
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

LUAN CARLOS KLEIN

OPTIMIZATION OF INTELLIGENT SENSORIZATION SYSTEMS WITH
MACHINE LEARNING APPLIED TO ROBOTIC LOCALIZATION

CURITIBA

2024

LUAN CARLOS KLEIN

OPTIMIZATION OF INTELLIGENT SENSORIZATION SYSTEMS WITH

MACHINE LEARNING APPLIED TO ROBOTIC LOCALIZATION

Otimização de sistemas de sensorização inteligente com aprendizado de

máquina aplicado à localização robótica

Thesis presented as a requirement for obtaining
the degree of Master’s Degree in Applied
Computing in Postgraduate Program in Applied
Computing (PPGCA-CT) of the Universidade
Tecnológica Federal do Paraná.

Advisor: Prof. Dr. João Alberto Fabro

Co-advisor: Prof. Dr. Jose Luis Sousa
Magalhaes Lima

CURITIBA

2024

Esta licença permite compartilhamento, remixe, adaptação e criação a partir do tra-
balho, mesmo para fins comerciais, desde que sejam atribuídos créditos ao(s) au-
tor(es). Conteúdos elaborados por terceiros, citados e referenciados nesta obra não
são cobertos pela licença.4.0 Internacional

https://creativecommons.org/licenses/by/4.0/deed.pt_BR

Ministério da Educação
Universidade Tecnológica Federal do Paraná

Campus Curitiba

LUAN CARLOS KLEIN

OPTIMIZATION OF INTELLIGENT SENSORIZATION SYSTEMS WITH MACHINE LEARNING APPLIED TO
ROBOTIC LOCALIZATION

Trabalho de pesquisa de mestrado apresentado como requisito
para obtenção do título de Mestre Em Computação Aplicada da
Universidade Tecnológica Federal do Paraná (UTFPR). Área de
concentração: Engenharia De Sistemas Computacionais.

Data de aprovação: 19 de Dezembro de 2024

Dr. Joao Alberto Fabro, Doutorado - Universidade Tecnológica Federal do Paraná

Dr. Andre Schneider De Oliveira, Doutorado - Universidade Tecnológica Federal do Paraná

Dr. Felipe Nascimento Martins, Doutorado - Hanze University Of Applied Sciences - Hanze Uas

Dr. Marco Aurelio Wehrmeister, Doutorado - Universidade Tecnológica Federal do Paraná

Documento gerado pelo Sistema Acadêmico da UTFPR a partir dos dados da Ata de Defesa em 17/02/2025.

I offer my dedication to God, whose infinite
wisdom has guided me on my journey.

Furthermore, I would like to dedicate this work
to my parents, Méri and Leonor, without whose
unwavering support, inspiration, and example,

none of this would have been possible. Finally, I
dedicate this work to my brother, Jean, who has

inspired me greatly.

ACKNOWLEDGEMENTS

I would like to express my gratitude to all my professors and colleagues, including

UTFPR-Curitiba and IPB, in particular my advisors José Lima and João Fabro, and the advi-

sor of the previous work in IPB, Felipe N. Martins. I would also like to thank João Braun, João

Mendes, and Profa. Ana Isabel for their assistance during the research and development phase

of the project. Their guidance and willingness to share their knowledge were greatly appreciated.

To become good at anything you have to know
how to apply basic principles. To become great

at it, you have to know when to violate those
principles (KASPAROV, 2017).

RESUMO

A capacidade de se localizar de maneira eficiente é uma característica essencial para robôs

autônomos. Devido à sua importância, esse tema tem sido amplamente estudado e debatido

ao longo dos anos, com várias abordagens propostas. Este trabalho se baseia em pesquisas

anteriores que sugerem o uso de técnicas de inteligência artificial para a localização no

contexto da competição de robótica RobotAtFactory 4.0. Em particular, este estudo foca na

otimização dos hiperparâmetros de uma Rede Neural Artificial do tipo MultiLayer Perceptron

(MLP), investigando seu desempenho em diferentes situações dentro do mesmo cenário. Os

resultados mostraram uma melhoria de até 60% na precisão das estimativas, quando com-

parado a modelos sem otimização. Outro resultado interessante foi a possibilidade de reutilizar

otimizações em diferentes cenários, o que se apresenta como uma alternativa promissora em

casos onde o custo computacional para encontrar a melhor configuração é muito elevado. Essa

solução oferece uma abordagem eficaz para reduzir o custo computacional, ao mesmo tempo

em que melhora o desempenho dos modelos de aprendizagem de máquina.

Palavras-chave: localizaçäo; aprendizado de máquina; otimizaçäo de hiperparâmetros; com-

petiçäo de robótica; inteligência artificial.

ABSTRACT

Efficient localization is an essential feature for autonomous robots. Due to its importance,

this topic has been widely studied and debated over the years, with several approaches

proposed. This study builds on previous research that suggests the use of artificial intelligence

techniques for localization in the context of the RobotAtFactory 4.0 robotics competition. In

particular, this study focuses on optimizing the hyperparameters of the Multilayer Perceptron

(MLP), evaluating its performance in different situations within the same scenario. The results

showed an improvement of up to 60% in the estimates’ precision compared to models without

optimization. Another interesting result was the possibility of reusing optimizations between

different scenarios, a promising alternative in cases where the computational cost of finding

the best configuration is very high. This solution offers an effective approach to reducing the

computational cost while improving the performance of machine learning models.

Keywords: localization; machine learning; hyperparameter optimization; robotics competition;

artificial intelligence.

LIST OF ALGORITHMS

Algorithm 1 – Pseudo-code of a generic Bayesian Optimization. 32

LIST OF FIGURES

Figure 1 – The field-top view of the RobotAtFactory 4.0 (RaF) competition, provid-

ing a visual representation of axes and the identification of ArUco mark-

ers. Source: (KLEIN et al., 2023b). 18

Figure 2 – Example of robot architecture. The Raspberry Pi is responsible for mak-

ing decisions and controlling the RGB camera and LiDAR, while the Ar-

duino manages additional physical components, including motors and

electromagnetic sensors. Source: (KLEIN et al., 2023b). 19

Figure 3 – Real competition field. Source: (KLEIN, 2023). 19

Figure 4 – Simulator scene showing the robot on the competition field and the

boxes. Source: (KLEIN et al., 2023b). 20

Figure 5 – Example of a Fiducial ArUco Marker1. 26

Figure 6 – A model of the neuron. Several inputs and their respective weight. The

sum of all the multiplied input by the respective weight is added with a

bias value, and the result feds an activation function. Source: (RUMEL-

HART; HINTON; WILLIAMS, 1986). 29

Figure 7 – Concept solutions. Based on (KLEIN, 2023). 36

Figure 8 – Part of the field used to collect images. Source: (KLEIN et al., 2023b). . 37

Figure 9 – Exemplification of the grids used, considering the four different grid

sizes. Based on (KLEIN et al., 2024b). 37

Figure 10 – Example of images collected. 38

Figure 11 – Example of ambiguous image. Source: (KLEIN, 2023). 38

Figure 12 – Flow process. Source: (KLEIN et al., 2023b). 40

Figure 13 – Architecture the proposed Convolutional Neural Network (CNN) model.

Source: (KLEIN, 2023). 41

Figure 14 – Real system architecture. Source: (KLEIN, 2023). 41

Figure 15 – Time spent (left) and energy consumption (right) by three ML methods

in training and testing. These statistics do not account for the time re-

quired to preprocess the data. Source: (KLEIN, 2023). 42

Figure 16 – Graph on the left displays the MAE for the 𝑥 and 𝑦 axes in meters, and

the image on the right displays the MAE for the 𝜃 in degrees. Source:

(KLEIN et al., 2023b) . 44

Figure 17 – Comparison of the error obtained against the decrease of the grid’s res-

olution. The graph on the left displays the MAE for the x and y axes in

centimeters (the same curve is for both values), while the image on the

right displays the MAE for the 𝜃 in degrees. Source: (KLEIN et al., 2023b). 44

Figure 18 – Flowchart of the current work methodology. The first steps, inside of

the slashed rectangle, are from the previous work. Based on: (KLEIN et

al., 2024b). 51

Figure 19 – Comparison between the scenarios’ optimization, with the quantity of

the layers and the number of neurons in each layer. 52

LIST OF TABLES

Table 1 – Results obtained considering the limited part of the field, using different

grid’s resolution, with Avg. columns indicating the average and Std. Dev.

indicating the standard deviation. Boldface values are the best in each

metric. Source: (KLEIN et al., 2024a). 45

Table 2 – Results of the errors obtained in the real scenario, showing the error in

the estimations with the Multilayer Perceptron (MLP) models based on

concept solution 1. Based on (KLEIN, 2023). 46

Table 3 – Results of differences obtained in the real scenario, considering the es-

timations with the MLP with the analytical method, considering the con-

cept solution 2. Based on (KLEIN, 2023). 46

Table 4 – MLP Default Hyperparameters. Based on (KLEIN et al., 2024b). 49

Table 5 – MLP Non-Default HyperParameters. Based on (KLEIN et al., 2024b). . . . 49

Table 6 – The optimization findings for each model, the time spent on each opti-

mization, and the mean absolute error (MAE) obtained in the evaluation

process. Based on (KLEIN et al., 2024b). 53

Table 7 – A comparison of the optimized structures results with applying the 10.0

mm optimized structure in the other scenarios. Based on (KLEIN et al.,

2024b). 53

LIST OF ABBREVIATIONS AND ACRONYMS

Pseudo-Acronyms

2D 2 Dimensions

3D 3 Dimensions

AI Artificial Intelligence

AMR Autonomous Mobile Robot

ANN Artificial Neural Network

CNN Convolutional Neural Network

DGPS Differential GPS

DL Deep Learning

DNN Deep Neural Networks

DoF Degrees of Freedom

EKF Extended Kalman Filter

GPS Global Positioning System

GUI Graphical User Interface

HPO Hyperparameter Optimization

ICP Iterative Closest Point

IoT Internet of Things

IPB Instituto Politénico de Brangança

KF Kalman Filter

KNN K-nearest neighbors

LiDAR Light Detection and Ranging

MAE Mean Absolute Error

ML Machine Learning

MLP Multilayer Perceptron

NDT Normal Distribution Transform

RADAR Radio Detection and Ranging

RaF RobotAtFactory 4.0

RBIC Rank-Based Iterative Clustering

RF Random Forest

RFID Radio-Frequency Identification

RMSE Root Mean Squared Error

RPROP Resilient Back-Propagation

SLAM Simultaneous Localization and Mapping

SMBO Sequential Model-Based Optimization

SVM Support Vector Machine

SUMMARY

1 INTRODUCTION . 16

1.1 Initial considerations . 16

1.2 Context: RobotAtFactory 4.0 Competition 17

1.2.1 Robot . 18

1.2.2 Real Environment . 19

1.2.3 Realistic Simulator . 20

1.3 Motivation and Objectives . 20

1.4 Structure . 21

2 LITERATURE REVIEW . 22

2.1 Localization . 22

2.1.1 Markov Localization . 23

2.1.2 Monte Carlo Localization . 23

2.1.3 Kalman Filter . 24

2.1.4 Least Square . 24

2.1.5 Slidding Window Least Squares . 24

2.1.6 Perfect Match . 25

2.1.7 Iterative Closest Point . 25

2.1.8 Normal Distribution Transform . 25

2.1.9 Fiducial Markers approach . 25

2.1.10 Artificial Intelligence approaches . 27

2.1.11 Alternatives approaches . 28

2.2 Machine Learning . 28

2.2.1 Artificial Neural Networks . 29

2.3 Machine Learning Optimization . 30

2.3.1 Bayesian Optimization . 31

3 PREVIOUS WORK . 34

3.1 Motivation and Goals . 34

3.2 Methodology . 35

3.2.1 Data Collection . 35

3.2.2 Datasets Creation . 36

3.2.3 Implementation . 39

3.3 Results and Discussions . 42

3.4 Part 1: Feasibility of ML in embedded systems 42

3.5 Part 2: Quality of ML models . 43

3.5.1 Approach 1: ML techniques using fiducial markers 43

3.5.2 Approach 2: CNN technique . 44

3.6 Part 3: Implementation in the Real Scenario 45

3.7 Conclusions . 46

4 METHODOLOGY . 48

5 RESULTS AND DISCUSSIONS . 52

6 CONCLUSIONS . 55

REFERENCES . 58

16

1 INTRODUCTION

Self-localization is a fundamental skill in several fields of knowledge, being a critical fea-

ture for animals to survive and perform activities in the wild, which can include humans from the

beginning of history until the current time. In the context of autonomous robots self-localization,

several approaches have been studied and developed over time, using different tools to improve

accuracy and efficiency while facing the challenges of each specific scenario. In this study, the

main goal is exploring hyperparameter optimization in a novel localization approach in the con-

text of autonomous robots operating in a factory environment, using a specific robotic competition

scenario to validate the approach.

1.1 Initial considerations

An Autonomous Mobile Robot (AMR) can be understood as a complex system composed

of several aspects, with the fundamental behavior of each component being essential to the

correct functionality and generality. One of these aspects, which deserves special attention due

to its crucial importance, is localization. This concept relates to the knowledge of the robot’s

pose in the environment and greatly impacts the AMR’s decision-making process. To estimate

its pose, the robot can have an external localization system or be limited to using its sensors

without external help.

In this study, the robot has to localize inside a specific environment without an external

localization system. The environment selected for the evaluation and experiments is the one

proposed by the RaF1 (Robot at Factory 4.0) competition. This is a Portuguese competition,

where an AMR has to move boxes through a limited field in the shortest possible time without

external communication (except with the organization systems). In this competition, the robot

has to be completely autonomous and can use any necessary tools/approaches to locate itself

once it complies with the rules. One of the most used ways to perform self-localization is by using

the predefined markers placed on the environment’s floor, called ArUco (GARRIDO-JURADO et

al., 2014).

In the first part of this study, developed by the current author in their Master Thesis at

Instituto Politénico de Brangança (IPB) (KLEIN, 2023), a new approach for the localization in

the RaF context was proposed and validated, aiming to introduce the use of Machine Learning

(ML) techniques. Furthermore, the feasibility validation of the models in the competition robot

was performed (KLEIN et al., 2023a). In contrast, the quality of the ML models was presented in

(KLEIN et al., 2023b), and the use of Deep Learning and, more specifically, CNN was presented

in (KLEIN et al., 2024a).

