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“We have found it of paramount importance that in order to progress, we must recognize our

ignorance and leave room for doubt.”

Richard P. Feynman (*1918, †1988)



Abstract

NARDI, Vanessa Glück. A numerical study of particle settling in Power–law fluids

using lattice – Boltzmann method. 2018. 108 pp. Dissertation – Postgraduate Program in

Mechanical and Materials Engineering, Federal University of Technology – Paraná. Curitiba,

2018

Sedimentation of individual particles immersed in non-Newtonian fluid is of great industrial

interest. Specifically in the oil and gas industry, cuttings generated from the drilling process

must be constantly removed in order to properly clean the drill bit region. Thus, cuttings

sedimentation must be avoided so that additional complications such as drill blocking and

an unwanted operational stop are avoided. In this way, the drilling fluid must be carefully

designed so that the it can fulfill these and others specifications. Therefore, it is of great

importance to understand the dynamics of particles sedimentation in drilling muds. In this

work, a numerical solution for particle settling in a non-Newtonian fluid is presented. The

problem consists of a 2D particle released from rest in a quiescent non-Newtonian media

within a fixed container. The fluid viscous behavior is represented by a Power-low expression.

The aim of the present work was to develop a program able to adequately represent particle

motion immersed in Power-law fluid. Based on the literature review, the problem was solved

via a direct force immersed boundary- lattice Boltzmann method and its implementation

was done via FORTRAN programming language. The Power-law effect was incorporated in

the code by means of the adaptive viscosity method. Through verification problems, it was

shown that the developed program was able to satisfactorily represent the particle settling

dynamics in Newtonian and Power-Law fluids. A parametric study was then performed

varying the particle diameter, d, Power-law index, n and particle/fluid density ratio, ρr. In

general, regardless of the d and ρr combination, an increase of shear-thinning behavior leads

to higher settling velocities. Results were then written in dimensionless form in such a way

that results for the generalized particle Reynolds number, Repl,T , and the drag coefficient,

CD,T , experienced by the particle at its terminal velocity, are based only on the Power-law

index and on the generalized Archimedes number Arpl.

Keywords: sedimentation, Power-law fluid, drag coefficient, Archimedes number, lattice-

Boltzmann method.



Resumo

NARDI, Vanessa Glück. Investigação numérica da sedimentação de partícula em

fluido de lei de Potência utilizando o método lattice – Bolzmann. 2018. 108 f. Disser-

tação – Programa de Pós-Graduação em Engenharia Mecânica e de Materiais, Universidade

Tecnológica Federal do Paraná. Curitiba, 2018

Sedimentação de partículas imersas em fluidos não newtonianos é de grande interesse

industrial. Especificamente na indústria de petróleo, os cascalhos oriundos do processo de

perfuração da rocha devem ser constantemente removidos de forma a limpar adequada-

mente a região da broca. Sendo assim, a sedimentação de cascalhos deve ser evitada

de forma que complicações adicionais como o bloqueio da broca e uma parada opera-

cional não programada sejam evitadas. Dessa forma, as propriedades reológicas do fluido

de perfuração devem ser cuidadosamente arranjadas para que o fluido possa cumprir

essas, dentre outras, funções. Portanto, é de grande importância entender a dinâmica

da sedimentação de partículas em fluidos de perfuração. Neste trabalho, uma solução

numérica para investigação da sedimentação de partículas em fluidos não newtonianos foi

proposta. O problema consiste em uma partícula 2D liberada a partir do repouso em um

fluido não-newtoniano representado por uma expressão de lei de potência. O objetivo do

presente trabalho foi desenvolver um programa capaz de representar adequadamente o

movimento de partículas imersas em um fluido Power-law. Com base na revisão da liter-

atura, o problema foi resolvido através do método lattice-Boltzmann acoplado ao método da

fronteira imersa e sua implementação foi feita via linguagem FORTRAN. O efeito Power-law

foi incorporado ao programa através do método da viscosidade adaptativa. Por meio de

problemas de verificação, foi comprovado que o programa desenvolvido foi capaz de repre-

sentar satisfatoriamente a dinâmica de sedimentação de partículas em fluidos Newtonianos

e em fluidos Power-Law. Um estudo paramétrico foi então realizado variando o diâmetro

das partículas, d, o índice de lei de potência, n e razão de densidades partícula / fluido, ρr.

Em geral, independentemente da combinação de d e ρr, um aumento do comportamento

pseudoplásico leva a maiores velocidades de sedimentação. Os resultados foram então

escritos na forma adimensional, de tal forma que o número de Reynolds generalizado, Repl,T
e o coeficiente de arrasto, CD,T , experimentados pela partícula em sua velocidade terminal ,

pudessem ser escritos em função de n e do número de Arquimedes generalizado, Arpl.

Palavras-chave: sedimentação, Power-law, coeficiente de arrasto, número de Arquimedes,

método lattice-Boltzmann.
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a Acceleration vector [m/s2]

Ap Projected area [m2]
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e local particle velocity [m/s]

f Distribution function [–]
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FB Force acting on the boundary [N ]
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Fg,b Gravitational force [N ]
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FB Buoyant force [N ]

fw Wall correction factor [–]
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H Height [m]
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If Moment of inertia of the displaced fluid [kg.m2]

L Width [m]
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Mf Mass of the displaced fluid [kg]
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nk Set of Boolean variables [–]



NL Number of Lagrangian nodes [–]

p Pressure [Pa]

R = L/d Aspect ratio between particle and container width [–]

r Radius [m]

Re Reynolds number [–]

Repl Generalized Reynolds number [–]

Repl,T Generalized Reynolds number at terminal settling velocity [–]

S Particle surface [m2]

t Time [s]

u velocit vector [m/s2]

UB Boundary velocity vector [m/s]

Uc Particle center velocity vector [m/s]

v Relative velocity [m/s]

Vp ,Vs Particle volume [m3]

VT Particle vertical terminal velocity [m/s]

vp Particle translational velocity [m/s]

W Weight [N ]

wk Weighting factors [–]

x The horizontal coordinate [m]

Xc Particle center position vector [m]

xp Particle position vector [m]
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y The vertical coordinate [m]

Y Power–law correction factor for Drag coefficient [–]
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δ Kronecker delta [–]

δt Time step [s]

∆ Increment [–]

η Apparent viscosity [Pa.s]

λ Mean relaxation time [s]

µ Dynamic viscosity [Pa.s]

γ̇ Shear rate tensor [s−1]

γ Strain tensor [–]

τ Shear stress tensor [Pa]

Ω collision operator [–]

ωc Angular velocity of the particle [rad/s]



ρ Density [kg/m3]

σ Momentum fkux tensor [Pa]

τ Dimensionless mean relaxation time [–]

Subscripts and superscripts

( )s Solid

( )f Fluid

( )x In the x direction

( )y In the y direction

( )EQ Equilibrium
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( )l Lattice unit

Abbreviations

2D Two–dimensional

3D Three–dimensional

CFD Computational Fluid Dynamics

LBM Lattice–Boltzmann Method

IBM Immersed Boundary Method

IB–LBM Immersed Boundary – Lattice–Boltzmann Method

SRT Single relaxation time

LBE Lattice–Boltzmann Equation



Contents

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2 Drilling Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3 Statement of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 THEORETICAL BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1 Rheology of non−Newtonian fluids . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.1 Generalized Newtonian fluids (GNF) . . . . . . . . . . . . . . . . . . . . . . . 26
2.2 Motion of a single particle in a fluid . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Introduction to the Numerical approach . . . . . . . . . . . . . . . . . . . . . 30

2.3.1 Immersed Boundary Method (IBM) . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.2 Lattice Boltzmann Method (LBM) . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.3 Immersed Boundary − Lattice Boltzmann Method (IB−LBM) . . . . . . . . 32

3 LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1 Settling particles in Newtonian fluids . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Settling suspensions in non-Newtonian fluids . . . . . . . . . . . . . . . . . 35

3.2.1 Non-yield stress fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 The Lattice-Boltzmann method (LBM) . . . . . . . . . . . . . . . . . . . . . . 38

3.3.1 LBM technique for fluid-solid interface . . . . . . . . . . . . . . . . . . . . . . 38
3.3.2 LBM approach for non-Newtonian effects . . . . . . . . . . . . . . . . . . . . 40
3.4 Contribution of the present work . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 PROBLEM FORMULATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.1 Geometry and boundary conditions . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Fluid phase balance equations . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Particle motion equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Particle-fluid coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5 Flow defnition and dimensionless numbers . . . . . . . . . . . . . . . . . . . 46

4.6 Chapter enclosure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 NUMERICAL METHOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.1 From LGA to LBM - the lattice-Boltzmann equation . . . . . . . . . . . . . . . 49

5.2 Collision Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3 Discretized Boltzmann Equation - the lattice-Boltzmann method . . . . . . . 51

5.3.1 The equilibrium function fEQ . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.4 Macroscopic quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54



5.4.1 The recovering of Navier-Stokes equation . . . . . . . . . . . . . . . . . . . 56
5.5 The forcing term Ft,k and the Immersed Boundary Method . . . . . . . . . . 56

5.5.1 Calculating the force density, f . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.6 Extension of IB-LBM to moving boundary problems . . . . . . . . . . . . . . 59

5.7 Non-Newtonian approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.8 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.8.1 Bounce-back . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.8.2 Zou-He Velocity and Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.9 Mesh sensitivity test approach . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.10 Chapter enclosure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 VERIFICATION PROBLEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.1 Lid-driven cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.2 Power-Law fluid flow between parallel plane plates . . . . . . . . . . . . . . . 71

6.3 Newtonian flow past over a circular cylinder . . . . . . . . . . . . . . . . . . 73

6.3.1 Steady flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.3.2 Unsteady flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.4 Particle settling in Newtonian fluid . . . . . . . . . . . . . . . . . . . . . . . . 78

6.5 Particle settling in Power-law fluid . . . . . . . . . . . . . . . . . . . . . . . . 81

6.6 Closing remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.1 Part 1: Parametric study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.1.1 Domain height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.1.2 Settling velocity and particle trajectory as a function of n . . . . . . . . . . . 84
7.1.3 Particle diameter influence, d . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.1.4 Particle/fluid density ratio influence . . . . . . . . . . . . . . . . . . . . . . . 86
7.1.5 Wall effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.1.5.1 Simulated drag coefficient × standard drag curve for Newtonian fluid . . . . . . . 89

7.1.6 Simulated × Calculated CD,T . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.2 Part 2: Generalized results for CD,T and Repl,T as a function of Arpl and n . 91

7.2.1 Unsteady flow at high Arpl and low n . . . . . . . . . . . . . . . . . . . . . . 93
7.3 Closing remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

8 CONCLUSIONS AND RECOMMENDATIONS . . . . . . . . . . . . . . . . . . . 96
8.1 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

APPENDIX A – MESH SENSITIVITY TESTS . . . . . . . . . . . . . . . . . . . 103
A.1 Lid-driven cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

A.2 Power-law flow between plates . . . . . . . . . . . . . . . . . . . . . . . . . . 103

A.3 Flow past over a cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105



A.4 Settling particle in Power-law fluid . . . . . . . . . . . . . . . . . . . . . . . . 106

APPENDIX B – TRANSLATION FROM PHYSICAL TO LATTICE UNITS . . . . 109



18

1 Introduction

1.1 Context

The transport of solids by fluids is a relevant process in several areas, such as in the

pharmaceutical industry, food processing, mining and oil exploration (GOYAL; DERKSEN,

2012). In general, solid−liquid suspensions are a heterogeneous mixture of solid particles in

a liquid. When the particles are heavier than the liquid, they tend to settle and accumulate

at the bottom of the vessel or pipe and these are called settling suspensions (SILVA et al.,

2015).

Specifically in the oil industry, when a wellbore is drilled in order to reach an oil reservoir,

fragments are produced while the drill bit cuts the rock, forming a heterogeneous mixture

of drilling fluid and cuttings, as shown in Fig.1.1 detail. These cuttings must be constantly

removed from the drill bit region by the drilling fluid in order to clean the wellbore properly,

thus avoiding further complications, such as blocking the drill bit (NGUYEN, 1996).

1.2 Drilling Process

The rotary drilling method has been effectively used since the beginning of the 20th

century in the oil and gas industry (NGUYEN, 1996). In this drilling technique, a downward

vertical force is applied to the drill bit as it rotates around its own axis. This combined

movement crushes the rock formation and the cuttings are carried by the drilling fluid, which

is continuously circulated through a hollow pipe. When the drilling fluid returns to the surface,

the cuttings are removed and the fluid is pumped back. The most significant operations

involved in the drilling fluid circulation process are shown in Fig. 1.1 and discussed hereafter.

There are two different ways to circulate the drilling mud, the direct and reverse circulation.

In the direct circulation, the mud flows down−hole through the drill pipe (1). When the fluid

reaches the bottom of the hole, it passes over the drill bit (2) and then returns by the annular

region (3) carrying cuttings up to surface, as shown in Fig. 1.1. In the reverse circulation,

the mud flows down through the annular region and then up through the drill pipe. Either

way, the mud on the surface is directed to a mud return line (4) and before re−entering

the wellbore the drilled cuttings are removed from the drilling mud by filtration (5). The

mud flow is therefore a continuous circulating system and to keep proper functioning of the

entire system, the drilling mud has to comply operational features and must fulfill some very

important functions, such as (NGUYEN, 1996):

a) Cooling the drill bit and lessening drill pipe friction;
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b) Consolidating the wall of the wellbore;

c) Preventing inflows of formation fluids into the wellbore;

d) Providing geological information;

e) Transporting cuttings to the surface;

f) Suspending cuttings when drilling has stopped.

(1)

(2)

(3)

(5)
(4) Pump

Cuttings

Cuttings

Drill bit

Drilling
Fluid

Annular
region

Formation

Drill pipe 

A

Detail A

Figure 1.1 – Illustration of the drilling process. The drilling fluid is added to the wellbore by
the pump trough the drill pipe (1), it passes over the drill bit (2) and returns
through the annular region (3) carrying cuttings. Then, the drilling fluid is redirect
to a return line (4) and the cuttings are filtered off (5) and the drilling fluid is
pumped back to the wellbore. In detail is shown a heterogeneous mixture of
drilling fluid and cuttings resulting from the drilling process.

The drilling fluid is usually a mixture of water, clay and weighting materials and due to its

importance in the drilling process, its rheological properties must be carefully arranged to

meet all the requirements listed above. Therefore, the drilling fluid is a complex material that

presents thixo−elasto−viscoplastic behavior, that is, it presents elastic, viscoplastic and time

dependent properties (thixotropy). Furthermore, in the range of shear rate of interest, drilling

fluids are also known for exhibit shear−thinning behavior, which is represented adequately by
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a Power−law model. These are fluids that present strain−dependent viscosity with decrease

viscosity with increasing strain rate.

1.3 Statement of the problem

One of the most important functions of a drilling fluid is to carry cuttings out of the drill

bit region as quickly as possible. Generally, due the greater density of the cuttings when

compared with the drilling fluid, cuttings tend to settle and travel with a lower velocity than

the drilling fluid itself. For efficient hole cleaning, much effort has been done to improve the

drilling fluid ability to transport cuttings from the bottom to the surface of the wellbore. It is

therefore important to be able to predict accurately the settling and transport of particles

moving through a drilling fluid.

Thus, the knowledge of settling cuttings dynamics in drilling fluids is of great importance.

For this reason, the fundamental problem addressed in this work is the settling of a particle

immersed in a non−Newtonian fluid. Fig. 1.2 shows a schematic description of the problem.

When the drilling fluid is not circulating the cuttings begin to settle. On the left side of Fig.

1.2 it is shown the cuttings, represented by circular particles, carried by fluid during drilling

fluid circulation. The right side of Fig. 1.2 shows cuttings sedimentation due to gravitational

force during an operational stop, which is the stop of drilling fluid circulation for operational

reasons, such as wellbore cementation.

Given the complex interaction between drilling fluid and cuttings, simplifications were

made so that the present study could be conducted. The main simplifications are:

a) The problem is considered to be two−dimensional;

b) The cuttings are considered to be 2D homogeneous particles of constant diameter;

c) Only sedimentation of a single particle is considered. Thus, interaction between

particles such as collision and particle aggregation are not availed in the present

work;

d) The drilling fluid is considered to present shear−thinning rheological behavior, which

is represented by a Power−law expression;

e) The particle interaction with the drill pipe and the formation are not considered;

f) The particle is released from rest in a quiescent fluid.

The simplified problem is shown in Fig. 1.3. The particle settling problem was approached

by numerical techniques conducted by Computational Fluid Dynamics (CFD) based on

Lattice−Boltzmann Method (LBM) coupled with Immersed Boundary Method (IBM).



Chapter 1. Introduction 21

Mud circulation Operational Stop

S
ta
nd
p
ip
e

g

Figure 1.2 – A schematic description of the phenomenon. Cuttings settling under gravity, g,
during an operational stop is shown at the left side, while the right side shows
cuttings transportation from the drill bit region the the surface.

d

g

Settling 

particle

Power-law fluid

V

Figure 1.3 – Simplified scheme for a 2D rigid particle of diameter d, release from rest in a
quiescent Power−law fluid with settling velocity ~V due gravity effect g.



Chapter 1. Introduction 22

1.4 Objectives

The objective of this study is to develop a program that implements a Lattice−Boltzmann

method (LBM) that is capable of solving 2D problems of particle settling in Power−law fluid.

