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ABSTRACT

In this research the turbulent flow within an annular-sector duct rotating about a parallel axis is
numerically solved using large-eddy simulation (LES). The study is motivated by the lack of
in-depth understanding of the interplay between rotation- and shear-induced phenomena over
turbulence-related quantities for a problem that has vast applicability in rotating machinery and
internal cooling systems. As a first approach, the solution of the problem is performed with the
aid of a commercial computational fluid dynamics (CFD) code. The numerical procedure and
solution methodology were verified against reference solution data in order to grant reliability to
the obtained results. The annular-sector problem was investigated by means of hydrodynamical
and geometrical parameters. First, the swirl parameter, which represents the ratio of rotational
to axial Reynolds number, was found to cause substantial change in the mean flow profiles and
turbulent quantities. Interestingly, increasing rotation promotes a stabilising effect in the flow
bulk region. On the other hand, rotation increases the overall friction factor. The duct apex angle
effect was found to alter both primary and secondary motion patterns. The ratio of the inner to
outer radius influence resembles that of the apex angle. Intriguingly, the friction factor presented
a minimum point suggesting that an optimal hydrodynamical configuration may be obtained.

Keywords: Large-Eddy Simulation, turbulence, parallel-mode rotation, annular-sector.
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RESUMO

No presente trabalho, o escoamento em regime turbulento através de um duto com seção transver-
sal com formato de um setor anular, com rotação imposta ao redor de um eixo paralelo, é
numericamente resolvido por meio da simulação das grandes escalas (Large-Eddy Simulation).
O estudo é motivado pela falta de conhecimento do efeito competitivo entre fenômenos induzidos
pela rotação e/ou cisalhamento sobre o campo médio de escoamento e quantidades turbulentas,
para um problema que é vastamente empregado em máquinas de fluxo e sistemas de arrefeci-
mento interno. Como uma primeira abordagem, a solução do problema é obtida através de um
código comercial de dinâmica dos fluidos computacional (DFC). O procedimento numérico e
metodologia de solução foram verificados com base em solução de referência encontradas na
literatura, conferindo confiabilidade aos resultados obtidos. O problema do setor anular foi inves-
tigado por meio de parâmetros hidrodinâmicos e geométricos. Primeiramente, o parâmetro de
swirl, que representa a razão entre os números de Reynolds rotacional a axial, causou alterações
substanciais no campo médio e quantidades turbulentas. Curiosamente, aumentando-se a rotação
leva a uma estabilização do escoamento na região central do duto. Por outro lado, o aumento
da rotação aumenta o fator de atrito global. Em seguida, o efeito do ângulo do setor anular
foi considerado. Sua modificação altera completamente o padrão dos escoamentos primário e
secundário. Por último, a razão de raios do duto apresenta influência semelhante àquela do ângulo
do setor anular. É intrigante, no entanto, que o fator de atrito apresentou um ponto mínimo,
sugerindo que uma configuração ótima, hidrodinamicamente falando, pode ser encontrada.

Palavras-chave: Simulação das grandes escalas, turbulência, rotação em modo paralelo, setor
anular.
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Ta Taylor number Ω2d3R/ν2 [−]

Γ Swirl parameter Reω/Reb [−]

Superscripts
( )
′

Fluctuation or modelled subgrid-scale field

( ) Time-averaged quantity, space-filtered quantity

(̃ ) Test-filter space-filtered quantity

( )SGS Related to subgrid-scale

( )+ Measured in wall units

( )R Related to Reynolds stresses

( )T Total

( )T Transpose

( )∗ Characteristic scale



Subscripts
( )w Evaluated at the wall

( )t Turbulent

( )τ Defined in terms of the friction velocity

( )ω Defined in terms of the reference frame rotation speed

( )Ω Defined in terms of the rotation speed

( )SGS Related to the subgrid-scale
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1 Introduction

Turbulence is all around us. The air flowing in and out of our lungs is turbulent,
as is the natural convection in the room in which you sit. Glance outside;
the wind which gusts down the street is turbulent, and it is turbulence that
disperses the pollutants, which belch from the rear of motor cars, saving us from
asphyxiation. Turbulence controls the drag on cars, aeroplanes, and bridges,
and it dictates the weather through its influence on large-scale atmospheric and
oceanic flows. The liquid core of the earth is turbulent, and it is this turbulence
that maintains the terrestrial magnetic field against the natural forces of decay.
Even solar flares are a manifestation of turbulence, since they are triggered by
vigorous motion on the surface of the sun. It is hard not to be intrigued by a
subject which pervades so many aspects of our lives.

Davidson (2004)

1.1 Context

Turbulent flows have always been of considerable engineering and scientific interest. In nature and

industrial applications, flows are mostly turbulent, motivating researchers who devoted their lives to

scratch the surface of a topic that remains only partially understood. The intrinsic intermittency and scale

spectra of turbulent flows have been slowing down its comprehension since it was first formalized. The

fundamental structures of turbulence are not easy to measure in experiments and direct solutions of the

Navier-Stokes equations are still limited by advances in numerical methods and computer hardware.

Despite the advances in experimental techniques, numerical approaches have become very attractive

as they reduce testing and prototyping costs. Even with the aforementioned limitations, the present day

computing power and models/methodologies provide great insight into the overall behaviour of turbulent

flows. Associated with the fast-growing need for more efficiency in industrial processes, solutions for

environmental issues, aerodynamic optimisations, among others, numerical simulations have been key

tools on enhancing our understanding over several fields of science.

The particular case of wall-bounded turbulent flows in rotating geometries may be found in some

of the most important machinery of the modern society. In heat exchangers, turbomachinery, chemical

reactors, electric generators, to name a few examples, rotation-induced effects increase the complexity of

flow and restrict the available approaches to face the problem. Experimental rigs become hard to design

and simplistic approaches to turbulence, e.g. standard eddy-viscosity models, do not account for rotation

and curvature effects unless ad-hoc corrections are used.

When such effects are taken into account, additional stresses due to centrifugal and Coriolis forces

become present. These stresses weaken even more the Boussinesq hypothesis for the eddy viscosity,

which in spite of providing satisfactory predictions for simple flows, is not valid and is still the core

assumption of most turbulence models (SCHMITT, 2007). Additionally, secondary flow may also develop

and compete with the primary flow for energy supply. The results appear as collateral effects in what may

be the main interests of engineering purposes: head loss and heat transfer. The comprehension of such
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interferences on the overall behaviour of the flow and heat transfer is of great importance to design and

improve such machineries.

1.2 Problem description

For several reasons such as operational velocities, combustion, friction, electric heating, etc., most of

the rotating equipments have to be cooled by means of a coolant fluid, which is chosen in accordance

to the application. In some of them, the flow takes place within channels that are built in parallel to the

rotation axis. These channels happen to be of the most varied geometries (circular, square, rectangular,

elliptical) and are responsible for dissipating heat, with attention paid to the required pressure drop, as

well as in some cases, lubricate the rotating components. Since heat transfer is highly influenced by the

flow dynamics, the correct prediction of the hydrodynamics is imperative to obtain assertive predictions

of the thermal field (FÉNOT et al., 2011).

Specifically for rotor/stator geometries, in addition to rotation-induced effects, the flow experiences

the presence of a stationary wall recalling the problem known as Taylor-Couette. If an axial flow is

superimposed, it becomes a Taylor-Couette-Poiseuille problem. For the sake of the example, let the

rotor/stator be represented by a common oil drill bit as illustrated in Fig. 1.1. In the illustration, the flow

follows the direction indicated by the arrows in Fig. 1.1a. During its path through the drill bit, the fluid

passes within baffles as in Fig. 1.1b where it has to extract heat in order to cool the drill bit, transport the

cuttings and keep the pressure at the well walls as stable as possible (BOURGOYNE et al., 1986). The

geometry of these channels may be represented by an annular-sector rotating about a parallel axis as in

Fig. 1.1b. The stationary wall, representing the well wall, characterises the stator.

The full simulation (Direct Numerical Simulation) of complex geometries as the one shown in Fig.

1.1a is not feasible due to present days hardware limitations. Experiments regarding detailed flow dynamics

are not available and simplistic numerical approaches lack reliability for such complex flows. In this

situation, from a numerical perspective, the solution is to stay in between both extremes, that is, not the

full simulation neither the complete modelling. The simulation of the flow largest scales while modelling

the smallest, known as Large-Eddy Simulation (LES), is a well-established technique that is intended to

provide very accurate solutions with fair computational cost.

1.3 Objectives

The objective of this study is to perform a large-eddy simulation to investigate the Newtonian turbulent

flow in an annular-sector rotating about a parallel axis, such as the one shown in Fig. 1.1b. The study is

focused on the fundamental hydrodynamics and the comprehension of the flow mechanics in isothermal

conditions. The numerical solution will be otained from the commercial CFD software STAR-CCM+

R.12.04.

The investigation will be carried out by varying the swirl parameter Γ, which represents the ratio

between the axial and rotational Reynolds numbers. The competitive effect between rotation- and shear-
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Figure 1.1 – Problem description. (a) Common oil drill bit geometry. (b) Rotating duct geometry.

induced forces will be analysed by varying the angular and radial gaps. Attention will be given to the

influence of such parameters on the mean flow variables and turbulence statistics of first and second-order.

