. This materials are low friction and not adherent to moss, light and resistance,

thus with lower inertia and good air flow (SHAKYA; SUNNY; MAITI, 2019).

Some airfoils are sensitive to variation of roughness on the blade, changing

drastically the optimum angle and the behaviour present in Fig. 4. Depending on the

location, dirty can bond to surface and disturb the flow and reduce the efficiency, such

as salt, pollen and dust. On bigger HAWT, there is scheduled wash of the blades and

sometimes it can be mitigated with heavy rain (SCHAFFARCZYK, 2014).

The non-linearity is intrinsic to the movement. The root of the blade has a lower

speed and high angle of attack. On the other hand, the tip is a high speed and low angle

of attack. Thus, a twist on the blade is used to compensate this rotation of the angles

(MAHMUDDIN et al, 2017).

The optimized blade is corrected to this. Where, slow airfoils are used at the

base to avoid drag and usually big chord to be structure sound. At the tip there is the



37

opposite situation, the angle is lower than the root and the Reynolds is high, so fast

airfoils could be selected for that. The Figure 9 show an example of selected airfoils

and the change the on the chord.

Figure 9 – Modern blade characteristics (A) Top View (B) Airfoils used on A

(A) (B)
Source: Adapted from Schaffarczyk (2014)

Another important fact is that blade are long. This helps to increase the effi-

ciency of the turbine. However, the structure behaves as a long spring with low dis-

sipation, thus the aeroelastic behaving can be pronounced on the blades. Ansari and

Novinzadeh (2017) showed that using a controller can stabilize a motion of the airplane

to an amplitude of 4∘ to an airplane without control.

Additionally, when the blade is straight up it can have a significant difference on

wind speeds, according to Eq. 4, and further increase the bending, and twist coupling

(MAHMUDDIN et al, 2017).

2.2.6 Wing Tip losses

The flow of airfoil creates a differential pressure, creating the lift. High pressure

below and low pressure at the top of the blade. However, at the tip of the blade the

gradient of pressure is equalized through a vortex. This vortex makes the wing tip

inefficient (PINTO; GONÇALVES, 2017). Fig. 10 shows different turbulent methods on

CFD for wing losses to different types of turbulent methods.
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Figure 10 – Different turbulent methods for wingtip losses

Source: Adapted from Craft et al (2006)

where the red areas means lower pressure areas, and blue represents high pressure

area.

The study on wing tip vortex is a special field on aviation, because of the catas-

trophic result on smaller airplanes. The same approach is used for raked wing tips or

fences (FARHAN et al, 2018). The raked wingtip redirect the vortex and alleviate the

losses, where the fence prolongs the effective wing and physically reduce the the vor-

tex (FARHAN et al, 2018). On HAWT, a common method is the raked wingtip, and the

method used to calculate the inefficient is through the 𝐹 parameter, from the Prandlt in

Eq. 10 (PINTO; GONÇALVES, 2017).

2.2.7 Optimization

The optimization process in the blade as discussed before is to obtain the best

cost/benefits ratio. Additionally, avoiding structural and design flaws. The main points

of optimization is on the airfoil selection, chord size (𝑐) and twist angle (𝜃𝑝) of the blade.
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The airfoil optimization has many criteria to fulfill. Because of the singularity

nature of each airfoil, the aerodynamics characteristic shown in Fig. 4 (𝐶𝐿/𝐶𝐷) de-

pends on the airfoils. Thus, the blade can be dived in three section: structural, low and

high speed. First, The structural section it is the root of the blade. It does not require

any aerodynamic characteristic, and it only transfers the torque from the blade to the

shaft (WOOD, 2010).

Second, the low speed region is the section between the structural and high

speed. It is the transition between a high speed and the structural section. These re-

gions must have the lowest drag. Third, the high speed section must be optimized to

produce the main torque. This region is the tip of the blade.

Additionally, other factors could be imputed to airfoils selection, such as noise

levels, robust against dirt on the surface. For example, Fuglsang and Bak (2004) used

a SIMPLEX algorithm to optimize the airfoils to meet the structural and efficiency re-

quirements, along with noise pollution.

According to Fuglsang and Bak (2004) noise and 𝑇𝑆𝑅 were important factors

to HAWT close to urban environments. Because the cinematographic view of wind tur-

bines at 25 miles, can be positive and raise the price of house at this region. However,

it diminish the quality of life for residents closer than 25 miles and de-noise techniques

must be used to suppress the noise pollution (DRöES; KOSTER, 2016; HUI; CAIN;

DABIRI, 2018; JENSEN et al, 2018; DESHMUKH et al, 2019).

Furthermore, the cord size has the function of providing structural support and

alleviate the natural rise of Reynolds. By mitigating and controlling the increase of the

Reynolds number, it is possible to maintain the same airfoil just adjusting the angle

of twist. For example, an optimization comparison is presented on Fig. 5 along with

torsion optimization.
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Graph 5 – Sample of optimization fto chord (A) and twist angle (B)
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As shown in Graph 5, the triangle and blue, method one by Wood (2010), the

star and red ,method two by Wood (2010), and circle and black, method three, without

any simplification by Wood (2010). This trend of simplification for optimization method

deviate to each method. Additionally, a good optimization will result in the optimum

having a few degrees of motion to be at the optimum in neighbor around the 𝑇𝑆𝑅 (YANG

et al, 2016)

2.2.8 Rotation Dynamics

Wind turbines rotation dynamics follow the second law of Newton to torque.

Fig. 11 shows schematic with the relationship with the rotation and the angle of control

𝛽 .
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Figure 11 – Schematic to wind turbine, where (A) is the front view
and (B) is the side view

Source: Adapted from Wood (2010), Lenz et al (2018)

Thus, it can be expressed as follows:

𝐽0Ω̇ = 𝑇𝑚 − 𝑇𝑒 − 𝑇𝑁𝐶 (18)

where 𝑇𝑒 is the torque of the electric generator, 𝑇𝑁𝐶 is the torque of the non-

conservatives energies such as friction, and inefficiencies, 𝐽0 is the sum of moments

of Inertia.

As showed in Eq. 15, the 𝑐𝑃 is a complex function, dependenting on the 𝑉∞,

𝑇𝑆𝑅 and 𝛽. However, Luo, Vidal and Acho (2014) simplify this as a function of several

variable and constants to base his control on the electric power, Eq. 19.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑐𝑃 (𝑇𝑆𝑅,𝛽) = 𝐶1

(︁
𝐶2

𝜓2
+ 𝐶3𝑇𝑆𝑅 + 𝐶4

)︁
𝑒𝜓1

𝜓1 = 𝐶5

𝜓2
+ 𝐶6𝑇𝑆𝑅

𝜓2 = ( 1
𝑇𝑆𝑅+0.08𝛽* − 0.035

𝛽*3+1
)−1

(19)

where 𝛽*, 𝐶7, 𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5, 𝐶6,𝐶7, are adjusted parameters to fit the 𝑐𝑃 database

to the desired wind turbine.

For the electrical control this model is valid to project the controller (LUO; VI-

DAL; ACHO, 2014). However, for some model it does not have a great fitness parame-

ter(LENZ et al, 2019). The dynamic force of an electric generator is investigate in Luo,
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Vidal and Acho (2014), Janzen et al (2019), and is presented in Eq. 20 .