This is done to improve understanding of the settling behaviour of particles in Power−law

fluids and to determine the effects of fluid rheological properties on the motion of the settling

particle, which is quantified by the particle terminal settling velocity and the drag coefficient

experienced by the particle at its terminal velocity.

In order to achieve the main objective of this work, algorithms for applicable 2D non−Newtonian

flow problems with stationary and moving boundary were developed as verification cases.

The numerical code was written in FORTRAN 90 and the main points of the development

were:

a) Application of LBM to solve Power−Law fluid flow. To do so, Power−law fluid flow

between parallel plates were considered;

b) The coupling of Immersed Boundary Method and LBM (IB−LBM) to solve complex

stationary boundary problems covering solid−fluid flows. For this, a two−dimensional

Newtonian fluid flow past over a cylinder has been considered;

c) Application of IB−LBM to solve moving boundary. Here, the settling of a particle in

Newtonian fluid was fulfilled;

d) Extension of IB−LBM to solve moving boundary problems with Power−law fluids. In

this final topic, the settling of a particle in Power−law fluid was accomplished.

The mathematical formulation and the numerical procedure using IB−LBM are detailed

in the further chapters.

1.5 Outline

This work is divided into 8 parts. In Chapter 1 the aim and objectives of this research

project were presented. The framework that have been set for the achievement of these

objectives is introduced.

Chapter 2 presents a theoretical background necessary for the development of this

project. Basic concepts covering the issues involved in the settling of particles and basic

rheology are presented and an introduction to non−Newtonian fluids is given.

A comprehensive literature review is presented in Chapter 3. The issues associated with

non−newtonian fluids are discussed and an evaluation of relevant results published in the

literature covering the settling behavior of particles in different fluids is presented.

Chapter 4 presents detailed characteristics of the problem formulation and the mathemat-

ical formulation applied to the problem is described. The numerical procedure is discussed in
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Chapter 5, where the main concepts of the LBM are presented and the immersed boundary

method is described, as well as the approach used for treat Power−law fluids in LBM.

Validations of the developed program are presented in Chapter 6, where results for

lid−driven cavity, Power−law flow between parallel plates, flow past over a circular cylinder

and particle settling are compared with reference literature data.

A parametric study for particle settling in Power−law fluid is conducted in Chapter 7.

Results for different configurations of particle and fluid properties are discussed.

Conclusions and suggestions for future work are presented in Chapter 8.
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2 Theoretical background

This chapter provides the essential theoretical information that is recurrently used in the

following chapters. It includes the essential features of non-Newtonian fluid mechanics and

the motion of a single particle in a fluid.

2.1 Rheology of non−Newtonian fluids

The study of rheology concerns the flow and deformation of matter while subjected to

shear stress forces (MORRISON, 2001). For Newtonian fluids the relationship between

stress and deformation is given by Newton’s law of viscosity, expressed by:

τ = µγ̇ (2.1)

where τ is the shear stress tensor, γ̇ the shear strain rate tensor and µ is the Newtonian

viscosity which is a constant of proportionality between the shear stress and the shear strain

rate.

For ideal solid elastic materials, the shear stress is proportional to the imposed strain as

stated by the Hooke’s law (MORRISON, 2001), given by:

τ = Gγ (2.2)

where γ is the strain tensor and G is the elastic modulus.

Different materials present distinctive deformation behavior depending on its internal

structure composition. The relationships between the stress and deformation for most part

of the materials differs from Newton’s law of viscosity and also do not follow Hooke’s law of

elasticity (MORRISON, 2001). Those are called non−Newtonian materials.

Depending on the material and the circumstances, different types of non-Newtonian char-

acteristics may stand out as a response to the stress applied on the material (DESHPANDE

et al., 2010). Each type of non−Newtonian behavior will be discussed below.

According to Deshpande et al. (2010), such materials are conveniently grouped into

three categories:

1. Systems for which the value of the shear strain rate, γ̇, at a point within the fluid is

determined only by the current value of the shear stress, τ , at that point, or vice versa,

these substances are variously known as purely viscous, inelastic, time−independent

or generalized Newtonian fluids (GNF);
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2. Systems for which the relation between τ and γ̇ shows further dependence on the

duration of shearing and kinematic history; these are called time−dependent fluids;

3. Systems that exhibit a blend of viscous fluid−like behavior and of elastic solid−like

behavior. For instance, this class of materials shows partial elastic recovery, recoil,

creep, etc. Accordingly, these are called viscoelastic or elastic−viscous fluids.

2.1.1 Generalized Newtonian fluids (GNF)

As described above, non−Newtonian time−independent fluids are those in which the

shear stress is adequately described as a function only of the shear strain rate. These

fluids are defined as those that cannot be described by Newtonian behavior, or by a single

constant viscosity. Thus, rather than using the term viscosity, rheologists prefer to use the

term apparent viscosity, denoted by η.

The relationship between stress and shear strain rate is analogous to that of Newtonian

fluids, expressed in terms of an apparent viscosity:

τ = η(γ̇)γ̇ (2.3)

where γ̇ is the magnitude of the shear strain rate tensor, given by:

γ̇ =

√
1

2

∑
i

∑
j

γ̇ij γ̇ji (2.4)

Depending on how viscosity changes with shear strain rate the flow behavior may be char-

acterized in different types. The most common behavior of non−Newtonian time−independent

fluids is shear−thinning, or pseudoplasticity, where the apparent viscosity decreases with

increasing shear strain rate. The opposite effect, where the apparent viscosity increases with

increasing shear strain rate is termed shear−thickening and is less frequently encountered

(MORRISON, 2001). There are a few models available in the literature describing both

phenomena. Probably, as shown in the literature review in Chapter 3, the most widely used

model, and also the one used in this work, is the Power−law model, in which the apparent

viscosity is given by:

η(γ̇) = mγ̇n−1 where if


n > 1⇒ Shear−thickening

n = 1⇒ Newtonian

n < 1⇒ Shear−thinning

(2.5)

where m is the consistency index and n is the Power−law index, which are constants

that must be fit to experimental data. Other common rheological models that describe

pseudoplasticity, such as the Carreau and the Yasuda models, are listed in Tab. 2.1.
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Table 2.1 – Other rheological equations for pseudoplastic fluids.

Authors Equation Notes

Carreau (1972)
Pseudoplastic

η = η0

[
1 + (kγ̇)2

]|m−1|/2 η0 = limiting zero−shear viscosity
k,m= constants

Yasuda et.al (1981)
Pseudoplastic

η − η∞
η0 − η∞

=
1

1 + (kγ̇m)
n−1
m

η∞ = limiting high−shear viscosity
k,m, n = constants

Figure 2.1 schematically shows flow curves for Newtonian, shear–thinning and shear–

thickening fluids. It is important to note, as mentioned by Fernandes (2016), that this

classification of non–Newtonian time–independent fluids is an idealization of the behavior

of these materials. It should be noted that most polymeric materials and solutions possess

a combination of different types of rheological behaviors. As a result, they are generally

classified as rheological–complex fluids. Indeed, according to Ewoldt and McKinley (2017)

both Bingham and Maxwell emphasized the need for careful consideration of the relevant

time scales and forces scales for distinguishing between the different rheological responses

of many real−world materials. Thus, such materials are therefore best described, in the

most general cases, as thixotropic elasto−visco−plastic materials (EWOLDT; MCKINLEY,

2017).

Shear-thinning

Shear strain rate 

Newtonian

Shear-thickening

S
h

e
a

r
S

tr
e

s
s

Figure 2.1 – Viscous behavior of Newtonian, shear−thinning and shear−thickening materi-
als (adapted from Deshpande et al. (2010)).
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2.2 Motion of a single particle in a fluid

When a particle is released in an infinite quiescent fluid, it is subjected to gravitational,

buoyant and drag forces. If the particle is denser than the fluid, the gravitational force is

initially dominant and accelerates the particle downwards. As the particle velocity increases,

drag force rises and the particle acceleration decreases until it moves at a constant velocity,

known as terminal velocity (CHHABRA, 2006).

The forces acting on a spherical particle immersed in an infinite medium are shown in Fig.

2.2. FD is the drag force, FB the buoyant force, W the particle weight and d is the particle

diameter.

d

W

FDFB

Figure 2.2 – Buoyant force, FB, drag force, FD, and particle weight, W , acting on a particle
of diamenter d in a fluid.

In particle sedimentation problems the variable of interest is the terminal velocity of the

particle, VT . The terminal velocity is reached when the particle weight balances the buoyant

and drag forces acting on the particle. The challenge in this problem is to determine the drag

force to which the particle is subjected.

Stokes proposed the solution to this problem in 1851. The Stokes law is a fundamental

equation derived from a simplification of the Navier−Stokes equations (given by Eqs. 2.6

and 2.7) that states a balance between the local viscous and pressure forces (STOKES,

1851).

∇ · u = 0 (2.6)

ρf
Du

Dt
= −∇p+ µ∇2u + ρfg (2.7)

where ρf is the density of the fluid, τ is the stress tensor, u is the velocity vector, g is the

gravity vector and p is the pressure.

To solve the problem, Stokes neglected the inertial forces. This condition is only possible

at very low Reynolds numbers (defined in Eq. 2.11) (Re << 1), a typical condition where the
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fluid viscosity is very high and/or the particle settling velocity is very low. Solving the velocity

and pressure fields under these conditions, Stokes found that the drag force, which is the

summation of the drag experienced by the particle caused by pressure and viscous effects,

is given by (CHHABRA, 2006):

FD = 6πµrv (2.8)

where µ is the dynamic viscosity, r is the radius of the spherical particle and v is the flow

velocity relative to the particle.

The dimensionless form of the drag force is known as the drag coefficient CD, given by:

CD =
2FD

Ap (ρfv2)
(2.9)

where Ap is the projected area. The projected area in the case of the settling of a spherical

particle is the sphere cross section, Ap = πR2. ρf is the fluid density and v is the particle

velocity.

Thus, if the inertial effects are negligible in comparison to the viscous effects, the drag

coefficient becomes:

CD =
24

Re
(2.10)

where Re is the Reynolds number:

Re =
ρfvd

µ
(2.11)

where d is the sphere diameter.

The Stokes law was solved by making some assumptions and neglecting some terms,

then integrating viscous and pressure forces over the entire surface of a sphere. So, the

Stokes law is an equation of creeping motion for low Reynolds number flows past a sphere.

Although the Stokes law is highly limited, it has been the basis of many numerical analyses in

the prediction of the settling behavior of spheres, as shown in the literature review presented

in Chapter 3. However, for most applicable situations, inertial effects can not be neglected

and for this reason FD can not be simplified as it is in Eq. 2.8. The literature review reveals

that until the present days, experimental and numerical simulations are performed to help

with the development of new correlations for the drag coefficient, mostly, as a function of the

particle Reynolds number.
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2.3 Introduction to the Numerical approach

In computational fluid dynamics (CFD) is very important to develop effective treatments

of boundary conditions in complex boundaries, whether these are or not moving. During

the past years several researchers have developed numerical methods to accurately treat

this type of boundary condition. This section gives an introduction to one of such methods

named the immersed boundary method, which is used in the present work.

Further, a quick explanation about the lattice−Boltzmann method and an introduction of

its coupling to the immersed boundary method are given. The detailed numerical approach

used in this work is given in Chapter 5.

2.3.1 Immersed Boundary Method (IBM)

The IBM was first proposed by Peskin (1977) and consists of a non−body−conformal

grid method where the flow field is discretized in a fixed Cartesian/Eulerian mesh whereas

the boundaries are represented by a set of Lagrangian points as shown in Fig. 2.3. There

are different ways to impose the boundary condition on IBM. In general the flow governing

equations such as Navier−Stokes equation or Lattice Boltzmann equation, are modified by

adding a boundary force density term to satsisfy the no−slip boundary condition.

Eulerian nodes

Lagrangian 

nodes

Figure 2.3 – Eulerian and Lagrangian nodes in IBM.

Since the pioneering work of Peskin (1977), numerous modifications have been proposed

to the method and now a number of variants of this approach exists which make it hard to

find an unified definition of the method. In the preset work the classification approach by

Kang (2010) is used. According to Kang (2010) there are two main ways to evaluate the

boundary force density term, namely feedback−forcing method and direct−forcing method.

Peskin (1977) used a feedback−forcing IBM for simulating of blood flow in an elastic heart

valve. In this forcing method the boundary force density is computed by Hooke’s law, where
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the force is a function of the surface boundary deformation with the spring constant (DASH,

2014). In the direct−forcing method the forcing term is determined from the error between

the calculated velocity and the desired IB velocity (KANG, 2010).

Further, as reported by Kang (2010), IBMs require interface schemes since the La-

grangian points, in general, do not necessarily match the Eulerian nodes. There are some

options that can be used to treat the interface and they are grouped in two different cate-

gories: diffuse and sharp interface schemes. In the sharp scheme the governing equations

are solved only for the nodes in the fluid domain. For moving immersed boundaries, this

leads to the generation of fresh nodes (nodes that switch from solid to fluid domain) and

dead nodes (nodes that switch from fluid to solid domain) (SEO; MITTAL, 2011). The velocity

on the forcing node is determined by interpolation so that the corresponding boundary node

(in the Lagrangian mesh) may satisfy the no−slip condition.

In the diffuse interface scheme, the boundary force (that is calculated in the Lagrangian

nodes) is distributed into neighboring Eulerian nodes since the forcing points are not on the

Eulerian mesh. To do so, discrete Dirac’s delta functions are used for the force distributions,

which makes the boundary diffuse.

In this work an implicit direct forcing method with diffuse interface scheme is applied and

the detailed explanation and mathematical modeling of the method are given in Chapter 5.

2.3.2 Lattice Boltzmann Method (LBM)

LBM is a discrete computational method based on the kinetic Boltzmann equation (GUO;

SHU, 2013). It considers a typical volume element of fluid to be composed of a collection

of particles that are represented by a particle velocity distribution function for each fluid

component at each lattice point. In this way, LBM solves the evolution of particle density

distribution function with streaming and collision processes where time is counted in discrete

time steps. Thus, it can be said that LBM describes the dynamics of a fluid on a mesoscopic

scale, since it does not describe the behavior of each particle individually as it is done in

microscale simulations, such as in molecular dynamics methods. To better show where

LBM is, consider Fig. 2.4 which shows the hierarchy of scales associated with typical fluid

problems.

At first there is the scale of a fluid atom in a microscopic system governed by Newton’s

equations of motion. Then there is the mesoscopic scale in which individual molecules or

atoms are not tracked but collections of fluid molecules are described by a kinetic theory on

which LBM is based. Finally, there is the macroscale which is a continuum medium where

fluids can be described by conservations laws of mass, momentum and energy (KRÜGER

et al., 2017). In LBM, the macroscopic fluid variables are derived from integration of the

distribution function at the lattice nodes.
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Microscale simulations 
Molecular Dynamics

Atom or molecule

Mesoscale simulations 
Lattice Boltzmann Method

Particle distribution 
function

Macroscale simulations 
Conventional CFD

Discretized 
continuous medium

Figure 2.4 – Hierarchy of scales associated with typical fluid problems.

Although LBM has proved to be a powerful tool for solving problems in fluid dynamics, its

spatial discretization is limited to regular lattices, thus representing complex boundaries in

LBM requires special treatment.

2.3.3 Immersed Boundary − Lattice Boltzmann Method (IB−LBM)

The common feature of using the Cartesian grids motivates the coupling of LBM and

IBM, which is called immersed boundary − lattice−Boltzmann method (IB−LBM). The first

coupled IB−LBM was proposed by Feng and Michaelides (2004) to simulate the motion of

rigid particles. Their approach is similar to the feedback forcing method of Peskin (1977) but

instead of solving the Navier−Stokes equations they used the lattice−Boltzmann equation.

In the same way that it happened after the work published by Peskin (1977), many studies

involving IB−LBM arose just after Feng and Michaelides’ work. The exploration of this

new branch in the LBM has brought out several new different ways of approaching the

particle−fluid coupling by the immersed boundary method in the LBM framework. Some

detail of the different approaches of IB−LBM available are given in Chapter 3

The present work focus in the IB−LBM with an implicit direct forcing method with diffuse

interface, following the work of Kang (2010), Dash (2014) and Delouei et. al. (2016).
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3 Literature Review

Because particle motion and particle collisions play an important role in the performance

of many industrial processes involving suspension flows, several studies regarding the

settling mechanisms of particles have been performed in the last decades. Over the years,

analytical solutions, empirical and numerical correlations for particles terminal velocity and

drag force have been developed.

Therefore, this section is dedicated to provide information, on discrete settling of particles

in various types of fluid, with emphasis on the effects that may contribute to the numerical

procedures involved in the present study.

3.1 Settling particles in Newtonian fluids

Particle motion in incompressible Newtonian fluids is not only the simplest case of

the complex phenomena of discrete sedimentation, but also lays out the foundation for

non-Newtonian fluids.

Several researchers have been working on the study of the drag coefficient, which is

usually expressed as a function of the Reynolds number, Re. The relationship between

CD and Re is complex and has only been theoretically evaluated in the Stokes region

(Re << 1), as mentioned in Chapter 2. The manner in which CD varies with Re from laminar

or transitional to the turbulent flow region has been studied by several authors along the

years. Clift, Grace and Weber (2005) apud Chhabra (2006) presented a review and their

recommendations for calculating the drag coefficient for a given Reynolds number as shown

in Tab. 3.1. As can be seen in Tab. 3.1, different drag coefficient correlation may be more

suitable to predict the particle drag coefficient depending on the particle Re.