1.4 Document outline

Chapter 2 discusses fundamental concepts regarding turbulence as well as time- and space-averaging

approaches to treat turbulence in the Navier-Stokes equations.

Chapter 3 brings the literature review, responsible for condensing the latest studies available in the

literature so they will serve as guidance tools for the project development.

In Chapter 4, a formal description of the geometry, boundary conditions and simplifying assumptions

are presented. The governing equations of the problem and its filtered counterpart are also presented. The

LES formulation adopted to account for residual stresses is also explained.

Chapter 5 is devoted to show the way STAR-CCM+ deals with the chosen formulation. The employed

numerical schemes are discussed and the grid construction process is detailed.

In Chapter 6, reference solution data found in the literature are compared with the results provided

by STAR-CCM+ for different numerical configurations. The best setup is then employed to perform a

grid-independence test.
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Chapter 7 summarises the effect of the problem parameters in the mean flow and turbulence statistics.

Chapter 8 elucidates the drawn conclusions and future work ideas are also presented.
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2 Theoretical Basis

This chapter discusses fundamental concepts regarding turbulence as well as time- and space-averaging

approaches to treat turbulence in the Navier-Stokes equations.

2.1 The Navier-Stokes equation

The Navier-Stokes equation is known to model the motion of any constant-property Newtonian fluid,

as long as the continuum hypothesis is respected (POPE, 2000). It is a second-order non-linear partial

differential equation, based on Newton’s second law, and relates the fluid portion acceleration to surface

and body forces imposed on it. The derivation of the Navier-Stokes equation passes through the Stokes

hypothesis for the second coefficient of viscosity, which informations can be found in White and Corfield

(2006). For an incompressible isothermal fluid, the Navier-Stokes equation assumes the form:

ρ (u · ∇) u = ρg −∇p+ µ∇2u (2.1)

where ρ is fluid density, u is the velocity vector, p is the pressure and µ is the fluid dynamic viscosity.

In Eq. 2.1, the total acceleration of a fluid particle, left-hand side, is balanced by the interplay between

pressure, gravity and viscous shear stress, on the right-hand side. The non-linear term on the left-hand

side is responsible for the modelling capability of fascinating phenomena such as turbulence.

2.2 Turbulence

2.2.1 The experiments of Reynolds and Taylor

It has been known for a quite long time that the motion of a high-viscosity or slow-moving fluid

tends to be well behaved or laminar. On the other hand, by reducing the fluid viscosity or if the motion

happens more rapidly, the movement of the fluid becomes irregular, that is, turbulent. Taylor and Reynolds,

by performing some simple experiments, illustrated this laminar-to-turbulent transition quite nicely

(DAVIDSON, 2004), as described below.

Starting in 1883, Reynolds conducted an experiment in which water was put to flow in a pipe of a

certain diameter. He introduced what he called a new form for the laws of resistance for all velocities

and all diameters of pipes in a simple and elegant equation of only two terms. Years later, this equation

was named after him and became the well known Reynolds number Re. With this equation, the flow

regimes, laminar and turbulent, could then be distinguished by a certain value of Re. Reynolds pointed

out that turbulence is a result of the natural amplification of instabilities which makes this type of flow

very sensitive to disturbances such as initial conditions. In that time, Reynolds obtained laminar flow up to

Re ∼ 13000 arguing that there is a required amount of instabilities for turbulence to set in and that below

a critical value of Re turbulence decays (REYNOLDS, 1883). He was searching for a definite value, a
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critical limit that would guarantee laminar flow and found that for straight smooth pipes there was one

in fact. Reynolds stated that for Re < 1900 the flow would be stable while for Re > 2000 it would be

unstable.

The Reynolds number can be expressed for any geometry as a relation between the dynamic pressure

and the flow resistance, as shown on Eq. 2.2:

Re =
8ρU2

τw
. (2.2)

For pipe flow, it assumes a more usual form as given by Eq. 2.3 (WHITE; CORFIELD, 2006).

Re =
ρUd

µ
(2.3)

In Eqs. 2.2 and 2.3, ρ is the fluid density, U is the characteristic velocity, τw is the wall shear stress, µ

is the fluid dynamic viscosity and d the pipe diameter.

In 1923 Taylor was dealing with another simple but intriguing experiment. With two concentric

cylinders separated by a gap filled with fluid where the inner cylinder was put to rotate while the outer

remained stationary, Taylor noted different flow regimes as illustrated in Fig. 2.1. At low rotational speeds,

the fluid being dragged by the inner cylinder would act as expected creating a laminar motion within

the gap. At a critical speed, however, toroidal vortices suddenly appeared creating a secondary motion

superimposed on the primary circular motion (Fig. 2.1a). Nevertheless, the flow was still well behaved

characterizing a flow pattern composed by axisymmetric toroidal structures known as Taylor vortices.

The motion of a fluid particle may now be described by a helical path. Increasing the cylinder velocity,

these structures became unstable losing their symmetry. Taylor described it as wavy vortices (Fig. 2.1b).

Finally, when the inner cylinder reaches a certain critical velocity, the fluid breaks down into an eddy

motion described as turbulent Taylor vortices (Fig. 2.1c) (DAVIDSON, 2004).

The secondary motion shown in Fig. 2.1a happens as a consequence of the centrifugal forces arising

from rotation. Since there is a radial velocity gradient there is also a radial pressure gradient which until

some critical point, balances the centrifugal force.

By extending Reynolds theory for straight smooth pipes, Taylor proposed a non-dimensional parameter

which may be used to distinguish between the flow regimes shown in Fig. 2.1. The Taylor number Ta

may be expressed as (DAVIDSON, 2004):

Ta =
Ω2d3R

ν2
(2.4)

where ν is the kinematic viscosity of the fluid and the remaining variables are defined in Fig. 2.1. For

rotating flows such as the one presented in in Fig. 2.1, it is also usual to define the rotational Reynolds

number in the form:

ReΩ =
ΩRd

ν
. (2.5)
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Figure 2.1 – Flow between concentric cylinders. Representation of the Taylor vortices. Source: Adapted
from Davidson (2015).

2.2.2 A brief discussion on the scales of turbulence and the energy cascade

In the beginning of the XVI century, Leonardo da Vinci painted his observations of turbulence in

which he described the eddying motion and variety of scales in the surface of a tank in which water

was flowing in from a channel above the tank surface (ZOLLNER, 2004). For the subsequent centuries,

scientists have been putting their efforts on the most common flows in nature, that is, turbulent flows.

Turbulence cannot exist by itself, in the sense that it requires a continuous supply of energy. In

three-dimensional turbulence, the energy supply comes from the mean flow and/or body forces, creating

eddies that inherit the mean flow scale l and velocity u. These large eddies are also subjected to instabilities

and soon break-up into smaller eddies and so on, cascading energy to smaller and smaller structures. This

process continues until viscosity plays its role dissipating this energy by the action of viscous stresses.

This process is schematically illustrated in Fig. 2.2 in which the flux of kinetic energy is directed from the

large, energy-containing eddies, referred to as first instabilities, to the small, energy-dissipating eddies of

length scale η and velocity scale ϑ, referred to as smallest instability.

Assuming that the lifespan of most eddies is of a time scale of their own turn-over time (based on

experimental evidence), the kinetic energy per unit mass is passed down to the smaller scales at a rate of:

Π ∼ u2

l/u
=
u3

l
(2.6)

where u and l are the length and time scales of the more energetic eddies, as illustrated in Fig. 2.2.

For statistically steady conditions, this rate of energy transfer must balance the rate at which energy is
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Figure 2.2 – Schematic representation of the energy cascade and turbulence scales. Adapted from David-
son (2004)

dissipated at the smallest scales (DAVIDSON, 2004). The dissipation rate is given by:

ε ∼ νSijSij (2.7)

where Sij = (1/2)[∇u+(∇u)T] is the rate of strain tensor associated with the smallest scales. Performing

a scale analysis it is seen that Sij ∼ ϑ/η and therefore Eq. 2.7 yields:

ε ∼ ν ϑ
2

η2
. (2.8)

Assuming an equilibrium state, combining Eq. 2.6 and 2.7 gives:

u3

l
∼ ν ϑ

2

η2
(2.9)

An outcome of Kolmogorov’s second hypothesis is that the smallest scales Reynolds number Reη =

ϑη/ν ∼ 1, which is consistent with the idea that energy is cascaded to smaller and smaller scales until

dissipation is effective (POPE, 2000), and taking the largest scales Rel = ul/ν, it is possible to derive a

few correlations to express the scales of turbulent flows. Combining the equations above results in, as an

example, a relation between the largest and smallest scales as follows:

η ∼ lRe−3/4
l . (2.10)

The scales η and ϑ are called the Kolmogorov microscales (KOLMOGOROV, 1941). Using Eq. 2.10

it is possible to estimate the magnitude of time and dimensional limit scales contained in a turbulent

flow. Taking a circular pipe, for example, where water flow is characterized by Rel ∼ 105 and assuming

l ∼ d ∼ 1 cm, the smallest eddies would have the size of η ∼ 10−4 cm and a lifespan τ = η2/ν of only

10−2 s. This is the reason of such high computational effort behind DNS simulations and the obstacle that

prevents the technique of being applied to higher Re.
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2.3 Turbulence modelling

On the duty of trying to develop an universal theory to describe turbulent flows, scientists, engineers,

physicists and mathematicians have struggled for centuries. Although the Navier-Stokes equations are

known for a quite long time and are also capable of representing any Newtonian flow, the effect of the non-

linear terms takes the possibility of finding a deterministic solution to an insane level of complexity. That

complexity is based on the fact that, as any other non-linear phenomena, turbulent flows are extremely

sensitive to initial conditions and the next result will always differ from the last. Even for computer

calculations on which exactly the same initial conditions can be set, the simple presence of rounding

errors will take the solution to a different end (DAVIDSON, 2004).