⎧⎪⎨⎪⎩𝑇𝑒 = 𝑘𝑡𝑖

𝑘𝑏𝜔 = −𝐿𝑖−𝑅*𝑖

(20)

where 𝑅* is the sum of the load and the electric generator resistance, 𝐿 is the induc-

tance of the engine, 𝑘𝑡 and 𝑘𝑏 are the equivalent electromechanics, 𝑖 is the electric

current.

The dynamics then can be simplified using Eq. 14 inserted the dynamic will be

simply to 𝑇𝑒 + 𝑇𝑁𝐶 = 𝑐𝑒. Thus,it is possible to direct establish the coefficient of power

for the turbine, with the rotation on Eq.21 .

𝐽0Ω̇ =
𝑃𝑡
Ω

− 𝑐𝑒Ω (21)

Additionally, Eq. 21 can be rewritten as Eq .22

𝐽0Ω̇ =
𝑐𝑃𝜋𝑅

2𝜌𝑎𝑖𝑟𝑉
3
∞

4Ω
− 𝑐𝑒Ω (22)

where 𝐽0 is the sum of moments of inertia. Thus, using the Eq. 22 with a large data set

or an equation that maps 𝑐𝑃 it is possible to analyze the dynamic of rotation the Buhll’s

methodology.

2.3 PARTICLE SWARM OPTIMIZATION

Particle Swarm Optimization (PSO) is a stochastic and base-population

method for optimization that mimics the swarm of animals. This method of optimiza-

tion works by minimizing a function. It is a relative new method and it is attributed to

Kennedy and Eberhart (1995) and Shi and Eberhart (1998). Fig. 12 shows the basic

behavior of PSO, over interactions until they swarm to the desired output, the star that

is the minimum of the function cost.
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Figure 12 – Example of PSO

Source: Adapted from Dorigo and Birattari (2007)

Fig. 12 (A) represents the first iterations, where all the particles at a random

start have initial speed, based on the self knowledge and the global knowledge. In

12 (B), the majority of the particles are roughly on the right direction, and with lower

speeds. In 12 (C), they swarm around the desired output, with small deviations. This

presented behavior is desired and is explained by the speed equation of each particle,

shown in Eq. 23 (PARSOPOULOS; VRAHATIS, 2010; KAVEH, 2017).

𝑉 𝑖
𝑝 = 𝐶0𝑉

𝑖−1
𝑝 + 𝐶1𝑅1(𝑋𝑙𝑏 −𝑋𝑝) + 𝐶2𝑅2(𝑋𝑝𝑏 −𝑋𝑝) (23)

where 𝐶0 is the inertia of the system, 𝑉𝑝 is the speed of the particle, , 𝐶1 is the self

knowledge, 𝑅1 and 𝑅2 are random values, 𝑋𝑙𝑏 is the direction for the local best, 𝑋𝑝 is

the current position, 𝐶2 is the group knowledge, 𝑋𝑝𝑏 is the direction for the group best.

All the parameter have a range depending on the type of problem to be optimized,

a standard and accepted range of parameters can be found in Erik, Pedersen and

Laboratories (2010).

As many optimization methods, it already has many variations and adaptation

of the method. Kaveh, Bakhshpoori and Afshari (2014) reviewed the evolution of the

PSO algorithm. Such variations usually affect direclty the basic Eq. 23 and the variables

(EBERHART; SHI; KENNEDY, 2001; VENTER; SOBIESZCZANSKI-SOBIESKI, 2003;

CLERC, 2006).

This method can be employed on many variables, because the particle are

driven by the results of the function cost, not the variables. The cost functions is the

functions that relates the trade off of all the variables to be optimized. (KARABOGA;

BASTURK, 2007; ADACHI et al, 2019)
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2.4 NEURO FUZZY CONTROLLERS

Neuro fuzzy controllers are an evolution of the classic fuzzy logic, by using

methods of training and learning from neural networks on regular fuzzy logic. Thus,

making an improvement on the performance of fuzzy controller. This combination takes

advantages of the strength of the neural network of being adaptive and the fuzzy set

theory of the knowledge representation (JANG; SUN; MIZUTANI, 1997; NAUCK; KLA-

WONN; KRUSE, 1997).

It was developed in the 1990, by the vein of Artificial Intelligence (AI) at the

time when developing and implementing algorithm that can learn patterns was at the

begging . Thus,this methodology of learning was extended to fuzzy logic (JANG; SUN;

MIZUTANI, 1997; NAUCK; KLAWONN; KRUSE, 1997).

Comparing the fuzzy controllers with linear controllers, fuzzy controllers can

have the same performance that linear controllers have in linear plants. However, when

presented with a nonlinear plant, the fuzzy controller outperform the linear controllers.

(CHMIELOWSKI, 2016; CHEN; PHAM, 2000).

2.4.1 Fuzzy Logic

The fuzzy logic was introduced by Zadeh (1965), where the current modern

logic control derive from. The fuzzy logic allowed infinite levels of control, different of

on/off logic the trend at the time. In addition, the fuzzy control allows an easy interface

with the user, without a precise mathematical modelling of the structure or the plant

(TUSSET, 2008).

Differently than most controllers, where the mathematical modeling is a re-

quirement for SDRE and PID (LIBERTY, 1972). Fuzzy control uses the common knowl-

edge of the operator and a set of logic operators to attribute the output. Thus, it can bal-

ance contradictory inputs that usually made other controllers misbehave. For example

the thermal design of a power plant that usually relies just on the exhaust temperature,

where a fuzzy controller can be feed with coal input, air temperature, and humidity of

the air to set the right amount air on the burner (KOCAARSLAN; ÇAM; TIRYAKI, 2006).

Linear controllers such PID, account for 90% of the industrial controllers, work-

ing in nonlinear and linear plants. To overcome problems with nonlinear problems, self-
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tuning mechanics must be implement for different phases of operation or reduced out-

puts (ZADEH; KLIR; YUAN, 1996; ÅSTRöM; HäGGLUND, 2001; MENDES; OSÓRIO;

ARAÚJO, 2017). In comparison, fuzzy controllers can have the same efficiency as

linear controllers at linear plants.

However, in nonlinear plants, fuzzy outweigh the linear control on performance

because it is more robust on a wide range, easy to understand because of the lin-

guist term (ZADEH; KLIR; YUAN, 1996; REZNIK, 1997). By creating a set of rules and

membership functions the inputs and output can be treat by states as that describe

the states, such as: "hot", "warm" and "cold"" (MITRA; HAYASHI, 2000; JANG; SUN,

1995). Thus, a variable can be partially from on group and inherent characteristic and

behavior this group have.

Differently from the on/off logic, that a variable belong or not belong to that clas-

sification. In addition, nonlinear plants have multivariable, multiloop and many times

lack of perfect knowledge. Thus, misleading the linear representation of the plant,

where as fuzzy control thrives because the linguist representation lead to a better

understanding and setup by the operator. Consequently the implementation of fuzzy

controller results on better performance (REZNIK, 1997)

2.4.2 Fuzzy Set Theory

The fuzzy theory is based on sets, where each set represent a membership or

entitle to the same group. In other words, the relationship can be establish by answer-

ing question: “is the element the same as the others on this group? How much this

elements correlate with this group?” This theory correlate not just a membership, but

how much similarity the new element has within the group.