One of the points not explored in the previous study was optimizing the ML models,

once they were based only on validating the possibility of use but not on increasing the models’

1 https://www.festivalnacionalrobotica.pt/2023/robotfactory-4-0/

https://www.festivalnacionalrobotica.pt/2023/robotfactory-4-0/

17

quality. Building on the previous work, this study aims to optimize the ML models and examine

their behavior across specific variables, including the components of the pose (position and

orientation) and the data collected for use by the models.

1.2 Context: RobotAtFactory 4.0 Competition

Many robot competitions worldwide have different goals and aim to encourage students

and participants to develop new technologies. One of these competitions is RobotAtFactory 4.0,

included in the Portuguese Robotics Open event, whose objective is to navigate a robot through

a warehouse environment, with the primary goal being to transport the highest number of boxes

in the shortest time. Boxes can be of three types, represented by different colored boxes of 90 x

60 x 65 mm (width x length x height).

Blue boxes represent “completely processed” pieces and should be moved to the out-

put/outgoing warehouse. Green boxes are “Intermediate Parts” and should be carried to the Type

B machines that, after processing, transform them into “completely processed” (blue) boxes. Fi-

nally, red boxes represent “raw materials”. They should first be carried to the Type A machines

for processing, “transforming” them into “Intermediate Parts” (green) boxes and later follow the

process of the green boxes to transform into blue boxes.

There are three rounds in the competition: (1) the robot needs to move wholly processed

(blue) boxes directly from the incoming warehouse (places numbered from 50 to 53 in Figure 1) to

the output warehouse (places numbered from 62 to 65); (2) the robot should move red and green

boxes from the incoming warehouse to the output warehouse, in a way that the green boxes are

processed in Type B machines (there are two such machines, with input positions 54 and 58, and

output positions 55 and 59, respectively); (3) the robot should move red, green and blue boxes

to the output warehouse. Green boxes should be first ”processed” in Type B machines; Red

boxes should be processed through two kinds of processing machines, in order, first by a Type

A and then by a Type B one. Type A machines have input in positions 56 and 60 and respective

outputs in positions 57 and 61. After processing both machine types, the box should be moved

to one free position in the ongoing warehouse. In each round, up to 4 colored boxes are in the

incoming warehouse. The floor consists of a print on two A0 sheets and a flat layout, with several

ArUco markers in the environment. Figure 1 presents an overview of the field. The origin of the

reference frame is situated at the center of the field, where the green arrow indicates the y-axis,

the red arrow indicates the x-axis and the numbers from 0 to 35 indicate the ID of each ArUco

marker placed on the floor. In contrast, the blue numbers (from 50 to 65) indicate the ID of the

ArUco markers placed on the walls.

18

 0 1 2 3 4 30 31 5

50 51 52 53

62 63 64 65

34 6 7 8 9

10 11 12 13 14 15 16
56 57

60 61

54 55

58 59

17 18 19 20 35

21 32 33 22 23 24 25 26

X

Y

Figure 1 – The field-top view of the RaF competition, providing a visual representation of axes and
the identification of ArUco markers. Source: (KLEIN et al., 2023b).

1.2.1 Robot

There are several rules for the robot during the competition, such as fitting within a

30 x 30 x 30 cm cube and being fully autonomous. The robot cannot establish any communica-

tion with any external system that the organization has not explicitly provided. The organization’s

communication system includes information about each machine’s expected average process-

ing time and standard deviation. It informs the robots when every machine starts/ends the box

processing.

An example of the robot architecture is presented in Figure 2, and was presented by

(BRAUN et al., 2022a) and (BRAUN et al., 2022b). A Raspberry Pi is responsible for high-level

control of the robot, including management of the RGB camera (which is placed in front of the

robot), 2D Light Detection and Ranging (LiDAR) sensor, localization, navigation, and decision-

making. Meanwhile, an Arduino handles the low-level control of the robot, such as the operation

of motors, encoders, contact switches, and electromagnetic sensors used to detect the adequate

adjustment of the robot to the box. Usually, the teams have an electromagnet that allows for

transporting the boxes by grabbing/dragging them around. One example of the robot that was

used in the competition presented in (BRAUN et al., 2024) used a Raspberry PI 4B, Arduino

Mega, and a camera with a resolution of 640x480p (RPI Cam V2).

19

Real Robot Architecture

Arduíno

DC motors

Raspberry Pi RGB cam

Encoders

Figure 2 – Example of robot architecture. The Raspberry Pi is responsible for making decisions
and controlling the RGB camera and LiDAR, while the Arduino manages additional
physical components, including motors and electromagnetic sensors. Source: (KLEIN
et al., 2023b).

1.2.2 Real Environment

Figure 3 presents an overview of the real competition field, which, according to the of-

ficial rules, had the dimension of 1.7 × 1.2 m. That way, it is always possible to identify the

boxes’ positions and each warehouse/machine by observing and localizing the ArUco markers

in the environment. The competition organization provides each ArUco marker’s ID, position, and

orientation relative to the global reference frame.

Figure 3 – Real competition field. Source: (KLEIN, 2023).

20

1.2.3 Realistic Simulator

The organizers of the competition have developed a simulator for the RaF competition2

based on the real environment. The SimTwo simulator works with rigid-body dynamics interac-

tions and constraints (COSTA et al., 2011). With all its components, the simulator is presented

in Figure 4. Several features are available in the simulator, such as an editor for XML files, which

allows the user to define settings for the robot and its environment. A code editor in Pascal

language allows the direct development of the robot programming (BRAUN et al., 2022b). De-

veloping scripts in other programming languages using a communication framework with the

simulator is also possible. In addition, the image robot sensor in SimTwo is an RGB camera with

a resolution of 640 × 480 pixels (COSTA et al., 2011).

Figure 4 – Simulator scene showing the robot on the competition field and the boxes.
Source: (KLEIN et al., 2023b).

1.3 Motivation and Objectives

This study extends the previous master dissertation done by the author in (KLEIN, 2023).

The initial goal of the earlier work was to validate and explore the newly proposed approaches

to localization issues on the RaF competition using AI techniques. The main goal of that work

was to avoid the need to know a priori (previously) the position of the ArUco Markers present in

the scenario (BRAUN et al., 2022a). Three papers were published based on the results of the

previous work: (KLEIN et al., 2023b; KLEIN et al., 2023a; KLEIN et al., 2024a). As an extension

to the previous study, the present work aims to explore the optimization of machine learning

models to check the possibility of increasing the quality of the models’ pose estimations.

Three main research questions were proposed to guide the work’s development:

2 Available at https://github.com/P33a/SimTwo.

https://github.com/P33a/SimTwo

21

1. What are the challenges to finding an optimization for the MLP model in the RaF sce-

nario?

2. Is there a correlation between the optimizations for different contexts, considering the

RaF scenario?

3. Is it possible to apply optimizations found for one context in others, and what are the

advantages and disadvantages associated?

It is important to emphasize that as one of the requirements of the reception notice

(JOINT NOTICE No. 5/2023 — PROPPG/PROGRAD- reception of graduates of double degrees)

of the Master’s in Applied Computing at UTFPR, the paper (KLEIN et al., 2024b) related to this

work was published at the International Conference on Optimization, Learning Algorithms, and

Applications (OL2A 2024), which took place at University of La Laguna (San Cristóbal de La

Laguna - Tenerife, Spain) between 24th and 26th of July, 2024.

1.4 Structure

The work is divided into five more chapters. Chapter 2 presents state-of-the-art in local-

ization and ML, also presenting the related works; Chapter 3 presents an overview of the pre-

vious work; Chapter 4 presents the methodology used in the current study; Chapter 5 presents

the results and discussions; Finally, Chapter 6 presents the conclusions and future works.

22

2 LITERATURE REVIEW

This chapter presents the literature review, showing the state-of-the-art in three main

parts: Section 2.1 presents the concepts and the approaches in localization; Section 2.2 presents

some concepts and techniques related to the machine learning (and deep learning), with a spe-

cial focus with their use in localization and; Section 2.3 presents concepts about optimizations,

especially focused on the machine learning models optimizations.

2.1 Localization

Localization is a fundamental capability required by AMR in the most diverse scenarios.

Knowledge of the pose (which consists of the position and orientation) is crucial in decision-

making. Besides the knowledge of the pose, it is also necessary to know the uncertainly related

to the estimation, since the decision of future actions based on the belief that the pose is perfect

can result in catastrophic results (HUANG; DISSANAYAKE, 2016).

A fundamental concept in robotics is odometry, also known as dead reckoning (HUANG;

DISSANAYAKE, 2016), which consists of sensors onboard the robot structure to track its move-

ment. It is possible to estimate the robot’s pose using mathematical motion models and the data

from the sensors.

The specifics of the localization process are contingent upon the dimensions of the prob-

lem at hand (STACHNISS, 2021)1. For instance, in scenarios in 2 Dimensions (2D), there are 3

degrees of freedom: (x, y, 𝜃), with x and y being the position and 𝜃 the orientation; in scenarios

in 3 Dimensions (3D) there are 6 degrees of freedom: (x, y, z, 𝛼𝑟𝑜𝑙𝑙, 𝛼𝑝𝑖𝑡𝑐ℎ, 𝛼𝑦𝑎𝑤), with x, y and

z being the the coordinates of the position and the 𝛼𝑟𝑜𝑙𝑙, 𝛼𝑝𝑖𝑡𝑐ℎ, 𝛼𝑦𝑎𝑤 being the rotations related

to the axes x, y and z, respectively.

The concept of a mobile robot being deployed in an uncharted environment at an

unknown location and incrementally building a consistent environment map while simultane-

ously determining its location in this map is known as Simultaneous Localization and Mapping

(SLAM) (DURRANT-WHYTE; BAILEY, 2006). Also related to the topic is the kidnapped robot

problem, which consists of the situation where the autonomous robot in operation is moved to

an arbitrary position (CHOSET et al., 2005).

The localization can also be classified into several categories according to different cri-

teria. (1) Related to the moment of the execution: offline and online. In offline localization, the

data can be recorded and processed after the execution of a task, although an answer during

the execution is not necessary. An example is the use of localization to update an environment

map. In contrast, online localization is when the system requires knowledge of its localization at

execution. This is exemplified by the navigation of an autonomous vehicle (STACHNISS, 2021);

1 The complete course is available at http://www.ipb.uni-bonn.de/msr1-2021/. Accessed on November
1, 2024.

http://www.ipb.uni-bonn.de/msr1-2021/

23

(2) the initial position knowledge: Global Localization and Tracking Pose (STACHNISS, 2021). In

the first one, the system can be situated anywhere globally, and its initial position is unknown.

Conversely, in the Tracking Pose stage, the initial system’s location is already known; (3) accord-

ing to outdoor and indoor environments. The most widely used approach for the first is the Global

Positioning System (GPS), which presents the limitation that it may not be available indoors due

to the limitations of blocked satellite signals or attenuated by structures such as walls (GREWAL;

WEILL; ANDREWS, 2007). For indoors, several approaches have been developed over time,

which will be discussed further in the section.

2.1.1 Markov Localization

Markov localization is an approach to the global localization issue (FOX, 1998) that dis-

cretizes the space of possible poses and manipulates discrete probability distributions (HUANG;

DISSANAYAKE, 2016). The environment is presumed to be static to simplify the explanation, but

this approach can also be used in a dynamic environment (FOX; BURGARD; THRUN, 1999).

It is a probabilistic algorithm that maintains a probability distribution in the space of all such

hypotheses, using a histogram for each degree of freedom (FOX; BURGARD; THRUN, 1999).

The Markov localization has the initial beliefs and the probability of the robot being in

each position. With the interactions with the world and data collection, it updates its beliefs

and, ideally, decreases the uncertainty of the pose estimates to the point that the probability

converges to the effective position of the robot. Some examples can be found in (SIEGWART;

CHLI; LAWRANCE, 2014).

2.1.2 Monte Carlo Localization

First introduced as a bootstrap filter in (GORDON; SALMOND; SMITH, 1993) and further

explained in (ARULAMPALAM et al., 2002), it is a Global Localization approach that can also

be used for Pose Tracking. In the Monte Carlo approach, a sample rate is used instead of a

histogram, and the scenario discretization is unnecessary; that is, it does not make assumptions

on linearity. This algorithm is a type of Particle Filter (FOX et al., 1999; DELLAERT et al., 1999).

The hypothesis of the variable of interest, in the current case, the robot localization, is

represented by multiple samples (particles). Each hypothesis is associated with a weight, rep-

resenting the likelihood that the hypothetical estimate is true. The weighted sum of all samples

provides the pose estimate2. The recursive particle filter operates in two stages: “predict” and

“update”. Prediction occurs after each action, with each particle modified according to the exist-

ing model (the “predict” stage). Subsequently, all weights are recalculated based on the sensory

information (the “update” stage) (REKLEITIS; DUDEK; MILIOS, 2003).

2 A tutorial for particle filters is available at https://www.cim.mcgill.ca/~yiannis/particletutorial.pdf. Ac-
cessed on November 5, 2024.

https://www.cim.mcgill.ca/~yiannis/particletutorial.pdf

24

2.1.3 Kalman Filter

Proposed by (KALMAN, 1960), the Kalman Filter (KF) is a mathematical approach that

integrates system measurements with predictions of the system’s anticipated behavior. The

method employs feedback control to estimate a process. At a given moment, the filter estimates

the state of the process and then obtains feedback in the form of measurements, which are

subject to noise (BISHOP; WELCH et al., 2001; MAYBECK, 1990; RUSSELL; NORVIG, 2010).

In a simplified way, there are two inputs in the filter: The first one is the initialization,

which is performed only once and inputs the initial state and the uncertainty associated with that

state; the other, a recurrent input in each cycle, inputs the measurement state and the associated

uncertainty.

The outputs comprise the predicted state and the uncertainty associated with that pre-

diction. The fundamental component of the filter is the update phase, during which the internal

parameters are updated on a cyclical basis, and the subsequent state is predicted3 (BECKER,

2022). This cycle is repeated at each time interval, the duration of which depends on the specific

application in question.