The way researchers found to overcome the intrinsic randomness of turbulence was to call upon

statistical techniques. Although the instantaneous values for a local variable are not repeatable its time-

average is (for a representative amount of time) (DAVIDSON, 2004). This means that, as long as one is

not interested in the instantaneous flow field with its n-order fluctuations, the time-averaged solution is

reproducible and perfectly fits most of engineering purposes.

It sounds perfect for the construction of an universal theory that comprises, at least, any turbulent mean

flow. So let us start by time-averaging the Navier-Stokes equations based on the Reynolds decomposition.

Reynolds proposed that a quantity may be expressed as the sum of a steady mean component and a time

varying fluctuating component with zero mean value:

φ(x, t) = φ(x) + φ′(x, t). (2.11)

Substituting Eq. 2.11 in the Cartesian Navier-Stokes equations yields:

ρ
∂ui
∂t

+ ρuj
∂ui
∂xj

= − ∂p

∂xi
+

∂

∂xj

[
τ ij − ρu′iu′j

]
(2.12)

where ui is the time-averaged i− th component of the velocity vector, p is the time-averaged pressure,

τ ij the time-averaged viscous shear stress tensor and −ρu′iu′j the Reynolds stresses originated from the

time-averaging process. They are interpreted as additional stresses caused by momentum flux exchange of

the fluctuating quantities with the mean flow (DAVIDSON, 2004).

Equation 2.12 is named the Reynolds-averaged Navier-Stokes equation. In this form, turbulent flows

may now present one dimensionality and steadiness properties which is a characteristic of many advantages

when speaking of CFD modelling. On the other hand, the time-averaged non-linear term produced nine

new unknowns as shown below for an arbitrary orthogonal coordinate system.

u′iu
′
j =


u′1u

′
1 u′1u

′
2 u′1u

′
3

u′2u
′
1 u′2u

′
2 u′2u

′
3

u′3u
′
1 u′3u

′
2 u′3u

′
3

 (2.13)

No matter how much algebra effort is put into deriving a new set of equations for these unknown

quantities there will always be more unknowns than equations. This problem is known as the Turbulence
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Closure Problem. Therefore, it is necessary to conceive the missing relations to pair equations and their

unknowns and then solve them via some CFD technique.

This is the challenge of classical turbulence models based on time-averaged equations. The first

attempt to overcome this situation probably dates back to Boussinesq’s work in the 1870s. He proposed a

shear-stress strain-rate relationship for time-averaged flows of one-dimensional nature of the form:

τxy + τRxy = ρ (ν + νt)
∂ux
∂y

(2.14)

where he named νt as the eddy viscosity or turbulent viscosity (DAVIDSON, 2004). The idea behind

Eq. 2.14 is that the role of turbulence is to bump the effective viscosity from ν to ν + νt, where νt is

presumably greater than ν. The concept generalization for three-dimensional flows is given as:

τRij = −ρu′iu′j = ρνt

[
∂ui
∂xj

+
∂uj
∂xi

]
− ρ

3
u′ku

′
kδij (2.15)

Inserting 2.15 in 2.12 and substituting the viscous stress for its Newtonian correlation gives

ρ
Dui
Dt

= − ∂p

∂xi
+ ρ

∂

∂xj

[
ν

(
∂ui
∂xj

+
∂uj
∂xi

)
+ νt

(
∂ui
∂xj

+
∂uj
∂xi

)
− 1

3
u′ku

′
kδij

]
(2.16)

which can be rearranged yielding:

ρ
Dui
Dt

= − ∂p

∂xi
+ ρ

∂

∂xj

[
(ν + νt)

(
∂ui
∂xj

+
∂uj
∂xi

)
− 1

3
u′ku

′
kδij

]
(2.17)

The last term is known as the turbulence kinetic energy and it is defined as one half the trace of 2.13:

k =
1

2
u′iu
′
i (2.18)

It is coupled to the pressure term to become the modified mean pressure. Equation 2.17 is then

rewritten to yield:

ρ
Dui
Dt

= −
∂
(
p+ 2

3k
)

∂xi
+ ρ

∂

∂xj

[
(ν + νt)

(
∂ui
∂xj

+
∂uj
∂xi

)]
(2.19)

Although the fluctuating terms were eliminated based on the eddy viscosity hypothesis, there is still

one unknown which must be determined in order to solve Eq. 2.19, that is, the eddy viscosity itself. If the

turbulent viscosity hypothesis is accepted as an adequate approximation, all that remains is to determine

an appropriate specification for it. In general, this can be done by multiplying a velocity u∗(x, t) by a

length `∗(x, t) scale:

νt = u∗`∗ (2.20)

In algebraic models like the mixing length model, `∗ is specified based on geometric characteristics

of the flow. In two-equation models like the k − ε model, u∗ and `∗ are related to k and ε, for which

modelled transport equations are derived and solved.
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2.4 Large-Eddy simulation

The unsteady irregular motion that is associated with turbulent flows has an impact in momentum and

heat transfer. The associated quantities such as temperature, concentration distribution, to stress out a few

examples, are significantly influenced. Therefore, any successful computation of such phenomena must

take the effect of turbulent motion into account in a proper manner (RODI et al., 2013).

As briefly mentioned before, the only way of accounting for the whole energy spectra is to perform

a DNS. In the other extreme, RANS based models account for the turbulent effect in the mean flow

through the action of the so called Reynolds Stresses. In this case, the whole spectrum of turbulent motion

is modelled. The problem with DNS is the CPU time demand which leaves it out of the picture for

engineering purposes. The problem with RANS is that the large energy-containing structures depend

on the problem geometry, boundary conditions and the very nature of the flow, that is, wall-bounded or

free-shear, rotating or non-rotating. The closuring constants for RANS models are calibrated empirically

which creates a sort of link between one model and the problem it was calibrated for.

The idea of LES is that, since the small scales are not far from being isotropic (JIMÉNEZ, 2013), their

role of mopping up whatever energy is cascaded to them is modelled whilst the large, energy-containing

and boundary-dependent structures are resolved. By modelling the small scales, the computational cost is

dramatically reduced but the turbulent motion effect is mostly accounted for.

To accomplish that, the resolved and modelled spectra must be somehow split apart. This task is done

by filtering the governing equations with the aid of some adequate technique. Ideally, this separation or

cut-off length takes place in a region that only energy transfer occurs, that is, no production or dissipation

exists. In Fig. 2.3, an expected energy spectrum is represented for DNS and LES. The cut-off wave-number

kcut−off represents the separation between resolved and unresolved scales. As mentioned before, the

kcut−off is placed in a region called inertial subrange, where only energy transfer exists.

The three classical and most used filters for LES are the Gaussian filter, Fourier cut-off filter and

box filter (POPE, 2000). Mathematically, the filtering process corresponds to the convolution of any flow

quantity f(r, t) by the filter function G in the form of the Eq. 2.21 (LESIEUR et al., 2005).

f(r, t) =

∫
D
G(r, r′,∆)f(r′, t)dV ′ (2.21)

In Eq. 2.21, f is the filtered parcel of f , G is the filter function and ∆ is the filter width. The filter

function G must satisfy the normalization function, that is

∫
D

G(r, r′,∆)dV ′ = 1 (2.22)

The subgrid-scale field f ′ is therefore the departure of the actual flow with respect to the filtered field:

f = f + f ′ (2.23)
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Figure 2.3 – Schematic representation of the energy spectrum for DNS and LES

The filtered field f , which is three-dimensional and time-dependent, represents the large eddies motion

(POPE, 2000).

The filtering operation may be performed in physical or spectral space and it can be done implicitly or

explicitly. In explicit filtering, the filter function appears explicitly in the governing equations and the

result is a continuous distribution of the filtered field. For implicit filtering, the grid size plays the role of

the filter resulting in cell averaged values and a discontinuous distribution of the filtered field.

When deriving the filtered Navier-Stokes equations, as well as for the RANS equations, the non-

linear term produces a set of unknowns which must be somehow accounted for in order to close the

equations. These unknowns are named subgrid-scale stresses τSGS
ij (Eq. 2.24) and represent the effect of

the unresolved, small-scale turbulence on the resolved/filtered motion (RODI et al., 2013).

τSGS
ij = uiuj − ui uj (2.24)

There are two forms of accounting for τSGS
ij effect: through explicit or implicit modelling. The former

consists of deriving a model which must dissipate the correct amount of energy from the calculated

large-scale flow and allow a realistic energy exchange for the resolved scales. The latter relies on the

dissipative effect of the numerical scheme to mop up the energy descending from the large-scale motion.

In practice, the implicit modelling is the most used and the most famous models are based on the

Boussinesq hypothesis for the eddy viscosity. For detailed information regarding filtering operations as

well as SGS models, the reader can refer to relevant literature (POPE, 2000; LESIEUR et al., 2005). A

discussion about the filter and SGS models used in this study is given in Chapter 4.
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3 Literature Review

In this chapter, a brief but comprehensive review of turbulent flows in stationary ducts are presented in

first place. Subsequently, relevant studies involving turbulent flows in the presence of rotation is provided.