Depending on the particle and fluid properties the particle settling dynamics may undergo

different regimes. There are regime maps available in the literature that describe the settling

or rising of particles immersed in a fluid. In Doychev (2015) an extensive review of particle

settling dynamics in Newtonian fluid is presented, where three main different regimes are

generally observed: a steady axi-symmetric settling, an oblique path settling and a chaotic

settling. The settling or rising regime changes from axi-symmetric to chaotic as the settling

velocity increases. A map of regimes that relates the particle-to-fluid mass ratio (m∗), in

which m∗ > 1 represents a settling particle while m∗ < 1 a rising particle, and the particle

Reynolds number is proposed by Horowitz and Williamson (2010) and is presented in Fig.

3.1. As can be seen, regarding of Re the particle may settle vertically when Re < 210 and

then it tends to settle following a oblique pattern for 210 < Re < 600. The settling pattern
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Table 3.1 – Recommended drag coefficient correlations; Standard Drag Curve, w = logRe

Range of Re Drag coefficient correlation

Re < 0.01 CD =
24

Re

(
1 +

3

16
Re

)

0.01 < Re ≤ 20 CD =
24

Re

(
1 + 0.1315Re(0.82−0.05w)

)
20 ≤ Re ≤ 260 CD =

24

Re

(
1 + 0.1935Re(−0.6305)

)
260 ≤ Re ≤ 1500 logCD = 1.6435− 1.1242w + 0.1558w2

1.5× 103 ≤ Re ≤ 1.2× 104 logCD = −2.4571 + 2.558w − 0.9295w2 + 0.1049w3

1.2× 104 < Re < 4.4× 104 logCD = −1.9181 + 0.637w − 0.063w2

4.4× 104 < Re ≤ 3.38× 105 logCD = −4.339 + 1.5809w − 0.1546w2

3.38× 105 < Re ≤ 4× 105 CD = 29.78− 5.3w

4× 105 < Re ≤ 106 CD = 0.1w − 0.49

4× 106 < Re CD = 0.19−
(

8× 104

Re

)

becomes intermittent for 600 < Re < 1550 and for Re > 1550 the particle tends to settle

vertically but the wake fallows a zigzag pattern.

A different diagram for the regime of settling or rising spherical particle was proposed by

Braza, Chassaing and Minh (1986) and is shown in Fig. 3.2. The difference is that this map

relates the particle settling regime for a given particle-to-fluid density ratio (ρ0/ρ) and Galileo

number (Ga) combination. Ga is the non-dimensional number characterized by the ratio of

buoyant and viscous effects, given by Eq. 3.1 and is more commonly used for bubbly flows.

Ga =

√
|ρ0/ρ− 1| gd3

ν
(3.1)
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Figure 3.1 – Map of regimes reprinted from Horowitz and Williamson (2010). The diagram
depicts the motion of the sphere and its associated wake patterns regarding of
the mass ratio (defined as the relative density of the particles compared to the
fluid) and the particle Reynolds number (m∗,Re).

3.2 Settling suspensions in non-Newtonian fluids

Despite of solid particles settling in a Newtonian liquid under the influence of gravity have

been widely studied, the industrial practice also requires research of solid particles in fluids

with more complex rheological behavior. The particle terminal velocity and consequently the

drag force, depend on a large set of variables. This includes not only the size, the shape and

the density of particles, but also the particle-particle interaction and wall effects. Additionally,

the terminal velocity is also strictly related to the fluid rheological behavior (CHHABRA,

2006).

3.2.1 Non-yield stress fluids

In non-Newtonian fluids, the viscosity varies as a function of the shear strain rate. When

a particle falls in a quiescent fluid, it will generate a local shear field and the viscosity will vary

around the sphere (REYNOLDS; JONES, 1989). Similarly to the case with Newtonian fluids,

the theoretical analysis in the creeping flow regime involves the solution of the momentum

equation, neglecting the inertial terms. However, according to Chhabra (2006), the extension

of the Stokes solution to shear-thinning fluids is nontrivial and various types of approximations
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Figure 3.2 – Different particle settling regimes with respect the Galileo number and particle-
to-fluid density ratio (G,ρ0/ρ). To the leftmost line, the wake is axi-symmetric and
consequently the particle settles or rises in a vertical line. A steady and oblique
regime is denoted by +. An oblique and oscillating at low frequency regime is
represented by ∗; while for high frequency × is used; ◦ indicates zigzagging
periodic regime and the square symbol represents three-dimensional chaotic
regime. The domain of coexistence of a chaotic and a periodic state is approxi-
mately delimited by the dotted line. Reprinted from Braza, Chassaing and Minh
(1986).

must be done to obtain the solutions of the governing equations. The shear-rate dependent

viscosity generates additional difficulties and several authors have extensively investigated

the problems related to it.

The steady creeping motion of a sphere has been studied in a wide variety of generalized

Newtonian fluid models. Indeed, it should be recognized that drag coefficients for non-

Newtonian fluids are fluid model-dependent. Chhabra (2006) reviewed representative results

obtained with some of the more widely used fluid models such as Power-law, Carreau and

Ellis models for shear-thinning fluids.

Among all the models presented in literature, the Power-law model has been widely used

in several studies, because it is simpler than other models. The theoretical analysis of these

studies uses a drag correction factor, Y , which is a function of the Power-law index. Along

the years, researchers have conducted dimensional analyses on Y and some efforts have

been deposited in expanding the available correlations to the non-creeping flow regime. Most

of the results reported by different investigators differ widely from one another as pointed out
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in Chhabra (2006).

Analyses of a sphere’s motion in a Power-law fluid have also been conducted by compu-

tational fluid dynamics (CFD). Details about the velocity field around a settling sphere in a

Power-law fluid was presented by Keunings and Crochet (1984), who solved the continuity

and momentum balance equations for the creeping motion of a spherical particle. As the

value of the Power-law index decreases, the disturbance in the flow field due to the sphere

movement is observed over shorter distances. This theory was found to be in agreement

with experimental observations of Coutanceau and Bouard (1977) and with the experimental

study of Whitney and Rodin (2001).

More than just measured values for drag force and terminal velocity, several qualitative

results are of great interest in the literature. One interesting effect includes the aggregation of

particles, commonly reported on the literature, especially for shear-thinning fluids. According

to Daugan et al. (2002) the settling behavior of two particles released one after another in an

infinity reservoir (disregarding wall effects) filled with shear-thinning fluid depends mainly of

the initial distance between the two spheres. There is a critical distance in which the settling

of the first particle do not interfere on the settling of the second one. If the initial distance is

higher than a critical distance, both particles show the same instantaneous velocity. When

the initial distance is smaller than the critical, the passage of the first particle produces a

“corridor” of reduced viscosity and the second particle settles at higher velocities.

Recently, Goyal and Derksen (2012) applied a numerical procedure to solve the problem

of particles sedimenting in viscoelastic fluids, based on lattice-Boltzmann method coupled to

a finite volume method with the latter solving the elastic stress tensor. At first the transport

equation was solved trough the application of an explicit finite volume scheme, allowing the

elastic stress tensor to be determined. Then a lattice-Boltzmann time step was performed

in the same manner, as it would be done for a Newtonian fluid (only with the additional

elastic stress). The numerical settling experiments were performed in closed container

with squared cross section (three-dimensional) with the particles moving relatively to a

fixed grid. Goyal and Derksen (2012) observed that elasticity is responsible for an initial

overshoot of the settling velocity. This overshoot is followed by a strongly damped oscillation:

the oscillatory response is caused by the elastic-like behavior, whereas the damping is

due to the viscous-like behavior of the fluid. Goyal and Derksen (2012) also analyzed the

interaction of two spheres settling end-to-end and side-by-side in viscoelastic fluids. For

the vertical configuration, the distance between the spheres decreases as they settle when

released within a critical distance, similarly to the results reported by Daugan et al. (2002)

for pseudoplastic fluids. In the horizontal side-by-side configuration the two spheres repel

each other. Furthermore, according to the authors, wall effects significantly influence the

settling velocities.
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3.3 The Lattice-Boltzmann method (LBM)

Recently, LBM has been a promising alternative over the conventional CFD schemes

that solve macroscopic variables such as velocity and pressure fields using the discretized

Navier-Stokes equations. A review over LBM applied to solve particle−fluid interaction and

to solve non−Newtonian fluids will be presented in this section.

3.3.1 LBM technique for fluid-solid interface

On their review paper, Liu et al. (2016) describe a number of different multiphase and

multicomponent models, and also introduce how particle−fluid coupling can be simulated

using the LBM. According to Liu et al. (2016), the term “multiphase” flow might not only

describe mixtures of different fluids, but is also used to classify fluid flows with immersed

objects such as in the case of particle settling. Thus, this sub-section is dedicated to present

how particle-fluid coupling have been recently approached in the LBM framework.

A review of LBM for simulating particle-fluid interactions is also given by Behrend (1995),

Yu and Fan (2010) and Silva et al. (2015). In general, the fluid-solid interface is usually

subjected to the no-slip condition, which requires the local fluid velocity at the boundary to

be equal to the solid velocity. However, the LBM is solved for particles distribution functions,

and therefore it is required to translate the fluid velocity into the boundary condition for the

particle distribution. This gives rise to a very efficient technique to impose the boundary

condition, by simply reflecting the particle distributions moving into the solid region back into

the fluid domain. This is the so called the “bounce back” condition, which is the most widely

used scheme for both stationary and moving boundaries in the LBM (LADD; VERBERG,

2001). For moving boundaries, a generalization of the bounce back rule has been developed

by Ladd and Frenkel (1990) apud Behrend (1995).

To simulate the hydrodynamic interactions between the fluid and the solid particle, the

lattice-Boltzmann method has to be modified to incorporate the boundary conditions imposed

on the fluid by the solid particles. Since most LBM simulations are performed on regular

lattices, simulating a curved solid boundary becomes a complicate task. Figure 3.3 shows the

location of the boundary nodes for a circular object of radius 2.5 lattice spacing, where the

velocities along links crossing the boundary surface are indicated by arrows. The locations

of the boundary nodes are shown by solid squares and the lattice nodes by solid circles.

The curved boundary may impose several issues to the problem. Yu et al. (2010) say

that not only the accuracy of the bounce back degrades, but also the exact location of the

boundary becomes ambiguous.

According to Yu et al. (2010) three different approaches to improve the fluid-solid bound-

ary treatment are commonly used. The first one keeps the concept of bounce back of the

distribution function but employs interpolation of the distribution depending on the distance
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Figure 3.3 – Location of the boundary nodes for a spherical particle based on a D2Q9 lattice.
The velocities along links crossing the boundary surface are indicated by arrows.
The locations of the boundary nodes are shown by solid squares and the lattice
nodes by solid circles. (reprinted from Ladd and Verberg (2001))

to the exact boundary. This approach was introduced by Lallemand and Luo (2003).

The second one is the immersed boundary approach, which uses a set of Lagrangian

nodes to represent the solid particle surface immersed in the fixed Eulerian lattice. In this

method, the velocity field is solved by adding a force density term into the lattice-Boltzmann

equation and the immersed particle might be treated either as slightly deformable or as a

rigid object. This approach is well described in Feng and Michaelides (2004).

The third approach maintains the efficient bounce back scheme, and simply takes advan-

tage of a refined grid resolution near the solid surface by using adaptive mesh refinement

(AMR) and the multi-block approach (for fixed solid boundaries). For moving boundaries, Yu

and Fan (2010) applied a block-structured AMR algorithm similar to the one showed in Fig.

3.4.

Figure 3.4 – Mesh resolution for particle settlement using uniform adaptive mesh for a 2D
particle in a fluid. (adapted from Yu and Fan (2010))
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3.3.2 LBM approach for non-Newtonian effects

Many efforts have been made to account for non-Newtonian effects in lattice-Boltzmann

simulations. Most of the papers consider Power-law fluids, however contributions on multi-

phase flow combined with non-Newtonian fluids in LBM are still rare.

Simulations of flow of purely viscous thixotropic fluids with no elasticity effects in mixing

tanks were performed with a lattice-Boltzmann scheme Derksen and Prashant (2009). A

simple thixotropic model was applied, the same one described by Mujumdar et al. (2002),

and the numerical approach was verified with benchmark cases: simple shear flow, plane

Poiseuille flow. The transient numerical results were compared with semi-analytical solutions

and the flow in a lid-driven cavity compared the Bingham-like fluids with literature data. Since

it is an expensive approach, in terms of computer memory usage, to solve the transport

equation for the structural parameter in a LBM context, the authors solved it with an explicit

finite volume discretization on the same uniform and cubic grid as the lattices in LBM. This

approach also allows for suppression of numerical diffusion.

In the same year, Derksen (2009) published a numerical study of the drag on random

assemblies of spheres in shear-thinning thixotropic fluids using LBM. The same thixotropic

model of Derksen and Prashant (2009) was applied. The transport equation for the network

parameter was solved by means of a finite volume scheme. The no-slip condition at the

sphere surface was imposed by an adaptive force field approach (which is a type of immersed

boundary method). This method was validated in the work published by Cate et al. (2002) by

comparing simulation results of a single sphere sedimenting in a Newtonian fluid in a closed

container with image velocimetry experiments of the same system. Good agreement in terms

of the sphere trajectory, as well as the flow field induced by the motion of the falling sphere

were observed as shown in Fig. 3.5. The figure shows the flow field of the sphere near to the

bottom at four considered Re. |u| is the fluid velocity and u∞ is the theoretical steady-state

velocity of a freely moving sphere in an infinite medium. The ratio |u|/u∞ indicates the

normalized velocity magnitude.

2D simulations of a particle settling in Power-law fluids were conducted by Delouei et al.

(2016). The authors applied an immersed boundary method coupled with lattice-Boltzmann

method to solve this problem. The Power-law index n was then changed and the particle

settling velocity and trajectory were presented. They observed that the particle settling

dynamics is highly affected by n. In general, the particle settling velocity decreases as n

increases.

3.4 Contribution of the present work

The settling of spherical particles have been the subject of several research studies.

Since the pioneering work of Stokes (1851), much effort has been made to extend the
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Figure 3.5 – Comparison of the simulated (top) and measured (bottom) flow field of the
sphere. Contours indicate the normalized velocity magnitude; the vectors indi-
cate the direction of the fluid flow only. (Reprinted from Cate et al. (2002))

analysis of the particle settling dynamics to out of the creeping flow region and to include

effects of fluids with more complex behaviors. The Power-law model has been widely used

to describe shear-thinning and shear-thickening behavior. The literature review showed

that lattice-Boltzmann method is a recurrent tool when it comes to multiphase flow studies.

The focus given during the literature review was for studies that presented a solid phase

immersed in a fluid phase of high rheological complexity. A number of recent developments

in the application of the lattice-Boltzmann method clearly demonstrates its versatility.

Based on the literature review, it was perceived a lack of information available on the

behavior of particle sedimentation in non-Newtonian fluids. Given the applicability of this

problem, as briefly described in Chapter 1, the contribution of the present work is the

development of a numerical code based on LBM capable to simulate particle settling in

Power-law fluids.

Next chapter presents a mathematical description of the problem investigated in this

work.
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4 Problem Formulation

In this chapter the necessary equations to describe the physics of the problem and also

the mathematical considerations adopted to adequately simplify the problem are presented.

4.1 Geometry and boundary conditions

The schematic of the problem is shown in Fig. 4.1. The geometry resembles to the

one investigated by Kang (2010), Dash (2014) and Delouei et. al. (2016). It considers an

initially stationary particle in a rectangular container of height H and length L filled with a

Power-law fluid. The particle of diameter d exerts a downward shear force on the fluid due to

gravitational effects. The 2D particle is a rigid circumference with geometrical dimensions

and density (ρp) considered to be constant. The problem is treated as two-dimensional in a

Cartesian coordinate system (x, y), where x and y are the horizontal and vertical coordinates,

respectively, and gravity g is pointing to the −y direction.

H

2cm

L

d

Quiescent

Power-law

fluid

u = v = 0

u = v = 0

x

y

g

Figure 4.1 – Geometry and boundary conditions for particle settling in Power-law fluid prob-
lem addressed in this work.

As shown in Fig. 4.1 the boundary condition imposed on all solid walls, including the

particle surface, is the no-slip condition, which states that the fluid velocity must be the same
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as the solid boundary velocity. For the container stationary boundaries the no-slip condition

gives:

u = v = 0 (4.1)

where u and v are the fluid velocity components.

For the particle moving boundary the no-slip condition gives:

u = Up,s

v = Vp,s
(4.2)

where Up,s and Vp,s are respectively the x and y velocity components at the particle surface.

Based on the problem description it is possible to obtain a mathematical formulation by

dividing the system into two sets of equations: one for the fluid phase and another for the

particle motion.

4.2 Fluid phase balance equations

Fluid motion is governed by the usual conservation equations for mass and momentum

flow given by (BIRD et al., 1977):

∂ρf
∂t

+∇ · ρu = 0 (4.3)

∂(ρfu)

∂t
+∇ · ρuu = ρfg −∇ · σ (4.4)

where σ is the momentum flux tensor and can be written as:

σ = −pδ + τ (4.5)

where τ is the viscous stress tensor and δ is the Kronecker delta tensor.

The relationship between the viscous stress tensor (τ ) and shear strain rate (γ̇) is

presented in section 2.1.1 along with the Power-law model used to represent the apparent

viscosity change with changing the shear strain rate.