In addition, the classification method is bias toward the evaluator. e.g., one can

deem the temperature of the water at 30ºC as hot, and other person can evaluate it is

warm. Differently from the Boolean logic, where the threshold is a crisp. There is not a

transit state.

The association level can be describe by a membership function, which related

the association level with the analyzed member, the input at that sample time. The most

common membership function are triangle, and the Gaussian function. Nevertheless

some other function, such as quadratic, prismatic and custom function could be use.
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The Gaussian function and he triangle function are presented on the Graph 6 (REZNIK,

1997).

This method made the fuzzy logic approachable to users, because made it

easy to tune the function to the desire specific situations. It made easy to the operator o

translate the common knowledge in to fuzzy logic. The Fig. 6 show a set of membership

functions.(JANG; SUN, 1995)

Graph 6 – Set of Membership functions
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The set of equations that describe the triangle and the trapezium are describe

on the Eq. 24.

𝑓(𝑥,𝑐1,𝑐2,𝑐3,𝑐4) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, 𝑖𝑓 𝑥 6 𝑐1

𝑥−𝑐1
𝑐2−𝑐1 , 𝑖𝑓 𝑐1 6 𝑥 6 𝑐2

1, 𝑖𝑓 𝑐2 6 𝑥 6 𝑐3

𝑐3−𝑥
𝑐3−𝑐2 , 𝑖𝑓 𝑐3 6 𝑥 6 𝑐4

0, 𝑖𝑓 𝑐4 6 𝑥

(24)

where 𝑐1, 𝑐2, 𝑐3, 𝑐4 are the parameter of the membership function. When 𝑐2 = 𝑐3, the

trapezium equation is the triangle equation.

As shown on Graph 6, for the operator made easy to set the Values of

𝑇𝑐𝑜𝑙𝑑,𝑇𝑊𝑎𝑟𝑚 and 𝑇𝐻𝑜𝑡 on the fuzzy controller. In this case this variables saturates, and

the warm functions overlaps 50 %, in average can be between 75% to 25%, to assure

a smooth transition between activation functions. (TUSSET, 2008).
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The activation function can have different shapes, such a function sine , logistic

and trapezoidal. The selection of the function can create a saturation such as Cold and

Hot on Graph 6. Or have a very sharp definition as Warm. tational power available. To

fulfill the whole range, usually is necessary a set of membership function. For example,

“cold”, “warm” and “hot” to cover an input of water temperature on a pressure cooker.

This number of function fluctuates between 3 and 7. Whereas, three membership func-

tion are selected for speed without losing significant precision, and seven functions are

more selective, with some penalty on processing time. More than seven function usu-

ally results on loss of precision and slower processing time (TUSSET, 2008)

For the output, the deffuzzyfication process is similar to the fuzzification pro-

cess. Similarly, many process of disfuzzification were created. It can be divide in main

process, Centroid of area, average of maximum, center of maximum, and Sugeno

(TUSSET, 2008). Each process modify the output.

Additionally, the fuzzy rules on the output can be divided by Mandani and

Sugeno. Mandani was proposed on 1975 by Ebrahim Mamdani, and it is more a lin-

guistic output, where as Sugeno was introduced on 1985 and outputs a function or a

constant (MAMDANI; ASSILIAN, 1975; SUGENO, 1985).

The Mandani process consist on interpreting the desire action, i.e. slower,

nothing ,accelerate for a cruise control. Thus, it relies on the knowledge of the pro-

grammer, and the output range to interpolate between the outputs.

The Sugeno process is more mandarin set of interface system was the first

system implement by Mamdani and Assilian (1975), to control a boiler and an engine.

This set of interference is based on logic gates to attribute a desire output. Whereas

the Sugeno create by Sugeno (1985) type system, only have two output, constant or

linear for output. The Mandani and Sugeno desfuzication method works in different

ways, sugeno works as a function output shown on Eq. 25.

𝑍 = 𝑏1𝑇𝑠𝑟 + 𝑏2𝑉∞ + 𝑏3 (25)

where 𝑍 is the output, 𝑏𝑛 is a coefficient to tune the fuzzy. Thus, an output can be fine

tuned to the desired data set.
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2.4.3 Neural Network

Neural Networks or machine learning mimic the brain activity of processing

information. Despite it being chaotic, the information is processed through a net of

brain cells, that have almost random connections and loops. It was first develop by

McCulloch and Pitts (1943), and since then, many models improve in different branch.

e.g image processing, patter recognition, and general regression.

Similar to brain activity, the neural network have layers, and the information

passes through this layers and it changes as passes. Each layer is composed by sev-

eral neurons, and it connection can be determine by the user or by an self-arrangement

algorithm. Each layer could have a weight and a bias factor to tune the function into

the desired output. The most common activation functions are radial, linear, tanh, con-

volute and clustering. The Fig. 13 illustrates a neural network with multiple layers and

internal loop.

Figure 13 – Basic Neural Network

Source: Self-Authorship

As shown in the Fig. 13, the neural network in this case have two inputs (Input

1 and Input 2). The Layer 1 have 7 neurons with a bias factor (b). The Layer 2 have

1 neuron, because it is the last layer before the output. Thus it must have the same

amount of neurons.

In addition, the Input 1 is connected direct by Layer 2, and it is connected with

Layer 1 and Layer 2 via a loop. Thus, the results of Layer 2 is added at the next iteration.

Nowadays, there are standard layouts to image processing, regression methods and

algorithm. In addition, the training method can change the layout to further improve the

results (NAUCK; KLAWONN; KRUSE, 1997; CHEN; PHAM, 2000).
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2.4.4 Adaptive Neuro-Fuzzy Inference Systems

The Adaptive Neuro-Fuzzy Inference Systems is a method of converting the

learning adaptability to the IF-Then rules of Fuzzy Logic to a variable system. (JANG;

SUN, 1995; JANG; SUN, 1995; JANG, 1993) To train or fit each variable it can be

done on-line or offline. For on-line the training mechanism will adjust each input to the

desire output, using the gradient as a training mechanism. However, this method can

be trapped on a local minimal (JANG; SUN, 1995; JANG, 1993). For the off-line training

it can combine the gradient and the least square estimate to train the variables. This

methods is more robust than the on-line training because avoid the local minimal and

learn the behavior, instead of the instantaneous error.

However, the amount of rules increase exponentially the number of variables

to be fitted. The Fig. 14 show the diagram for a three rules with two variables.

Figure 14 – Neuro-fuzzy sub systems

Source: Adapted from Jang (1993)

As shown on Fig. 14 shows the rules in one variables 𝐴1,𝐴2,𝐴3 and for the

other variable as 𝐵1,𝐵2,𝐵3, the subsystems created are 9. In orange is the transition

between each rule. Each subsystem has parameters 𝑏1,𝑏2,𝑏3 associated with Eq. 25.
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3 METHODOLOGY

In this chapter it will be explain the methodology, the parameters selected and

the procedures adapted to achieve the general and specific objectives. Thus, the initial

operations were summarized on Fig. 15.