Lastly, the effect of curvature over the mean flow and turbulence-related quantities is also discussed.

3.1 Stationary channel and duct flow

Turbulent flows in ducts of varied cross-sections are the core of many industrial applications. Although

the pressure-drop per unit length is the most desired information, in many situations, knowing the details

of flow structure is indispensable for characterizing processes such as heat transfer or multiphase flows

(DEAN, 1978).

Prior to the advent of computer simulations and elaborated experimental techniques, researchers

were concerned with determining the onset of turbulent motion. The classical experiments of Osbourne

Reynolds (REYNOLDS, 1883) show the importance of determining whether or not the flow is turbulent

and its impact on the overall resistance. Later on, the results were extended to other geometries and their

influence on the criterion itself as reported in the work of Davies and White (1928). In the latter work, the

onset of turbulence was investigated for a square-sectioned duct and one important conclusion was drawn

when the authors stated that for a certain value of Re based on the hydraulic diameter, the turbulence

created at the test-section simply died out as the fluid travelled along the duct.

In the 70’s, the advances in computer power allowed a different scenario for the study of turbulent

flows. Deardorff (1970) made a ground-breaking study when he first implemented a LES solution of a

three-dimensional turbulent Poiseuille channel flow. The author provided a large amount of data regarding

turbulent quantities for large Re, some of which could not be obtained experimentally. The results,

obtained with a modest number of grid points and the Smagorinsky model for the subgrid-scale (SGS)

stresses, were compared with the experiments of Laufer (1950) showing reasonable agreement in the

regions away from the wall. In the near-wall region, the law of the wall was employed resulting in some

discrepancies.

The improvement in experimental techniques were no less important to turbulent flow investigations.

The behaviour of the fluctuating velocity components at the wall regions of a rectangular channel

was experimentally investigated by Kreplin and Eckelmann (1979). The flow was taken to be fully

developed and the Reynolds number based on the channel width and centre line velocity was kept

constant at Re = 7700. Although the Re is low, the measurements were done down to y+ = uτy/ν ≈ 3

(uτ =
√
τw/ρ is the friction velocity) in the streamwise and down to y+ ≈ 1.5 in the spanwise directions

providing data to numerical validation. The authors shared the complexity of measuring that close to the

wall and stated that in this region, the simple presence of the probe may alter flow structures.

Not surprisingly it took almost 40 years for this sort of investigation to reach industrial applications.

In the recent work of Schultz and Flack (2013), the turbulent channel flow was experimentally investigated
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for 1000 ≤ Reτ = uτδ/ν ≤ 6000 (where uτ stands for shear velocity or friction velocity). Probing the

velocity field with the aid of a Laser Doppler Velocimetry (LDV) equipment, the measurements were

done down to y+ ≈ 1 for the lower Re but the closest point for the upper limit of Re lies in y+ ≈ 30.

The experiments are very difficult to be performed for such high values of Reτ since the smallest scales

of the flow are smaller than the measuring equipment leaving numerical solutions as the only option to

investigate the flow in detail.

The first numerical study that truly calculated the flow in the vicinity of the wall was the one of Moin

et al. (1978). According to the authors, the grid resolution was not adequate to capture the flow structure

in the viscous sublayer but provided some experimentally observed features. The rigorous calculation

of the near-wall flow is required since most of the turbulent energy production occurs in this region.

The introduction of artificial boundary conditions to model the flow generally comes with under/over

predictions of turbulent quantities.

By increasing grid resolution, Moin and Kim (1982) performed a LES simulation of the turbulent

flow through a channel at Reτ = 640. They obtained the statistical properties of the flow and its structure

and turbulent quantities were analysed in a certain detail. The attention was directed to the near-wall

region and its influence on the mean flow. The scale of flow structures in the wall region, however,

were generally larger than in experimental observations. Therefore, Kim et al. (1987) extended the later

study by performing a DNS solution for Reτ = 180. In this study, a great amount of reliable data is

provided regarding turbulent quantities. The results are still used in the present days as a data base to

verify numerical solutions.

The interest behind higher Re studies, from academical and industrial perspectives, is that some

wall-bounded turbulence-associated characteristics first manifest for Reτ > 103 (LEE; MOSER, 2015).

However, it is not trivial to obtain reliable numerical solutions for such values of Re. The DNS study

of Kim et al. (1987) was carried out with 2 × 106 grid points and the recent work of Lee and Moser

(2015), for Reτ = 5200, with astonishing 242× 109 grid points, requiring half an year of CPU time in

the IBM-MIRA super computer (RODI, 2017).

The channel flow has been used as a very suitable tool in turbulence investigations since periodicity

may be assumed in both the streamwise and spanwise directions reducing the demanded computer power

considerably. When the spanwise direction is restricted by the presence of solid boundaries, the flow

becomes even more complex due to the strong anisotropy near the walls and the corners. In the duct

flow, interaction is happening with four enclosed walls instead of two as in the channel flow case. The

simple presence of these additional walls, not only distorts the streamwise flow but also creates secondary

motion near the corners as a result of turbulent stresses imbalance (MADABHUSHI; VANKA, 1991).

The correct prediction of this type of secondary motion strongly depends on the correct prediction of

turbulent stresses, which restricts the application of RANS-based models. The enhanced RSM model

of Reif and Andersson (2002) was able to predict the secondary motion but with lower intensity when

compared to the DNS solution of Huser and Biringen (1992). The former work reports the difficulty of

turbulence models on dealing with second moment closures. The physics of the secondary motion itself

was very well explored in the recent work of Pinelli et al. (2010). By varying Re from quasi-laminar up to

full turbulent values, the first appearance of secondary motion and how it scales with Re was investigated
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via DNS.

In general, the computing power advances throughout the years have allowed DNS studies to be

performed for higher Re as shown in the brief historical outline in Table 3.1.

Table 3.1 – Historical outline for turbulent channel flow

Authors Geometry Method Reτ

Deardorff (1970) Channel LES -
Moin et al. (1978) Channel LES 640
Moin and Kim (1982) Channel LES 640
Kim et al. (1987) Channel DNS 180
Moser et al. (1999) Channel DNS 590
Lee and Moser (2015) Channel DNS 5200

As very well reported in the work of Jiménez (2013), the interest on increasing the Re has been

devoted to expand the knowledge generated over the years on the best hope of fully describing a multi-

scale turbulent process. In particular, the study highlights the importance of wall-bounded turbulent flows

from scientific and industrial perspectives and condensates the state of the art on near-wall calculations.

These accomplishments in numerical simulations alongside with experimental advances, as reported

in the work of Schultz and Flack (2013), may one day be used to improve turbulence models to deliver

reliable solutions in feasible computing time.

3.2 Rotating channel flow

The flow subjected to span-wise rotation was vastly studied in the last decades. From theoretical

and experimental (HART, 1971; JOHNSTON et al., 1972; NANBU, 1971; MOORE, 1973) to numerical

investigations (GRUNDESTAM et al., 2008; KUBACKI et al., 2016), these studies bring up the influence

of effects that emerge due to rotation over heat transfer and hydrodynamics. One of the most striking

features is that of the competing effect of stabilized and destabilized regions coexisting as a result of

the Coriolis force. The effect of rotation in this case, is to laminarize the flow field. In the present work,

however, the interest is directed to the situation in which rotation occurs in parallel to the mean flow

direction.

This particular case of the flow being parallel to the rotation axis was also vastly studied. The work of

Mori and Nakayama (1967) showed from a theoretical perspective that as in flows subjected to span-wise

rotation, parallel-mode rotation induces remarkable distortions in velocity and temperature profiles. The

presence of secondary flow increases the heat transfer coefficient and hydrodynamic resistance. The effect

of Coriolis force was found to decrease the pressure gradient responsible for driving the secondary motion,

lessening flow resistance and heat transfer rate.

The influence of the rotation speed alongside with entry conditions was then investigated in a later

experimental work by Johnson and Morris (1984). By testing a wide range of Re on a circular cross-

sectioned pipe, the authors showed that as long as the flow is fully developed, the rotation speed is
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insignificant in the flow pattern increasing resistance in less than 10%. On the other hand, for non

developed flow regions, the increase in rotation speed augment hydraulic resistance severely, reaching

30-40%. A similar study was conducted by Levy et al. (1986) where a rectangular cross-sectioned duct

uniformly heated was experimentally investigated. The flow regime remained laminar and the results

presented pressure drop increasings of about 30-35% corroborating the numerical previsions of Levy and

Kannan (1985). Further numerical investigations over the same problem providing detailed flow structure

and heat transfer mechanisms for a extended set of experimental conditions were performed by Soong

and Yan (1999).

Sleiti and Kapat (2006) conducted a more robust numerical approach aiming to understand the

physics under the simultaneous action of Coriolis and centrifugal/buoyancy forces by implementing a

Reynolds-Stress model of a square duct rotating in parallel-mode. The most important conclusion regards

the discrepancy between heat transfer rates for each duct surface as a consequence of stress imbalance.

Increasings in pressure loss due to rotational effects were also noted.