For an incompressible fluid undergoing a laminar two-dimensional flow, under isothermal

conditions, the governing equations in Cartesian coordinates are:

∂ux
∂x

+
∂uy
∂y

= 0 (4.6)
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ρf

(
∂ux
∂t

+ ux
∂ux
∂x

+ uy
∂ux
∂y

)
= −∂p

∂x
+
∂τxx
∂x

+
∂τyx
∂y

(4.7)

ρf

(
∂uy
∂t

+ ux
∂uy
∂x

+ uy
∂uy
∂y

)
= −∂p

∂y
+
∂τxy
∂x

+
∂τyy
∂y

+ ρfgy (4.8)

4.3 Particle motion equations

Based on Newton’s second law of motion it is possible to represent the motion of an

individual particle, expressed by (DERKSEN, 2016):

mp
dvp

dt
= mp

d2xp

dt2
=
∑

Fp =Fp,b + Fp,s + Fp,c (4.9)

where xp is the position vector of the particle, mp is the particle mass, vp is the translational

particle velocity. The forces Fp may be divided into the body force Fp,b, the surface forces

Fp,s and the contact forces Fp,c. vp and xp are respectively:

vp = vp,xei + vp,yej (4.10)

xp = xpei + ypej (4.11)

The particle trajectory over time is obtained by determining the forces acting on the

particle at each time instant. The velocity and position of the particle are then updated

through the expression:

dxp

dt
= vp (4.12)

The gravitational force Fg,b, is the main and only body force considered in this work,

expressed by:

Fp,b = Fg,b = ρpVpg (4.13)

where Vp is the particle volume.

The surface forces Fp,s, are due the fluid-particle interaction, which may generate

pressure forces and viscous stresses. Different types of surface forces can be considered for

the trajectory of the particle in the mathematical model. The main surface forces considered

in this work are the drag and buoyant forces.
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The drag force is by definition a resistance force caused by the motion of a body through

a fluid medium. The drag force acts opposite to the body motion. Generically, the drag force

can be expressed in terms of drag coefficient, CD (CROWE et al., 2011):

Fd,s =
1

2
CDρfAp |vp|vp (4.14)

where Ap is the projected area of the particle.

The buoyant force Fby,s, is defined as a force proportional to the weight of displaced fluid

and acts in the opposite direction of gravity acceleration. The displaced fluid is the volume of

the object. The buoyant force is expressed by:

Fby,s = −ρfVpg (4.15)

The contact forces Fp,c are due to the collision between particle and bounding walls.

Contact forces were neglected in this present study, since the variables of interest are

terminal velocity and drag coefficient.

The Newton’s equation of angular particle motion states that the net external torque

about the particle center is equal to the rate of change of angular momentum about its

center.

Is
dΩs

dt
=
∑

r× Fp (4.16)

where Is is the particle momentum of inertia, Ωs is the particle angular velocity and r is the

position vector of a force applied at the particle surface relative to the particle center.

Since the particle is release from rest in the quiescent fluid, the initial conditions for this

problem are:

At t = 0→ Up,s = Vp,s = Ωs = 0 (4.17)

4.4 Particle-fluid coupling

The particle-fluid coupling is done through a direct force immersed boundary method.

This is done by adding a force term (f ) in the equation of momentum. The term f is a volume

force and is formulated to represent the action of the immersed solid boundaries upon the

fluid. Thus, Eq. 4.4 is written as:

∂(ρfv)

∂t
= ρfg −∇ · ρvv −∇ · σ + f (4.18)
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4.5 Flow defnition and dimensionless numbers

The generalized Reynolds number defined in Eq. 4.19 is the most representative dimen-

sionless number in Non-Newtonian fluid flow over stationary objects. Most of the studies

regarding flow past an obstacle report results for drag coefficient as a function of generalized

Reynolds number (BIRD et al., 1977), which is given as:

Repl =
V 2−n
p dn

ν
(4.19)

However, for the cases of free falling particles in a fluid, correlate Reynolds number with

the drag coefficient experienced by the particle may not be convenient since the settling

velocity is not previously known. To overcome this issue, a new dimensionless group is

introduced, known as the modified Archimedes number (CHHABRA, 2006):

Ar = CD,TRe
2/(2−n)
pl (4.20)

where CD,T is the drag coefficient experienced by the particle at its terminal settling velocity,

obtained by a force balanced applied on the particle, yielding:

CD,T =
π

2

gd(ρr − 1)

V 2
T

(4.21)

where ρr is the solid to fluid density ration and VT is the terminal settling velocity.

Replacing CD,T and Repl in Eq. 4.20, the modified Archimedes number is then defined

as:

Arpl =
π

2

gd
2+n
2−n

m
2

2−n

(ρr − 1) (4.22)

As shown by Eq. 4.22, the Archimedes number is a function only of fluid and particle

properties, thus, regardless of the particle/Power-law fluid combination, the right-hand side

of Eq. 4.22 is known. This dimensionless number relates the gravitational and viscous forces.

This approach makes it easier to conduct studies for settling particles where the results

are now a function of a dimensionless number that does not depend on the particle settling

velocity.

4.6 Chapter enclosure

The mathematical basis needed to solve the problem addressed in this work was in-

troduced in this chapter. Initially, the geometry and boundary conditions were presented.
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Then, mass and momentum balance equations for the fluid phase were presented together

with the Newton’s law of movement equations for the particle. In the following Chapter, the

numerical approach used to solve the mathematical problem formulated in this chapter will

be presented.
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5 Numerical Method

In this chapter the numerical method used to solve the proposed problem is presented.

Since the lattice Boltzmann method has its roots in the lattice gas automata (LGA) it is

interesting to explain how LGA works before move on with LBM. LGA is a kinetic model with

discrete lattice and discrete time (MELE, 2013). The model idea consists of particles that

can move around lattice nodes in specific directions, as shown in Fig. 5.2. A set of boolean

(true or false) variables, nk is then introduced to represent the presence of a particle within a

lattice node:

nk(x, t) i = 0, ...M (5.1)

where M is the number of directions k of particle velocities at each lattice node and n can

be either 0 or 1, that is:

nk(x, t) = 0 no particles at site x and time t

nk(x, t) = 1 particle located at site x and time t
(5.2)

Figure 5.1 – Fluid particles travel on the lattice nodes. (from Benedetto and Umiliaco (2013))

The evolution equation of the LGA can be written as:

nk(x + ekδt, t+ 1) = nk(x, t) + Ωk(n(x, t)), k = 0, ...M (5.3)

where ek are local particle velocities, Ωk is the collision operator and δt is time step. In this

equation the collision operator Ωk changes the occupation number n due to collision at site

k and can have values -1, 0, 1. -1 means that the particle was destroyed, 0 leaves things

unchanged and 1 means new particle is created (MELE, 2013). Therefore, boolean nature

is preserved. It is important to stress out that interaction is local, that is, neighboring sites do
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not interact and there is also an exclusion rule, forbidding two particles sitting on the same

node. The configuration of particles at each time step involves two sequential sub-steps:

Streaming (advection), in which each particle moves to the next (nearest) node in the

direction of its velocity, and

Collision, which happens when particles arrive at a node and interact with each other

due to the previously defined collision rules.

If the operator Ω is set to zero, then an equation for streaming alone is obtained.

5.1 From LGA to LBM - the lattice-Boltzmann equation

The major issue with lattice gases was the statistical noise (KRÜGER et al., 2017).

The greatest motivation for the transition from LGA to LBM was the desire to remove this

statistical noise by replacing particle occupation variables (boolean variables) with single

particle distribution functions:

f = 〈n〉 (5.4)

where n can be 0 or 1 whereas f is an average of n and can be any real number between 0

and 1 (CHEN; DOOLEN, 1998). To obtain the macroscopic behavior of a system in LGA it is

necessary to average consecutive time steps (CHOPARD; DROZ, 1998).

The distribution function f(x, e, t) depends on the position vector x, the velocity vector e

and time t. This function represents the number of particles with mass m positioned between

x and x + dx with velocities between e and e + de at time t. Applying a force F on these

particles, after a time dt, position and velocity have new values (MOHAMAD, 2011):

position x→ x + edt

velocity e→ e + F
m
dt

(5.5)

The particle position and velocity vectors changes due an external force are schematically

shown in Fig. X.

If there is no collision, the particle distribution function before and after applying force

remains the same:

f(x + edt, e +
F

m
dt, t+ dt)dxde = f(x, e, t)dxde (5.6)
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e + F/m dt

t t + dt

x

y

Figure 5.2 – Position and velocity vector for a particle after and before applying a force.

On the other hand, if collision happens, then:

f(x + edt, e +
F

m
dt, t+ dt)dxde− f(x, e, t)dxde = Ω (f) dxdedt (5.7)

where Ω is the collision operator that models the rate of change of the particle distribution

function f due to molecular collisions.

Dividing Equation 5.7 by dxdedt and in the limit dt→ 0 leads to:

Df

Dt
= Ω (f) (5.8)

where D/Dt is the material derivative.

Equation 5.8 states that the total rate of change of the distribution function is equal to the

rate of the collisions (MOHAMAD, 2011). Expanding the material derivative on the left side

of Eq. 5.8 and dividing by dt results in:

Df

dt
=
∂f

∂x

dx

dt
+
∂f

∂e

de

dt
+
∂f

∂t
(5.9)

where the Fraction dx/dt represents the velocity e, the fraction de/dt represents the ac-

celeration a, which can be related to force F by Newton’s second law such that a = F/m.

Combining Eqs. 5.8 and 5.9 results in the Boltzmann Transport Equation (MOHAMAD, 2011):

∂f

∂t
+ e

∂f

∂x
+

F

m

∂f

∂e
= Ω (f) (5.10)

where the second right hand side term represents the advection of the distribution function.

The third term represents forces acting on the system.
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5.2 Collision Operator

The collision operator Ω is in general a complex non-linear integral (MOHAMAD, 2011),

which means that Boltzmann Equation is a nonlinear integro-differential equation. To simplify

this equation, Bhatnagar, Gross and Krook (1954) introduced a model where Ω is replaced

by the so-called BGK collision operator, given by:

ΩBGK = −1

λ

(
f − fEQ

)
(5.11)

where λ is the mean relaxation time and fEQ is the Maxwellian equilibrium distribution

function (see section 5.3.1). In general, the mean relaxation time λ is a single constant.Thus

the BGK operator is often called single-relaxation-time (SRT) (SUCCI, 2001). Equation 5.11

shows that at each collision the distribution function f changes by an amount proportional to

the difference f − fEQ. The equilibrium function is discussed in section 5.3.1.

The central idea of this simplification is to linearize the collision term around its local

equilibrium solution. In general, the collision operator may have different forms all of which

locally conserve momentum and, thus, yielding the correct macroscopic behavior of the

system (KRÜGER et al., 2017). The most important properties of collision operators are mass

and momentum conservation (KRÜGER et al., 2017), both fulfilled by the BGK-operator.

After introducing the BGK operator, the simplified Boltzmann equation can be written as:

∂f

∂t
+ e

∂f

∂x
+

F

m

∂f

∂e
= −1

λ

(
f − fEQ

)
(5.12)

Equation 5.12 is the BGK-Boltzmann Equation, it is the most popular kinetic model and

replaces Navier-Stokes equation in CFD simulations.

5.3 Discretized Boltzmann Equation - the lattice-Boltzmann

method

The lattice-Boltzmann Equation is derived from the continuous Boltzmann Equation by

the discretization of the velocity space. Based on the concepts of the kinetic theory of gases,

the lattice-Boltzmann Method (LBM) considers the fluid as a system of particles, represented

by a distribution function f , which obey streaming and collision processes. The temporal

evolution of the system state occurs in time intervals, with streaming and collisions between

sets of particles occurring in a discrete spatial domain, the lattices. At each time step, these

set of particles interact with each other under collision rules defined by Ω at a lattice node
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and move to neighboring nodes according to a finite and predefined set of orientations and

velocities, determined according to the lattice structure.

The common terminology for a velocity set makes reference to the dimension of the

problem and the number of microscopic velocities – DnQm (MOHAMAD, 2011); n represents

the dimension of a problem and m represents the velocity model (number of velocity values

by which the continues velocity space is discretized). Since relative spacing between a

node and the central node is not always the same, nodes in different positions regarding

the central node must have appropriate weighting factors, wk. These factors depend on the

distance from the central node.

Exemplary velocity sets for 2D simulations of hydrodynamics problems are show in

Fig.5.3. The most popular for 2D cases is the D2Q9 arrangement. However, there are higher

order models such as the D2V17 shown in Fig.5.4.

f1

f2

f3

f4

f0

f1

f2

f3

f4

f0

f1

f3

f4

f5 f6

f0
f1

f2
f3f4

f5

f6 f7 f8

f2

Figure 5.3 – some widely known 2D set pf lattice vectors. From left to right: D2Q4, D2Q5,
D2Q7 and D2Q9

f0
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f2
f3f4

f5

f6 f7 f8
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f12

f13

f14

f15

f16

Figure 5.4 – Third order D2V17 set of lattice vectors.

D2Q9 has been widely and successfully used for simulations of two-dimensional flows.

It is described as nine-velocity square lattice model. It is a bit more demanding from a

computational aspect than the hexagonal D2Q7 model, although, more accurate. It has to

be stressed out that for fluid flow problems where non-linear terms in Navier-Stokes (NS)

equation are important, the D2Q4 or D2Q5 model are not appropriate because of insufficient

lattice symmetry. It fails to achieve basic symmetry of NS equation – rotational invariance.
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Consequently, the lattice-Boltzmann equation cannot recover the correct NS equation on

inappropriate lattices (Chen and Doolen (1998) and Mohamad (2011)). For this reason, the

D2Q9 model is used in the present work.

The discrete Boltzmann equation is directly derived by integrating the general evolution

equation (BGK-Boltzmann Equation), given by Eq. 5.12. At first, Eq. 5.12 can be rewritten

as:

∂f

∂t
+ e

∂f

∂x
+ Ft = −1

λ

(
f − fEQ

)
(5.13)

where Ft is the force term that will be discussed later. Integrating Eq. 5.13 along the

characteristic lines of the velocity set, as done by He, Chen and Doolen (1998) and then

performing Taylor series expansion up to the first-order in time, it gives the following discrete

evolution equation:

f(x + e∆t, e, t+ ∆t) = f(x, e, t)− 1

τ

(
f − fEQ

)
+ Ft(x, t)∆t (5.14)

where τ = λ/∆t is the dimensionless mean relaxation time and ∆t is the time step. Dis-

cretizing Eq. 5.14 in the velocity space gives the following discrete BGK - lattice-Boltzmann

equation:

fk(x + ek∆t, t+ ∆t) = fk(x, t)−
1

τ

[
fk(x, t)− fEQk (x, t)

]
+ Ft,k(x, t)∆t (5.15)

where ek is the discrete velocity and k ranges from 0 to m− 1 and represents the available

directions in the lattice space, fk(x, t) ≡ f(x, ek, t) is the discrete particle distribution

function, fEQk (x, t) is the discrete equilibrium particle distribution function and Fk is the

discrete force distribution function.

5.3.1 The equilibrium function fEQ

The equilibrium distribution function fEQ, which appears in the BGK collision operator, is

basically an expansion of the Maxwell-Boltzmann distribution function for low Mach number

Ma. According to Mohamad (2011) the normalized Maxwell’s distribution function is given

by:

f =
ρ

2π/3
e−

3
2

(e−u)2 =
ρ

2π/3
e−

3
2

(e·e)e
3
2

(e·u−u·u) (5.16)
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where u is the macroscopic velocity of particles in a medium, e are the velocity vectors in

a specific lattice model and ρ is the macroscopic density. Equation 5.16 can be expanded

in Taylor series with velocity u up to second order. This is valid for small velocities Ma =

u/cs << 1 , where cs represents the speed of sound. Thus, Eq. 5.16 results in:

f =
ρ

2π/3
e−

3
2

(e·e)

[
1 + 3 (e · u)− 3

2
(u · u) +

9

2
(e · u)2

]
(5.17)

The non-linearity of the collision operator is then hidden and the discrete equilibrium

distribution function is given by:

fEQk = ρwk

[
1 + 3 (ek · u)− 3

2
(u · u) +

9

2
(eK · u)2

]
(5.18)

where wk = e−
3
2
e2/(2π/3) are weighting factors (SUCCI, 2001).

In D2Q9 model, discrete velocity vectors, ek, and the corresponding weighting coeffi-

cients, wk, are respectively given by Eqs. 5.19 and 5.20.

ek = c


(0, 0) k = 0

(±1, 0), (0,±1) k = 1, 2, 3, 4

(±1,±1) k = 5, 6, 7, 8

(5.19)

wk =


4/9, k = 0

1/9, k = 1, 2, 3, 4

1/36, k = 5, 6, 7, 8

(5.20)

where c is the lattice speed c = ∆x/∆t and the direction k is positioned in lattice space as

shown in Fig. 5.5:

5.4 Macroscopic quantities

Macroscopic fluid/flow quantities (e.g. density and velocity) are directly obtained by

solving the Navier-Stokes equation. In the LBM, macroscopic quantities are obtained by

the distribution function moments. These moments are integrals of f , weighted with some

function of e over the entire velocity space.
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Figure 5.5 – The k position in the lattice space.

The Boltzmann equation describes multiple macroscopic physics, e.g, from mass con-

servation to momentum and energy transport. However, discretized velocity space sets of

lower order cause the numerical method to loose the higher-order physics being therefore

necessary to use discretized velocity sets of higher order as the D2V17. In the present work

only mass and momentum conservation are of interest and D2Q9 velocity space is enough

to solve this problem. Connections of the distribution function to macroscopic quantities for

the fluid density, ρ, fluid velocity, u, and internal energy, E are defined as follows:

ρ (x, t) = m

∫
f (x, e, t) de (5.21)

ρ (x, t) u (x, t) = m

∫
f (x, e, t) ede (5.22)

ρ (x, t) E (x, t) = m
1

2

∫
u2
af (x, e, t) de (5.23)

where m is the molecular mass and ua is the particle velocity relative to the fluid velocity.