Figure 15 – Flowchart of operations - Part 1

Source: Self-Authorship

First, the site parameters were selected based on New World Wind (2018), 4

[m/s] is consider an economic viable site. Thus, a safety height of the hub was selected

as 20 [m]. Consequently, the Eq. 4 was utilized to calculate the average wind speed at

of 5.5 [m/s] at the safety height.

Second, the airfoil parameter were selected, such as that the PSO will not

crash. Thus, the 𝐶𝐿 and 𝐶𝐷 was obtained by the Xfoil® software (MARTEN et al,

2013). The parameters used on the Xfoil® were 100 interactions with a range from

−10∘ to 20∘ with a step of 0.1∘, filtering 5, Ncrit 9 standard wind tunnel. The complete

range was using the Vittera extrapolation until the angle of −90∘ with a step of 1∘. The

airfoil selection were NACA 0012, NACA 0015, NACA 2412, NACA 2415, NACA 4412,

NACA4 4415, S821, S822, S823, S833, S834, S835 based on previous paper of wind

turbines (MAHMUDDIN et al, 2017).

The range of Reynolds number were the combination of the following set of

ranges: from 100k to 1M with a step of 20k, from 1M to 100M with a step of 200k. The

lower bound due to simulation limitation was 100k, and the upper limits were just set

as a reference value to the transition from laminar to supercrital laminar flow (XU et al,

2018a). This software was integrated with the Matlab ®, allowing the construction of

tables from the selected airfoils. Thus, the following operation on the flowchart in Fig.
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16

Figure 16 – Flowchart of operations - Part 2

Source: Self-Authorship

Thus, a table with 𝐶𝐿 and 𝐶𝐷 was built and used with the PSO optimization

(DRELA, 1989; MORGADO et al, 2016; KUMAR; ALI; AROCKIARAJAN, 2018). The

optimization process used the Matlab with the configurations to PSO is on the Tab. 2:

Table 2 – Parameter of PSO
Variable Value Variable value

Swarm Size 100 Function Tolerance 10−5

Max Stall Iterations 35 Max Iterations 550
Inertia Range 0.6 Self Adjustment Weight 1

Social Adjustment Weight 1.49 Objective Limit 0
Source: Adapted from Pedersen (2010)

The parameters to the turbine are presented on Tab. 3

Table 3 – Parameter of Turbine for PSO
Variable Value Variable value
𝑇𝑠𝑟 [ ] 8 𝑉∞[𝑚/𝑠] 5.5

𝑅ℎ𝑢𝑏 [ m ] 0.1 𝑑𝑥[𝑚] 0.001
𝑅𝑚𝑎𝑥 [ m ] 4.5 𝜌𝑎𝑖𝑟[𝑘𝑔/𝑚3] 1.2
𝜈𝑎𝑖𝑟 [𝑚2/𝑠] 1.81 × 10−5

Source: Self-Authorship

The selected parameter 𝑇𝑆𝑅 = 8 was to situate the HAWT at the lower range

recommended to avoid excessive noise due to high speeds (WOOD, 2010). The radius

restriction (4.5m) is to have a maximun power of 10kW at the average wind speed. The
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the optimization is shown on Eq. 26:

minimize
𝐽

𝐽(𝑢1,𝑢2,𝑢3,𝑢4) =
1

𝑐𝑝

subject to

− 10 < 𝑢1 < 0,−10 < 𝑢2 < 0, ,

20 < 𝑢3 < 150, 0.1 < 𝑢4 < 0.5

(26)

The 𝑑𝑥 is the step in the radial direction using the Buhl’s methodology, it was se-

lected to avoid error due to big steps. Thee air proprieties was evaluated at 20∘𝐶. To the

wing profile, a function was created based on previous optimized literature (GLAUERT,

1983; WOOD, 2010; SCHAFFARCZYK, 2014; SORENSEN, 2016). The function of the

chord was required to have a continuous profile.

𝑐(𝑟) =

⎧⎪⎨⎪⎩
[︁
ln
(︁
𝑢3𝑢4
𝑅𝑚𝑎𝑥

+ 𝑒
)︁]︁−1

, 𝑖𝑓 𝑟
𝑅𝑚𝑎𝑥

6 𝑢4
𝑅𝑚𝑎𝑥[︁

ln
(︁

𝑢3𝑟
𝑅𝑚𝑎𝑥

+ 𝑒
)︁]︁−1

(27)

where 𝑐 is chord, 𝑅𝑚𝑎𝑥 is the maximun radius of the blade, ,𝑟 is the local radius, and

𝑢3,𝑢4 are the parameter to be optimized. The same procedure was adapted for the

torsion angle (𝜃𝑝), on Eq.28:

𝜃𝑝(𝑟) = 𝑢1 ln

(︂
𝑟

𝑅𝑚𝑎𝑥

)︂
+ 𝑢2 (28)

where 𝜃𝑝 is the twist angle, and 𝑢1,𝑢2 are the parameters to be optimized. Thus, the

only variables were the limited of the variables 𝑢𝑛, and for this variables the following

bound were select so the values of 𝑐(𝑟) and 𝜃𝑝(𝑟) were reasonable. Otherwise, the

PSO could increase significantly the values to take advantage of higher Reynolds and

making the blade unfeasible for future construction.

Table 4 – Bound parameters
𝑢𝑛 Lower bound Upper Bound
1 -10 0
2 -10 0
3 20 150
4 0.1 0.5

Source: Self-Authorship

After the PSO result were obtain a range of 𝑐𝑃 were calculated using the Buhl’s

methodology from Eq.12, Eq. 13, to obtain the torque and 𝑐𝑃 in Eq. 14 and Eq. 15
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respectively. Thus, the range of angles from −40∘ to 25∘ could be calculated. Thus the

efficiency in this range will create the neuro fuzzy rules, following the Eq. 29.

𝑃𝑇𝑠𝑟,𝑉∞ ≤ 104

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑐𝑝𝑓 =

⎧⎪⎨⎪⎩𝑐𝑝(𝑜𝑝𝑡), 𝑒𝑙𝑠𝑒𝑐𝑝(104)

𝛽𝑝 =

⎧⎪⎨⎪⎩𝛽(𝑜𝑝𝑡), 𝑒𝑙𝑠𝑒𝛽(104)

(29)

where 𝑐𝑝𝑓 is the 𝑐𝑃 to be trained on the neuro fuzzy, 𝑐𝑝(𝑜𝑝𝑡) is the optimum coefficient of

power, 𝑐𝑝(104) is the coefficient of power for 104 [W], 𝛽𝑝𝑓 is the 𝛽𝑃 to be trained on the

neuro fuzzy, 𝛽𝑝(𝑜𝑝𝑡) is the optimum best angle of power, 𝛽𝑝(104) is the 𝛽 angle for 104 [W].

This methodology was based on the following regiments:

1. Protect over power greater than 104 [W];

2. Optimize the angle when (1.) not occurs to yield the maximum power.

Nevertheless, the protections for low wind speeds to prevent wear and tear can

not be added without adding a timer. Fig. 17 shows the proposed control fuzzy during

a dynamics simulation.

Figure 17 – Model of Fuzzy control

Source: Self-Autorship

where 𝑉 *
∞ is the fuzzified value of 𝑉∞, and *

𝑆𝑅 is the fuzzified value of 𝑆𝑅. This method-

ology was applied to the dynamic simulation, with 49 Sugeno rules. The rules were

obtain from the training are presented on Fig. 14.