Chiu et al. (2007) included the effect of radiation and implemented a vorticity-velocity method to

solve the problem of a square duct rotating in parallel mode. The flow was investigated in laminar regime

and the increase in rotation was found to increase the friction factor.

Fasquelle et al. (2014) implemented a numerical simulation of heated circular and elliptical cross-

sectioned pipes rotating in parallel mode. Using an ANSYS Fluent code, turbulent quantities were

calculated with the standard k− ω model. The aim of the study was to enhance heat transfer on a real size

coolant duct used in electric generators.The focus was directed to heat transfer enhancements obtained for

different geometric configurations. The numerical procedure was verified against empirical correlations

for the average Nusselt number and showed good agreement. However, there is no evidence that the local

quantities are well predicted.

From the literature review, it is clear that great effort has been devoted to understand the physics of

rotation induced phenomena and its influence on the flow characteristics. For spanwise rotation, there

are recent solution data available ((FANG et al., 2016), (HSIEH et al., 2016), (DAI et al., 2015)). In this

field, the latest outcomes resemble those of straight stationary channels, that is, the advances in computer

power have allowed the limits to be pushed forward. On the other hand, parallel-mode rotation effects

still lack in-depth studies. Despite the fact that laminar flows are easier to implement, they are very rare

in industrial applications and for the turbulent cases, as far as the author is aware, there is no detailed

information in the literature regarding the flow characteristics.

3.3 Curvature-influenced flows

Curvature plays an important role in fluid mechanics studies. In industrial applications it is almost

impossible to build pipelines without having any bend and coiled tubes are very useful geometries in heat

exchangers. In aerodynamics and rotary machines, curvature effects are always present.

One of first investigations of such phenomena dates back to the early 20th century, where the effects

of curvature on flow resistance of water in circular cross-sectioned pipes were experimentally studied

(EUSTICE, 1910). The results were compared with those obtained for straight pipes and an increase in
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flow resistance was noted in the presence of curvature. In other words, the pressure gradient necessary to

maintain the same flow rate is increased.

The presence of curvature, besides altering flow resistance, also change the transition criterion

proposed by Reynolds (1894). In Eustice (1911) experiments, a statement is done regarding that there

is no critical velocity for coiled pipes. Rather, the transition occurs in a gradual manner and starts in

velocities lower than that expected for straight pipes. His conclusions were sustained by the theoretical

analysis of Dean (1928a) for a curved channel. He proposed that the reason for the transition to occur prior

to that expected for a straight pipe is that the curvature contributes for the flow to be unstable for small

disturbances whilst it is stable in the case of straight channels. He shows that a type of small disturbance

which could not persist in a straight channel is possible in a curved channel. It is likely to explain the

absence of sudden transition as noticed by Eustice (1910).

Dean (1927), derived a theoretical solution for the flow of an incompressible fluid along a circular

cross-sectioned pipe. He found some agreement between theory and the experiments of Eustice (1911)

but failed to show the pressure gradient relation with the rate of flow. In this work, the Dean number

concept was introduced, aggregating centripetal forces to the Reynolds number to determine the onset

of turbulence on flows with curvature effects. In his next paper, Dean (1928b) extended the analysis and

showed that the difference of pressure is necessary to sustain the secondary flow which occurs as a result

of the centrifugal tendency of the fluid. This secondary flow, which is already taking place before the

critical velocity is reached, is the responsible for the absence of sudden transition.

In the next year, White (1929) pointed out a few inconsistencies in Eustice (1911) experiments and

came up with a completely different point of view about the onset of turbulence along pipe bends. By

conducting a set of experiments, he argued that there is indeed a marked critical velocity for the transition

to happen and that this velocity is higher than that expected for a straight pipe. The author stated that the

effect of the curvature is to drive the flow to a streamline regime rather than anticipate the transition to

turbulence. The problem in Eustice (1911) was that there were no measures taken to control the entry

conditions of the flow in the test section. White (1929) showed that the initial conditions play a huge role

in the results and also validates Dean’s theory for streamline motion in curved pipes.

Intrigued with the discrepancy between White (1929) and Eustice (1911) results, Taylor (1929)

decided to repeat some of Eustice (1911) experiments taking into account the provisions in the entry

region as commented by White (1929). The results showed that steadiness persisted up to velocities where

one would find turbulent motion in a straight pipe, corroborating the results found by White (1929).

The pure effect of curvature came to play in the 30’s, when Wattendorf (1935) was dealing with the

fully developed turbulent flow within a curved channel of rectangular cross section. In order to isolate

the curvature effect, the author assembled an experimental apparatus consisting of a curved rectangular

channel with large aspect ratio to prevent secondary flow to happen. In this study, it was found just a slight

increase in flow resistance due to curvature effects when compared with the straight channel leading to the

conclusion that the substantial losses are linked to the secondary motion. On the other hand, the velocity

and pressure profiles were highly distorted along the channel bend with the velocity peak being shifted

towards the inner wall.

Extending Wattendorf (1935) experiments, Eskinazi and Yeh (1956) took the analysis to the en-
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ergy spectra approach and their results showed that turbulence production is more intense at the outer

walls which leaves this region with the greatest turbulence intensity. An extensive review regarding the

subsequent studies of flow in curved pipes was performed by Berger et al. (1983) and Ito (1987).

From a numerical perspective, Patankar et al. (1975) first employed the k− ε model to turbulent flows

in curved pipes. The study covered both entry and fully developed flows and results displayed reasonable

agreement with experimental data. The wall function approach was implemented to treat near-wall regions

and ease computational effort which contributed to the discrepancies in the results.

Moser and Moin (1987) solved the Navier-Stokes equations directly for concentric cylinders. The

flow was considered to be turbulent and fully developed. The effect of curvature was then investigated by

comparing the flow field and turbulent quantities. The so called Taylor-Görtler vortices were responsible

for a significant impact on the turbulence statistics and may not be neglected. The turbulent kinetic-energy

terms as many other quantities are insensitive to the presence of curvature so that standard k-based

turbulence models are not likely to produce significant curvature effects.

Kao (1987) investigated the effect of torsion on the fully developed laminar flow in a helix. He faced

the problem with theoretical and numerical approaches. For the theoretical analysis, the Poiseuille solution

was perturbed to derive a series solution for the helical geometry. The numerical solution was obtained

by implementing a finite difference procedure together with the QUICK scheme for the advective terms.

The main conclusions were directed to the influence of torsion on the secondary flow pattern and flow

resistance along the pipe. The increase in torsion distort the secondary flow, which was symmetric in first

place, but its effect on flow resistance when compared to the curvature’s was considered to be always

small for whole set of cases.

Di Piazza and Ciofalo (2010) assessed classical turbulence models when treating heat transfer and

fluid flow along helically coiled pipes. They compared numerical predictions with both experimental

and DNS data. The k − ε model led to underpredictions of the friction factor and Nusselt number. The

reason was taken to be in spite of the weak wall treatment employed in this model which fails to capture

boundary layer detachment and impingement in the inner and outer walls respectively. Both SST-k − ω
and RSM-ω showed great agreement with reference data even for low Reynolds flows, below transition to

fully turbulent, but failed to represent correctly.

Kang and Yang (2016) recently studied the effects of pipe curvature on heat transfer characteristics by

performing LES of fully developed turbulent curved-pipe flow with constant wall heat flux. The sub-grid

stresses were modelled with the Smagorinsky eddy-viscosity model and the procedure was validated

against DNS and experimental results. The curved pipe was represented by a toroid and flow was driven

by a mean pressure gradient. They found that the mean friction factor and mean Nusselt number increase

with increasing curvature which indicates heat transfer enhancement at the expense of increased friction.

Curvature has also an interest effect in shear-flow turbulence (BRADSHAW, 1973). A slight curvature

already changes the mean flow and turbulent quantities by means of a new mode of instability which

manifests in the form of Taylor-Görtler vortices (HUNT; JOUBERT, 1979). A very suitable tool to

investigate curvature related phenomena in turbulent shear-flows is the Taylor-Coutte problem. As

reported in the work of Dong (2007), since the experiments of Taylor himself, an overwhelming amount

of studies have been published in this area. Most of the knowledge regarding turbulence mechanisms
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and characteristic structures, however, comes from experimental studies while numerical approaches are

mainly concentrated in the laminar regime. Dong (2007) tackled the problem through a DNS solution

varying the rotational Re from 1000 to 8000. In this range, he compared the laminar with fully turbulent

flow and investigated the dynamical and statistical properties of such flow. The results corroborated

experimental and theoretical predictions.

More recently, Ostilla-Mónico et al. (2016) extended the Re range up to Reτ = 4000. The study was

conducted through a DNS solution of a small gap system with the inner cylinder rotating at a constant

speed. This configuration is known as a Rayleigh-unstable system. Taylor rolls were found to form in the

bulk contributing to the transport of angular momentum via Reynolds stresses. Even for curvatures of 1%,

Taylor rolls redistribute angular momentum altering the nature of the law of the wall. The introduction of

a weak axial flow acts convecting Taylor rolls but do not change its topology.

If an axial Poiseuille flow is superimposed to the Taylor-Couette flow, the problem becomes even

more complex. The axial flow has a stabilizing effect, delaying the transition to turbulent state or bringing

the flow back to a laminar state. The capabilities of a RSM when dealing with such flow configuration

were evaluated by Poncet et al. (2011) obtaining very favourable results when compared to experimental

predictions. They extended theRe for real operating conditions by performing a LES in order to investigate

the influence of coherent structures over heat transfer (PONCET et al., 2014). The subgrid stresses were

modelled with the WALE (Wall Adapting Local Eddy-vicosity) proposed by Nicoud and Ducros (1999).