The KF was initially designed to be linear and is also used in linear models. How-

ever, most of the real systems are nonlinear. To address these situations, some KF variations

have been developed, and one of the most promising variations is Extended Kalman Filter

(EKF) (BISHOP; WELCH et al., 2001). A fundamental prerequisite for EKF-based localization

is the capacity to associate measurements obtained with specific landmarks present in the envi-

ronment (HUANG; DISSANAYAKE, 2016).

2.1.4 Least Square

The least squares is an offline approach, meaning the system needs all data to be avail-

able beforehand. Once the route has been calculated, it is possible to determine the discrepancy

between the calculated and actual values (STACHNISS, 2021; HUANG et al., 2001). Moreover,

this methodology employs a Gaussian belief model, such as the KF. Frequently, this approach is

used as a reference solution for other localization systems, including online approaches (STACH-

NISS, 2021).

2.1.5 Slidding Window Least Squares

Similar to the Least Square, but instead of using all the data to calculate the localization,

the sliding window uses only the most recent observations (STACHNISS, 2021). This approach

aims to achieve a performance superior to that of the KF while maintaining a computational cost

3 Tutorial with examples is available at https://www.kalmanfilter.net/. Accessed on July 17, 2024.

https://www.kalmanfilter.net/

25

less than that of the Least Squares (ZHANG, 2000). An example of using this approach is for

external locations, such as in autonomous vehicles (WILBERS; MERFELS; STACHNISS, 2019).

2.1.6 Perfect Match

Perfect Match, first proposed in (LAUER; LANGE; RIEDMILLER, 2006), is an image-

based approach initially developed for robot localization in the Robocup Midsize League. This

algorithm minimizes the matching and fitting error between the acquired data and the environ-

ment map. The algorithm can be divided into three main parts: (1) matching error and gradient

computation; (2) optimization routine based on the Resilient Back-Propagation (RPROP); and

(3) covariance estimation using the second derivative (SOBREIRA et al., 2019).

2.1.7 Iterative Closest Point

The Iterative Closest Point (ICP) introduced by (BEST, 1992) is a map-matching tech-

nique that seeks to minimize the Euclidean distance between the input data and a reference

model. In the localization context, the minimizations correspond to the sensor and the environ-

ment map, respectively (SOBREIRA et al., 2019). This is an interactive process until conver-

gence is achieved. The two main steps of the approach are as follows: (1) the matching stage,

which makes the data association, matching each “real” point to the closest point in the model;

(2) the transformation stage, which is based on the previous stage, and which attempts to min-

imize the distance between the points. Other approaches have been developed based on the

ICP technique, such as Point-to-Plane (RUSINKIEWICZ; LEVOY, 2001).

2.1.8 Normal Distribution Transform

Introduce by (BIBER; STRASSER, 2003) the Normal Distribution Transform (NDT) is a

method created initially for 2D scanning and was later extended to work on 3D (MAGNUSSON

et al., 2009; MAGNUSSON, 2009). This approach is a map-matching algorithm that generates a

smooth surface representation of the environment, modeled by a set of local probability density

functions. It uses a set of reference points grouped in fixed-sized cells forming a voxel grid to

build this representation. Then, for each cell of the voxel grid with at least a group of 6 points, the

mean and covariance matrix are calculated (SOBREIRA et al., 2019).

2.1.9 Fiducial Markers approach

To provide a reference point in the environment, fiducial markers were introduced as

a possible approach with applications in several activities (KALAITZAKIS et al., 2021). Using

26

only cameras, fiducial markers localization algorithms can calculate the camera’s pose related

to a maker seen in the image. Numerous types of fiducial markers have been developed over

time, presenting differences in the format of the markers. A comparison between four types of

markers(ARTag, AprilTag, ArUco, and STag) is available in (KALAITZAKIS et al., 2020).

The binary square is one of the most used types of the fiducial marker, particularly the

ArUco Marker developed in (GARRIDO-JURADO et al., 2014). An example of an ArUco marker

is presented in Figure 5.

Figure 5 – Example of a Fiducial ArUco Marker4.

The ArUco marker is implemented in the OpenCV library5 and has specific pre-defined

pose detection functions. The OpenCV library is a well-known library used in computational

vision, and one of its specific uses is that it allows users to identify the ArUco and estimate its

pose. In this way, the first step is the camera calibration to understand the distortion coefficients

of the camera6, and only needs to be performed once if the camera optics are not modified.

Then, the library allows the ID identification, rotation, and translation vectors called rvecs and

tvecs for each ArUco present in the image.

The translation (x,y,z) of the marker from the origin is represented by the tvec, which is

expressed in units derived from the camera specifications, such as millimeters. The rvec repre-

sents a three-dimensional rotation vector that defines the axis of rotation and the rotation angle

about that axis, thereby indicating the marker’s orientation. The vector’s direction indicates the

rotation axis, while the vector’s magnitude represents the rotation angle (in radians).

An example of using fiducial markers in localization is the RaF competition, which has

several ArUco markers in the field, as presented in Section 1.2. Several approaches have been

developed based on the use of ArUco markers and their pose identification competition, such as

using analytical geometry (BRAUN et al., 2022a) and using ML (KLEIN et al., 2023b).

4 Source to generate: https://chev.me/arucogen/. Accessed on August 24, 2024.
5 https://docs.opencv.org/4.x/d5/dae/tutorial_aruco_detection.html. Accessed on November 7, 2024.
6 https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html. Accessed on September 15, 2024.

https://chev.me/arucogen/
https://docs.opencv.org/4.x/d5/dae/tutorial_aruco_detection.html
https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html

27

2.1.10 Artificial Intelligence approaches

The use of Artificial Intelligence (AI) approaches in localization has received more fo-

cus in recent years due to some aspects such as their capacity to learn from complex data,

adaptation to changes, fusion sensors, and robustness against interferences. The study per-

formed in (NESSA et al., 2020) presents a survey about using ML in localization. The study

explored methods that apply feature extraction and selection in the localization context. Some

of the techniques presented in the study were Random Forest (RF), Support Vector Machine

(SVM), K-nearest neighbors (KNN), and Artificial Neural Network (ANN). It demonstrates that

this field is evolving and requires further research.

An example of the ML used in localization is in the work presented in (AHMAD et al.,

2024), which developed an ML approach for indoor localization in Internet of Things (IoT) en-

vironments, using techniques such as the SVM and nonlinear regression model applied with a

radial basis function, achieving Root Mean Squared Error (RMSE) of 0.25m.

The application of unsupervised learning in indoor localization has been explored

in (KOÇOĞLU, 2022), involving a comparative analysis of clustering methodologies, including

k-Means and Fuzzy c-Means, with an accuracy range of 93% to 95%. The work presented in

(MALLIK; DAS; CHOWDHURY, 2023) explored a semi-supervised approach for indoor localiza-

tion, using an approach based on a Rank-Based Iterative Clustering (RBIC), with results showing

accuracies between 94% to 99%. This kind of learning appears as an interesting approach be-

sides the supervised learning (where the dataset must be labeled) and unsupervised learning

(where experimenters should have some understanding of the regional divisions of the experi-

mental area to assess the accuracy of clustering results)

However, traditional ML approaches can present weaknesses, such as KNN being com-

putationally expensive for large datasets and having problems with high dimensionality at the

same time that SVM depends on kernel choice and is sensitive to noise, decision trees may

overfit, while Random Forest improves generalization but requires careful tuning and high com-

putational cost (KERDJIDJ et al., 2024).

Besides the conventional ML approaches, using Deep Neural Networks (DNN) is an inter-

esting procedure, especially with the capability of extracting features from implicit neural models.

The survey in (CHEN et al., 2024) presents a deep review of the use of Deep Learning (DL)

for visual localization and mapping. The authors conclude the DL can be a unique direction to-

ward a future general-purpose SLAM system, providing advanced semantic understanding for

robotic tasks and enabling autonomous learning and adaptation to new environments. In addi-

tion, the review in (KERDJIDJ et al., 2024) focuses on using DL and transfer learning in indoor

localization.

An example of DL is the use of the CNN, which uses images from a robot camera and

other sensors that can help in the robot localization (ESFAHLANI et al., 2022; ATANASYAN;

ROSSMANN, 2019). The study performed by (KENDALL; GRIMES; CIPOLLA, 2015) used im-

28

ages to perform a localization location with six Degrees of Freedom (DoF) using GoogLeNet

transfer learning (SZEGEDY et al., 2015), operating indoors (obtaining approximately 2 meters

and 6∘ accuracy for large scale) and outdoors (obtaining approximately 0.5 meter and 10∘ accu-

racy).

2.1.11 Alternatives approaches

Many other alternative approaches have been developed to address the localization is-

sue. Some examples includes the use of infrared light (WANG; TAKAHASHI, 2018), video track-

ing at 6 DoF (NEBEKER, 2015), map-based probabilistic visual (BRUBAKER; GEIGER; UR-

TASUN, 2015), acoustic beacons (OGISO et al., 2015), image-based localization (SATTLER;

LEIBE; KOBBELT, 2011), Radio-Frequency Identification (RFID) (PANIGRAHI; BISOY, 2022),

LiDAR and Radio Detection and Ranging (RADAR) with map matching (YANASE et al., 2022),

and landmarks (AVGERIS et al., 2019).

2.2 Machine Learning

The denomination Machine Learning refers to a computer technique in which an algo-

rithm learns from data based on the patterns presented without explicit instructions. According

to (RUSSELL; NORVIG, 2010), it is possible to define three types of learning: Unsupervised, su-

pervised, and reinforcement. In the first one, no feedback is provided, and the learning is based

on the patterns separating the data. The second, a set of input/output, is given, and the algorithm

tries to represent the relations between input and output through a function. Finally, the reinforce-

ment is closer to how humans learn, based on rewards and punishments after the actions. Plenty

of techniques have been developed for each type of learning. More details about the techniques

are available in (RUSSELL; NORVIG, 2010; GOODFELLOW; BENGIO; COURVILLE, 2016).

One of the most known challenges in ML development is the underfitting and overfitting.

In summary, the first occurs when a model cannot learn enough about the problem, i.e., the

model cannot obtain a low error value on the training set. Conversely, overfitting occurs when a

model learns too much from the training dataset and is not able to expand the learning to other

datasets of the same problem, which means there is a high difference between the training and

test errors (GOODFELLOW; BENGIO; COURVILLE, 2016).

Another known challenge in ML is the bias-variance trade-off. The term “variance” de-

scribes the degree of change observed in the prediction function if it were to be estimated using

a different training dataset. In contrast, the term “bias” describes the degree of error introduced

when a highly complex real-life problem is approximated by a simpler model (JAMES et al.,

2014). The model’s objective is to achieve a low bias and low variance. However, in practice,

reducing one inevitably leads to an increase in the other, resulting in a trade-off.

29

Several MLs have been developed over time, in special, there are Decision Tree and

Random Forests (QUINLAN, 1986; KOTSIANTIS, 2013; BREIMAN, 2001), KNN (JAMES et al.,

2014), Gradient Boosting (FRIEDMAN, 2001; NATEKIN; KNOLL, 2013) and others. This work

focuses on artificial neural networks, which will be explained further in the next section.

2.2.1 Artificial Neural Networks

To emulate the behavior of the human brain, ANN was developed with the understanding

that cognitive processes are built by the interactions of neurons and synapses. The first simplified

neuron model was created in 1943 by (MCCULLOCH; PITTS, 1943). The model of neurons most

used nowadays, called “Perceptron”, is presented in Figure 6. This model has multiple inputs,

with each input having a designated weight. The input value 𝑥𝑖 is multiplied by the corresponding

weight 𝑤𝑘𝑖. Subsequently, the total sum of all these values is calculated, along with the addition

of other values designated as bias. The final result of the sum is fed into an activation function,

which generates an output. A typical implementation of a ANN is in the form of a MLP, which is

a fully connected neural network, presented in (MURTAGH, 1991).

Figure 6 – A model of the neuron. Several inputs and their respective weight. The sum of all the
multiplied input by the respective weight is added with a bias value, and the result feds
an activation function. Source: (RUMELHART; HINTON; WILLIAMS, 1986).

A set of these neurons, disposed in layers and with each layer connected to the others, is

called MLP. The term feedforward describes the process of providing the outputs of a given layer

of neurons as the input for the subsequent layer. Furthermore, a potential approach for deter-

mining the optimal weights and biases is through the backpropagation (RUMELHART; HINTON;

WILLIAMS, 1986) algorithm. A significant parameter of this algorithm is the learning rate, which

determines the rate at which the network can modify the weights and biases.

The activation function obtains the node’s output and introduces non-linearity into the

neural network. There are numerous activation functions, and selecting the most appropriate

one depends on the context in which it is applied. The most commonly used activation function

are ReLu, described in equation 1,

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) (1)

30

the Sigmoid activation function, described in equation 2,

𝑓(𝑥) =
1

1 + 𝑒−𝑥
(2)

and Tanh (hyperbolic tangent) described in equation 3,

𝑓(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
(3)

where 𝑥 is the input of the function.

CNN is an approach specialized in processing data in a grid-like topology, such as im-

ages (GOODFELLOW; BENGIO; COURVILLE, 2016). The working of this kind of Neural Net-

work is based on the utilization of filters to reduce the volume of data and the identification

of patterns through the search process, which enables the retrieval of pertinent information. In

essence, it can be stated that the CNNs are neural networks that employ the convolution op-

eration instead of the conventional matrix multiplication in at least one of the layers (LECUN;

BENGIO; HINTON, 2015).

Characterized by a high degree of connectivity, CNNs have architectures comprising mul-

tiple layers, which compactly represent high nonlinear functions. These layers often include con-

volutional, pooling, and fully connected layers (ESFAHLANI et al., 2022).

The CNN technique can be broken down into two main components: feature extraction

and classification. The first encompasses the convolutional layers, which are responsible for ap-

plying filters, and the latter includes the pooling layers, which contribute to reducing the represen-

tation size, improving the computation speed, and promoting the features to be more robust. An

example of a well-known CNN is the VGG16, presented by (SIMONYAN; ZISSERMAN, 2015),

built to work in the ImageNet7, which is a general image classification challenge.

The high computational cost of training a machine learning model and the limitation of

algorithms to specific tasks have prompted the development of a new approach called transfer

learning. The objective is to transfer the knowledge acquired in one or more source tasks and use

it to enhance the learning process in a related target task (TORREY; SHAVLIK, 2010). Several

models8 had already been pre-trained and can be used on Transfer Learning for other tasks, such

as the GoogLeNet (SZEGEDY et al., 2015), used on (KENDALL; GRIMES; CIPOLLA, 2015), and

VGG16.