The dynamic of the electric generator was simplified as a viscous damper, as

describe on Eq. 22. The linear damping parameter was taken in to account the torque



54

produced by the turbine at 𝑇𝑆𝑅 = 8 [ ] and 𝑉∞ = 5.5 [𝑚/𝑠], thus 𝑐 = 50 [𝑁𝑚/𝑟𝑎𝑑]. The

momentum of inertia was based on a solid wing, made of aluminum with density of

2700 [𝑘𝑔/𝑚3] , where the area of the airfoil section was used by 2000 points with a step

on the radial direction of 10−3. Thus 𝐽0 = 3 × 480.1385 [𝑘𝑔𝑚2]. As presented on Eq. 22,

the power extracted from the turbine is divided by the rotation speed. To avoid errors,

the lower rotation speed was set to 10−12.

To simulate dynamics the following wind profiles were select to compare and

contrast the efficiency of the controller, break of inertial and stability of the controller.

𝑉∞ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
constant 𝑠𝑝𝑒𝑒𝑑, 𝑐𝑎𝑠𝑒 1

5.5 + 5 sin(2𝜋𝑓𝑡), case 2

Rayleigh distribution with an average of 5 [m/s], case 3

(30)

The case 1 was selected to simulate a steady state of wind. This Case is

to investigate the efficiency to break the inertial and the capability to limit the max

rotation. Because, to test the controller below the max energy the controller should

track the 𝛽(𝑜𝑝𝑡) and above this threshold it should track the 𝛽(104), thus regulating the

power output, after it passes 104 [W].

The case 2 and the case 3 were select to analyze the behaviour on non static

wind speeds. The case 2 investigate a fluctuation on wind speed between the average

speed and the speed with most energy with a frequency between 0 and 2 [Hz] with

128 intervals. Because the natural frequecies are below 6 [Hz] (WAIT et al, 2019). This

cases was selected because of the variation of wind can cause the wind turbine to

extract more than it is possible, and at the lower region it can come to a halt due to

drag and power extracted from the generator side. Thus, proving that the controll is a

better solution. The case 3 was selected to analyze the behavior with a random wind

speeds, thus simulating a very unstable weather, that could be rainy day. The Rayleigh

distribution was selected because it is the stander probability in wind turbine design, it

also was divide in 128 intervals between 0 and 2 [Hz].
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4 RESULTS AND DISCUSSION

In this chapter, the results and the main discussion are presented, in the same

order as presented on the Chapter 3. First, the wind distribution to the selected site is

shown on Graph 7 .

Graph 7 – Distributions parameter to the selected site (A) Wind Probability (B) Energy Distribution

(A) (B)
Source: Self-Authorship

As presented in Graph 7, the speed of most energy is 9.15 [𝑚/𝑠]. Conse-

quently, this energy is included on all the cases to wind profile. Thus, using this wind

as an optimization parameter in the PSO.

4.1 RESULT OF PSO

Tab. 5 shows the results to the PSO optimization for the average speed and

the speed of most energy (5.5 [𝑚/𝑠]).
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Table 5 – Comparison of wind turbine types results for 5.5 [𝑚/𝑠]

𝑢1 𝑢2 𝑢3 𝑢4 Interactions 𝑐𝑝 Airfoil
-3.178 0 59.185 0.498 73 0.4517 NACA 0015
-4.596 0 150.000 0.500 120 0.4501 NACA 4412
-4.680 0 135.918 0.500 82 0.4467 NACA 2412
-4.527 -1.1109 149.917 0.499 61 0.4463 NACA 2415
-4.313 0 119.069 0.499 142 0.4432 S822
-4.243 0 135.045 0.500 68 0.4398 S835
-4.416 -11.740 150.000 0.500 87 0.4397 NACA 4415
-3.736 -0.003 116.781 0.436 117 0.4396 S833
-2.816 -0.001 86.941 0.499 86 0.4384 S834
-4.692 0 150.000 0.500 65 0.4384 S823
-3.714 0 81.001 0.500 80 0.4340 NACA 0012
-3.372 -0.011 136.910 0.370 125 0.4278 S821

-4.0235 -1.0687 122.5639 0.4834 92 0.4413 Average
0.6411 3.5393 31.0502 0.0401 27 0.0068 Standard deviation

Source: Self-Authorship

In addition, the same optimization was done to speed of maximum Energy

(9.15[𝑚/𝑠]).

Table 6 – Comparison of wind turbine types results for 9.15 [𝑚/𝑠]

𝑢1 𝑢2 𝑢3 𝑢4 Interactions 𝑐𝑝 Airfoil
-5.013 0 30.402 0.403 24 0.4669 NACA0015
-8.798 0 44.212 0.278 20 0.4662 NACA2412
-6.272 0 26.207 0.387 26 0.4630 NACA0012
-7.809 0 37.629 0.317 16 0.4587 S833
-9.709 0 25.282 0.340 35 0.4586 S822
-9.718 0 80.927 0.316 46 0.4526 NACA2415
-9.717 0 81.007 0.314 40 0.4526 NACA4415
-9.717 0 81.007 0.314 40 0.4526 NACA4412
-7.970 0 36.286 0.279 31 0.4446 S834
-7.507 0 48.243 0.363 17 0.4445 S832
-7.690 0 71.213 0.260 32 0.4400 S823
-8.365 0 38.460 0.340 34 0.4299 S821
-8.190 0 50.073 0.326 30 0.4525 Average
1.489 0 22.159 0.043 10 0.011 Standard deviation

Source: Self-Authorship

As shown on Table 5 and Table 6 the results pointed to the same airfoil PSO

optimization. Regardless, the selected airfoil the 𝑐𝑃 were very close with a different

less than 3% on both optimization. This shows the efficiency on optimization of the

PSO technique, given the constrain imposed by the variation on each Airfoil to achieve

the 𝐶𝐿

𝐶𝐷
at different 𝛼.

In addition, the result showed lower standard deviation to the parameter 𝑢1,

𝑢2, 𝑢4 , 𝑐𝑃 . The deviation on 𝑎3 can be explain because of different angles of stall,as

discuss above.
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4.1.1 Coefficient of Power Results

The best profile was NACA 0015, it was selected the optimization to 5.5 [𝑚/𝑠].

These parameters were used on different wind speeds to create a data base of the re-

lationship of wind speed (𝑉∞) and 𝑇𝑠𝑟 to build the data set to the neuro fuzzy controller.

The various results can be seen on Chapter A. The average 𝑐𝑃 is shown on Graph 8.

Graph 8 – 𝑐𝑃 for the average: where A is the surface view and B is the contour view

(A) (B)

Source: Self-Authorship

Extracting the best 𝛽 by searching the max 𝑐𝑃 for each 𝑇𝑆𝑅

Graph 9 – All of best, where A is the best 𝛽 angle and B is the best 𝑐𝑃 for each wind
speed
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The results of the best 𝛽 for each 𝑉∞ presented similar behaviour. However,

due to better flow the 𝐶𝐿

𝐶𝐷
are higher, increasing the efficiency. The wind turbine is more

efficient. In addition,Yang et al (2016) argued the result of good optimization must be
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with a limited range in the neighborhood of the desire 𝑇𝑆𝑅, as presented in Fig. 9.