The discretized macroscopic moments (density and momentum) can be computed from

finite sums as:

ρ =
∑
i

fi =
∑
i

fEQi (5.24)

ρu =
∑
i

fiei =
∑
i

fEQi ei (5.25)
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5.4.1 The recovering of Navier-Stokes equation

The Navier-Stokes equation (NSe) can be recovered from a Chapman-Ensokg analysis,

which gives the kinematic viscosity ν in terms of the single relaxation time λ (KRÜGER et

al., 2017):

ν =

(
λ− ∆t

2

)
c2
s (5.26)

where cs is the sound speed in the lattice given by:

cs =
1√
3

h

∆t
(5.27)

where h = ∆x = ∆y is the Eulerian mesh space.

5.5 The forcing term Ft,k and the Immersed Boundary Method

The force term Ft,k in the discrete Lattice-Boltzmann equation (Eq. 5.15) is important

in the immersed boundary method (IBM) because it is through this term that the system is

able to recognize the existence of a boundary. According to Zheng, Zheng and Zhai (2017),

in order to keep the consistence of the simplified lattice-Boltzmann equation (Eq. 5.13) the

general formulation of Ft,k should be carefully chosen in order to allow the recovery of NSe

when multi-scale Chapman-Enskog expansion is performed. For this reason, as done by

Kang (2010) and Dash (2014), the present work follows the split-forcing method proposed

by (GUO; ZHENG; SHI, 2002), which enables the LBE to recover NSe with second-order

accuracy.

Guo, Zheng and Shi (2002) inserted the external force to the momentum by redefining

the macroscopic momentum, given by Eq. 5.25, as:

ρu =
∑
i

fiei +
∆t

2
f (5.28)

where f is the force density at Eulerian fluid nodes, which is distributed from the force density

of Lagrangian boundary points. This procedure will be discussed further on.

Then, the discrete force distribution function, Fk, is given by:

Fk(x, t) =

(
1− 1

2τ

)
wk

[
3
ek − u(x, t)

c2
s

+ 9
ek · u(x, t)

c4
s

ek

]
· f(x, t) (5.29)
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which satisfies the following relations of the 0th and 1st moments (LUO, 2000):

∑
k

Fk(x, t) = 0 (5.30)

∑
k

ekFk(x, t) =

(
1− 1

2τ

)
f(x, t) (5.31)

5.5.1 Calculating the force density, f

Analyzing Eq. 5.28 it can be seen that the fluid velocity is affected by two parts. The first

one, in the right-hand side of Eq. 5.28, is computed from the density distribution function

and is referred here as an unforced Eulerian velocity, given by Eq. 5.32, and is evaluated

using Eq. 5.15 without a forcing term.

unoF =
∑
i

fiei/ρ (5.32)

The second term is the Eulerian velocity correction given by Eq. 5.33.

∆u =
∆t

2ρ
f(x, t) (5.33)

The force density f(x, t) is not known and the Eulerian velocity correction ∆u is implicitly

calculated such that the exact no-slip boundary condition is satisfied. From a mathematical

perspective, it implies that the fluid velocity at the boundary must be equal to the boundary

velocity UB
l at the same location. As mentioned before, in the IBM there are two coordinate

systems, an Eulerian mesh for the fluid, which is a stationary and regular mesh; and a

Lagrangian mesh for the boundary. The information between both coordinate systems is

communicated via interpolation techniques and is based on two principles: the no-slip

condition and the third Newton’s law (action = reaction). The discretized IBM equations are

then:

UB
l(XB

l, t) =
∑
x,y

unoF(x, t)D(x−XB
l)h2 (5.34)

f(x, t) =
∑
l

FB
l(XB

l, t)D(x−XB
l)h∆s (5.35)

where the positions of the Lagrangian coordinates are XB
l (l = 1, 2, 3...m). ∆s is the arc

length of the Lagrangian boundary element and UB
l and FB

l are, respectively, the boundary

velocity and the forces acting on the boundary. D(x−XB
l) is a discretized version of the
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Dirac delta distribution interpolation function which is also called interpolation kernel. In the

present work a 2 point Dirac delta function proposed by Peskin (1977) is used, which gives:

D(x−XB
l) =

1

h2
δ

(
x−X l

B

h

)
δ

(
y − Y l

B

h

)
(5.36)

where δ(r) is given by:

δ(r) =

 1− |r| |r| ≥ 1

0 |r| > 1
(5.37)

Equation 5.34 means that the boundary velocity matches the ambient fluid velocity and,

since the fluid velocity is only known at Eulerian grid nodes (x), it has to be interpolated to

arbitrary Lagrangian points (XB). Equation 5.35 reflects Newton’s third law and states that

all forces acting on the boundary also have to act on the ambient fluid in order to ensure total

momentum conservation. Figure 5.6 schematically shows the range of velocity interpolation

used for a 2 point Dirac delta function.

XB

Support pointsh

2h

Support cage for 2 point 

interpolation kernel

l

Support points
h

2h

Support cage for 2 point 

interpolation kernel

l
XB

(a) (b)

Figure 5.6 – Velocity interpolation scheme. (a) The velocity of Eulerian nodes within the
support cage (the Eulerian support points) are interpolated to the central La-
grangean node. (b) The velocity of Lagrangian nodes XB within the support
cage are interpolated to the lattice node.

In most cases the desired boundary velocity UB
l in Eq. 5.34 is known. It can be equal

to zero for stationary boundaries or equal a value calculated using Newton’s law of motion

for a moving boundary (see section 5.6 ). Furthermore, in order to satisfy the exact no-slip

boundary condition, the interpolated Eulerian velocity field, which is the right-hand side of

Eq. 5.34, must match UB
l. However, due to the nature of IBM, this condition may not be

achieved since the immersed boundary is defined on a moving Lagrangian mesh whereas

the flow field is defined on a stationary Eulerian mesh, and, as already stressed out, the
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node points do not necessarily match. This may create a difference between the left-hand

side and right-hand sides of Eq. 5.34 and the amount of deviation must be accounted for in

order to satisfy the no-slip boundary condition.

Following Dash (2014), a single Lagrangian velocity correction term ∆UB
l(XB

l, t) is

added to Eq. 5.34 and the required correction is given by:

∆UB
l(XB

l, t) = UB
l(XB

l, t)−
NsE∑
x,y

u(x, t)D(x−XB
l)h2 (5.38)

where NsE represents the number of Eulerian nodes within the support cage shown in

Fig.5.6.

To ensure the no-slip boundary correction at all boundary nodes a sub-interaction scheme

is necessary. This is done by interpolating Eulerian velocities back to Lagrangian boundary

nodes, and then a new boundary correction ∆UB
l(XB

l, t) is calculated. The process is

continued until the calculated boundary correction achieves a convergence criteria, which

means that ∆UB
l(XB

l, t) is insignificant and the no-slip boundary condition was satisfied.

In the present work, the convergence criteria for no-slip boundary condition to be considered

satisfactory was 10−6 as used by Dash (2014).

After calculating the velocity corrections, the force density at Lagrangian and Eulerian

nodes are respectively given by:

FB
l(XB

l, t) =

∑
i 2ρ∆UB

l(XB
l, t)i

∆t
(5.39)

f(x, t) =

∑
i 2ρ∆u(x, t)i

∆t
(5.40)

where i is the sub-interaction number.

5.6 Extension of IB-LBM to moving boundary problems

To compute the movement of a particle, the motion equations have to be considered.

The Newton’s translational Equation of motion is given by:

Ms
dUc

dt
= −

∫
s

σ · dS + (ρp − ρf )Vsg (5.41)
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where σ is the viscous stress tensor, Ms the particle mass, S the particle surface, V the

particle volume, Uc the particle velocity evaluated at its centroid, ρ is the density. The

subscript s and f indicate the solid and fluid, respectively.

The angular Equation of motion is given by:

Is
dωc
dt

= −
∫
s

(XB −Xc)× σ · dS (5.42)

where Is is the particle moment of inertia, ωc is the angular velocity of the particle, XB and

Xc are respectively the position vectors of particle surface (boundary nodes positions) and

the particle center.

The second term in the right-hand side of Eq. 5.41 is the buoyancy force acting on the

particle whereas the first term is the fluid force acting on the particle, here given by the

boundary force (Eq. 5.39) and an added mass force due to particle acceleration, which gives:

−
∫
s

σ · dS = −
∫
V

FBdV +
∂

∂t

∫
V

ρfudV = −
∫
V

FBdV +Mf
dUc

dt
(5.43)

where ρf and Mf are respectively the fluid density and mass of the displaced fluid.

The right-hand side of Eq. 5.42 is the total torque applied on the particle by the fluid

which is computed from the boundary force FB and an added mass torque due to angular

acceleration, which results in:

−
∫
s
(XB −Xc)× σ · dS = −

∫
V

(XB −Xc)× FBdV + ∂
∂t

∫
V

(XB −Xc)× ρfudV
= −

∫
V

(XB −Xc)× FBdV + If
∂ωc

dt

(5.44)

where If is moment of inertia of the displaced fluid.

Thus, Eqs. 5.41 and 5.42 can be rewritten as:

Ms
dUc

dt
= −

∫
V

FBdV +Mf
dUc

dt
+ (ρp − ρf )Vsg (5.45)

Is
dωc
dt

= −
∫
V

(XB −Xc)× FBdV + If
∂ωc
dt

(5.46)
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Hence, the discretized Newton’s equations of motion are given by (KANG, 2010):

Uc
t+1 = Uc

t +
1

Ms

[
−
∑
l

FB
lh∆s+ (Ms −Mf )g

]
∆t+

Mf

Ms

(Uc
t −Uc

t−1) (5.47)

ωt+1
c = ωtc +

1

Is

[
−
∑
l

(XB −Xc)× FB
lh∆s

]
∆t+

If
Is

(ωtc − ωi−tc ) (5.48)

The particle center position at t+ ∆t time step can be expressed as (KANG, 2010):

Xt+1
c = Xt

c + 0.5
(
Uc

t+1 + Uc
t
)

∆t (5.49)

and the particle orientation is updated using the 2D rotation matrix, where the boundary

nodes XB
l at time step t+ ∆t change according to (ESHGHINEJADFARD et al., 2016):

XB
l(t+1) = Xt+1

c + R(θ(t+ 1))
(
XB

l(t) −Xt
c

)
(5.50)

where R is the rotation matrix given by:

R(θ) =

 cos θ − sin θ

sin θ cos θ

 (5.51)

Thus, the boundary velocity at node XB
l at the next time step can be evaluated as:

UB
l(t+1) = Ut+1

c + ωt+1
c × (XB

l(t+1) −Xt+1
c ) (5.52)

The complete numerical algorithm is summarized in the flowchart showed in Fig. 5.7.

5.7 Non-Newtonian approach

Unlike the Newtonian behavior, the viscosity of a non-Newtonian fluid varies with the

local strain rate. To implement the shear-rate-dependent effect of non-Newtonian fluids

into the LBM, an adaptive viscosity method is applied. The macroscopic fluid viscosity and
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Define the initial velocity u;
Calculate fi and  fi eq.

Perform streaming and find out fi  with initial setting Fi = 0.

Calculate macroscopic variables unof

Define the desired boundary velocity UB and calculate boundary correction

Calculate Eulerian velocity correction and update Eulerian velocity

Calculate the new boundary correction

Sub-Convergence criteria No

Compute the forcing term at Lagrangian and Eulerian nodes.
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Update boundary velocity

Steady convergence Solution?No

Program End

Yes

Figure 5.7 – Immersed Boundary - Lattice Boltzmann Method algorithm.
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microscopic relaxation time are related in Eq. 5.26. This equation can be rewritten in lattice

units as:

τ(x, t) = 3νl(x, t) + 0.5 (5.53)

where νl is the apparent viscosity in lattice units (νl = ν∆t2−n/∆x2) and τ = λ/∆t. The

complete translation from physical to lattice Boltzmann units is shown in Appendix B.

Since the apparent viscosity is determined, the instantaneous and local relaxation times

(τ ) for all lattices can be also determined. The apparent viscosity depends on the shear rate,

which in turn can be obtained from the second invariant of the rate-of-strain tensor through

the expression (BIRD et al., 1977):

γ̇ =
√

2DII (5.54)

where DII is defined as:

DII =
l∑

α,β=1

SαβSαβ (5.55)

and Sαβ is the rate-of-strain defined as:

Sαβ =
1

2

(
∂uβ
∂xα

+
∂uα
∂xβ

)
(5.56)

at the incompressible limit the above equation can be expressed as (WANG; HO, 2011):

Sαβ = − 1

2λc2
s

8∑
i=0

ciαciβf
neq
i (5.57)

where fneqi is the non-equilibrium distribution function (fneqi = fi − f eqi ).

This approach is straightforward and of easy numerical implementation, for this reason it

is used in the present work.

5.8 Boundary conditions

The incorporation of boundary conditions in LBM consists in translate macroscopic

information into the microscopic distribution functions. Different ways of doing this translation
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can be found in the literature and the ones used in this work are discussed in this section.

The boundary conditions applied for verefication cases are also presented here.

5.8.1 Bounce-back

The Bounce-back condition is widely used to implement no-slip condition. This is done,

as its name suggests, by reflecting back, along with its incoming direction, the fluid particles

(velocity distribution functions) that reached the boundary. In literature a few variants of this

approach can be found and the most broadly used are presented here. They are the on-grid

and the mid-grid bounce-back conditions (SUCCI, 2001).

In the on-grid method, the solid boundary is placed over the lattice node, as shown

in Fig. 5.8a. In this configuration the incoming particle distribution function that streamed

from inside to outside the domain are simply bounced back into the flow domain after the

streaming processes, replacing the unknown distribution functions (MOHAMAD, 2011). This

reflection process is exemplified below in Fig. 5.9.

(a) (b)

f1

f2

f4

f5f6

f7 f8

f3 f1

f2

f4

f5f6

f7 f8

f3

Figure 5.8 – Schemtic representation of (a) on-grid bounce back method and (b) mid-grid
method applied at the north boundary. Unknown velocity distribution are repre-
sented by dashed lines.

f2

f2

StreamingN

N -1

f2

N Reflection

f4 = f2

N -1

Figure 5.9 – Bounce-back procedure for on-grid implementation.

In the mid-grid approach the solid boundary is placed in the mid-way between solid

and fluid domain, as exemplified in Fig. 5.8b. In this specific configuration, particles are
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considered to travel only half of the distance (see Fig. 5.10), thus, the particle reflection

process takes place during the streaming step as shown in Fig. 5.10. This approach is also

known as half-way bounce-back.

f2 ൗℎ 2

ℎ

ൗℎ 2

ℎ
f4 = f2

*

ൗℎ 2

ℎ

N N N

N - 1 N - 1 N - 1

Streaming

t t + Δt/2 t + Δt

Figure 5.10 – Bounce-back procedure for mid-grid implementation.

Although the on-grid bounce-back is of very simple numerical implementation, it has

been verified that it is only first-order accurate (KRÜGER et al., 2017). For this reason the

mid-grid is used in the present work.

5.8.2 Zou-He Velocity and Pressure

To perform verification tests in this work, it is necessary to impose velocity and pressure

boundary conditions for some cases. These conditions were originally developed by Zou

and He (1997). Their idea was to formulate a linear system composed by the unknown

velocity distribution functions and the unknown macroscopic quantity (which is pressure

when a velocity profile is prescribed at the boundary and it is the velocity when pressure

is prescribed) using Eqs. 5.24 and 5.25 . In order to solve this linear system, composed

by four unknown quantities and only three equations, Zou and He (1997) assumed, based

on the symmetrical nature of the pressure tensor, that the bounce-back rule still holds for

the non-equilibrium part of the particle distribution normal to the boundary. Thus, the fourth

equation is:

fneq−i = f−i − f eq−i = fi − f eqi = fneqi (5.58)

For illustration, consider that a general velocity profile u = (u, v) is given on the left

boundary, as shown in Fig. 5.11.

After streaming f1, f5, f8 and ρ are left unknown. Applying Eqs. 5.24, 5.25 and 5.58

gives:

f1 + f5 + f8 = ρ− (f0 + f2 + f4 + f3 + f6 + f7) (5.59)
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f1

f2

f4

f5f6

f7 f8

f3

Figure 5.11 – West boundary. Unknown velocity distribution represented by dashed lines.

f1 + f5 + f8 = ρu+ (f3 + f6 + f7) (5.60)

f5 − f8 = ρv − f2 + f4 − f6 + f7 (5.61)

f1 − f eq1 = f3 − f eq3 (5.62)

Equations 5.59 and 5.60 are combined to give a solution for ρ. Then, with f1 solved by

Eqs. 5.18 and 5.62, f5, f8 are subsequently determined. Thus, the solution of the linear

system composed by Eqs. 5.59 - 5.62 is given by:

ρ =
1

1− u
[(f0 + f2 + f4 + 2(f3 + f6 + f7)] (5.63)

f1 = f3 +
2

3
ρu (5.64)

f5 = f7 −
1

2
(f2 − f4) +

1

6
ρu+

1

2
ρv (5.65)

f8 = f6 +
1

2
(f2 − f4) +

1

6
ρu− 1

2
ρv (5.66)

The velocity boundary condition applied on other boundaries and also the pressure

boundary condition can be derived similarly.