2.3 Machine Learning Optimization

In ML, there are two main types of parameters: model parameters and hyperparameters.

Model parameters can be updated through data learning models, such as neurons’ weights in

7 Details in https://www.image-net.org/. Accessed on December 10, 2023.
8 Some examples are available at https://keras.io/api/applications/. Accessed on October 27, 2024.

https://www.image-net.org/
https://keras.io/api/applications/

31

ANN. In contrast, hyperparameters are set before training the ML model and define the archi-

tecture of the model (KUHN, 2013). The ML optimization can be understood as the optimization

of the training (SUN et al., 2020), where the objective is to optimize the values of parameters of

the ANN to obtain the best corresponding values to express the training dataset. However, the

optimization also can be related to the optimization of the structure of the ML model, i.e., the

Hyperparameter Optimization (HPO).

The objective of the HPO is to enhance the efficacy of machine learning algorithms by

adapting them to the specific characteristics of the problem at hand. Despite its importance,

the HPO faces several challenges, such as extremely expensive model evaluation and the high

complexity of the model configuration space (FEURER; HUTTER, 2019).

Several approaches have been developed aiming to address the HPO in ML models (BIS-

CHL et al., 2023; FEURER; HUTTER, 2019; YANG; SHAMI, 2020). One of the most used ways

to optimize the ML models is considering them as black boxes (wherein the internal behavior

remains unknown despite the ability to provide an output given an input). The most basic HPO

method is the Grid-Search9 (MONTGOMERY, 2017). Based on a finite set of values for each

hyperparameter to be optimized, the approach evaluates all possible combinations between the

defined set, i.e., the Cartesian product of the sets. Another well-known approach is the random

search, which randomly applies sample configurations until a certain budget for the search is

exhausted (FEURER; HUTTER, 2019; BERGSTRA; BENGIO, 2012).

Several population-based methods are also used for the HPO, which maintains a set of

configurations and improves the populations through an evolutionary process (using operators

such as mutations - which are local perturbations - and crossover - combinations of different

members) aiming to obtain a new generation with better configurations (FEURER; HUTTER,

2019). Some examples of these algorithms are genetic algorithms, evolutionary algorithms, evo-

lutionary strategies, and particle swarm optimization (EBERHART; SHI, 1998; SIMON, 2013).

2.3.1 Bayesian Optimization

Bayesian Optimization was initially presented by (MOCKUS, 1974) and is part of the

state-of-the-art framework for global optimization. Bayesian Optimization is also referred to as

Sequential Model-Based Optimization (SMBO) (BERGSTRA et al., 2011). This approach is de-

signed to identify the maximum (or minimum) of a function (also referred to as optimization) in

a more expeditious way relative to alternative approaches, such as the grid search, which eval-

uates all potential function values and compares all resulting outcomes. In this way, Bayesian

Optimization is a good candidate for functions with costly evaluation, offering the additional ben-

efit of accommodating black-box functions.

9 A well-known implementation is available in: https://scikit-learn.org/stable/modules/generated/sklearn.
model_selection.\GridSearchCV.html. Accessed on August 30, 2024.

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.\GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.\GridSearchCV.html

32

To optimize a function 𝑓(𝑥), defining a surrogate model that expresses the assumptions

about the function in question is necessary. This model must be created within a defined search

space, representing the universe of possible inputs for the function. In essence, it is a probability

representation of the objective function, a model trained on the pairs (hyperparameter, score

from the evaluation function). The most common surrogate model is the Gaussian process due

to its flexibility and traceability. The surrogate model, designated as 𝑚(𝑋, 𝑦), can be constructed

using a subset of the 𝑓(𝑥) samples, incorporating a range of 𝑥 values. In this context, the variable

𝑋 represents the input values, 𝑥, while the variable 𝑦 represents the corresponding function

values, 𝑓(𝑥).

The next phase involves selecting the next 𝑥 to be evaluated, given that some have

already been evaluated in constructing the surrogate model. This is achieved using an acquisition

function designated 𝑎(𝑥). To ascertain the probable variation in the function 𝑓(𝑥) across a range

of 𝑥 values, the acquisition function utilizes the information provided by 𝑚(𝑋, 𝑦). The value of 𝑥

that corresponds to the minimum or maximum predicted value in 𝑚(𝑋, 𝑦), as determined by the

objective of the optimization, is recommended as the next value of 𝑥 to be assessed by 𝑓(𝑥).

Once the recommended value of 𝑥 has been evaluated by 𝑓(𝑥), this value is incorporated

as a new data point into the surrogate model. With the repetition of this process, the surrogate

model improves. The process is terminated when the maximum number of interactions has been

reached. An illustrative example of the mentioned process can be found in Algorithm 1, based

on (BERGSTRA et al., 2011). The optimization of the hyperparameters of a black-box function,

represented by 𝑓(𝑥), is considered in the algorithm mentioned earlier. The variables 𝐻 , 𝑇 , 𝑓 , 𝑀 ,

𝑎, and 𝑥* have the following meanings: 𝐻 is the observation history of the pair (hyperparameter,

score), 𝑇 is the maximum number of iterations, 𝑓 is the true objective function, 𝑀 is the surrogate

function, 𝑎 is the acquisition function, and 𝑥* is the next chosen hyperparameter to evaluate.

Further details about Bayesian Optimization can be found in (SNOEK; LAROCHELLE; ADAMS,

2012).

Algorithm 1 – Pseudo-code of a generic Bayesian Optimization.
1: SMBO (f, 𝑀0, T, a)
2: 𝐻 ← ∅
3: 𝑡 = 1
4: while 𝑡 ≤ 𝑇 do
5: 𝑥* ← 𝑎𝑟𝑔𝑚𝑖𝑛𝑥𝑎(𝑥,𝑀𝑡−1)
6: 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑓(𝑥*) {Expensive step}
7: 𝐻 ← 𝐻 ∪ (𝑥*, 𝑓(𝑥*))
8: 𝐹𝑖𝑡 𝑎 𝑛𝑒𝑤 𝑚𝑜𝑑𝑒𝑙 𝑀𝑡 𝑡𝑜 𝐻
9: 𝑡 = 𝑡+ 1

10: end while
11: Return H

Source: Based on (BERGSTRA et al., 2011).

In summary, this approach employs the principles of Bayes’ theorem to develop a function

model based on prior evaluations. Subsequently, the model is used to ascertain which search

33

space region should be investigated, maintaining an equilibrium between areas where the most

favorable outcomes are anticipated and relatively unexplored. In this manner, the approach en-

deavors to ascertain the optimal result within the minimal number of evaluations of the function

under optimization. Tutorials about the Bayesian Optimization are provided by (BROCHU; CORA;

FREITAS, 2010; SNOEK; LAROCHELLE; ADAMS, 2012).

Bayesian Optimization has been used to optimize machine learning models in some

studies, including CNN and Random Forests, gathering interesting results in terms of time and

accuracy (WU et al., 2019).

34

3 PREVIOUS WORK

This chapter presents a review of the work performed by the author in (KLEIN, 2023),

which was developed as the master thesis in Master’s in Informatics at IPB. It will present the

proposed approaches and their specifications, as well as the results and the conclusions. It is

fundamental to understand the main ideas and some details of the previous work due to the

dependency of the current study on the previous one.

3.1 Motivation and Goals

This previous work, performed in (KLEIN, 2023), aimed to study approaches addressing

robot localization within the context of RaF competition. The objective was to utilize images

captured by an onboard camera, process these images, and then employ the data in AI-based

approaches to estimate the robot’s pose. Based on the results of this work, three papers were

published: (KLEIN et al., 2023b; KLEIN et al., 2023a; KLEIN et al., 2024a).

The significance of this study lies in the fact that the methodologies presented do not

necessitate explicit knowledge of ArUco’s pose. This represents a vital advantage of the strate-

gies explored in the study. One illustrative example where the benefit is particularly pertinent is

in situations where obtaining the precise pose of the markers is challenging or impossible, such

as in hostile environments. To illustrate, the training images may be gathered by a robot aware

of its location by utilizing an alternative localization system, such as a Differential GPS (DGPS),

to produce the requisite dataset for the model’s training. Subsequently, during the localization

process, the DGPS is no longer necessary, and precise localization may be achieved through a

camera alone.

Three main questions had directed the work (KLEIN, 2023):

1. Can machine learning approaches effectively estimate the position and orientation of a

robot solely based on camera images in a structured environment with the presence of

fiducial markers?

2. Among different types of machine learning approaches, such as MLP, Random For-

est (RF), Gradient Boosting (GB), K-Nearest Neighbor Regression (KNR), and Con-

volutional Neural Networks (CNN), which approach leads to the smallest pose error

in estimating the robot’s position and orientation based solely on camera images in a

structured environment with fiducial markers?

3. Considering the constraints of embedded devices with limited memory and computing

power, which type of machine learning approach is better suited for achieving accurate

pose estimation in a structured environment with fiducial markers?

35

The following sections will present an overview of the methodology applied in the work,

explaining the data collection, the proposed approaches, the studies realized, and the tests,

along with a brief review of the conclusions and discussions.

3.2 Methodology

In (KLEIN, 2023; KLEIN et al., 2023b), three concept solutions were designed to explore

the use of ML in localization in the RaF competition, and a visual demonstration of the flow of

each concept is presented in Figure 7:

1. Concept 1: Based on the image from the robot’s camera, identify all the ArUco mark-

ers on it, getting their relative poses (rvec and tvec) and their ID. Then, all the data

was aggregated into a matrix comprising 49 rows and seven columns, where each row

represents a distinct ArUco (ArUco with ID 0 is represented in line 1, the second row

represents the ArUco with ID 1, and so on). The columns contain six elements from the

rvec and tvec arrays, and the 7th element is a Boolean value indicating if that particular

ArUco was identified or not. Finally, this same matrix is the input for three different pre-

diction models, where each model is responsible for one pose component (𝑥, 𝑦, or 𝜃),

and the output is one pose.

2. Concept 2: Based on the image from the robot’s camera, identify all the ArUco markers

on it, getting their relative poses (rvec and tvec) and their ID. These values for each

ArUco are directly sent to the three ML models (one relative to each pose component),

resulting in one pose estimation per ArUco (i.e., each image can have different pose

estimations).

3. Concept 3: An image taken by the robot camera is pre-processed, and it is used as

input for three CNN models, one for each component, which returns, in aggregation,

the pose.

To evaluate the quality of each model, several metrics have been used, such as Mean

Absolute Error (MAE), RMSE, and R square (𝑅2).

3.2.1 Data Collection

Five (5) data collections were performed in the simulator, following a similar approach.

The first collection considered the whole field, which was discretized in a grid, with each square

being 1 cm in size. The robot was positioned on the grid in the center of the available positions,

that is to say, without obstacles. In each position, the robot takes around 60 images while per-

forming a 360º turn to create a database (due to delays in the simulator, the number of collected

36

Concept 1: Using Machine Learning to Generate one Pose Estimation per Image with tags

Concept 2: Using Machine Learning to Generate one Pose Estimation per Tag Identified

Concept 3: Using CNN to Generate one Pose Estimation per Image without Tags Identification

Figure 7 – Concept solutions. Based on (KLEIN, 2023).

images in each turn can vary slightly), with the total number of images collected across all po-

sitions reaching approximately 350,000. The other 4 data collections follow the same procedure

but only consider a limited part of the field, a square of 10 x 10 cm in the center of the field, as

presented in Figure 8. This squared was discretized in grids with 10.0 mm, 5.0 mm, 2.5 mm,

and 1.0 mm, as presented in Figure 9. Subsequently, additional data collections were conducted

along a randomly selected route within the field. Figure 10 presents six examples of images

collected in different parts of the field.

3.2.2 Datasets Creation

Before creating the datasets to be used throughout the project, two main steps were

necessary: (1) Remove the duplicated images, which happened due to delays in the simulator;

(2) remove images that do not contain at least one ArUco. Figure 11 presents an example of

37

Figure 8 – Part of the field used to collect images. Source: (KLEIN et al., 2023b).

Figure 9 – Exemplification of the grids used, considering the four different grid sizes. Based
on (KLEIN et al., 2024b).

this kind of image, and the objective of their exclusion is to avoid the use of ambiguous images,

which can be part of any part of the field and lack any clear means of identification.

The images were processed using the OpenCV library to create the datasets to iden-

tify the ArUcos and estimate each ArUco’s pose relative to the camera’s reference frame. The

OpenCV library returns arrays for each marker, including the position and orientation of the

marker to the camera. As previously mentioned, these arrays are called tvec and rvec, respec-

tively. The following datasets were created:

1. Dataset A - Considering the whole field and combining observations’ attributes in a

matrix format : The images used were collected across the entire field, considering the

grid resolution equal to 1 cm. Each observation represents a single image containing

one feature and three targets. The feature is comprised of a matrix with 49 rows, each

representing an ArUco marker, and seven columns that represent the tvec and rvec

38

A B C

D E F

Figure 10 – Example of images collected.

Figure 11 – Example of ambiguous image. Source: (KLEIN, 2023).

39

arrays, along with a boolean value indicating whether the marker was detected in the

image. If a particular ArUco marker is absent from an image, the corresponding row in

the matrix is filled with 0. The target variables are x, y, and 𝜃.

2. Datasets B - Considering the collection in part of the field with different grid resolutions

and combining observations’ attributes in a matrix format : This dataset is composed

of four datasets. To generate each of them, images taken in the center of the field

(Figure 8) were used, varying the grid resolutions, where each dataset was composed

of images from different resolutions: B1 for 10.0 mm, B2 for 5.0 mm, B3 for 2.5 mm, and

B4 for 1.0 mm. All the datasets were produced using the same procedure as Dataset A.

3. Dataset C - Considering the whole field in an ArUco’s array : Images taken across the

entire field were used, with a grid resolution of 1 cm. However, unlike datasets A and

B, each observation in this dataset represents a detected ArUco marker rather than

an entire image. As such, each observation consists of seven features: the marker’s

ID, rvecs, and tvecs, as well as three targets: x, y, and 𝜃. In this dataset, the image

information is no longer relevant, as the focus is solely on the relative pose of the ArUco

markers.