Thus, showing a good optimization. For the remaining dynamic analyzes, to simplify

the dynamics the average of Fig. 9 will be used and it was presented in Fig. 10.

Graph 10 – Average of best, where A is the average of the best 𝛽 angle and B is the
best 𝑐𝑃 for each 𝑇𝑆𝑅

(A) (B)
Source: Self-Authorship

After using the averaging 𝑐𝑃 with wind probability, and frequency. It was calcu-

lated the available power and energy, to this site the results are in Graph 11.

Graph 11 – Using optimized turbine, in A the Power available and B the energy available

(A) (B)
Source: Self-Authorship

Analyzing Graph 10, it is clear that bulk of the energy is in the region of 𝑉∞ =

9 [𝑚/𝑠] and 𝑇𝑆𝑅 = 8.
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4.2 CONTROL RESULTS

Frist, the control rule on Eq. 29 was adopted with the help of the result on

Graph 11. Following the Eq. 29, it is possible to built a database of 𝑐𝑃 .

Graph 12 – 𝑐𝑝𝑓 angle limited to power,in (A) the surface and (B) is the contour

(A) (B)
Source: Self-Authorship

Converting the 𝑐𝑃 to 𝛽, it is obtain Graph 13.

Graph 13 – 𝛽𝑓 angle limited to power,in (A) the surface and (B) is the contour

(A) (B)
Source: Self-Authorship

As expected on Graph 13, before the power threshold the angle remains at the

optimum. After that the angle is reduced to an inefficient level to extract the maximum

allowed by the generator. The results of the rules obtained after the training is shown

on Graph 14.
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Graph 14 – Input rules for fuzzy control,in (A) for the 𝑇𝑠𝑟 and
(B) is for 𝑉∞
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Table 7 shows the relationship between the inputs and the coefficient on Table

8.

Table 7 – Relationship for the input rules and the coefficients
Input 1 𝑇𝑠𝑟 Input 2 𝑉∞ Input 2 𝑉∞ Input 2 𝑉∞ Input 2 𝑉∞ Input 2 𝑉∞ Input 2 𝑉∞ Input 2 𝑉∞

MF1 MF2 MF3 MF4 MF5 MF6 MF7
MF1
MF2 MF8 MF9 MF10 MF11 MF12 MF13 MF14
MF3 MF15 MF16 MF17 MF18 MF19 MF20 MF21
MF4 MF22 MF23 MF24 MF25 MF26 MF27 MF28
MF5 MF29 MF30 MF31 MF32 MF33 MF34 MF35
MF6 MF36 MF37 MF38 MF39 MF40 MF41 MF42
MF7 MF43 MF44 MF45 MF46 MF47 MF48 MF49

Source: Self-Authorship

Thus, each parameters was obtained by the training are presented on Tab. 8.
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Table 8 – Value of variables to the fuzzy controller
MF 𝑏1 𝑏2 𝑏3 MF 𝑏1 𝑏2 𝑏3
MF1 209.5421 -11.8275 -71.3524 MF26 360.7708 -215.6002 -754.2534
MF2 210.9077 -11.7962 -32.5122 MF27 204.5275 -215.7973 1522.8474
MF3 246.5002 -11.6292 6.3580 MF28 124.3731 -215.7315 3035.9750
MF4 131.7435 -10.4485 31.8517 MF29 182.8899 -127.9472 -2439.4192
MF5 392.5962 -11.8927 85.8663 MF30 184.2302 -127.9879 -2032.8042
MF6 224.1827 -12.3879 137.7985 MF31 219.8116 -128.1504 -2081.8127
MF7 140.5114 -12.5309 180.9589 MF32 105.7098 -129.3643 -124.8053
MF8 185.7659 2.1595 -624.6992 MF33 360.7561 -129.4366 -3097.7329
MF9 186.7650 2.0962 -635.0041 MF34 204.6186 -129.0912 -595.1393

MF10 223.1672 1.7675 -761.3604 MF35 124.0818 -129.1142 905.6686
MF11 105.5388 -0.5600 -354.3971 MF36 182.9245 -168.0603 -3049.3832
MF12 363.7759 1.0055 -1244.3634 MF37 184.2699 -168.0751 -2514.3604
MF13 206.2198 1.1327 -727.9533 MF38 219.8516 -168.0885 -2549.8146
MF14 126.1277 1.3344 -473.7770 MF39 105.6490 -167.9909 -89.8300
MF15 182.8298 -236.8756 -1218.4627 MF40 360.7780 -168.0723 -3787.0037
MF16 184.1390 -236.8376 -441.4987 MF41 204.5253 -167.5107 -636.1563
MF17 219.7026 -236.5516 104.9654 MF42 123.8475 -167.5549 1263.6894
MF18 105.6862 -239.3749 1669.5282 MF43 182.9329 -242.0681 -3659.2211
MF19 360.9084 -240.2945 771.7242 MF44 184.2677 -242.0953 -2882.9779
MF20 204.7426 -240.3754 2607.0711 MF45 219.8902 -242.1444 -2792.1300
MF21 124.4230 -240.4031 3935.3071 MF46 105.5320 -242.3030 299.4925
MF22 182.7427 -214.0856 -1827.8288 MF47 360.7347 -244.0768 -3980.2208
MF23 184.0712 -214.0816 -1131.0858 MF48 204.4709 -244.1344 -44.7182
MF24 219.6532 -213.9801 -777.3067 MF49 123.6558 -244.2840 2383.1995
MF25 105.7150 -215.1136 1078.7766

Source: Self-Authorship

This set up has a fitness 𝑅2 of 0.9961, with the desired dataset of 𝛽𝑓 . Analyzing

the error of the desire 𝛽𝑓 and the fuzzy-controller, it is possible to obtain Fig. 15.

Graph 15 – Error of the desired and the fuzzy , in (A) the surface and (B) is the contour

(A) (B)
Source: Self-Authorship

Where the negative error in black to white means a higher angle than the opti-

mum and could means an increase rotation speed and extracted power. Thus, burning
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the generator. On the other hand, red to yellow a positive error means a smaller angle

than the required an it is energy without being extracted or wasted.

4.2.1 Results of Applied Control

Analyzing the dynamics through the Eq. 22, it is possible to obtain the Ω𝑚𝑎𝑥

to different time samples. The selected samples were 5, 10, 50 and 250 to illustrate

and analyze the break of inertia, and the reduction of power extracted after the 104 was

reached to 𝑉∞ to case 1.

Graph 16 – Maximum rotation for different time samples to case 1 (A) to t=5s, (B) to
t=10s, (C) to t=50s, (D) to t=250s

(A) (B)

(C) (D)
Source: Self-Authorship

As expected, the controlled turbine had a higher rotation speed in the be-

ginning. Thus, breaking the inertia quicker than the uncontrolled turbine. Comparing

Graph 16 (D) with Graph 2, it is possible to see the similar behavior and the limita-

tion of the rotation. The constant rotation speed in only achieve because the extracted

power grows exponential, thus it is possible to stabilizes the rotation due to excess of
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power, on red the uncontrolled turbine, shows the exponential grow of extracted power.