Some test cases were also run with the Dynamic Smagorinsky model providing very similar results but

with an increase in computational effort of 12%.

Curvature is very well known to cause great change in flow dynamics and has motivated many studies

to tackle the problem for increasingly high Re. For shear-dominated flows, curvature plays a significant

role on redistributing momentum and modifying the way they are transported. Taylor-Couette flows are

suitable to investigate such phenomena since periodicity is easily achieved in both azimuthal and axial

directions reducing computational cost. RANS based models have shown, in general, not to be suitable

due to the effect that curvature exerts on Reynolds stresses leaving LES and DNS as preferred methods to

deal with the problem.

3.4 Specific objectives

In this chapter, a brief review regarding relevant studies to the present problem was presented. It is

clear that the advances in computer hardware and experimental techniques lead studies to complex levels

on the hope of digging deeper into the physics of turbulence. The establishment of high-fidelity numerical

techniques such as DNS allowed the acquirement of data quantities that cannot be obtained experimentally.

On the other hand, due to the substantial computer power that is required, it is still restricted to simple

geometries and low-Reynolds flows, thus limiting its applicability to complex engineering problems in

the foreseeable future. Simplistic approaches like RANS-based models, however, are very sensible to

the geometry and intrinsic assumptions make them even more sensible to problems where streamline

curvature and rotation are present. A viable solution to deal with it is to stay in between both approaches

by means of LES. In LES, both streamline curvature and rotation are accounted for and as the smallest
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isotropic scales are modelled, the required computer power falls down to something around 1% of that

required for DNS (RODI, 2017).

The literature review has shown that a high volume of information regarding turbulent flows in straight

channels, ducts, Taylor-Couette and Taylor-Couette-Poiseuille systems is available. For geometries

accounting for system rotation, there is a disparity for spanwise and parallel-mode rotations. For systems

rotating in parallel to the mean flow axis, studies are mainly concentrated in average heat transfer

measurements in laminar regime revealing a blank in the understanding of this rotation mode influence in

turbulence related quantities.

The present study, therefore, has the main goal to investigate the role of parallel-mode rotation in

turbulent quantities and its competitive effect with geometry, curvature and shear-induced secondary

motion. To accomplish that, the flow within an annular-sector duct rotating about a parallel axis with a

stationary outer wall will be investigated. The flow dynamics as a function of the axial and rotational

Re as well as the geometric parameters will be obtained from a large-eddy simulation with the aid of a

commercial CFD code.
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4 Problem Formulation

In this chapter the problem mathematics will be derived. The governing equations accounting for

rotation will be introduced with the adopted hypotheses. Geometry, boundary conditions, filtered equations

and SGS models will be also provided.

4.1 Geometric configuration

The problem geometry and the coordinate system are shown in Fig. 4.1. The coordinate system rotates

around the z-axis with an angular speed ω. The domain is represented by an annular-sector duct. The

outer wall counter-rotates with a constant speed −ω, which implies it is stationary with respect to the

rotating reference frame (RRF). The radial gap and apex angle are denoted by δ and α, respectively. The

ratio of the inner to the outer radius is given by η. The channel height H is chosen in such a way that

periodicity may be imposed in the streamwise direction. For this assumption to be true, there must be

no relation between the flow structures crossing both domain interfaces. This condition is guaranteed by

two-point correlation measurements which will be discussed in the next section. The domain walls are

considered to be perfectly smooth and impermeable.

z



r





H



Streamwise

direction

R

R

Figure 4.1 – Geometric configuration of the problem and adopted coordinate system
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4.2 Boundary conditions

For the domain walls, no-slip condition is assumed, that is, the fluid velocity at the walls is that of the

wall itself:

u(r = ηR, θ, z, t) = 0

u(r = R, θ, z, t) = −ωR

u(r, θ = 0, z, t) = 0

u(r, θ = α, z, t) = 0

(4.1)

where u is the velocity vector defined on the rotating frame of reference. The initial condition to the set of

equations is obtained from a steady RANS solution with a superimposed synthetic turbulent field. The

Synthetic-Eddy Method (SEM) produces a divergence free velocity field with specified intensity and

length scale (JARRIN et al., 2006). Therefore:

u(r, θ, z, t = 0) = uRANS+SEM (4.2)

For the periodic boundaries, the assumption of periodicity implies that the velocity components repeat

in space in the form:

u(r, θ, z) = u(r, θ, z +H). (4.3)

As mentioned before, the choice of the adequate value for H must be done very carefully. If H is

somewhat smaller than the size of the largest eddies contained in the flow, they will be artificially confined

within the domain, which will lead to unphysical results (RODI et al., 2013). A safe value for H may be

extracted from two-point correlation coefficients given by:

Ruu(d) =
〈u′(z)u′(z + d)〉

〈u′2〉
(4.4)

where d is the streamwise separation and u is one of the velocity field components with its fluctuating

counterpart represented by u′. The operator 〈 〉 represents that the quantity was averaged in time. The

idea behind Eq. 4.4 is that the value of Ruu must go to zero when the velocities for two separated points

are uncorrelated. That is to say that they do not belong to the same eddy structure. If this condition is

respected, periodicity does not interfere in the results (RODI et al., 2013).

4.3 Governing equations

The governing equations are derived in physical space for a rotating frame of reference accounting for

centrifugal and Coriolis forces. The flow is considered to be isothermal. The fluid is taken to be Newtonian

and incompressible. Gravity is neglected.
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For a rotating reference frame (RRF), the total derivative of the velocity field in an inertial frame is

expressed as (DAVIDSON, 2013):

Du

Dt
=

(
Du

Dt

)
RRF

+ Ω× (Ω× r) + 2Ω× uRRF (4.5)

where u is the velocity vector, ()RRF denotes that the quantity is evaluated with respect to the rotating

frame of reference, Ω is the frame angular velocity vector and r is the position with respect to the RRF.

Therefore, the continuity and momentum equations assume the form:

∇ · uRRF = 0 (4.6)

∂uRRF

∂t
+ (uRRF · ∇) uRRF + 2Ω× uRRF + Ω× (Ω× r) = −1

ρ
∇p+

1

ρ
∇TRRF (4.7)

In Eq. 4.7, the terms 2Ω× uRRF and Ω× (Ω× r) represent the Coriolis and centrifugal forces per

unit mass, respectively. In the right-hand side, p stands for pressure and T is the viscous stress tensor.

From this point, the subscripts RRF will be dropped out.

4.4 Filtered governing equations

As mentioned in Section 2.3, in order to separate the resolved from unresolved length scales, the

governing equations must be subjected to a low-pass filter.

The general filtering operation is defined as the convolution of any flow quantity by the filter function

G as shown in Eq. 2.21 resulting in the decomposition represented in Eq. 2.23. Although very similar

to the Reynolds decomposition as in Eq. 2.11, a very important difference lies in the fact that as f is a

random field, in general, the filtered residual is not zero, that is (POPE, 2000):

f ′(r, t) 6= 0. (4.8)

Assuming the filter width ∆ as being constant, it is shown that the space and time derivatives commute

with the filter operator (POPE, 2000):

∂f

∂xi
=

∂f

∂xi
. (4.9)

Since the the centrifugal force is a conservative type of force it may be aggregated to the pressure

term to form the modified pressure. Filtering Eqs. 4.6 and 4.7 yields the filtered continuity and momentum

equations, respectively:

∇ · u = 0 (4.10)

∂u

∂t
+ (u · ∇) u + 2Ω× u = −1

ρ
∇P +

1

ρ
∇
(
T−TSGS

)
(4.11)
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In Eq. 4.11, the term T is the resolved viscous stress tensor and TSGS is the subgrid-stress ten-

sor. Analogously to the RANS equations, its appearance is due to the non-linear convective term. For

convenience, assuming the suffix notation after Versteeg and Malalasekera (2007), TSGS is defined as:

TSGS = τSGS
ij = ui uj − uiuj (4.12)

The term uiuj above is the product of resolved-scale quantities and can be directly calculated. The

closure problem for LES arises from the remaining part of TSGS. Recalling the Reynolds decomposition

and assuming that a quantity φ(r, t) may be decomposed into a resolved parcel φ(r, t) and an unresolved

parcel φ′(r, t), the term ui uj can be rewritten in the form:

ui uj = (ui + u′i)(uj + u′j) = ui uj + uiu′j + u′i uj + u′iu
′
j

= ui uj +
(
ui uj − ui uj

)
+
(
uiu′j + u′i uj

)
+ u′iu

′
j

= ui uj + Lij + Cij +Rij

(4.13)

The terms Lij , Cij and Rij are called Leonard stress tensor, cross-stress tensor and Reynolds subgrid-

scale stress tensor, respectively (LESIEUR et al., 2005). Although the Leonard stresses are defined in

terms of filtered quantities, the second averaging does not reproduces the result of a first one, i.e. φ 6= φ

and consequently, ui uj 6= ui uj as it would be equal for time-averaging. Leonard (1974) proposed that,

as ui is fairly smooth, the unknown can be approximated by a Taylor series expansion:

ui uj − ui uj =
∆2

24
ui uj (4.14)