4. Dataset D - Considering the collection in part of the field with different grid resolutions

and combining the observations’ attributes in ArUco’s array : Dataset D is composed of

four datasets, as Dataset B. To generate these datasets, images taken at the center of

the field (Figure 8) were used, varying grid resolutions. Each dataset was composed of

images from different resolutions: D1 for 10.0 mm, D2 for 5.0 mm, D3 for 2.5 mm, and

D4 for 1.0 mm. Each dataset was produced using the same procedure as Dataset C.

5. Dataset E - Considering a random route in an ArUco’s array : This dataset was created

using images captured across the entire field, using a random path. The exact process

as Dataset C was used to generate this dataset.

3.2.3 Implementation

The implementation of the previous work was based on three main steps, which are

discussed briefly below:

1. Part 1: Feasibility of the ML in Embedded Systems: To validate the feasibility of

the use of Machine Learning models implemented in the localization issue at RaF in

an embedded system, a Raspberry Pi 4 Model B4 was used, considering the dataset

D1, with the ML techniques: MLP, SVM, and Random Forest, as also explored from

others works in the same context of validation of the use ML in systems without a

high computational power (YAZICI; BASURRA; GABER, 2018). The evaluation metrics

40

included training and execution times, energy consumption (in mWh), and model size.

An Atorch USB tester was used to measure energy consumption. The complete details

regarding the feasibility work are available in (KLEIN et al., 2023a; KLEIN, 2023).

2. Part 2: Quality of ML models: The initial examination in this part involves contrasting

the various methods based on Concept 1, using dataset A. The dataset was partitioned

into two sections: 85% for training and 15% for validation. Figure 12 shows a visual

depiction of this procedure. Then, the algorithm that presented the best results in the

previous analysis was trained with datasets B1, B2, B3, and B4 with corresponding res-

olutions of 10.0 mm, 5.0 mm, 2.5 mm, and 1.0 mm, and an analysis of its outcomes

was conducted. The concluding assessment in this study entailed comparing analyti-

cal and ML techniques. The algorithm that yielded the best results in the first analysis

was now trained on dataset C and evaluated on dataset E, using Concept 2, and fi-

nally compared with the analytical technique. This comparison is significant because

the analytical approach was introduced in (BRAUN et al., 2022a) and provides a good

benchmark for pose estimation in the RaF scenario. A further explanation of the study

is available in (KLEIN, 2023; KLEIN et al., 2023b).

Random
Forest
X

Gradient
Bossting

X

KNR
X

MLP
X

Random
Forest
Y

Random
Forest
θ

Gradient
Bossting

Y

Gradient
Bossting

θ

KNR
Y

KNR
θ

MLP
Y

MLP
θ

Calculate
the evaluation using test set

Dataset A

Training
 dataset

Test dataset

Training

85%

15%

Models Trained

Test

Images

MAE
RMSE

R²
NRMSE

Figure 12 – Flow process. Source: (KLEIN et al., 2023b).

In addition, to verify Concept 3, a CNN model based on the VGG16 transfer learning

model was applied. Furthermore, an output layer was defined as a linear activation

function with 1 or 2 outputs (with one output for the model to estimate 𝜃 and two outputs

to estimate 𝑥 and 𝑦). Images from datasets A, B1, B2, B3, and B4 were used (but

without preprocessing, besides the one required by the VGG16 model). Further details

41

are available in (KLEIN, 2023; KLEIN et al., 2024a). An overview of the CNN structure

is presented in Figure 13.

Inputs
224X224X3

VGG16

Model

D
en

se
 L

ay
er

s

Softmax
Layer

X1

X2

X1000

X3

...

Removed

D
ro

po
ut

 0
.2

D
ro

po
ut

 0
.2

D
en

se
 4

09
6

D
en

se
 4

09
6

Added

D
ro

po
ut

 0
.2

D
en

se
 1

07
2

Li
ne

ar
 (1

 a
nd

 2
)

Figure 13 – Architecture the proposed CNN model. Source: (KLEIN, 2023).

3. Part 3: Execution in the Real Scenario

The third part of the first study was the application in the real scenario. The RaF simula-

tor was adapted to the robot’s real parameters (such as camera configurations, field of

view, camera position, etc.). The real values in the robot were trying to be mimicked in

the simulator, with all adaptations being done empirically. The data was recollected in

the simulator, and an ML model (MLP) was trained as in solution Concept 2. The robot

software was then adapted to use the MLP, compared to the ground truth, with the

robot following a predetermined route. Figure 14 presents the robot, the real field, and

the ground truth system used in the real scenario. More details are available in (KLEIN,

2023).

Camera to get the
Ground- truth value

Robot

Figure 14 – Real system architecture. Source: (KLEIN, 2023).

42

3.3 Results and Discussions

The previous study was divided into three main parts, and the results of each will be

briefly presented and discussed.

3.4 Part 1: Feasibility of ML in embedded systems

This part evaluates the feasibility of using ML in an embedded system, considering fac-

tors such as energy consumption, model size, and times to train and inference. Three ML tech-

niques were evaluated: RF, MLP, and SVM, using the D1 dataset. The data were divided into

85% used for training and 15% for testing. The preprocessing of the training data took 157.49

seconds and consumed 180 mWh, while the preprocessing of the testing data took 28.62 sec-

onds and 35 mWh. Figure 15 presents graphs with the comparison between models in the train-

ing and inference time in terms of speed (left) and energy consumption (right), with each color

representing a different model.

Figure 15 – Time spent (left) and energy consumption (right) by three ML methods in training and
testing. These statistics do not account for the time required to preprocess the data.
Source: (KLEIN, 2023).

The analysis reveals that the SVM algorithm took longer to train and execute than the

other algorithms. On the other hand, the MLP algorithm was the fastest in training and execution.

The energy consumption pattern follows a similar trend, with SVM being the most expensive and

MLP being the most efficient. In terms of execution time, all approaches could respond to each

image in no more than a few milliseconds.

Regarding model quality, the estimation errors were found to be on a centimeter scale,

with RF emerging as the most effective approach. The SVM approach yielded models for the x

and y targets that were notably compact, occupying a mere 1 kB, whereas the model size for

𝜃 was considerably larger, at 2.7 MB. In contrast, the three MLP models exhibited consistently

small sizes, ranging between 26 and 30 kB. Notably, the RF approach resulted in the generation

of models with the largest size, approximately four orders of magnitude greater than the other

models, with each model requiring more than 100 MB. The analysis of the model size indicates

that this is not a significant issue in the current context. However, it is essential to highlight the

43

stark contrast between the models, which underscores the necessity for more data (images) if

the entire field is to be considered. This could lead to a notable increase in model size, which

may become a challenge.

An additional experiment was conducted on a computer using the same algorithms but

with the larger Dataset C. The results demonstrated that the MLP models remained relatively

compact, with each model occupying a maximum of 1 MB. In contrast, RF models required

between 3 and 5 GB, representing a significant difference in computational power. The compu-

tational resources needed to store and execute models of this magnitude exceed the capacity

of the Raspberry Pi. Ultimately, the SVM models could not be trained due to the required time.

Thus, MLP represents the optimal option for embedding an ML model in the localization system,

given a trade-off between required memory, computing power, and energy consumption. While

other approaches, such as RF, yield more promising results, they are not as well-suited for this

particular application.

3.5 Part 2: Quality of ML models

The results of part 2 are divided in two: Section 3.5.1 presents the results for the concept

solutions 1 and 2 and a comparison between ML techniques, while Section 3.5.2 presents the

results for the concept solution 3, using CNN techniques.

3.5.1 Approach 1: ML techniques using fiducial markers

This study first investigated models’ quality using approaches 1 and 2. Several algorithms

were examined by performing on dataset A, and the most effective algorithm was identified.

Subsequently, this algorithm was trained and tested on datasets B1, B2, B3, and B4 to evaluate

the trade-off between the grid resolution and the accuracy of the estimates. Then, the proposed

approach in Section 3.2.2 was compared to analytical (presented in (BRAUN et al., 2022a)) and

ML methods.

Figure 16 presents a comparison between the techniques, where the left plot illustrates

the MAE error for the axes 𝑥 (blue) and 𝑦 (red) in meters, and the right plot shows the MAE error

for 𝜃 in degrees. Analyzing this graph, it is possible to note that Random Forest was the best

approach in the three axes, followed by the MLP (the second in the position and the third in the

orientation). All the tested approaches were better than the baseline approach (which was the

most straightforward approach).

Then, using the best approach previously found, RF, the model was trained and evaluated

in dataset B. The result is presented in Figure 17. It is possible to notice a trade-off in the position:

With the increase of the resolution (i.e., decrease in the grid size), the error in the estimations

decreases. However, this behavior does not happen in the orientation, which keeps a similar

44

Figure 16 – Graph on the left displays the MAE for the 𝑥 and 𝑦 axes in meters, and the image on
the right displays the MAE for the 𝜃 in degrees. Source: (KLEIN et al., 2023b)

.

result for all the same grids. This is expected since the number of images increased in the

position, with more images in other field positions, while the quantity taken by position in each

robot loop was kept the same.

Figure 17 – Comparison of the error obtained against the decrease of the grid’s resolution. The
graph on the left displays the MAE for the x and y axes in centimeters (the same curve
is for both values), while the image on the right displays the MAE for the 𝜃 in degrees.
Source: (KLEIN et al., 2023b).

Then, when comparing the results of approach 2, using RF with the analytical approach,

the results presented an increase of the quality of 6 and 8 mm for 𝑥 and 𝑦, respectively, and a

decrease of 1.27∘ in 𝜃. These results showed the possibility of using the approach as a possible

solution to the problem. The complete study is available in (KLEIN et al., 2023b) and (KLEIN,

2023).

3.5.2 Approach 2: CNN technique

Table 1 presents the results for the tests performed in a limited part of the environment

with different grid resolutions. The columns represent the resolutions and the lines of the metrics

for each pose component. All the values (except for the training time) are averages and the

respective standard deviation of the three executions.

45

It is interesting to notice the quality of the position estimations was on a millimeter scale,

and the MAE in 𝜃 was consistently lower than 5∘. Also, another interesting topic to notice in

this approach is the trade-off between the grid’s resolution and quality in the estimations (pre-

viously presented in Section 3.5.1) does not exist here. In addition, all the results displayed low

standard deviation, reflecting the liability and satisfactory performance of the models in the cross-

validation process. Another important outcome of this approach is that each model is 512MB,

up to 1024MB for the entire pose estimation. This is important because specific ML techniques,

such as Random Forest, can significantly increase the size (KLEIN et al., 2023a), as the struc-

ture of the model can change, i.e., the depth of trees, depending on the problem in the context.

This study, available at (KLEIN et al., 2024a), has received the Best Paper Award at OL2A 2023

(International Conference on Optimization, Learning Algorithms, and Applications).

Table 1 – Results obtained considering the limited part of the field, using different grid’s reso-
lution, with Avg. columns indicating the average and Std. Dev. indicating the standard
deviation. Boldface values are the best in each metric. Source: (KLEIN et al., 2024a).

Grid’s Resolution 10 mm 5 mm 2.5 mm 1 mm

Quantity of images 8306 33,291 113,596 655,130

Avg Std. Dev. Avg Std. Dev. Avg Std. Dev. Avg Std. Dev.

MAE

x[m] 0.0026 0.0001 0.0026 0.0004 0.0023 0.0002 0.0023 0.0006

y[m] 0.0026 0.0000 0.0027 0.0004 0.0023 0.0004 0.0023 0.0007

𝜃[∘] 2.97 0.29 2.76 0.14 1.58 0.10 4.51 3.82

RMSE

x[m] 0.0034 0.0002 0.0033 0.0005 0.0029 0.0002 0.0029 0.0006

y[m] 0.0038 0.0006 0.0042 0.0002 0.0032 0.0003 0.0030 0.0007

𝜃[∘] 6.03 1.50 7.09 0.76 4.06 0.71 6.99 3.80

NRMSE

x 0.0307 0.0015 0.0302 0.0043 0.0293 0.0026 0.0262 0.0059

y 0.0345 0.0053 0.0368 0.0021 0.0292 0.0031 0.0279 0.0062

𝜃 0.02 0.00 0.02 0.00 0.01 0.00 0.02 0.01

R2

x 0.990 0.001 0.990 0.003 0.990 0.002 0.989 0.005

y 0.985 0.005 0.984 0.002 0.990 0.002 0.990 0.004

𝜃 0.996 0.002 0.995 0.001 0.998 0.001 0.994 0.006

Training time (Position) [s] 678.63 80.85 898.40 153.75 4505.48 647.51 8281.08 233.89

Training time (Orientation) [s] 592.89 80.17 1437.00 401.92 17369.99 3399.39 18509.41 8368.63

Inference time (Position) [ms] 2.95 0.74 2.02 0.07 2.44 0.35 2.06 0.15

Inference time (Orientation) [ms] 2.46 0.12 2.04 0.05 2.22 0.19 1.96 0.40

3.6 Part 3: Implementation in the Real Scenario

This part of the study explored applying a simulation-trained model to a real robot. To

perform it, the simulator was adapted to resemble the real robot. The values of the robot pa-

rameters were adjusted empirically using the same parameters for the two cameras (real and

simulated). The data were then recollected, and the models retrained.

Based on the previous results, the MLP technique was used as the ML model, con-

sidering approaches 1 and 2. Tables 2 and 3 present the concept solutions 1 and 2 results,

respectively. The first one consists only of the direct results with the ground truth. In contrast, the

46

second compares with the analytical approach (used in the competition (BRAUN et al., 2022a)).

Also, some models with different structures, called in the previous work as optimized, were tested

and showed a margin to improve the quality of the models. A video containing all executions of

the analytical approach and MLP approaches (considering the concept solutions 1 and 2) was

recorded1.

Table 2 – Results of the errors obtained in the real scenario, showing the error in the estimations
with the MLP models based on concept solution 1. Based on (KLEIN, 2023).

MLP Original
x[m] y[m] 𝜃[∘]

MAE 0.047 0.060 10.73
RMSE 0.077 0.082 17.68

Table 3 – Results of differences obtained in the real scenario, considering the estimations with the
MLP with the analytical method, considering the concept solution 2. Based on (KLEIN,
2023).