Transforming the rotation in power extracted, as shown on Graph 17

Graph 17 – Maximum power for different time samples to case 1 (A) to t=5s,(B) to
t=10s,(C) to t=50s,(D) to t=250s
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As expected, the power extracted stabilized after 10 [𝑚/𝑠] , avoiding burning

the generator. The same analysis was made in case 2, Graph 18, instead the Rms of

rotation was used due to the oscillation behaviour.
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Graph 18 – Rms Ω to different time samples to case 2 (A) for t = 5s,(B) to t = 10s,(C) to
t = 50s,(D) to t = 250s

(A) (B)

(C) (D)
Source: Self-authorship

The same behavior on case 1, where the controlled turbine presented a better

performance, breaking the inertia and achieving higher rotation speeds during the time

simulated. Graph 18 (A), (B) and (C) show lower rotation speeds, until break the inertia

in (D).
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Graph 19 – Rms Ω for different time sample to case 3 (A) to t = 5s,(B) to t = 10s,(C) to t
= 50s,(D) to t = 250s

(A) (B)

(C) (D)
Source: Self-authorship

The same behavior was observed on case 1 and 2, where the controlled tur-

bine presented a better performance, breaking the inertial and maintaining higher ro-

tation speeds during the simulated time.

4.2.2 Error of Control

To evaluate the performance of the neuro-fuzzy controller, the same simulation

was made with the dataset. Thus, the dynamic error can be evaluated on Graph 20 .
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Graph 20 – Error between the Optimum and the fuzzy control
for case 1: (A) in absolute [rad/s] ,(B) in relative [%]

(A)

(B)
Source: Self-authorship

The standard deviation was analyzed to each error in time series, to evaluate

the fluctuation on the error, the results are presented in Graph 21 .
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Graph 21 – Standard deviation for case 1

Source: Self-authorship

As presented on Graph 21 , Graph 20 the absolute error was 0.32 [rad/s] and

the only relative error was high at very lower rotation due to the magnitude of the

measurement. Thus, the controller was efficient in all wind speed simulated. The same

analyses was made for case 2, presented on Graph 22, Graph 23.
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Graph 22 – Error between the optimum and the fuzzy control for case 2: (A) in
absolute [rad/s] ,(B) in relative [%]

(A)

(B)
Source: Self-authorship

The standard deviation was analyzed for each error in time series, to evaluate

the fluctuation on the error, the result is presented on Graph 23.
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Graph 23 – Standard deviation for case 2

Source: Self-authorship

The results on Graph 22, Fig. 23, shows a higher error at lower frequency,

and a constant standard deviation. Thus, the controller remain efficient at the ranged

simulated. Regardless of the high wind speeds at lower frequencies, or the lower part

of the sine wave. Applying the same methodology for the case 3.
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Graph 24 – Error between the optimum and the fuzzy control for case 3: (A) in absolute
[rad/s] ,(B) in relative [%]

(A)

(B)
Source: Self-authorship

The standard deviation was analyzed for each error in time series, to evaluate

the fluctuation on the error, the result are presented on Graph 25 .
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Graph 25 – Standard deviation for case 3

Source: Self-authorship

The results on Graph 24, Graph 25, shows a higher error at lower frequency,

and a constant standard deviation. It was applied the same methodology for the case

3.Thus, the controller remain stable and efficient at a vast range of constant wind speed

and at a vast range of frequencies. Comparing the max rotation over time on Graph 26.

Graph 26 – Comparison between the fuzzy controlled and uncontrolled for case 1: (A) The max
Ω for controlled [rad/s] ,(B) The max Ω for uncontrolled turbine[%]

(A) (B)

As shown on Graph 26, on blue is the region below Ω 1 rad/s, as an illus-

trating point for the efficiency of the wind turbine. Thus showing the bigger range of

wind accelerate quicker than the uncontrolled. From red to yellow the range of the con-

trolled turbine, and from black to white the rotation speed bigger than the required for

the controlled wind turbine. Thus, showing that the uncontrolled turbine quicker burns

the generator. Calculating the difference between the controlled and the uncontrolled

turbine, Graph 5 shows this difference.
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Graph 27 – Difference between the fuzzy controlled and uncontrolled for
case 1: (A) in absolute [rad/s] ,(B) in relative [rad/s]

(A)

(B)

As shown on Graph 5 the controller increasing the rotation. However, as the

time and the 𝑉∞ increase, the controller starts to throttle the rotation and the energy to

not overpower the generator. The same methodology was used on case 2 and case 3.
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Graph 28 – Difference between the fuzzy controlled and uncontrolled for
case 2: (A) in absolute [rad/s] ,(B) in relative [%]

(A)

(B)

As shown in Graph 28, at lower frequencies, the simulation has the positive

part of the sine wave, thus breaking the inertia quickly. However, when the frequency

increases there is no notable change. Despite of the relative difference increase, the

absolute difference remains the same, around 2 [rad/s]. Only to lower frequencies,

the uncontrolled turbine is faster, this means that the controller reduces the extracted

power. For case 3 the results are presented on Graph 29.
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Graph 29 – Difference between the fuzzy controlled and uncontrolled for
case 3:(A) in absolute [rad/s] ,(B) in relative [%]

(A)

(B)
Source: Self-authorship

As shown in Graph 28, and Graph 29, the relative difference is high. Never-

theless, the absolute difference is low. Showing the uncontrolled wind turbine requires

longer amount of time to break the inertia compared to the neuro fuzzy. The important

contrast is expressed on the Tab. 5.
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Table 9 – Summary of main results
Error [𝑟𝑎𝑑/𝑠] Error [%] Difference [𝑟𝑎𝑑/𝑠] Difference [%]

Max Min Max Min Max Min Max Min
Case 1 0.27 3.68E-09 13.20 2.83E-08 11.99 -9.31 100 -148.13
Case 2 0.49 1.73E-05 5.12 2.42E-04 8.77 -1.51 4.63E+03 -11.06
Case 3 0.71 2.34E-05 6.01 2.57E-04 9.22 0.20 4.45E+03 10.53

Source: Self-Authorship

As shown on Tab. 5, and on Graph 16 to Graph 29, the error between the

desired rotation from the table and neuro fuzzy was low to a steady wind speed

0.27[𝑟𝑎𝑑/𝑠], and the difference between show at the maximum it was 11.99[𝑟𝑎𝑑/𝑠] and

minimum it was −9.31[𝑟𝑎𝑑/𝑠]. Thus, increasing the power generation in 11.99[𝑟𝑎𝑑/𝑠]

and avoiding the burn generator in 9.31[𝑟𝑎𝑑/𝑠].

The same analyses can be done for case 2 and case 3, where the wind speed

is not steady. The max deviation from the desired was 0.71[𝑟𝑎𝑑/𝑠]. Comparing the con-

trolled with the uncontrolled it shows that it improves in 9.22[𝑟𝑎𝑑/𝑠] and reduce the

rotation in cases of over speed with 1.51[𝑟𝑎𝑑/𝑠].
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5 CONCLUSION AND REMARKS

Comparing with CFD softwares, the Xfoil software was a good choice, because

it can quickly build tables of 𝐶𝐿 and 𝐶𝐷. Despite the last update has been from 2000.

Because it runs on C, it can resolve the lift and drag coefficient to a 2D shape quicker

than other solutions from CFD. Despite of the lower bound of 100k on 𝑅𝐸. Neverthe-

less, lift and drag coefficient from wind tunnel can be used on a further work to compare

the results.