Since the terms in the right hand side of Eq. 4.14 are scale-resolved quantities, they can be explicitly

calculated. Ferziger (1977) proposed a similar approach to obtain the cross-stress term:

ui u′j + u′i uj =
∆2

24

(
ui∇2uj + uj∇2ui

)
(4.15)

The remaining term, the SGS Reynolds stress tensor, has to be modelled. The most common approach

is to invoke the Boussinesq hypothesis, in which the local SGS Reynolds stresses are taken to be

proportional to the local rate of strain of the resolved flow:

Rij = −2µSGSSij +
1

3
Rijδij (4.16)

In most finite volume method applications (including STAR-CCM+), however, the whole stress-tensor

TSGS is modelled as a single entity by means of a SGS turbulence model and therefore (VERSTEEG;

MALALASEKERA, 2007):

τSGS
ij = −2µSGSSij +

1

3
δijτ

SGS
ii (4.17)
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Generally, as represented in Eq. 4.17, the SGS tensor is split into an isotropic and an anisotropic part

(LESIEUR et al., 2005). The isotropic part contains the sum of the SGS normal stresses which is twice

the subgrid turbulent kinetic energy kSGS , acting like a pressure. Just like in the RANS formulation, this

term is added to the filtered pressure term which now becomes:

P = p+
1

3
τSGS
ii − 1

2
(ωr)2 (4.18)

where the last term represents the centrifugal force.

Although all quantities are now in terms of the resolved scales, µSGS remains unknown. Its determina-

tion procedure is what characterizes the SGS models based on the Boussinesq hypothesis. The models

implemented in the present work are detailed in the sequence.

4.5 Subgrid-scale models

As mentioned before, the effect of the unresolved small-scale motion on the resolved filtered field is

represented by the SGS stresses that arise from the filtered non-linear convective term in the governing

equations. This effect may be accounted for with the aid of an explicit SGS model or through the dissipative

nature of the numerical scheme used in the solution, read ILES (Implicit Large-Eddy Simulation).

The most popular models for general purpose simulations are the explicit SGS models, most of which

are eddy viscosity models (RODI et al., 2013). It is noteworthy that the eddy viscosity is not a fluid

property and the Boussinesq hypothesis validity is never completely verified (SCHMITT, 2007).

4.5.1 The Smagorinsky model

The Smagorisnky model (SMG) is the most popular SGS model. The kinematic SGS eddy viscosity

νSGS = µSGS/ρ is estimated algebraically through a dimensional analysis. This approach is analogous to

the Prandtl’s mixing length model described in Eq. 2.20. Since the viscosity has dimensions m2/s, it can

be obtaind from the product of a length by a velocity scale. The obvious choice for the length scale is

to involve the filter width ∆. As in Prandtl’s mixing length model, the velocity scale is derived from the

product of the length scale by the resolved strain rate resulting in:

νSGS = (CS∆)2
∣∣Sij∣∣ (4.19)

where CS is the Smagorinsky constant, determined from theoretical considerations or empirically.

The model adjustable parameter CS assumes different values for different flows. One major drawback

is that, for wall-bounded flows, the eddy viscosity must vanish in the vicinity of the walls which is not

allowed by Eq. 4.19. Another characteristic is that as νSGS is zero only if the velocity gradients are also

zero and as consequence, the model fails to capture laminar-to-turbulent transitions since for laminar

flows νSGS = 0. Another one is that as νSGS is always positive, the model does not allow energy transfer

from small to large scales or backscattering. Lastly, in complex three-dimensional flows, the optimum
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value of CS varies locally within the flow field. For flows accounting for rotation or stratification effects,

CS also need to be modified (RODI et al., 2013).

The problem of a non-zero viscosity near the walls may be solved with auxiliary dumping functions.

In his pioneer work, Deardorff (1970) assumed CS = 0.1. The constant for homogeneous isotropic

turbulent flows was derived analytically by Lilly (1992 apud LILLY, 1966, p. 1) as being CS = 0.18

in the inertial subrange. This value was found cause much dissipation and a value of CS = 0.065 was

used in the work of Moin and Kim (1982). The differences in the value os CS gave indication that the

constant requires a case-by-case tuning. More sophisticated approaches on the determination of CS were

developed through the years allowing CS to be calculated rather than estimated.

4.5.2 Dynamic Smagorinsky-Lilly model

Germano et al. (1991) utilized the same concept of Smagorinsky but allowed the model coefficient to

vary in space and time. He suggested the use of a second filter, a test filter that would get information

of the smallest resolved scales to determine the model coefficient. The test filter has a width ∆̃ which is

larger than ∆, usually twice the size of it. The same model is then applied to calculate τSGSij and T SGS
ij ,

where the latter is the SGS-test-filter stress tensor.

The SGS-test-filter stresses T SGS
ij are obtained from double-filtering the governing equations. Filtering

Eqs. 4.10 and 4.11 but now with respect to ∆̃ one gets:

T SGS
ij = τ̃SGS + ũi uj − ũi ũj (4.20)

where the tilde (̃ ) represents the test filter operation. Considering the resolvable part of 4.20 as

Lij = ũi uj − ũi ũj (4.21)

and replacing it into Eq. 4.20 yields Germano’s identity (GERMANO et al., 1991):

T SGS
ij = τ̃SGSij + Lij (4.22)

Equation 4.22 can be rewritten to give the so called test-window stresses:

Lij = T SGS
ij − τ̃SGSij (4.23)

The elements of Lij are resolved components of the stress tensor associated with scales of motion

between the test scale and the grid scale (LILLY, 1992). A schematic representation of Lij is given in Fig.

4.2 where the cut-off wave number for the filter π∆ and test-filer π∆̃ defines the resolved stresses Lij .
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Figure 4.2 – Typical energy spectrum of LES that employs Dynamical procedure SGS model. Adapted
from: Rodi et al. (2013)

The right hand side of Eq. 4.21 is explicitly evaluated and compared locally with Eq. 4.23 where

every quantities in the right hand side can be modelled with the Smagorinsky approach, i.e.:

τSGSij − 1

3
δijτ

SGS
ii = −2C∆2

∣∣S∣∣Sij
TSGSij − 1

3
δijT

SGS
ii = −2C̃∆̃2

∣∣∣S̃∣∣∣ S̃ij (4.24)

By inserting Eq. 4.24 into 4.23 must result in the unknown coefficient CD if C (x, y, z, t) ≈
C̃ (x, y, z, t). Therefore, Eq. 4.23 becomes:

Lij −
1

3
δijLii = −2CD

(
∆2
∣∣S∣∣Sij − ∆̃2

∣∣∣S̃∣∣∣ S̃ij) (4.25)

The only unknown in Eq. 4.25 is CD which in principle solves the problem of the SMG model, that is,

finding the correct value for CD and applying it to Eq. 4.19. However, Germano et al. (1991) noticed that

the quantity within the brackets may become zero resulting in the indetermination or ill-conditioning of

CD. To overcome this problem, the authors suggested CD = CD(y, t) only. As they tested the model for

the turbulent flow within parallel plane plates, they allowed CD to vary only in the wall-normal direction

averaging both sides of Eq. 4.25 over a xz-plane in order to obtain an averaged value for CD.

A year later, Lilly (1992) proposed a modification to Germano’s closure since it would get complicated

to take averages in complex geometries or where no homogeneous direction exists. He realized that since

Eq. 4.25 represents five independent equations, no value of CD can be chosen to make it correct. So

instead of obtaining it directly from Eq. 4.25, he defined a quantity Q as the square error associated with
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it, i.e.:

Q =

(
Lij −

1

3
δijLkk − 2CDMij

)2

(4.26)

where Mij denotes the quantity between brackets in Eq. 4.25. By minimizing Q with a least squares

approach upon setting ∂Q/∂CD = 0, CD may then be evaluated from:

CD =
1

2

(
LijMij

M2
ij

)
(4.27)

The numerator in Eq. 4.27 can be null, positive or negative, allowing laminarization or even backscat-

tering. This version of the Smagorinsky model is expected to be a powerful tool on predicting the near-wall

region low Reynolds flows without any dumping function needed. On the other hand, when evaluated for

individual grid points, CD can still assume large enough values to become computationally unstable. One

way out is to perform some averaging process to avoid excessively large values. Another way out, the

usual choice of commercial CFD codes, is to simply truncate isolated values of CD.

4.6 Chapter summary

In first place, it is noteworthy that the schematic representation presented in Fig. 2.3 may only be

verified if the filter width ∆ is constant throughout the entire domain. The value for ∆, however, depends

on the grid resolution which is coarsened away from the walls in order to reduce computational effort.

The cut-off wave number, therefore, is instead a range of cut-off wave-numbers.