MLP Analytical
x[m] y[m] 𝜃[∘] x[m] y[m] 𝜃[∘]

MAE 0.166 0.054 17.94 0.037 0.031 8.36
RMSE 0.184 0.064 34.45 0.060 0.044 20.62

Analyzing the results of both tables, it is possible to notice that the behavior of the model

in the simulation was amplified in the real world (i.e., all the errors obtained by the simulator

models were smaller than those obtained in the real scenario by the same models), and slight

differences, such as camera parameters, can be drastically influenced by the results.

In addition, a significant difference can be observed between the MLP results and the

analytical model. When analyzing the robot’s behavior using the models in the recorded video,

they showed that they were not ready to be implemented entirely in the robot and used in the

competition. However, the proposals were promising since, even with all empirical adjustments

in the simulator to represent the real scenario, the robot work is reasonably plausible considering

the 𝑦 axis and the 𝜃, even with the behavior in x being the worst. On the other side, it emphasizes

that the small divergences between the simulator and the real will result in high differences. More

detailed information is available in (KLEIN, 2023).

3.7 Conclusions

The previous work aimed to study the localization issue of the problem of RobotAtFac-

tory4.0 using machine learning approaches. Three concept solutions were developed in this

work: one that estimates one pose per image frame using the fiducial markers, another that es-

timates one pose per ArUco identified in an image frame, and another that estimates one pose

per image without using ArUcos.
1 Video of the comparison: https://www.youtube.com/watch?v=-5ZmVpJobg0

https://www.youtube.com/watch?v=-5ZmVpJobg0

47

The three initial questions were answered based on the results: The first research ques-

tion (1) can be answered that the ML approaches can solve the localization topic, with some

approaches presenting errors in millimetric scale and less than 10∘ in orientation. The second

question (2) can be answered, based on the results, that RF and CNN were the approaches

that presented the best results, with response time in milliseconds and errors in millimeter scale.

The third question (3) can be answered based on the results that MLP and CNN are the best

approaches due to the controlled size of the modes and the response time in milliseconds.

The work was successful, and the three research questions were answered. The ML

approaches were validated in feasibility, and many possible machine-learning techniques were

explored (KLEIN, 2023; KLEIN et al., 2024a). The main advantage of the methods presented is

the nondependency on the knowledge of the ArUcos position.

However, since the goal of the work was just an initial study related to the validation of the

use of the approaches and not the final localization system, several limitations are presented,

and further studies and analyses are necessary. Some future studies can better explore the ap-

plication of the model trained in simulation in the real world (even if the results are promising,

several improvements are needed to make the localization system complete and usable). An-

other relevant future work consists of exploring the optimization of the hyperparameters of the

methods since the optimizations can drive a fundamental step to make the system better and

closer to a final localization system.

48

4 METHODOLOGY

As an extension of the previous study performed in (KLEIN, 2023), whose summary was

presented in Chapter 3, this chapter presents the details of the current work, that is based on the

same scenario context, i.e., the RaF competition, and used the same data from the simulator.

It is important to recall the three main research questions that drive the study, presented in

Section 1.3. Question one aims to identify and understand the challenges in the optimization

finding; Question two aims to find the relations between the optimizations for each context; and

Question three is related to exploring the use of the optimization from one context to another.

The data used in this work was the same as presented before, consisting of the one col-

lected from the limited part of the field, considering four different grid sizes: 10.0 mm, 5.0 mm,

2.5 mm, and 1.0 mm (datasets D1, D2, D3, and D4, respectively, presented in Section 3.2.2).

In addition, this work uses Concept 2, presented in Section 3.2, which consists of three inde-

pendent models receiving information about one ArUco marker and each model returning one

pose component (𝑥, 𝑦 and 𝜃). Based on the previous work, this decision was to have one model

per pose component (as presented in Chapter 3). The exploration of using the same model to

estimate more than one pose component is out of the scope of this work and will be explored in

future works.

The method used to optimize the models was the Bayesian Optimization, explained in

Section 2.3.1. This approach was selected due to the problems’ characteristics, particularly the

expensive model evaluation, once it is necessary to train all the models. The framework used

was the Skopt library, which was developed for scikit-learn and based on Bayesian Optimization.

Another possible approach would be verifying all the possibilities in the defined search space

and then comparing all the results to get the best parameters (methodology implemented for the

library Grid-Search1), or also a Random Search2 on the same search space. However, due to

the huge number of possibilities, these approaches are not feasible due to the large amount of

time and computational demand.

According to the official documentation by scikit-learn, the MLP Regressor3 has 23 hy-

perparameters. Considering all possible values for all hyperparameters, the search region is

infinite since some parameters are real values. Through some empirical tests, where manual

variations on the model structure were performed, some aspects were found to help restrict the

number of possibilities in the search space. For instance, the activation function that gave the

best results in the empirical tests was the ReLu function. It was kept as the “default” value in the

proposed optimization. Table 4 presents the default values (from the used library) for the hyper-

1 Available in: https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.
html. Accessed on November 1, 2024.

2 Available in https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.
RandomizedSearchCV.html. Accessed on November 1, 2024.

3 Available in: https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.
html. Accessed on November 5, 2024.

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html

49

parameters used in the MLP models, while Table 5 presents the modified hyperparameters, i.e.

the non-default.

Effectively, the only hyperparameter optimized was the hidden layer size, which consists

of a list of integer values, where each position represents one layer, and the integer value rep-

resents the number of neurons in that layer. For instance, a model with hidden layers size (120,

120, 120) has 3 layers and 120 neurons in each layer. Also, theoretically, there is no restriction

to the number of layers or neurons in each layer, which can differ between the layers in the same

model.

Due to the high number of possibilities (infinite in theory), some restrictions to the search

space were defined: (1) the number of layers must be between 1 and 11; (2) the number of

neurons in each layer between 1 and 1001, and (3) all the layers in the model must have the

same size, that is, the same number of neurons in each layer. These restrictions were performed

after a series of empirical tests showing that most optimizations were in the defined range of

layers and neurons. It is trivial to notice that these limitations can greatly impact optimization.

Still, the study aims to show that it is possible to present some optimization and explore the

behavior between the scenarios. If some optimal solution can be found in a restrictive space, it

can also be found in a larger space. It is important to emphasize that the optimization in this work

aims to improve the model structure and not the value of the hyperparameters itself. The study

focuses on finding the best number of layers and neurons, not the model weights, which will

be gathered through training (using the backpropagation method with the Adam solver defined

before).

Table 4 – MLP Default Hyperparameters. Based on (KLEIN et al., 2024b).
Hyper Parameter Value

Alpha 1× 10−4

Beta_1 9× 10−1

Beta_2 9.99× 10−1

Epsilon 1× 10−8

Learning rate init 1× 10−3

Max iterations 2× 10+2

Shuffle True
Solver adam

Validation fraction 1× 10−1

Table 5 – MLP Non-Default HyperParameters. Based on (KLEIN et al., 2024b).
Hyper Parameter Value

Batch size 1× 10+2

Early stopping True
Random state 4.2× 10+1

Tol 1× 10−3

Validation fraction 2× 10−1

Warm start True

50

For each scenario (related to each data collection in the limited part of the field), there are

three independent ML models (two for position, 𝑥 and 𝑦, and one for orientation 𝜃), resulting in

12 independent models that will be optimized independently. Considering the number of models

and the training data size (which directly impact the necessary time to train and evaluate each

model), the maximum number of interactions for the Bayesian optimizer was 20, with 10 initial

points. This choice aimed to minimize the time spent on the optimization and still have some

exploration in the Bayesian Optimization. All the datasets were randomly divided into 70% for

training and 30% for testing while finding the optimization. This division was done following a

common division of training/testing data.

Once the optimization of the hyperparameters was found for each model in each sce-

nario, they were applied to the models and evaluated using a cross-validation technique, consid-

ering a K-fold of 5. This re-evaluation of the models was done to avoid any possible overfitting

that could be coming from the data used during the model’s optimization. Finally, another test

applied the optimization found for the 10.0 mm scenario to the other scenarios, aiming to work

as a kind of transfer learning model structure and evaluate its performance. The flowchart in

Figure 18 summarizes all the optimization processes.

Finally, it is important to emphasize that this study focuses on optimizing the hyperpa-

rameters of the ML models considering the simulation scenario of the RaF. Other issues, such

as the applicability in the real scenario and aspects related to the embedded systems (such as

the execution in a Raspberry Pi or any other platform), are beyond the scope of this work and

will be treated as future work.

In this study, all computations were performed using a CPU, specifically an AMD4 EPYC

7351 16-Core Processor (2.40 GHz) with 32 GB of RAM, without the use of a GPU. The imple-

mentation was carried out in a 64-bit Operating System Windows 10 Enterprise LTSC, a Python

3.10.7 5, an open-source programming language. The analysis utilized the following open-source

libraries, installed via the Python Package Index (PyPI)6: Pandas 1.5.0, OpenCV 4.6.0, and

Scikit-learn 1.1.2.

4 Founded: May 1, 1969, Sunnyvale, California, United States
5 Obtained from https://www.python.org/, accessed on December 10, 2024
6 https://pypi.org/, accessed on November 27, 2024

https://www.python.org/
https://pypi.org/

51

SKOPT
Optimization

Data Collection
Grid 10.0 mm

Data Collection
Grid 5.0 mm

Data Collection
Grid 2.5 mm

Data Collection
Grid 1.0 mm

Data Preprocessing

Dataset
Grid 10.0 mm

Dataset
Grid 5.0 mm

Dataset
Grid 2.5 mm

Dataset
Grid 1.0 mm

MLP x
Optimized

Grid 10.0 mm

MLP y
Optimized

Grid 10.0 mm

MLP θ
Optimized

Grid 10.0 mm

MLP x
Optimized

Grid 5.0 mm

MLP y
Optimized

Grid 5.0 mm

MLP θ
Optimized

Grid 5.0 mm

MLP x
Optimized

Grid 2.5 mm

MLP y
Optimized

Grid 2.5 mm

MLP θ
Optimized

Grid 2.5 mm

MLP x
Optimized

Grid 1.0 mm

MLP y
Optimized

Grid 1.0 mm

MLP θ
Optimized

Grid 1.0 mm

Model Evaluation
using cross-validation

From previous work

Figure 18 – Flowchart of the current work methodology. The first steps, inside of the slashed rect-
angle, are from the previous work. Based on: (KLEIN et al., 2024b).

52

5 RESULTS AND DISCUSSIONS

Aiming to explore the optimization of the model structure between different scenarios

of the same contexts, the MLP model, based on Concept 2, was optimized using a Bayesian

Optimization in a limited search space. The methodology, presented in Section 4, presents the

characteristics of the method and the tests to be performed to collect the results.

Figure 19 presents the optimization found for each scenario, where graph A shows the

number of layers, while B shows the number of neurons in each layer. An interesting aspect

is the different behavior of the optimization solutions for each model in the same scenario and

between different scenarios. It is possible to notice that the number of layers varied between 1

and 11, as did the number of neurons in each layer, which also varied between 159 and 1001.

In other words, no direct relation or pattern was observed between the optimizations, which

corresponded to the expectations since the models do not directly depend on each other.

A B

Figure 19 – Comparison between the scenarios’ optimization, with the quantity of the layers and
the number of neurons in each layer.

Table 6 compares the results, considering the MAE measure considering a cross-

validation process of K times equal to 5, between scenarios with and without optimizations. To

compute the percentage difference between the MAE from optimized and non-optimized values,

Equation 4 was used. In addition, the necessary time to find each optimization is also present

in the table, with the values presented in seconds. Upon analysis of the results, it is trivial to

notice that the optimized models presented an improvement in consistency compared to the

non-optimized model, with improvements between 10% and 65%. The last aspect of the results

is the necessary time to find the optimization, which has increased considerably in the different

scenarios due to the high difference in the image quantity in the dataset.

It is essential to mention that the optimization was performed using the computing re-

sources presented in Chapter 4, and the time measurement present in the results is based on

the running of that machine. No other activity (such as web browsing, video compilation, etc.)

was executed during the optimizations, and the results were collected immediately after each

53

other. However, deactivation of the Graphical User Interface (GUI) in the operating system and

other further operations over the time measurement were not performed.

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =
|𝑀𝐴𝐸𝑁𝑜𝑡 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 −𝑀𝐴𝐸𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑|

𝑀𝐴𝐸𝑁𝑜𝑡 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑

(4)

Table 6 – The optimization findings for each model, the time spent on each optimization, and the
mean absolute error (MAE) obtained in the evaluation process. Based on (KLEIN et al.,
2024b).

10.0 mm 5.0 mm 2.5 mm 1.0 mm
x [m] y [m] 𝜃 [∘] x [m] y [m] 𝜃 [∘] x [m] y [m] theta x [m] y [m] 𝜃 [∘]

MAE
Not Optimized

0.0281 0.0259 30.32 0.0275 0.0282 22.34 0.0209 0.0259 19.69 0.0188 0.0178 16.41

MAE
Optimized

0.0253 0.0227 20.08 0.0205 0.0155 16.80 0.0097 0.0100 7.61 0.0066 0.0087 5.88

Percentage
Difference

10.02% 12.37% 33.78% 25.64% 45.02% 24.81% 53.74% 61.29% 61.33% 64.94% 51.22% 64.14%

Time Spent [s] 12476 23906 20544 65273 81491 53335 386191 258969 208331 550760 550248 417341
Nº of layers 1 10 8 6 11 8 5 5 8 7 5 7

Nº of neurons in each layer 808 465 398 255 701 336 750 548 1001 438 159 697

The second result consists of analyzing the application of the optimization found for the

scenario with a 10.0 mm grid (here called the 10.0 mm optimized structure), the fastest opti-

mization found, presented in Table 6. Table 7 presents a comparison between the application

of the optimization previously found (Table 6, called Optimized Structure), against the 10.0 mm

Optimized Structure.

Table 7 – A comparison of the optimized structures results with applying the 10.0 mm optimized
structure in the other scenarios. Based on (KLEIN et al., 2024b).