The Buhl‘s methodology was efficient in representing the HAWT dynamics. De-

spite being a complex and recursive method that increases the time with the condition

on the 𝑎 variable. The use of function for chord and for 𝜃𝑝 made the optimization easy

code, with consistent results.

The PSO optimization demonstrated to be a good tool. The selection of airfoil

shows similar performance to all airfoils. Thus, it shows that the method extracted the

most of each profile. However, the optimization function did not take into account the

noise generation and mitigation option on the optimization process. This requirement

is important from the stakeholders. Other equations could be proposed to 𝜃𝑝 and 𝑐, or

instead of a function a selection of points could be used with the interpolation function.

The comparison between various 𝑉∞ on the 𝑐𝑝 analyses showed that due to

higher Re number the 𝑐𝑝 becomes a function of the 𝑉∞. This fact is due to better flow

over the profile, increasing the 𝐶𝐿

𝐶𝐷
. Thus, proving that the model of Luo, Vidal and Acho

(2014) is a simplified model, that could be a good starting point for electrical generator

design.

The neuro fuzzy control showed to be a very stable and reliable option of con-

trolling given restrictions imposed. Because it was not possible to establish a linear

or non linear plant. The modeled did not fit on the (LUO; VIDAL; ACHO, 2014) with

sufficient correlation coefficient. In addition the use of PID needed to be tuned and the

power processing time to be increased significantly.

The result of the controller showed a good potential to avoid overpower and

reduce the time required to break the inertia. The protection from low speed to avoid

unnecessary wear and tear could be accomplished by a timer comparing the average

wind speed. The neuro fuzzy tool allows to train the controller and even further manual
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tuning if necessary. This tool made the construction of the rules easy by supplying the

data set after the rules of control being defined.

Averaging the 𝑐𝑝 was the solution to overcome using a neuro network to the

𝑐𝑝 to study the dynamics. Otherwise, the require processing power will increase sig-

nificantly. The 3 selected wind profiles mimicked the environment and yielded good

results. It showed that the controlled prevails over the uncontrolled turbine. It breaks

the inertial quicker and maintain the rotation over different conditions. In addition, the

selection of this wind profile showed that the optimization was good. Because, after a

long time the uncontrolled turbine has a similar efficiency. However, it also extracted

more power than the generator could cope. This is backed up by the results presented

in shown on Tab. 5, and on Graph 16 to Graph 29.

Comparing the results with the Menezes, Araújo and Silva (2018), the neuro

fuzzy was better than the optimal torque control, because it can maps the non-linear

behavior due to increase of speed that increase the efficiency. It also perfomer better

than Ashrafi, Ghaderi and Sedaghat (2015) that uses the instantaneous average of

optimum angles does not protect the generator. Nevertheless, this method is a good

starting point for passive controller such as springs. Because it can directly relate the

rotation with the angle (stiffness of torsional spring).

However, this Master‘s thesis did not analyzed the control and electrical inte-

gration that any modern wind turbine and generator already have integrated. When it is

compared with modern control that takes in account each blade position with aeroelas-

tic analyses the neurofuzzy presented in this Master‘s thesis was inferior. Nevertheless,

this methodology could also be implemented if the number of input variables does not

increase significantly. Comparing the results with Jonkman (2007), both controller work

to break the inertia quickly, and avoid the burning of the generator at speed higher than

15[𝑚/𝑠] by changing the pitch. However, Jonkman (2007) considers the influence of

ocean wave in changes on the pitch. Despite of being a more robust controller the

mathematical model was based on the Classical Glauret’s model, based on FAST ™.

From the environmental point of view, the addition of neuro fuzzy controller

imposes better performance for the same resources. As shown on Graph and Tab.

, for the same parameters on wind the controlled wind turbine quickly accelerate to

start production and avoid burning the generator, as it can be seen from black to white

region. Thus, avoid unnecessary maintenance stops to replace. Additionally, the gen-
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erator could be designed for 104[𝑊 ], instead of over sizing the generator to take into

account the excess of generation, and wasting resources.

5.1 FUTURE RESEARCH

The following items can be explored as future research

• Similiar generalized model proposed by: Luo, Vidal and Acho (2014) to facilitated

the control.

• Coupling the generator equations and investigated the dynamic using the gener-

ator with a controller to stabilized the electrical signal;

• Replace the rigid structure with a flexible structure to avoid flutter;

• To investigate the influence of sharklets, wing fences and raked wingtip on the

efficiency, and mathematical modeling;

• To analyze the possible use of spring as passive actuator;

• To add the noise characteristic to the optimization process and optimization func-

tion;

• To further research using other CFD tools to generate the 𝐶𝑙 and 𝐶𝑑 tables such

as OpenFOAM®;

• To analyze the Darrieus (VAWT) with the same Buhl’s Methodology;

• To design and analyze of the Helix turbine similar to A400;
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APPENDIX A – DATABASE

To build the average 𝑐𝑃 , a data-set of points were build. Thus, Fig. 30 shows

the results to 𝑐𝑃 for 𝑉∞ = 3 [𝑚/𝑠] .

Graph 30 – Results for 𝑐𝑃 for 𝑉∞ = 3 [𝑚/𝑠] (A) is the surface view and (B) is the Contour
view

(A) (B)
Source: Self-Authorship

Graph 31 shows the results to 𝑐𝑃 for 𝑉∞ = 4 [𝑚/𝑠] .

Graph 31 – Results for 𝑐𝑃 for 𝑉∞ = 4 [𝑚/𝑠] (A) is the surface view and (B) is the Contour
view

(A) (B)
Source: Self-Authorship

graph 32 shows the results to 𝑐𝑃 for 𝑉∞ = 5 [𝑚/𝑠].
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Graph 32 – Results for 𝑐𝑃 for 𝑉∞ = 5 [𝑚/𝑠] (A) is the surface view and (B) is the Contour
view

(A) (B)
Source: Self-Authorship

Graph 33 shows the results to 𝑐𝑃 for 𝑉∞ = 7 [𝑚/𝑠] .

Graph 33 – Results for 𝑐𝑃 for 𝑉∞ = 7 [𝑚/𝑠] (A) is the surface view and (B) is the Contour
view

(A) (B)
Source: Self-Authorship

Graph 34 shows the results to 𝑐𝑃 for 𝑉∞ = 10 [𝑚/𝑠] .
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Graph 34 – 𝑐𝑃 for 𝑉∞ = 10 [𝑚/𝑠]: where (A) is the surface view and (B) is the contour
view

(A) (B)
Source: Self-Authorship

Graph 35 shows the results to 𝑐𝑃 for 𝑉∞ = 15 [𝑚/𝑠] .

Graph 35 – 𝑐𝑃 for 𝑉∞ = 15 [𝑚/𝑠]: where (A) is the surface view and (B) is the contour
view

(A) (B)

Source: Self-Authorship

Graph 36 shows the results for 𝑐𝑃 for 𝑉∞ 20𝑚/𝑠 .
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Graph 36 – 𝑐𝑃 for 𝑉∞ 20𝑚/𝑠: where (A) is the surface view and (B) is the contour view

(A) (B)
Source: Self-Authorship

This database was used build Graph 9.
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