5.9 Mesh sensitivity test approach

The mesh sensitivity test adopted in this work was proposed by Meira (2016). The

discretization of Boltzmann equation gives rise to three main sources of errors. Spatial and



Chapter 5. Numerical Method 66

temporal truncation terms generate errors Edx and Edt that scales with O.∆x2 and O.∆t2,

respectively. There are also simulation errors due compressibility, EMa, that scales with

O.Ma2. A global error is defined as the summation of these three errors:

Eg = Edx + Edt + EMa (5.67)

Since Ma = u/cs and cs = 1/
√

3∆x/∆t (see sections 5.3.1 and 5.4.1), the relationship

between Ma, ∆x and ∆t is given by:

Ma = u
√

3
∆t

∆x
(5.68)

Moreover, EMa scales with O.Ma2, so that EMa ∝ ∆t2/∆x2 and then:

EMa ∝
E∆t

E∆x

(5.69)

Equation 5.69 clarifies that a reduction of Eg depends not only on the individual reduction

of E∆t and E∆x, but also on the relation between them.

The proposal of Meira (2016) was to first perform a sensitivity test for the temporal mesh,

which is done by fixing a value of ∆x for which ∆t is progressively reduced until the chosen

analyzed flow parameter (e.g., velocity profile, drag coefficient, particle velocity) shows small

changes with ∆t reduction. Since both EMa and E∆t are directly proportional to ∆t2 it can

be said that this procedure diminishes compressible and temporal errors so that Eg becomes

dependent only on E∆x, such that Eg ∝ ∆x2.

After that, a sensitivity test for the spatial mesh is performed. This is done by reducing

∆x, by increasing the number of lattices, and reducing ∆t in the same proportion in order to

keep the relation ∆t/∆x constant. This procedure ensures that incompressible effects are

still irrelevant and that Eg remains dependent only on E∆x.

Care must be taken regarding the use of relatively low values of ∆t/∆x, since this

relation affects the relaxation time τ , which when very close to 0.5 makes the method

unstable. The relationship between τ , ∆x and ∆t is given by equation Eq. 5.53.

5.10 Chapter enclosure

In this chapter, the immersed boundary method coupled with the lattice boltzmann method

were presented. The non-Newtonian approach in LBM was introduced and the necessary

boundary conditions to solve the verification problems were presented. In addition, the

methodology used for the mesh sensitivity test and the algorithm structure used to solve the

particle sedimentation problem were presented.
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6 Verification problems

Before proceeding to the solution of particle settling in non-Newtonian fluid, it is neces-

sary to ensure that the developed algorithm is capable of solving the proposed problem.

Simulations of lid-driven cavity flow were performed to verify the ability of the code to solve

problems of fluid dynamics. Flow between parallel plates with Power-law fluid was solved in

order to guarantee that the non-Newtonian behavior is correctly reproduced. The numerical

accuracy of the proposed IB-LBM algorithm was then evaluated by performing simulations

on stationary (laminar flow past cylinder) and moving boundary (freely falling particle) flow

problem with Newtonian fluid. All results were compared with those reported in the literature.

6.1 Lid-driven cavity

The lid-driven cavity is a well-known benchmark problem extensively used as validation

case for new codes or new solution methods (MARCHI; SUERO; ARAKI, 2009). The

problem consists of fluid confined in a two-dimensional square domain of height H with

no-slip boundary conditions applied to its sides, with three stationary sides and a moving

one, as shown in Fig. 6.1.

fluid

u = 0

v = 0

u = 0

v = 0

u = 0

v = 0

u = U, v = 0

H

x

y

Figure 6.1 – Geometry and boundary conditions for the lid-driven cavity flow problem.

The fluid is Newtonian and the cavity lid moves to the right with a constant velocity U .

The only parameter to this problem is the Reynolds number:

Re =
UH

ν
(6.1)
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The investigated Reynolds number are Re = 100, 400 and 1000. A sensitivity temporal

and spacial mesh test were performed considering Re = 1000. Following Meira (2016)

methodology, it was found that τ = 0.547 and 200 lattices nodes along x and y directions

were sufficient to properly solve this problem. The detailed mesh sensitivity test is given in

Appendix A.

Figure 6.2 present results in terms of streamlines. It can be easily seen that, the lid

movement is responsible for the circular motion of the fluid, furthermore, for Re = 100 a

main vortex is formed near the top of the cavity and as Re increases the vortex is moved

towards the cavity center.

(a) (b) (c)

Figure 6.2 – Streamlines for (a) Re = 100, (b) Re = 400 and (c) Re = 1000.

The velocity profiles u(y) and v(x) obtained at the cavity mid-plane for all investigated

Re were normalized by the lid velocity U and are presented in Fig. 6.3 and 6.4, respectively.

The profiles are in good agreement with those reported by MARCHI et. al. (2009).

The values of Umin and Vmin are shown in Tab. 6.1. The differences between present

results and those of Marchi et. al. (2009) are calculated as:

Error =

∣∣∣∣θref − θcalcθref

∣∣∣∣× 100 (6.2)

in which θref is the reference value and θcalc represents the numerical value obtained in the

present work. The greatest Error obtained was 0.89%, which shows a great agreement of

the results obtained with those available in the literature.

Table 6.1 – Results for Umin and Vmin

Umin Vmin

Re
Marchi et al Present

Error %
Marchi et al Present

Error %
(2009) (2018) (2009) (2018)

100 -0.21404 -0.21348 0.262 % -0.253804 0.251545 0.890 %
400 -0.32872 -0.32880 0.024 % -0.454058 -0.45323 0.182 %
1000 -0.38857 -0.38903 0.119 % -0.527056 -0.52706 0.110%
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Figure 6.3 – U dimensionless velocity profile at x = H/2.

Figure 6.4 – V dimensionless velocity profile at y = H/2.
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The lid-driven cavity simulations show that the main algorithm feature, which consists of

the collision and streaming processes, is implemented correctly which prove the ability of

the developed LBM code to solve the present problem of fluid dynamics.

6.2 Power-Law fluid flow between parallel plane plates

In this section the algorithm developed for treatment of non-Newtonian fluids using LBM

is verified. For this purpose Power-law flow between parallel plates is considered. This

geometry was chosen due the similarity of boundary conditions applied to solve the flow

past over a circular particle.Thus, the simulations in this section is also used to verify the

boundary conditions imposed at the channel inlet and outlet.

The geometry and boundary conditions used to study this problem are shown in Fig. 6.5.

y
x

Figure 6.5 – Geometry and boundary conditions of Power-law fluid flow between flat and
parallel plates.

Results obtained in this section are compared with the fully developed velocity profile for

laminar flow of Power-law fluids in a channel of height H (BHARTI; CHHABRA; ESWARAN,

2007):

Uana(y) = Umax

[
1−

(∣∣∣∣1− 2y

H

∣∣∣∣)
(n+1)

n

]
(6.3)

where Umax is the maximum velocity, which is related to the average velocity, Uavg, as:

Umax =

(
2n+ 1

n+ 1

)
Uavg (6.4)

and the average velocity Uavg is determined from a desired modified Reynolds number, Repl
is defined as (BHARTI; CHHABRA; ESWARAN, 2007):

Repl =
U2−n
avg H

n

m
(6.5)
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In this study two parallel plates were kept apart at a distance H forming a channel. A

completely developed velocity profile is imposed on the channel inlet, then disregarding the

development length, while on the walls the no-slip condition is considered. The channel

length was chosen to be L = 5×H. The fluid has density ρ = 1000kg/m3 and a consistency

index, m = 0.1. Numerical simulations were performed for Repl = 1 and n = 0.25, 0.6, 1.0

and 1.4. A sensitivity temporal and spacial mesh test was performed for n = 0.25, which

results are presented and discussed in Appendix A. The number of lattice nodes used across

the channel height in simulations was N = 160.

Figure 6.6 shows the numerical and analytical velocity profiles at the channel outlet,

and it can be observed that the agreement between results is satisfactory. The maximum

percentage error, Ep, between the analytical and numerical solutions is less than 0.4% and

occurs for n = 0.25, where Ep is defined as:

Ep =

∑
y
U(y)−Uana(y)

Uana(y)
100

H
(6.6)

Figure 6.6 – Results for numerical velocity profile at the channel outlet represented by the
solid lines compared with analytical solutions for different values of n.
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6.3 Newtonian flow past over a circular cylinder

To verify the Immersed boundary method implementation, the laminar flow of a free-

stream past over a stationary circular cylinder is simulated. In this case, a 2D cylinder of

diameter d is positioned at the centre of a domain of 40d× 40d, which is the same geometry

used by Kang (2010) and Dash (2014) and is shown in Fig. 6.7.

u = U

v = 0
H

u = U, v = 0

u = U, v = 0

pout = pref

y
x

x = H

u = v = 0

d

Figure 6.7 – Geometry and boundary conditions for flow past over a circular cylinder.

In this problem, the flow pattern changes according to the Reynolds number (BRAZA;

CHASSAING; MINH, 1986), which is defined as:

Re =
U∞d

ν
(6.7)

where U∞ is the free-stream velocity and d is the diameter of the cylinder.

According to the literature, at a low Reynolds number, the flow around the cylinder is

steady and a pair of vortices are symmetrically generated about the centerline of the cylinder

(KANG, 2010). As Re increases the flow pattern changes, the vortices at the cylinder rear

increase and at a criticalRe (Re > 40 (BRAZA; CHASSAING; MINH, 1986)) the flow changes

to a unsteady state in which vortex shedding are observed. Both states are considered in

this section. For the steady state Re = 20 and 40 are investigated while for unsteady state

Re = 100 is considered. For results, a quantitative comparison of the simulations is done by

comparing the drag (CD) and lift (CL) coefficients experienced on the cylinder with results
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presented in the literature. CD and CL are respectively calculated according to Eq. 6.8 and

6.9 (CHHABRA, 2006).

CD =
Fdrag

1/2ρfU2
∞Ap

(6.8)

CL =
Flift

1/2ρfU2
∞Ap

(6.9)

where Ap is the projected area and Fdrag is determined from the x component of the force

density at Lagrangian nodes (see section 5.5.1 ):

Fdrag = −
NL∑
l

F l
Bx∆s (6.10)

where NL is the number of Lagrangian nodes and Flift is determined from the y component:

Flift = −
NL∑
l

F l
By∆s (6.11)

6.3.1 Steady flow

At first, a steady state flow around the cylinder is investigated. In order to do that, a

sensitivity mesh test was performed for Re = 40. The Eulerian and temporal sensitivity

mesh tests are again performed according to Meira (2016) and are described in Appendix

A. Results were obtained for 20 Eulerian grid points across the cylinder (dl = 20h) and

τ = 0.575. The Lagrangian points are uniformly distributed on the cylinder surface with a

spacing of ∆s = h/1.5 as recommended by Kang (2010) and it was kept the same for other

simulations in which the immersed boundary was applied.

Figure 6.8 shows the streamlines near the cylinder for Re = 20 and 40. The symmetric

vortices are clearly observed in the wake region and, as expected, the wake length increases

with increasing Re. As it can be seen in Figure 6.9 the vorticity, defined as ~ω = ∇ × ~v,

spreads further out laterally as Re increases from 20 to 40.

The drag coefficient and the wake length, which is the length of recirculation region

formed behind the cylinder measured from the rearmost point of the cylinder to the end

of the wake and divided by d, obtained from the numerical solution are compared with the

literature as shown in Tab. 6.2. Results are found in good agreement. The maximal deviation

on CD occurred between the obtained results and those reported by Park, Kwon and Choi

(1998). The deviations found are 6.0% for Re = 20 and 5.6% for Re = 40.
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(a) (b)

Figure 6.8 – Streamlines near the cylinder for (a) Re = 20, ∆Ψ = 0.0008 and (b) Re = 40,
∆Ψ = 0.0016.

(a) (b)

Figure 6.9 – Vorticity contours near the cylinder for (a) Re = 20 and (b) Re = 40.

6.3.2 Unsteady flow

As Reynolds number becomes higher than 40 the flow becomes unsteady and a loss of

symmetry in the wake is observed. Vortices are released from the wake, which are advected

and diffused away from the cylinder, forming what is called of Karman vortex streets (BRAZA;

CHASSAING; MINH, 1986). The dimensionless frequency of vortex release is given by the
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Table 6.2 – Comparison of CD and recirculation length at steady flow.

Re

20 40

Reference Method CD L = l/d CD L = l/d

Park, Kwon and Choi (1998) Body-fitted grid, NSE 2.010 - 1.510 -
Wu and Shu (2009) Implicit direct-forcing, LBE 2.091 0.930 1.565 2.31
Kang (2010) Implicit direct-forcing, LBE 2.075 0.950 1.555 2.34
Dash (2014) Flexible direct-forcing, LBE 2.119 0.937 1.589 2.32
Present Flexible direct-forcing, LBE 2.131 0.950 1.594 2.35

Strouhal number (St), given by (BRAZA; CHASSAING; MINH, 1986):

St =
fqd

U∞
(6.12)

where fq is the vortex shedding frequency, that is obtained from the time evolution of the lift

coefficient, shown in Fig. 6.11.

Figure 6.10 – Instantaneous streamlines and vorticity contour near the cylinder at Re = 100,
t = 48.75 s and ∆Ψ = 0.2.

Numerical results are presented here for dl = 40h and τ = 0.62. Details on the mesh

sensitivity test are given in Appendix A. The time evolution of lift and drag coefficients are

shown in Figs. 6.11 and 6.12, respectively. As can be seen in Fig. 6.11 the flow pattern is

severely changed. It can be observed that the flow has vortex shedding in its wake. The lilt

coefficient oscillates between ±0.344 while the drag coefficient oscillates around an average

value of 1.421. To compare, Tab. 6.3 shows results for CD, CL and St of different authors.
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Figure 6.11 – Time evolution of the lift coefficient for Re = 100.

Figure 6.12 – Time evolution of the drag coefficient for Re = 100.

These results obtained with the proposed numerical scheme are satisfactory compared

with those observed in the literature. The accuracy of the presented results, both steady

and unsteady, can be improved by applying a zone of refinement around the cylinder as has

been done by (KANG, 2010) and (DASH, 2014) However, such extensive studies are not the

main focus of this work, where the capability of the immersed boundary - lattice Boltzmann

method for moving boundaries using Power-law fluids is investigated.

At this point the immersed boundary method seems to be a good option when dealing

with particles with curved boundary subject to a fluid flow.
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Table 6.3 – Comparison of drag and lift coefficients and Strouhal number at Re=100.

Reference Method CD CL St
Park, Kwon and Choi (1998) Body-fitted grid, NSE 1.33 0.33 0.165
Sui et al. (2007) Explicit direct-forcing, LBE 1.438 0.344 0.166
Wu and Shu (2009) Implicit direct-forcing, LBE 1.364 0.344 0.163
Kang (2010) Implicit direct-forcing, LBE 1.368 0.346 0.163
Dash (2014) Flexible direct-forcing, LBE 1.362 0.341 0.162
Present Flexible direct-forcing, LBE 1.421 0.344 0.160

6.4 Particle settling in Newtonian fluid

In this section the immersed boundary method is tested for moving boundaries. The

same geometry and properties used by Kang (2010) are investigated here. Results for

particle settling velocity and trajectory are compared with those available in the literature.

The container has 2 cm of lenght and height of 6 cm. A circular 2D particle with diameter

d = 0.25 cm has its centre initially located at (1 cm, 4 cm), as shown in Fig. 6.13. The fluid

density and dynamic viscosity are ρf = 1 g/cm3 and µ = 0.1 g/cm− s, respectively, and

the particle density is ρp = 1.25 g/cm3.

6cm

4cm

2cm

d = 0.25cm

Quiescent

fluid

u = v = 0

u = v = 0

x

y

Figure 6.13 – Geometry and boundary conditions for particle settling study.

The fluid and the particle are initially at rest. Once the particle is released from its initial

position it starts falling under gravity effect and keeps accelerating until it reaches a steady

velocity. The steady velocity is called terminal settling velocity, VT and happens when the net

upward force, comprised of drag and the buoyant forces, is balanced with the weight force.

For this verification problem, the Eulerian, Lagrangian and temporal meshes are the



Chapter 6. Verification problems 78

same as the one applied by Kang (2010), Dash (2014) and Delouei et al. (2016), who studied

settling motion using lattice Boltzmann method. The Lagrangian mesh space of ∆s = h/1.5

is applied here. 25 lattices were used across the cylinder diameter, which implies a mesh size

of 200× 600 lattices. The relaxation time (τ ) was equal to 0.65, corresponding to 5× 10−4s

for each time step.

The time evolution of particle settling velocity and position are presented in Figs. 6.14 and

6.15, respectively. Results are in good agreement with those of literature. Vorticity contours

are shown in 6.16 at different settling times. The vorticity pattern is in accordance with the

vorticity contours presented by Dash (2014), which are reprinted here in Fig. 6.17.

Figure 6.14 – Comparison of temporal evolution of particle settling velocity with literature.

Figure 6.15 – Comparison of temporal evolution of particle vertical position with literature.
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t = 0.2 s

(a)

t = 0.5 s

(b)

t = 0.8 s

(c)

Figure 6.16 – Instantaneous vorticity contours at different settling times. (a) t = 0.2 s, (b)
t = 0.5 s and (c) t = 0.8 s.