5.0 mm 2.5 mm 1.0 mm
x y 𝜃 x y 𝜃 x y 𝜃

Optimized
Structure [%]

25.64 45.02 24.81 53.74 61.29 61.33 64.94 51.22 64.14

10.0 mm Optimized
Structure [%]

26.23 37.55 31.10 2.88 55.90 56.82 9.82 54.38 60.67

Diff in time to find
the optimization [%]

80.89 70.66 61.48 96.77 90.77 90.14 97.73 95.66 95.08

Observing the results presented in Table 7, it is possible to notice that the errors obtained

using the optimized structure of 10.0 mm were better than compared to the non-optimized mod-

els, presenting, in the worst case (2.5 mm, 𝑥), an improvement of 2.88%, but also achieving

improvements around 60% (1.0 mm, 𝜃). In addition, the 10.0 mm optimized structure was even

better than those found for the optimized structure specific for some scenarios: 5.0 mm 𝑥 and

𝜃, and 1.0 mm 𝑦 (which is expected since the first optimization is not necessary for the global

optimum, so improvements on that are expected). However, the Optimized Structure localization

was better for most cases, specifically for 2.5 mm and 1.0 mm, where the differences were bigger

than 50%.

Also, through the analysis of Table 7, it is possible to notice the great differences in

finding the optimum structure. The 5.0 mm scenario showed a difference of over 60%, while the

54

2.5 mm and 1.0 mm scenarios demonstrated a difference of over 90%. These findings present an

intriguing potential trade-off: utilizing significantly less computational power and time can identify

an interesting optimization, even if one may not be as optimal as the one specifically tailored for

each scenario.

55

6 CONCLUSIONS

This current work aimed to explore the optimization of the hyperparameters of the ma-

chine learning models for robot localization, considering the scenario of the RobotAtFactory 4.0

competition. This work is based on a previous study performed by the author in (KLEIN, 2023)

and in (KLEIN et al., 2023b; KLEIN et al., 2023a; KLEIN et al., 2024a). The first study validated

the feasibility and possibility of using the ML and deep learning models, considering aspects of

different models and factors such as response time and model size. The current work, based on

the results of the previous study, aimed to explore the hyperparameters optimization of the ML

models, particularly the MLP model, using Bayesian Optimization.

The first research question of this work (What are the challenges to finding an optimiza-

tion for the MLP model in the RaF scenario?) can be answered based on the results of the

time needed to find the optimizations, which for the scenario with the most significant amount of

images (655.130), achieving around 6 days for one component of the pose. In this way, compu-

tational power is the biggest challenge for the model optimization in this work. Another related

challenge observed was the correct definition of the search space, delimiting the range of the

possibilities of the hyperparameters and the definition of which hyperparameters should be opti-

mized and the values of the fixed hyperparameters (i.e., those that will not be optimized). These

topics are challenging since they directly impact the values achieved by the optimization due to

the restrictions of the possible optimizations to be found.

The second research question of this work (Is there a correlation between the optimiza-

tions for different contexts, considering the RaF scenario?) can be answered based on the anal-

ysis of the results that no direct relationship can be observed in the optimizations between the

scenarios. However, 9 of 12 optimizations had between 5 and 8 layers, and all the layers had

more than 100 neurons. The quality of the optimizations was of the same magnitude, varying

between 10.02% to 64.94%.

The third research question of this work (Is it possible to apply optimizations found for

one context in others, and what are the advantages and disadvantages associated?) can be

answered based on the results of using the 10.0 mm optimization structure in the other scenarios.

All the scenarios presented improvements compared to the non-optimized structure, even this

improvement achieving only 2.88% in one case. Compared to the dedicated optimized structure,

the 10.0 mm optimization structure achieved better results in 3 of 9 cases. These facts show that

it is possible to apply optimizations from one context in another, with the best advantage of the

less time needed to find the optimization (achieving more than 97% in some cases). The main

disadvantage is the lack of quality of optimization, i.e., the improvement of the optimization can

not be as good as if a dedicated optimization is found for the scenario.

In this way, once all the research questions were answered successfully, it is possible to

conclude that the research was successful. The MLP models for pose estimation in the Robo-

tAtFactory 4.0 were optimized using Bayesian Optimization, focusing on the number of layers

56

and their sizes, with several limitations imposed to limit the search space. Six of the 12 models

presented an improvement more significant than 50%. Some optimizations require a high compu-

tational cost of around six days to generate. An exciting approach proposed involves transferring

the optimization structures between scenarios, using the one found in the smallest (the 10.0 mm

grid in the current work) and the larger one, presenting a good improvement in the results (even

not as good as the dedicated optimization) still could be found using much less time. A paper

about this work was published in (KLEIN et al., 2024b).

The use of studied optimization, Bayesian Optimization, and the transfer of optimization

from a small scenario to a larger one (in this work, from a small grid resolution to a large one) can

appear as an interesting approach to any other similar scenario, where the optimization found for

a large scenario is extremely expensive compared to a simpler scenario. Further investigation is

needed on each specific scenario. Still, it can appear as an interesting approach that provides,

at the same time, improvement of the results compared to models with no optimization and a

feasible time to find it.

In addition, assessing whether the pre-optimization results are sufficient for the mod-

els is crucial. If not, a cost-benefit analysis of the time and computational resources required

for optimization becomes essential. In the context of the RobotAtFactory 4.0 competition, it is

also important to consider whether the improvements will meaningfully improve the performance

during the event. In addition, time constraints could become a significant challenge if model

optimization has to be performed during the competition rather than before.

It is essential to emphasize that several limitations were applied in this study. Only the

MLP model was used in this study, even though several other techniques were explored in pre-

vious work. In the optimization aspects, only the number of layers and neurons in each layer

was considered. Another major limitation was using the Bayesian Optimization, which directly

impacted the optimization found. The current work has explored specific optimization aspects

of ML in robot localization, and further study on other topics is still needed. Another point of

attention is related to the limited scenario context, which only considered part of the field in the

simulation of the RaF competition, lacking further exploration of the whole field in real compe-

tition and other scenarios, which may present a less controlled scenario than the one used in

the work. The explicability of the models was another relevant issue that was not explored in the

work.

Future works will research additional optimization strategies, including alternative ap-

proaches to Bayesian optimization. Furthermore, the search space and hyperparameters could

be expanded, and other factors such as model size, robustness, and others could be incorpo-

rated into the optimization process. In addition, other studies have sought to improve the efficacy

of alternative methodologies, including Random Forest and CNN, using the same model to es-

timate more than one pose component per time (for instance, one model to estimate the three

components). Other research efforts have aimed to optimize the entire field rather than address

its constraints, elucidate potential discrepancies, and examine the diverse influences of optimiza-

57

tion in both simulated and real-world contexts. Finally, future works include further analysis of the

practical impact of the model’s optimization on the RobotAtFactory 4.0 competition, discussing

the real cost-effectiveness of finding optimizations in the practical application.

58

REFERENCES

AHMAD, T. et al. Location-enabled IoT (LE-IoT): Indoor Localization for IoT Environments
using Machine Learning . In: 2024 20th International Conference on Distributed Computing
in Smart Systems and the Internet of Things (DCOSS-IoT). Los Alamitos, CA, USA: IEEE
Computer Society, 2024. p. 392–399. Disponível em: https://doi.ieeecomputersociety.org/10.
1109/DCOSS-IoT61029.2024.00065.

ARULAMPALAM, M. S. et al. A tutorial on particle filters for online nonlinear/non-gaussian
bayesian tracking. IEEE Transactions on signal processing, Ieee, v. 50, n. 2, p. 174–188,
2002.

ATANASYAN, A.; ROSSMANN, J. Improving self-localization using cnn-based monocular
landmark detection and distance estimation in virtual testbeds. In: Tagungsband des 4.
Kongresses Montage Handhabung Industrieroboter. [S.l.]: Springer, 2019. p. 249–258.

AVGERIS, M. et al. Single vision-based self-localization for autonomous robotic agents.
In: IEEE. 2019 7th International Conference on Future Internet of Things and Cloud
Workshops (FiCloudW). [S.l.], 2019. p. 123–129.

BECKER, A. Online kalman filter tutorial. 2022. Disponível em: https://www.kalmanfilter.net/
background.html.

BERGSTRA, J. et al. Algorithms for hyper-parameter optimization. In: SHAWE-TAYLOR, J.
et al. (Ed.). Advances in Neural Information Processing Systems. Curran Associates,
Inc., 2011. v. 24. Disponível em: https://proceedings.neurips.cc/paper_files/paper/2011/file/
86e8f7ab32cfd12577bc2619bc635690-Paper.pdf.

BERGSTRA, J.; BENGIO, Y. Random search for hyper-parameter optimization. Journal of
machine learning research, v. 13, n. 2, 2012.

BEST, P. J. A method for registration of 3-d shapes. IEEE Trans Pattern Anal Mach Vision,
v. 14, p. 239–256, 1992.

BIBER, P.; STRASSER, W. The normal distributions transform: A new approach to laser scan
matching. In: IEEE. Proceedings 2003 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS 2003)(Cat. No. 03CH37453). [S.l.], 2003. v. 3, p. 2743–2748.

BISCHL, B. et al. Hyperparameter optimization: Foundations, algorithms, best practices, and
open challenges. WIREs Data Mining and Knowledge Discovery, v. 13, n. 2, p. e1484, 2023.
Disponível em: https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/widm.1484.

BISHOP, G.; WELCH, G. et al. An introduction to the kalman filter. Proc of SIGGRAPH,
Course, v. 8, n. 27599-23175, p. 41, 2001.

BRAUN, J. et al. Design and development of an omnidirectional mecanum platform for the
robotatfactory 4.0 competition. In: YOUSSEF, E. S. E. et al. (Ed.). Synergetic Cooperation
Between Robots and Humans. Cham: Springer Nature Switzerland, 2024. p. 114–125. ISBN
978-3-031-47269-5.

BRAUN, J. et al. A robot localization proposal for the robotatfactory 4.0: A novel robotics
competition within the industry 4.0 concept. Frontiers in Robotics and AI, v. 9, 11 2022.

https://doi.ieeecomputersociety.org/10.1109/DCOSS-IoT61029.2024.00065
https://doi.ieeecomputersociety.org/10.1109/DCOSS-IoT61029.2024.00065
https://www.kalmanfilter.net/background.html
https://www.kalmanfilter.net/background.html
https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/widm.1484

59

BRAUN, J. et al. Robotatfactory 4.0: a ros framework for the simtwo simulator. In: 2022 IEEE
International Conference on Autonomous Robot Systems and Competitions (ICARSC).
[S.l.: s.n.], 2022. p. 205–210.

BREIMAN, L. Random forests. Machine learning, Springer, v. 45, n. 1, p. 5–32, 2001.

BROCHU, E.; CORA, V. M.; FREITAS, N. D. A tutorial on bayesian optimization of expensive
cost functions, with application to active user modeling and hierarchical reinforcement learning.
arXiv preprint arXiv:1012.2599, 2010.

BRUBAKER, M. A.; GEIGER, A.; URTASUN, R. Map-based probabilistic visual self-localization.
IEEE transactions on pattern analysis and machine intelligence, IEEE, v. 38, n. 4, p.
652–665, 2015.

CHEN, C. et al. Deep learning for visual localization and mapping: A survey. IEEE Transactions
on Neural Networks and Learning Systems, v. 35, n. 12, p. 17000–17020, 2024.

CHOSET, H. et al. Principles of robot motion: theory, algorithms, and implementations.
[S.l.]: MIT press, 2005.

COSTA, P. et al. Simtwo realistic simulator: A tool for the development and validation of robot
software. Theory and Applications of Mathematics & Computer Science, v. 1, p. 17–33, 04
2011.

DELLAERT, F. et al. Monte carlo localization for mobile robots. In: IEEE. Proceedings 1999
IEEE international conference on robotics and automation (Cat. No. 99CH36288C). [S.l.],
1999. v. 2, p. 1322–1328.

DURRANT-WHYTE, H.; BAILEY, T. Simultaneous localization and mapping: part i. IEEE
robotics & automation magazine, IEEE, v. 13, n. 2, p. 99–110, 2006.

EBERHART, R. C.; SHI, Y. Comparison between genetic algorithms and particle swarm
optimization. In: SPRINGER. International conference on evolutionary programming. [S.l.],
1998. p. 611–616.

ESFAHLANI, S. S. et al. The deep convolutional neural network role in the autonomous
navigation of mobile robots (srobo). Remote Sensing, MDPI, v. 14, n. 14, p. 3324, 2022.

FEURER, M.; HUTTER, F. Hyperparameter optimization. Automated machine learning:
Methods, systems, challenges, Springer International Publishing, p. 3–33, 2019.

FOX, D. Markov localization-a probabilistic framework for mobile robot localization and
navigation. 1998. Tese (Doutorado) — Universität Bonn, 1998.

FOX, D. et al. Monte carlo localization: Efficient position estimation for mobile robots. AAAI/IAAI,
v. 1999, n. 343-349, p. 2–2, 1999.

FOX, D.; BURGARD, W.; THRUN, S. Markov localization for mobile robots in dynamic
environments. Journal of artificial intelligence research, v. 11, p. 391–427, 1999.

FRIEDMAN, J. H. Greedy function approximation: A gradient boosting machine. The Annals of
Statistics, Institute of Mathematical Statistics, v. 29, n. 5, p. 1189 – 1232, 2001. Disponível em:
https://doi.org/10.1214/aos/1013203451.

GARRIDO-JURADO, S. et al. Automatic generation and detection of highly reliable fiducial
markers under occlusion. Pattern Recognition, v. 47, n. 6, p. 2280–2292, 2014. ISSN 0031-
3203. Disponível em: https://www.sciencedirect.com/science/article/pii/S0031320314000235.

https://doi.org/10.1214/aos/1013203451
https://www.sciencedirect.com/science/article/pii/S0031320314000235

60

GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep Learning. [S.l.]: MIT Press, 2016.
http://www.deeplearningbook.org.

GORDON, N. J.; SALMOND, D. J.; SMITH, A. F. Novel approach to nonlinear/non-gaussian
bayesian state estimation. In: IET. IEE proceedings F (radar and signal processing). [S.l.],
1993. v. 140, n. 2, p. 107–113.

GREWAL, M. S.; WEILL, L. R.; ANDREWS, A. P. Global positioning systems, inertial
navigation, and integration. Hoboken, NJ, USA: John Wiley & Sons, 2007. ISBN
9780470041901.

HUANG, S.; DISSANAYAKE, G. Robot localization: An introduction. In: . Wiley
Encyclopedia of Electrical and Electronics Engineering. Hoboken, NJ, USA: John Wiley &
Sons, Ltd, 2016. p. 1–10. ISBN 9780471346081. Disponível em: https://onlinelibrary.wiley.com/
doi/abs/10.1002/047134608X.W8318.