Figure 6.17 – Instantaneous vorticity contours obtained by Dash (2014).
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6.5 Particle settling in Power-law fluid

The settling of a 2D particle in Power-law fluid is now investigated. Simulations for

Newtonian, shear-thinning and shear-thickening non-Newtonian fluids are compared with

results presented by Delouei et al. (2016). To do that, the same geometry used to verify the

particle settling in Newtonian medium is applied. The simulations are performed varying

the Power-law index n but keeping the same generalized Archimedes number (defined

by Eq. 4.22). The particle and fluid properties described in the previously section lead to

Arpl = 602 when n = 1. By modifying n and keeping Arpl constant, fluid consistency index

m is changed.

In Fig. 6.18, the obtained results for particle settling velocity are compared with the

literature for different Power-law index. Results are again in good agreement with the

literature.

Figure 6.18 – Comparison of temporal evolution of particle settling velocity with literature for
different values of n.

6.6 Closing remarks

In this chapter, specific problems were reproduced in order to verify the developed

code. The lid driven cavity problem was the starting point for verification of the developed

program. Results showed the ability of the program to solve incompressible Newtonian

flows. By simulating the Power-law flow between parallel plates the performance of the LBM
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adapted for solution of non-Newtonian fluids was verified. Furthermore, to ensure that the

code implemented for the immersed boundary - lattice Boltzmann method could adequately

solve particle problems with curved surfaces, the flow past over a circular cylinder and

the dynamics of particle settling were investigated. Results are in good agreement with

the literature for both, moving and stationary boundaries. Finally, simulations of particle

sedimentation in Power-law fluids for different values of n were performed. The results

obtained are equivalent to the results presented by (DELOUEI et al., 2016) which indicate

that the implementation of the code for particle settling in Power-law fluid using the immersed

boundary method was successful.
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7 Results

This chapter presents the results for the dynamics of particle settling in Power-law

fluids. Most of the drilling fluids are non-Newtonian with viscosity decreasing as shear rate

increases. This is similar to the behavior of shear-thinning fluids. For instance, the non-

Newtonian fluid behavior is characterized by the Power-law model. The fluid and particle

properties investigated are presented in Tab. 7.1

Table 7.1 – Investigated parameters

Parameter Symbol Range
Power law index n 0.6, 0.8, 1.0, 1.2, 1.4
Particle diameter [cm] d 0.0625, 0.125, 0.25
Particle/fluid density ρr = ρp/ρf 1.1, 1.25, 1.5

This chapter is divided in two main parts. At first, a parametric study is performed to

verify the individual influences of particle size, Power-law index and particle/fluid density

ratio. Also, wall effect is investigated for diferent values of n. Then, the obtained results are

written in a generalized form for terminal drag coefficient, CD,T , and terminal generalized

Reynolds number, Repl,T , as a function of n and the generalized Archimedes number, Arpl.

7.1 Part 1: Parametric study

7.1.1 Domain height

Before proceeding with the parametric study, the height of the domain must be determined

to ensure that terminal settling velocity is perceived before the particle reaches the bottom

of the domain. Numerical simulations were performed for the case in which the highest

settling velocity was expected: n = 0.6, d = 0.25cm and ρr = 1.25. For this first approach,

the Eulerian and temporal meshes were the same of the verification case of particle settling

in a Newtonian media. That is, 25 lattice units across the particle diameter and τ = 0.65.

The domain height was then gradually increased until the particle terminal velocity did not

undergo through any considerable changes. Results for this test are presented in Tab. 7.2.

As can be seen, the maximal settling velocity increased with increasing H from 6 cm to 8

cm, which means that the particle was not able to reach a terminal velocity when settling in a

container with only 6 cm high. However, the maximal settling velocity shows an insignificant

increase when H goes from 10 cm to 12 cm, which means that at H = 10 cm the terminal

settling velocity was perceived.
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Table 7.2 – Maximal particle settling velocity for different domain heights.

H V Vincrease

6 -8.177
8 -8.477 3.67%

10 -8.592 1.35%
12 -8.607 0.18%

After that, a grid dependence test was performed, for details see Appendix A. remaining

simulations were performed in in a domain of H = 10 cm, with a time step of ∆t = 10−4 s

and for a lattice space of h = 10−2 cm.

7.1.2 Settling velocity and particle trajectory as a function of n

For this study d and ρr were fixed at 0.0125 cm and 1.25 respectively. The aspect ratio

between particle and container walls were the same as in the test case of settling particle in

Newtonian fluid, were L/d = 8.

Figure 7.1 shows the time evolution of the particle settling velocity and its position. As can

be seen, the particle settling velocity considerably increases as the fluid behavior changes

from shear-thickening to Newtonian and then to shear-thinning. This shows the impact of

non-Newtonian behavior on motion of free fall particles. This can be explained by considering

the variation of strain rate close to the immersed boundary (DELOUEI et al., 2016). Since the

maximum rate of fluid deformation takes place near the particle, the viscosity of the moving

fluid surrounding the particle increases with increasing Power-law index (see Eq. 2.5). This

increment in the fluid viscosity leads to a more slow moving particle and consequently the

particle takes a longer time to reach the bottom of the container.

The influence of n on the terminal settling velocity, VT , on the terminal generalized

Reynolds number Repl,T , given by Equation 4.19, and on the drag coefficient experienced

by the particle at its terminal velocity, CD,T , is shown in Tab. 7.3.

The percentage difference observed in the analyzed parameters is computed with

Equation 7.1

Error =

∣∣∣∣θn − θnextθn

∣∣∣∣× 100 (7.1)

where θn is the value of the parameter of interest for a given n and θnext is the parameter

value at the subsequent value of n. As can be seen in Tab. 7.3, the particle settling is more

influenced by the fluid behavior for low values of n, which is perceived by a decrease of the

percentage difference observed for the analyzed parameters as n increases.
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Figure 7.1 – Particle settling velocity and position for different power law index.

Table 7.3 – Influence of n on VT , Repl,T and CD,T .

n Vt Vt decrease Repl,T Repl,T decrease CD,T CD,T increase

0.6 4.621 24.48 2.20
0.8 3.248 30% 7.79 68% 4.58 109%
1 2.316 29% 2.90 63% 8.93 95%

1.2 1.693 27% 1.26 57% 16.80 88%
1.4 1.294 24% 0.63 49% 28.75 71%

7.1.3 Particle diameter influence, d

In order to verify the influence of the particle diameter on its terminal settling velocity

and avoid the influence of wall container on its motion, the aspect ratio between particle

diameter, d, and container walls distance, L, were kept constant (L/d = 8), as in the previous

simulations. The particle/fluid density ratio (ρr) was kept at 1.25.

The simulation results for Repl,T and CD,T as a function of particle diameter and n are

summarized in Figure 7.2. It can be seen that regardless of the value for n the particle termi-

nal Reynolds number increases with increasing d, as expected given the Repl,T definition.

The low velocities given at low Reynolds numbers leads to less drag friction experienced by

the particle, which is confirmed by a decrease in CD,T as d increases, shown in Figure 7.2.b.

As discussed in the previous section an increase on the shear-thinning behavior causes a

significant increase on settling velocity and consequently on Repl,T . This tendency is kept

regardless of the particle diameter.
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Figure 7.2 – Influence of particle diameter (a) on Repl,T and (b) on CD,T as a function of n.

7.1.4 Particle/fluid density ratio influence

Settling behavior for different particle densities was examined using an intermediate

value for particle diameter, d = 0.125 and keeping L/d = 8.

Figure 7.3 shows simulation results for Repl,T and CD,T as a function of ρr and n. The

curves for Repl,T indicate that the terminal settling velocity is more affected by ρr at low

values of n. As the fluid changes from shear-thinning to a shear-thickening behavior, ρr has

less influence on terminal Reynolds. For n = 1.4, Repl,T increases 98.91% as ρr goes from

1.1 to 1.25, while the increase observed for n = 0.6 is of 531.56%. The same tendency is

observed for CD,T . For n = 1.4, CD,T decreases 49.58% as ρr goes from 1.1 to 1.25, while

the decrease observed for n = 0.6 is of 64.45%.

7.1.5 Wall effect

When a particle falls confined by finite boundaries, it is subject to a retardation effect due

wall effects (UHLHERR; CHHABRA, 1995). In this section the boundary effect is investigated.

For this, the particle diameter and particle/fluid density ratio were kept constant, d = 0.125cm

and ρr = 1.25g/cm3. The Power-law index varied from n = 0.6 to n = 1.4 and the retardation

effect was quantified by the velocity correction factor given by (UHLHERR; CHHABRA, 1995):

fw =
VT
VT∞

(7.2)

where VT is the terminal velocity obtained in a bounded domain while VT∞ is obtained

in an unbounded domain. To determine how far from the particle the boundary must be
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Figure 7.3 – Influence of particle/fluid density ratio (a) onRepl,T and (b) on CD,T as a function
of n.

placed in order to avoid wall effects, so that the domain is considered unbounded, the

aspect ratio between particle and container width (R = L/d) were investigated. Its influence

was observed for the most shear-thinning (n = 0.6), Newtonian (n = 1) and the most

shear-thickening (n = 1.4) fluid behavior. The increase in terminal particle velocity (VT ) with

increasing L/d is presented in Tab. 7.4.

Table 7.4 – Wall effect measured by the increase of VT with increasing R.

n

R = L/d

0.6 1 1.4
VT VT increase VT VT increase VT VT increase

8 -4.621 - -2.316 - -1.294 -
16 -5.069 9.7 % -2.853 23.2% -1.930 49.2%
32 -5.230 3.2% -3.080 8.0% -2.260 17.1%
64 -5.290 1.1% -3.178 3.2% -2.380 5.3%
80 -5.312 0.4% -3.190 0.4% -2.404 1.0%

The domain was considered unbounded when the increase in VT with increasing L/d

was less or equal to 1%, which was achieved when L was 80 times larger than the particle

diameter. The correction factor where then calculated using Eq. 7.2 and results are presented

in Tab. 7.5. This results help to quantify the retardation effect of the confining walls on terminal

velocity. Low correction factor fw implies higher wall retardation effect.

For a better visualization of these results, the correction factors are presented in Tab.7.5
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Table 7.5 – Velocity correction factor obtained for d = 0.125 cm and ρr = 1.25 g/cm3.

n

R = L/d 0.6 0.8 1.0 1.2 1.4
8 0.870 0.813 0.726 0.627 0.538
16 0.954 0.929 0.894 0.852 0.803
32 0.985 0.980 0.966 0.957 0.940
64 0.996 0.998 0.996 0.997 0.990

R > 80 1.000 1.000 1.000 1.000 1.000

for different values of R as a function of n, as shown in Figure 7.4. As can be seen, shear-

thinning fluids (n < 1) are less affected by retardation effects due to confinement walls

presence. This is perceived by an approximation of the curves at different values of R as they

become closer while n decreases. On the other hand, for shear-thickening fluids (n > 1), the

particle motion is more dependent on wall effects. This is also perceived through the vorticity

contours, shown in Figure 7.5, at a same vertical position for different values of n at L/d = 8.

At n = 1.4 the vorticity contours are clearly affected by the container walls and this effect

diminishes with decreasing n. For n = 0.6 the terminal Reynolds is much higher than for

n = 1.4. At higher Repl,T the retardation effect due to particle confinement becomes less

significant due to increase of inertial influence.

Figure 7.4 – Velocity correction factor, fw, as a function of n for different aspect ratios.

This tendency of diminishing wall effects with decreasing n are similar to those reported

in literature ((MISSIRLIS et al., 2001), (SONG; GUPTA; CHHABRA, 2009)). It is important to

emphasize that this section focused on investigating the wall effect as a function of n and R



Chapter 7. Results 88

n = 0.6 n = 1.0 n = 1.4

Figure 7.5 – Vorticity contours for different n values at y = 6.0 cm.

only, and the correction factors presented in Tab.7.5 can not be applied to different values

of d and ρr, since the wall factor is not a function of R and n alone, but also of Repl,T as

suggested in previous works found in the literature (UHLHERR; CHHABRA, 1995).

7.1.5.1 Simulated drag coefficient × standard drag curve for Newtonian fluid

In order to strengthen the validation of IB-LBM for moving boundaries, now that the

necessary container width for particle sedimentation to take place in an unbounded domain

is known, it was possible to redo simulations of particle settling in Newtonian fluids (n = 1)

and compare results for CD,T as a function of Repl,T with the standard drag curve for flow

past over a cylinder.

Results for CD,T and Repl,T were also obtained in an unbounded domain (L/d = 80) for

d = 0.00625 cm and 0.125 cm. Figure 7.6 shows results for CD,T as a function of Repl,T in

an unbounded domain and for R = 8. Results are in good agreement with the standard

drag curve which shows that IB-LBM is able to solve precisely the problem of particle

sedimentation.

The curve obtained for R = 8 is shifted for both Repl,T and CD,T values, this is expected

because both dimensionless numbers are function of particle settling velocity and the

retardation effect due wall confinement leads to decrease settling velocity and consequently

to decrease Repl,T and increase CD,T .
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Figure 7.6 – CD,T as a function of Repl,T for R = 8 and R > 80 compared with standard
drag curve for 2D flow past over a cylinder (KUNDU; COHEN; DOWLING, 2008)
for the Newtonian case.

7.1.6 Simulated × Calculated CD,T

When the particle reaches its terminal settling velocity the drag force is balanced by

buoyant and weight such as:

FD = g(ρp − ρf )V– (7.3)

Further, the drag coefficient CD is the non-dimensional drag force, given by (CHHABRA,

2006):

CD =
FD

1/2ρfV 2d
(7.4)

Combining Equations 7.3 and 7.4, CD can be obtained from the force balance as a

function of terminal settling velocity:

CD,T =
g(ρr − 1)πd

2V 2
T

(7.5)

Table 7.6 shows the differences between CD,T obtained for an unbounded media (D/d =

80) from simulations and from the one based on equation 7.4 for different values of n.
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Table 7.6 – Comparison between simulated and calculated CD,T

n

0.6 0.8 1.0 1.2 1.4
CD,T∞ from Eq. 7.4 1.707 3.016 4.732 6.606 8.334
CD,T∞ simulated 1.767 3.052 4.743 6.582 8.307

Percentage deviation 3.43% 1.16% 0.23% 0.36% 0.32%

CD,T simulated differs from CD,T calculated from Equation 7.4 by small values. The

differences increases as n decreases and the settling velocity gets higher. This reveals

that further investigation is required to improve the numerical results for CD,T as Repl,T
increases. It has been shown that the present results are independent from spatial and

temporal mesh so that the compressibility effects were also insignificant in the performed

simulations (Ma << 1) (see Appendix A). Thus, for higher values of Repl,T it is necessary

to improve the accuracy of the curved boundary. In this work, the exchange of information

between the Eulerian and Lagrangian meshes were carried out using a 2-point discrete

delta interpolation function in which the Cartesian nature of the lattice structures may not be

well hidden (KRÜGER, 2011). This may be the cause of the increase percentage deviation

between the simulated and calculated CD,T with increasing VT , since the forces acting on

the immersed boundary are based on the interpolation function.

7.2 Part 2: Generalized results for CD,T and Repl,T as a func-

tion of Arpl and n

As discussed in section 7.1.5.1, the drag coefficient and Reynolds number experienced

by the particle at its terminal settling velocity are both dependent of VT . For this reason the

traditional plot of CD ×Repl,T may not be convenient for settling particles once its terminal

settling velocity is previously unknown. To overcome this issue, results obtained for CD,T and

Repl,T can be represented as a function of a single dimensionless number, the generalized

Archimedes number, Arpl, which is the dimensionless number given by Equation 4.22, which

relates the gravitational forces acting on the particle with respect to the viscous forces.

(FORNARI; PICANO; BRANDT, 2016). Further, the drag coefficient for a particle falling in a

fluid is better represented as a function of the driven forces of the problem (buoyancy and

weight) and not as a function of VT or Repl,T . Therefore Arpl is a good choice to represent

the results because it is independent of VT and can be evaluated from the physical properties

of particle and fluid (see section 4.5).

Figures 7.7 and 7.8 summarize all the results of CD,T and Repl,T obtained in the previous

section, for R = 8, as a function of Arpl. It can be seen that results are dependent only

on Arpl and n. High values of Arpl indicates that gravitational force is more relevant to the
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particle motion than the viscous forces.

Figure 7.7 shows that within the analysed range of Arpl all the curves tend to pass

through a common point. For a given value of Arpl above this point an increase on n causes

a decrease on Repl,T . On the other hand, for Arpl values below the common point, increasing

n implies a increase of Repl,T . A similar tendency is observed for CD,T as a function of Arpl
in Figure 7.8. There is also a common point for all the curves in which values of Arpl above

it imply a reduction of the CD,T with the increase of n and for Arpl below it CD,T is increased

by increasing n.

Figure 7.7 – Terminal settling Reynolds as a function of Arpl for different n.

Figure 7.8 – Drag coefficient experienced by the particle at its terminal settling velocity as a
function of Arpl for different n.
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7.2.1 Unsteady flow at high Arpl and low n

As shown in Figure 7.7, Repl,T increases with increasing Arpl and decreasing n. It is

well known that when Repl,T increases to some critical value, flow shifts to unsteady regime

where release of vortex are observed, as discussed in section A.3. It was noticed that after

reaching a maximum settling velocity the particle takes a finite time until the first vortex

are released. Although the particle has reached the maximum velocity within the 10 cm

container, it needs more sedimenting time for the vortex release to occur. To observe what

happens when the particle settles in an unsteady regime, the container height was increase

to 30 cm and the settling of particles at High Arpl and low n was investigated.

It was observed in the previous simulations that the highest value of Repl,T occurred for a

particle diameter of d = 0.25, ρr = 1.25 and n = 0.6, which resulted in a Archimedes number

of Arpl = 787. Figure 7.9 shows vorticity contours at different times after the particle release.

After unsteady flow takes place the particle starts deviating from the symmetry plane and

follows an oblique zigzag pattern as can be seen in Figure 7.9.c and also by the evolution of

particle transversal position in Figure 7.10.b. The particle vertical velocity is greatly affected

as its transversal velocity increases due the vortex release, as shown in Figure 7.11.a.

(a) (b) (c)

Figure 7.9 – Vorticity contours for n = 0.6 and Arpl = 787. (a) after 1.0 s, (b) 2.0 s and (c)
2.5 s

7.3 Closing remarks

Simulations show that the particle settling dynamics is considerably influenced by the

Power-law fluid behavior. For low Power-law index the viscous effects become less significant,

and the settling velocity increases regardless of the particle size or ρr combination, which

is perceived with an increase in Repl,T . In the parametric analysis the settling dynamics of

different sized particles showed to be independent of n, that is, Repl,T and CD,T change with
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(a)

(b)

Figure 7.10 – (a) Particle transversal velocity and (b) Particle transversal position for n = 0.6
and Arpl = 787.

n in the same proportions regardless of the particle size. The influence of n for different

particle/fluid density ratio shows that at low ρr, Repl,T and CD,T are more affected by the

Power-law index than at high ρr.

All the obtained results were then written as a function of the generalized Archimedes

number (Arpl). It was noticed that the particle settling dynamics in Power-law fluids can be

described by two parameters: Arpl and n. Thus, with prior knowledge of Arpl, which can be

directly obtained from fluid and particle properties, it is possible to determine the maximum

settling velocity of the particle for a given n using the Arpl×Repl,T graph (Fig.7.7) or the drag

coefficient experienced by the particle using the Arpl × CD,T graph (Fig.7.8). Despite the

versatility of these graphs to represent and correlate results for particle sedimentation, only

a few results correlated with Archimedes number are found in literature (Karamanev (1996);

Khan and Richardson (1987)). For particle sedimentation in Power-law fluids, covering

shear-thinning and shear-thickening behavior relation of CD,T and Repl,T as function of Arpl
were still lacking in literature.

Results presented for unsteady flow is an indication that a regime map can be constructed

in terms of Arpl and n in a similar way to the existing maps for Newtonian fluids (see Fig.3.2).
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(a)

(b)

Figure 7.11 – (a) Particle vertical velocity and (b) Particle vertical position for n = 0.6 and
Arpl = 787.

Analogous to what is observed for Newtonian regime map (DOYCHEV, 2015), it is possible

to presume that the settling dynamics in a Power-law fluid changes from vertical to oblique

and chaotic settlings with increasing Arpl and decreasing n. However, it is necessary to

perform a much larger number of simulations to ensure this tendency and construct a map

of regimes.
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8 Conclusions and Recommendations

In the scenario of the oil and gas industry, cuttings sedimentation are critical during an

operational stop, since it can lead to drill obstruction and even to well collapse. Therefore, it is

always important to increase the knowledge of particle dynamics in drilling muds. Thus, the

present work proposed the development of a computational code able to simulate particle

sedimentation in Power-law fluid, which is able to describe the shear-thinning rheological

behavior of drilling muds. To do so, a program was developed, based on the lattice Boltzmann

method, using FORTRAN language. The particle fluid coupling was performed by the

immersion boundary method and the non-Newtonian behavior of the fluid was incorporated

by the viscosity adaptation method.

Through verification cases, the developed program ability to solve problems of settling

particles in Newtonian and Power-law fluid was proved to be satisfactory. A parametric

study was then performed, varying the Power-law index, n, the particle diameter, d, and

particle/fluid density ratio ρr. In the parametric analysis the influence of n on the terminal

generalized Reynolds number, Repl,T , and on the drag coefficient experienced by the particle

at its terminal velocity, CD,T , is the same regardless of the particle diameter. It also reveals

that at low values of solid to fluid density ration, ρr, Repl,T and CD,T are more affected by

the Power-law index than at higher ρr.

With those simulations, was perceived that all the results could be written as a function

of 2 parameters: the Archimedes number and the Power-law index. Those results prove to

be important, since CD,T and ReTpl can be written as a function of the fluid and particle

properties and these relations were still lacking in the literature.

An unsteady settling is observed as Repl,T increases with increasing the generalized

Archimedes number, Arpl, and decreasing n. Thus, depending on Repl,T the particle settling

may go through different regimes, whether vertical or oblique zigzag. One advantage of

having a Arpl ×Repl,T plot for Power-law fluids is that the fluid and particle properties can

be chosen in accordance with the sedimentation regime with which is desired to work in an

experimental apparatus.

8.1 Recommendations

The main objective of the present work was the development of a 2D program capable of

solving particle sedimentation in Power-law fluids. This has been successfully achieved by

now, however, in order to allow broader applications, improvements on the program algorithm

still must be done.
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In order to verify if the 2-point discrete delta interpolation function is the most adequate

to deal with the exchange of information between the Eulerian and Lagrangian meshes, it is

recommended to apply different interpolation functions, such as those described by Peskin

(1977), and verify its influence on results, especially on CD,T .

Also, for future works, it is indicated to perform investigation regarding effects of fluid

rheology on the particle angular velocity and orientation, since the applied algorithm is

able to capture this information. The particle-wall or particle-particle interaction were not

addressed on the present work, although its investigation are important especially when

more particles are present in the system, which is a situation closer to that found in industrial

process where particle settling is important, so, it is recommended for future works.

Further, for the particle sedimentation results to have a more appropriate physical

meaning, it is recommended to extend the program to 3D problems, so the particle dynamics

can be validated with experimental sedimentation results available in the literature. It is

also important to extend the problem to more complex rheology fluids such as viscoplastic

and thyrotropic fluid behavior, since these rheological properties are also present in the

drilling fluids and it is also of interest for other industrial applications. Also, a more extensive

parametric investigation should be performed in order to construct a regime map.

At last, LBM is very suitable for the parallel computation, which has not been done in the

present work, then being recommended for future works.
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APPENDIX A – Mesh sensitivity tests

In this appendix, sensitivity tests for ∆x and ∆t are presented. The tests were performed

to cases whose results show greater sensitivity to ∆x and ∆t variations. In general, the

results of the simulations are more sensitivity to ∆x and ∆t for lower values of n and higher

values of Reynolds (MEIRA, 2016).

A.1 Lid-driven cavity

The sensitivity mesh tests for the lid-driven cavity were performed considering: ν = 0.001

m2/s, H = 0.2 m and Re = 1000. Results are considered to be mesh independent when

the differences observed on the minimum velocity measured in the velocity profile at the

cavity center for both x and y directions are less than 0.1%. This difference was calculate

according to:

Error =

∣∣∣∣θcoarse − θrefinedθcoarse

∣∣∣∣× 100 (A.1)

where θcoarse is the value of the parameter of interest for the coarse mesh and θrefined is the

parameter value at the subsequent refined mesh.

To perform the mesh sensitivity test as described in section 5.9, first, a coarse mesh with

only 50 nodes along x and y directions is applied. Then, the relation ∆x/∆t is increased by

decreasing ∆t which causes a reduction on relaxation time τ (see Eq. 5.53). Decreasing τ

by refining the temporal mesh causes a simultaneous decrease on the compressible effects,

as described in section 5.9. However, as τ → 0.5 the simulation becomes instable (KRÜGER

et al., 2017). For the case of lid-driven cavity flow it was unable to perform simulations for τ

under 0.547 as shown in Tab. A.1. For this reason τ was kept at 0.547.

After that, the spatial mesh was refined keeping τ fixed. As can be seen in Tab. A.1

increasing the number of points along x and y directions (N ) from N = 200 to N = 400 the

results observed for the minimum velocities at the velocity profiles at the cavity center line

in x and y directions showed very small changes (< 0.1%). Then, for the lid-driven cavity

problem, the simulations were performed for τ = 0.547 and N = 200. The Reynolds number

of this problem was varied by changing the lid velocity.

A.2 Power-law flow between plates

The sensitivity mesh tests for Power-law flow between plates were performed considering

Re = 1, n = 0.25. The apparent viscosity used was m = 0.1 m2/s. Results are considered
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Table A.1 – Mesh sensitivity tests for lid-driven cavity flow problem.

test N ∆x/∆t τ Umin Error[%] Vmin Error[%]

∆t 50

8 0.594 -0.4025 - -0.5382 -
16 0.547 -0.4015 0.265 -0.5365 0.321
32* 0.523 - - - -

∆x

50 16

0.547

-0.4015 - -0.5365 -
100 32 -0.3901 2.614 -0.5297 1.276
200 64 -0.3890 0.495 -0.5276 0.382
400 128 -0.3887 0.095 -0.5271 0.096

*Unable to perform simulation due numerical instability

to be mesh independent when the differences observed on the maximum velocity measured

in the velocity profile at the channel outlet between a coarse mesh and a subsequence

refined mesh are less than 1%.

Again, the first step was to conduct a sensibility test for ∆t. A coarse mesh of N = 40

nodes was applied to the y direction. Then the initial τ , τ0, was decrease until the stability

limit. Although the difference observed for the maximum velocity measured in the velocity

profile at the channel outlet is still large when τ0 changes from 0.506 to 0.502 (1.68% of

difference) as shown in Tab. A.2, for this present problem, the program was unable to perform

simulations for τ0 under 0.502. For this reason τ0 was kept at 0.502.

Table A.2 – Temporal mesh sensitivity test for Power-law fluid flow between parallel plates

test N ∆x/∆t τ0 Umax Error[%]

∆t 40

4 0.567 1.753 -
8 0.520 1.437 18.01

16 0.506 1.342 6.66

32 0.502 1.319 1.68

64* 0.500 - -
*Unable to perform simulation due numerical instability

Attention was given while performing the spatial mesh sensitivity test for Power-law fluid

flow. For this type of fluid the relationship between ∆x and ∆t is no longer linear as observed

for Newtonian fluids, as discussed in section 5.9. That is, in order to keep τ0 constant when

the number of nodes doubles, and consequently ∆x decreases by half, ∆t can not be simply

decreased by half, instead, it must be determined for a given value of n using Eq. 5.53.

Thus, for a given ∆x and a given value of τ0 it is possible to determine ∆t and consequently

the relation ∆x/∆t. Tab. A.3 shows results for the spatial sensitivity mesh test. When N

increases from 160 to 320 the difference observed for the maximum velocity measured in
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the velocity profile at the channel outlet is of 0.216%, which is less then 1%. For this reason,

simulations for Power-law fluid flow between plates were performed with 160 lattices nodes

along y direction.

The initial value of τ for a different value of n is determined based on the temporal mesh

sensitivity test initially performed for n = 0.25. For n = 0.25 a value of ∆x/∆t = 32 implies

that τ0 = 0.502, however when n changes to 1.0, for ∆x/∆t = 32 implies that τ0 = 0.875.

The values of τ0 for different values of n are related on Tab. A.4. Note that although τ0

increases with increasing n, ∆t decreases and consequently the Mach number, Ma, also

does.

Table A.3 – Spatial mesh sensitivity test for Power-law fluid flow between parallel plates.

test N ∆x/∆t τ0 Umax Error[%]

∆x

40 32

0.502

1.319 -
80 35.33 1.226 7.04

160 39.00 1.203 1.91

320 43.07 1.200 0.22

Table A.4 – τ0 for different values of n for Power-law fluid flow between parallel plates.

n N τ0 ∆x/∆t ∆x ∆t Ma

0.25 160 0.5020 39.00 0.00625 1.60× 10−4 0.0045

0.6 160 0.5214 57.97 0.00625 1.08× 10−4 0.0031

1.0 160 0.8750 128.00 0.00625 4.88× 10−5 0.0014

1.4 160 7.0602 812.75 0.00625 7.69× 10−6 0.0002

A.3 Flow past over a cylinder

The sensitivity mesh tests for steady Newtonian fluid flow past over a cylinder were

performed for Re = 40. The kinetic viscosity used was ν = 0.1 m2/s and the distance

between the plates was 40 times the cylinder diameter H = 40× d, following the work of

Dash (2014) and Kang (2010).

To begin with the temporal mesh sensitivity test, the number of lattice nodes across the

cylinder diameter was fixed at Nd = 10 which implies in 400 lattices notes along the x and y

coordinates. The parameter chosen to be evaluated during the mesh sensitivity tests was the

drag coefficient experienced by the particle, CD. The ratio ∆x/∆t was gradually increased.

Results for Mesh sensitivity tests for Newtonian fluid flow past over a cylinder problem

are shown in A.5. Although the difference observed for CD still large when τ changes from

0.6 to 0.575 (1.388% of difference), the program was unable to perform simulations for values

of τ under 0.575. For this reason τ was kept at 0.575.



APPENDIX A. Mesh sensitivity tests 105

After that, the spatial mesh sensitivity test was performed. Tab. A.5 shows that when

the number of lattices in both x and y coordinates goes from 800 to 1600, the difference

observed on CD is of 0.741, which is less than 1%. For this reason, for steady flow past

over a cylinder N was fixed at 800 which implies in 20 nodes across the cylinder diameter

(Nd = 20).

Table A.5 – Mesh sensitivity tests for Newtonian fluid flow past over a cylinder problem.

test N ∆x/∆t τ CD Error[%]

∆t 400

200 0.617 1.726
300 0.600 1.706 1.18
400 0.575 1.682 1.39
500* 0.560 -

∆x

400 400

0.575

1.682
800 800 1.594 5.26
1600 1600 1.582 0.74

*Unable to perform simulation due numerical instability

For unsteady flow past over a cylinder, Re = 100 the simulations showed to be much

more sensitivity to τ variations and a proper temporal mesh sensitivity test could not be

done following Meira (2016). For Re = 100 the program was unable to perform simulation

with τ under 0.62 and for this reason τ was fixed at 0.62. Results for time evolution of CD
and CL for two different meshes, one with N = 800 and the other one with N = 1600 are

compared. Figure A.1 shows the comparison for CD. As can be seen, results for CD change

considerably when N goes from 800 to 1600. The same happens with CL which results are

presented on Fig. A.2. The results for N = 1600 are approaching the literature results, as

shown in 6.3.2 and since simulations containing a large number of lattices take a long time

to run (about 1 day for N = 800 and 5 days for N = 1600), a more refined mesh was not

applied to this study since the trend of the results with increasing N was already observed

and also, results for N = 1600 are already considerably close to results reported in literature.

A.4 Settling particle in Power-law fluid

The mesh sensitivity test for particle settling in Power-law fluid was performed for the case

in which the highest settling velocity was expected. In this way, d = 1.25 cm, ρr = 1.25 and

n = 0.6. The temporal mesh sensitivity test was performed considering the number of lattice

nodes across the cylinder diameter as Nd = 15, which implies in 120 nodes along x direction,

since d/L = 8. The ratio ∆x/∆t was increase until the difference observed in maximum

sedimentation velocity reached by the particle (terminal settling velocity), calculated using

Eq. A.1, was less than 1%. This happened when ∆x/∆t increased from 100 to 200 and
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Figure A.1 – CD time evolution for N = 800 and N = 1600.
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Figure A.2 – CL time evolution for N = 800 and N = 1600.

consequently the compressible effects and temporal mesh dependency were considered

negligible for τ0 = 0.506, as shown in Tab. A.6.

With τ0 fixed, the number of nodes across the cylinder diameter was increased until

dependency on spatial mesh becomes negligible, which occurred for Nd = 25, as shown in

Tab. A.6.

The initial value of τ for a different value of n are shown in Tab. A.7 and were determined

as described in section A.2.
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Table A.6 – Mesh sensitivity test for particle settling in Power-law fluid.

test Nd N ∆x/∆t τ0 VMAX Error[%]

∆t 15 120

25 0.539 -7.328 -
50 0.515 -8.143 11.12
100 0.506 -8.362 2.69
200 0.502 -8.434 0.85

∆x

15 120 100
0.506

-8.434 -
20 160 113.12 -8.596 1.92
25 200 124.47 -8.655 0.69

Table A.7 – Values of τ0 for different values of n for particle settling in Power-law fluid.

n τ0 ∆x/∆t ∆x ∆t

0.6 0.506 113.12 0.01250 1.11E-04
0.8 0.532 121.14 0.01250 3.83E-04
1.0 0.680 133.33 0.01250 9.38E-05
1.2 1.525 153.96 0.01250 8.12E-05
1.4 6.342 195.67 0.01250 6.39E-05
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APPENDIX B – Translation from physical

to lattice units

The parameters in lattice units were obtained from the physical parameters by applying

scale factors that were written in terms of ∆x and ∆t. The scale factors used for each

parameter are listed in Tab.B.1. Note that for kinematic viscosity the scale factor takes into

account the power law index. This is done so the generalized Reynolds number is keep the

same in both physical and lattice units.

Table B.1 – Translation from physical to lattice units and the scale factor used for each
parameter.

Parameter Symbol Physical units Scale factor
Transformation to

Lattice units

Length H [m] ∆x Hl =
H

∆x

Velocity u [m/s] ∆x/∆t ul = u
∆t

∆x

Angular velocity ω [rad/s] 1/∆t ωl = ω∆t

Acceleration a [m2/s] ∆x2/∆t al = a
∆t2

∆x

Angular acceleration α [rad/s2] 1/∆t2 αl = α∆t

Density ρ [kg/m3] ∆M/∆x3 ρl = ρ
∆x3

∆M

Kinematic viscosity ν [m2/s] ∆x2/∆t2−n νl = ν
∆t2−n

∆x2
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