HUANG, Y. et al. Real-time passive source localization: A practical linear-correction least-
squares approach. IEEE transactions on Speech and Audio Processing, IEEE, v. 9, n. 8, p.
943–956, 2001.

JAMES, G. et al. An Introduction to Statistical Learning: With Applications in R. [S.l.]:
Springer Publishing Company, Incorporated, 2014. ISBN 1461471370.

KALAITZAKIS, M. et al. Fiducial markers for pose estimation. Journal of Intelligent & Robotic
Systems, Springer, v. 101, n. 4, p. 1–26, 2021.

KALAITZAKIS, M. et al. Experimental comparison of fiducial markers for pose estimation. In:
2020 International Conference on Unmanned Aircraft Systems (ICUAS). [S.l.: s.n.], 2020. p.
781–789.

KALMAN, R. E. A new approach to linear filtering and prediction problems. Journal of
Basic Engineering, v. 82, n. 1, p. 35–45, 03 1960. ISSN 0021-9223. Disponível em:
https://doi.org/10.1115/1.3662552.

KASPAROV, G. Deep thinking: where machine intelligence ends and human creativity
begins. [S.l.]: Hachette UK, 2017.

KENDALL, A.; GRIMES, M.; CIPOLLA, R. Posenet: A convolutional network for real-time 6-dof
camera relocalization. In: Proceedings of the IEEE international conference on computer
vision. [S.l.: s.n.], 2015. p. 2938–2946.

KERDJIDJ, O. et al. Uncovering the potential of indoor localization: Role of deep and transfer
learning. IEEE Access, v. 12, p. 73980–74010, 2024.

KLEIN, L. C. Intelligent sensorization system using ML applied to robotics. 2023.
Dissertação (Mestrado) — Polytechnic Institute of Bragança (IPB), 2023.

KLEIN, L. C. et al. Using machine learning approaches to localization in an embedded system
on robotatfactory 4.0 competition: A case study. In: 2023 IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC). [S.l.: s.n.], 2023. p. 69–74.

KLEIN, L. C. et al. A machine learning approach to robot localization using fiducial markers in
robotatfactory 4.0 competition. Sensors, v. 23, n. 6, 2023. ISSN 1424-8220. Disponível em:
https://www.mdpi.com/1424-8220/23/6/3128.

KLEIN, L. C. et al. Deep learning-based localization approach for autonomous robots
in the robotatfactory 4.0 competition. In: PEREIRA, A. I. et al. (Ed.). Optimization, Learning

http://www.deeplearningbook.org
https://onlinelibrary.wiley.com/doi/abs/10.1002/047134608X.W8318
https://onlinelibrary.wiley.com/doi/abs/10.1002/047134608X.W8318
https://doi.org/10.1115/1.3662552
https://www.mdpi.com/1424-8220/23/6/3128

61

Algorithms and Applications. Cham: Springer Nature Switzerland, 2024. p. 181–194. ISBN
978-3-031-53036-4.

KLEIN, L. C. et al. Optimization of machine learning models applied to robot localization in
the robotatfactory 4.0 competition. In: PEREIRA, A. I. et al. (Ed.). Optimization, Learning
Algorithms and Applications. Cham: Springer Nature Switzerland, 2024. p. 112–125. ISBN
978-3-031-77425-6.

KOTSIANTIS, S. B. Decision trees: a recent overview. Artificial Intelligence Review, Springer,
v. 39, n. 4, p. 261–283, 2013.

KOÇOĞLU, F. Research on the success of unsupervised learning algorithms in indoor location
prediction. International Advanced Researches and Engineering Journal, v. 6, p. 148–153,
08 2022.

KUHN, M. Applied predictive modeling. [S.l.]: Springer, 2013.

LAUER, M.; LANGE, S.; RIEDMILLER, M. Calculating the perfect match: An efficient and
accurate approach for robot self-localization. In: BREDENFELD, A. et al. (Ed.). RoboCup 2005:
Robot Soccer World Cup IX. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. p. 142–153.
ISBN 978-3-540-35438-3.

LECUN, Y.; BENGIO, Y.; HINTON, G. Deep learning. nature, Nature Publishing Group, v. 521,
n. 7553, p. 436–444, 2015.

MAGNUSSON, M. The three-dimensional normal-distributions transform: an efficient
representation for registration, surface analysis, and loop detection. 2009. Tese
(Doutorado) — Örebro universitet, 2009.

MAGNUSSON, M. et al. Evaluation of 3d registration reliability and speed-a comparison of icp
and ndt. In: IEEE. 2009 IEEE International Conference on Robotics and Automation. [S.l.],
2009. p. 3907–3912.

MALLIK, M.; DAS, S.; CHOWDHURY, C. Rank based iterative clustering (rbic) for indoor
localization. Engineering Applications of Artificial Intelligence, v. 121, p. 106061,
2023. ISSN 0952-1976. Disponível em: https://www.sciencedirect.com/science/article/pii/
S0952197623002452.

MAYBECK, P. S. The kalman filter: An introduction to concepts. In: Autonomous robot
vehicles. [S.l.]: Springer, 1990. p. 194–204.

MCCULLOCH, W. S.; PITTS, W. A logical calculus of the ideas immanent in nervous activity.
The bulletin of mathematical biophysics, Springer, v. 5, n. 4, p. 115–137, 1943.

MOCKUS, J. On bayesian methods for seeking the extremum. In: Proceedings of the IFIP
Technical Conference. [S.l.: s.n.], 1974. p. 400–404.

MONTGOMERY, D. C. Design and analysis of experiments. [S.l.]: John wiley & sons, 2017.

MURTAGH, F. Multilayer perceptrons for classification and regression. Neurocomputing,
v. 2, n. 5, p. 183–197, 1991. ISSN 0925-2312. Disponível em: https://www.sciencedirect.com/
science/article/pii/0925231291900235.

NATEKIN, A.; KNOLL, A. Gradient boosting machines, a tutorial. Frontiers in Neurorobotics,
v. 7, 2013. ISSN 1662-5218. Disponível em: https://www.frontiersin.org/articles/10.3389/fnbot.
2013.00021.

https://www.sciencedirect.com/science/article/pii/S0952197623002452
https://www.sciencedirect.com/science/article/pii/S0952197623002452
https://www.sciencedirect.com/science/article/pii/0925231291900235
https://www.sciencedirect.com/science/article/pii/0925231291900235
https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021
https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021

62

NEBEKER, N. F. L. External Robot Localization in 6DoF. 10 2015. Dissertação (Mestrado)
— Faculdade de Engenharia da Universidade do Porto (FEUP), 10 2015. Disponível em:
https://repositorio-aberto.up.pt/handle/10216/80454.

NESSA, A. et al. A survey of machine learning for indoor positioning. IEEE Access, v. 8, p.
214945–214965, 2020.

OGISO, S. et al. Self-localization method for mobile robot using acoustic beacons. ROBOMECH
Journal, Springer, v. 2, n. 1, p. 1–12, 2015.

PANIGRAHI, P. K.; BISOY, S. K. Localization strategies for autonomous mobile robots:
A review. Journal of King Saud University - Computer and Information Sciences,
v. 34, n. 8, Part B, p. 6019–6039, 2022. ISSN 1319-1578. Disponível em: https:
//www.sciencedirect.com/science/article/pii/S1319157821000550.

QUINLAN, J. R. Induction of decision trees. Machine learning, Springer, v. 1, n. 1, p. 81–106,
1986.

REKLEITIS, I.; DUDEK, G.; MILIOS, E. Probabilistic cooperative localization and mapping in
practice. In: IEEE. 2003 IEEE International Conference on Robotics and Automation (Cat.
No. 03CH37422). [S.l.], 2003. v. 2, p. 1907–1912.

RUMELHART, D. E.; HINTON, G. E.; WILLIAMS, R. J. Learning representations by
back-propagating errors. nature, Nature Publishing Group, v. 323, n. 6088, p. 533–536, 1986.

RUSINKIEWICZ, S.; LEVOY, M. Efficient variants of the icp algorithm. In: IEEE. Proceedings
third international conference on 3-D digital imaging and modeling. [S.l.], 2001. p.
145–152.

RUSSELL, S.; NORVIG, P. Artificial Intelligence: A Modern Approach. 3. ed. [S.l.]: Prentice
Hall, 2010.

SATTLER, T.; LEIBE, B.; KOBBELT, L. Fast image-based localization using direct 2d-to-3d
matching. In: IEEE. 2011 International Conference on Computer Vision. [S.l.], 2011. p.
667–674.

SIEGWART, R.; CHLI, M.; LAWRANCE, N. Autonomous Mobile Robots MOOC. 2014.
https://www.edx.org/course/autonomous-mobile-robots-ethx-amrx-1.

SIMON, D. Evolutionary optimization algorithms. [S.l.]: John Wiley & Sons, 2013.

SIMONYAN, K.; ZISSERMAN, A. Very deep convolutional networks for large-scale image
recognition. In: . [S.l.]: Computational and Biological Learning Society, 2015. p. 1–14.

SNOEK, J.; LAROCHELLE, H.; ADAMS, R. P. Practical bayesian optimization of machine
learning algorithms. Advances in neural information processing systems, v. 25, 2012.

SOBREIRA, H. et al. Map-matching algorithms for robot self-localization: A comparison between
perfect match, iterative closest point and normal distributions transform. Journal of Intelligent
& Robotic Systems, v. 93, 03 2019.

STACHNISS, C. Robot Localization - An Overview. 2021. Disponível em: https:
//www.youtube.com/watch?v=8VJ-A9OlhAE&ab_channel=CyrillStachniss.

SUN, S. et al. A survey of optimization methods from a machine learning perspective. IEEE
Transactions on Cybernetics, v. 50, n. 8, p. 3668–3681, 2020.

https://repositorio-aberto.up.pt/handle/10216/80454
https://www.sciencedirect.com/science/article/pii/S1319157821000550
https://www.sciencedirect.com/science/article/pii/S1319157821000550
https://www.edx.org/course/autonomous-mobile-robots-ethx-amrx-1
https://www.youtube.com/watch?v=8VJ-A9OlhAE&ab_channel=CyrillStachniss
https://www.youtube.com/watch?v=8VJ-A9OlhAE&ab_channel=CyrillStachniss

63

SZEGEDY, C. et al. Going deeper with convolutions. In: 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). [S.l.: s.n.], 2015. p. 1–9.

TORREY, L.; SHAVLIK, J. Transfer learning. In: Handbook of research on machine learning
applications and trends: algorithms, methods, and techniques. [S.l.]: IGI global, 2010. p.
242–264.

WANG, J.; TAKAHASHI, Y. Indoor mobile robot self-localization based on a low-cost light
system with a novel emitter arrangement. ROBOMECH Journal, SpringerOpen, v. 5, n. 1, p.
1–17, 2018.

WILBERS, D.; MERFELS, C.; STACHNISS, C. Localization with Sliding Window Factor Graphs
on Third-Party Maps for Automated Driving. In: Proc. of the IEEE Intl. Conf. on Robotics &
Automation (ICRA). [S.l.: s.n.], 2019.

WU, J. et al. Hyperparameter optimization for machine learning models based on bayesian
optimizationb. Journal of Electronic Science and Technology, v. 17, n. 1, p. 26–40,
2019. ISSN 1674-862X. Disponível em: https://www.sciencedirect.com/science/article/pii/
S1674862X19300047.

YANASE, R. et al. Lidar-and radar-based robust vehicle localization with confidence estimation
of matching results. Sensors, MDPI, v. 22, n. 9, p. 3545, 2022.

YANG, L.; SHAMI, A. On hyperparameter optimization of machine learning algorithms: Theory
and practice. Neurocomputing, v. 415, p. 295–316, 2020. ISSN 0925-2312. Disponível em:
https://www.sciencedirect.com/science/article/pii/S0925231220311693.

YAZICI, M. T.; BASURRA, S.; GABER, M. M. Edge machine learning: Enabling smart internet
of things applications. Big Data and Cognitive Computing, v. 2, n. 3, 2018. ISSN 2504-2289.
Disponível em: https://www.mdpi.com/2504-2289/2/3/26.

ZHANG, Q. Some implementation aspects of sliding window least squares algorithms. IFAC
Proceedings Volumes, Elsevier, v. 33, n. 15, p. 763–768, 2000.

https://www.sciencedirect.com/science/article/pii/S1674862X19300047
https://www.sciencedirect.com/science/article/pii/S1674862X19300047
https://www.sciencedirect.com/science/article/pii/S0925231220311693
https://www.mdpi.com/2504-2289/2/3/26

	Dedication
	Acknowledgements
	Epigraph
	Resumo
	Abstract
	List of Algorithms
	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	Summary
	1 Introduction
	1.1 Initial considerations
	1.2 Context: RobotAtFactory 4.0 Competition
	1.2.1 Robot
	1.2.2 Real Environment
	1.2.3 Realistic Simulator

	1.3 Motivation and Objectives
	1.4 Structure

	2 Literature Review
	2.1 Localization
	2.1.1 Markov Localization
	2.1.2 Monte Carlo Localization
	2.1.3 Kalman Filter
	2.1.4 Least Square
	2.1.5 Slidding Window Least Squares
	2.1.6 Perfect Match
	2.1.7 Iterative Closest Point
	2.1.8 Normal Distribution Transform
	2.1.9 Fiducial Markers approach
	2.1.10 Artificial Intelligence approaches
	2.1.11 Alternatives approaches

	2.2 Machine Learning
	2.2.1 Artificial Neural Networks

	2.3 Machine Learning Optimization
	2.3.1 Bayesian Optimization

	3 Previous Work
	3.1 Motivation and Goals
	3.2 Methodology
	3.2.1 Data Collection
	3.2.2 Datasets Creation
	3.2.3 Implementation

	3.3 Results and Discussions
	3.4 Part 1: Feasibility of ML in embedded systems
	3.5 Part 2: Quality of ML models
	3.5.1 Approach 1: ML techniques using fiducial markers
	3.5.2 Approach 2: CNN technique

	3.6 Part 3: Implementation in the Real Scenario
	3.7 Conclusions

	4 Methodology
	5 Results and Discussions
	6 Conclusions
	References