The set of governing equations to be solved in this study is formed primarily by the filtered continuity

and momentum equations:

∇ · u = 0 (4.28)

∂u

∂t
+ (u · ∇) u + 2Ω× u = −1

ρ
∇P +∇

(
T−TSGS

)
(4.29)

The SGS stress tensor TSGS is modelled by the Dynamic Smagorinsky-Lilly model. Assuming the

suffix notation (VERSTEEG; MALALASEKERA, 2007):

τSGS
ij = −2µSGSSij +

1

3
δijτ

SGS
ii (4.30)

The isotropic part of τSGS
ij and the centrifugal force are combined to the filtered pressure to form the

modified pressure (see Eq. 4.18). The SGS viscosity µSGS is obtained from the dynamic model proposed

Germano et al. (1991) with the modifications proposed by Lilly (1992). The set of equations above is

solved numerically using the finite volume method. The details concerning the numerical procedure are

presented in the next chapter.
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5 Numerical Implementation

The numerical calculation of the filtered continuity and momentum equations was conducted by using

the commercial CFD code, Siemens STAR-CCM+ R.12.04. The code is based on the Finite Volume

Method (FVM) and allows efficient parallelisation.

This chapter presents the numerical formulation as implemented in the software. The information

was retrieved from the software’s user manual and the reference will be suppressed otherwise strictly

necessary.

5.1 Discretization of the transport equations

In the FVM, the domain of interest is subdivided into smaller volumes called cells, over which the

conservation equations are integrated in space and time. Figure 5.1 illustrates two adjacent cells, denoted

by 0 and 1.

i

j

k

ds

1

0

ox

1x

0s
1s

fa

Figure 5.1 – Polyhedral computational cells. Adapted from STAR-CCM+, 2017

In Fig. 5.1, x is the cell centroid position vector, s is the distance vector from the cell centroid to the

cell face, ds is the distance vector between both cell centroids such that ds = x1 − x0 and af is the face

area vector.

Considering the transport equation, Eq. 5.1, for a generic scalar quantity φ, integrating over the cell
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volume V and applying Gauss’s divergence theorem yields:

d

dt

∫
V
ρφdV︸ ︷︷ ︸

I-Transient Term

+

∫
A
ρuφ · da︸ ︷︷ ︸

II-Convective Flux

=

∫
A

Γ∇φda︸ ︷︷ ︸
III-Diffusive Flux

+

∫
V
SφdV︸ ︷︷ ︸

IV-Source Term

(5.1)

where A is the cell surface area, da the surface area vector, Γ the diffusion coefficient and Sφ a source

term.

Equation 5.1 contains four different terms:

I - Transient Term: time rate of change of the scalar φ within the cell.

II - Convective Flux: net rate of decrease of φ across the cell boundaries due to convection.

III - Diffusive Flux: net rate of decrease of φ across the cell boundaries due to diffusion.

IV - Source Term: generation/destruction of φ within the cell.

In each one of them, the volume and surface integrals must be converted into discrete sums. For the

former, the integral is approximated by the product of the mean value of the quantity at the cell centre and

the cell volume: ∫
V
ρφdV ≈ ρφV (5.2)

∫
V
SφdV ≈ Sφ0V (5.3)

For the latter, STAR-CCM+ employs the second-order midpoint rule and the integral is evaluated as

the product of the value at the cell face centre and the cell face area:

∫
A

Jφda ≈
∑
f

Jφfaf (5.4)

where Jφ is either the convective or diffusive flux of φ, af is the surface area vector of the cell face f and∑
f the sum over every cell face. Applying the integral approximations gives:

d

dt
(ρφV ) +

∑
f

[ρφ (v · a)]f =
∑
f

(Γ∇φ · a)f + (SφV )0 (5.5)

By definition, the value for φ is known at the cell centre and it is constant along the cell volume.

However, in order to evaluate the convective and diffusive fluxes of φ through the cell faces, it must be

interpolated between the cell and face centres. The choice of the interpolation scheme have profound

effect in the stability and accuracy of the numerical solution.

5.1.1 Diffusive terms

Recalling the diffusive flux in Eq. 5.1,

Df = (Γ∇φ · a)f (5.6)
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both the diffusion coefficient Γ and the gradient of the transported quantity ∇φ must be evaluated at the

cell faces. The value for Γf is obtained by averaging the cell values in a harmonic fashion. To obtain an

accurate second-order expression for an interior face gradient that implicitly involves the cell values φ0

and φ1, the following decomposition is used:

∇φf = (φ1 − φ0) ~α+∇φ−
(
∇φ · ds

)
~α (5.7)

where:

~α =
a

a · ds
(5.8)

∇φ =
∇φ0 +∇φ1

2
(5.9)

The diffusion flux at an interior face can then be written as:

Df = Γf∇φf · a = Γf
[
(φ1 − φ0) ~α · a +∇φ · a−

(
∇φ · ds

)
~α · a

]
(5.10)

The cell gradients ∇φ0 and ∇φ1 are evaluated, by default, from the Hybrid Gauss-Least Squares

(HGLSQ) method. In the HGLSQ, computing gradients involves two major steps as described below.

1. Computing the (unlimited) reconstruction gradients

The term unlimited means that the gradients do not prohibit the reconstructed field variables on the

cell faces from exceeding the minimum and maximum values of the neighbouring cells.

The unlimited reconstruction gradients in cell-0, denoted by the superscript ()u, are computed using

the following hybrid formula:

(∇φ)ur =
∑
f

(φn − φ0)w0
f (5.11)

with:

w0
f = βw

lsq
f + (1− β)wG

f (5.12)

w
lsq
f =

∑
f

ds⊗ ds

ds2

−1

ds

ds2 (5.13)

ds = xn − x0 (5.14)

wG
f =

Af
V0 − Vn

(5.15)
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where β is the method blending factor. It is used to weight between the two methods in calculating the

gradient. The following conditions apply to the blending factor β:

β =


1 Pure LSQ

0 Pure Gauss

0 < β < 1 Blended

(5.16)

Choosing β from 0 to 1 equates to:

∇φ = (β) LSQ + (1− β) Gauss (5.17)

The value for β is not an user input. Instead, it is locally calculated as the minimum of the following:

β = 1 if the least-squares tensor eigenvalues ratio of the cell is larger than the specified minimum

value, which is set to 0.1 by default.

β = 1 if the tangent of the skewness angle θ is smaller than the Normalized Flat Cells Curvature

Factor (set to 1.0 by default) times the aspect ratio of the cell. It is less than 1, with a rapid decrease to zero

otherwise. The skewness angle θ is the angle between the face area vector a and the vector connecting the

cell centroids ds. If θ = 0, the mesh is perfectly orthogonal.

β = 1 if the skewness angle is smaller than the maximum safe (Positive) skewness angle (set to 75

degrees by deafult). β = 0 if the skewness angle is larger than the minimum unsafe (Positive) skewness

angle (88 degrees by default). Otherwise, 0 < β < 1 with a linear variation.

β = 0 if it is a Chevron-cell and β = 1 otherwise (Chevron-Cell Criterion). Chevron cells are pairs of

thin slender cells which meet at a common face at an angle such that the line joining the cell centres does

not pass through the common face.

For the grids in the present study, since the cells are mostly orthogonal and when they are not, the

skewness angle does not exceed a few degrees, the value for β is always unity so that the pure Least

Squares method is used at all times.

2. Limiting the reconstruction gradients

The limited reconstruction gradients are used to determine scalar values at the cell faces. These scalar

values are used in computing flux integrals.

The problem with simply reconstructing face values from the unlimited reconstruction gradients is

that the reconstructed face values can fall outside the range of cell values found in neighboring cells

(connected through faces). For this reason, STAR-CCM+ finds the minimum and maximum bounds of the

neighboring cell values and uses these to limit the reconstruction gradients.

The face value (φf,0) reconstructed from the cell-0 value at any face centroid is given by:

φf,0 = φ0 + s0 · (∇φ)r,0 (5.18)
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where s0 = xf −x0. xf and x0 are the face and cell centroids, respectively, and∇φr,0 is the reconstructed

face value.

For each cell-0, a limited reconstruction gradient is required, such that the reconstructed face value

does not exceed the maximum and minimum of the neighbouring cell centroid values, including the value

in cell-0. A scale factor α is defined that expresses the ratio of the limited and unlimited values, that is:

(∇φ)r,0 = α (∇φ)ur,0 (5.19)

For each cell, the quantities are defined:

φmax
0 = max

(
φ0, φneighbours

)
(5.20)

φmin
0 = min

(
φ0, φneighbours

)
(5.21)

where φneighbours represents the cell value in each neighbour that has a common face with cell-0. These

quantities can also be defined as:

∆max = φmax
0 − φ0 (5.22)

∆min = φmin
0 − φ0 (5.23)

where ∆ must not be mistaken with the filter width of the LES formulation. For each face of the cell-0,

∆f is defined as:

∆f = φf,0 − φ0 = s0 · (∇φ)ur,0 (5.24)

Now, defining:

rf =


∆f

∆max
for ∆f > 0

∆f

∆min
for ∆f ≤ 0

(5.25)

In the present computations, the Venkatakrishnan limiter was used (VENKATAKRISHNAN, 1993).

For the face it gives:

αf =
2rf + 1

rf (2rf + 1) + 1
(5.26)
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5.1.2 Convective terms

The discretized convective term in Eq. 5.5 can be rearranged as follows:

(φρu · a)f = (ṁφ)f = ṁfφf (5.27)

where ṁf is the mass flow rate at the face. Equation 5.27 requires the value of φ evaluated at the face.

Since the value for φ is known at the cell centre, it must be somehow interpolated to the cell face. The

manner in which this process is done has profound effect on the stability and accuracy of numerical

scheme.

The Normalized Variable Diagram

The normalized variable diagram (NVD) is useful for analyzing boundedness properties of convective

discretization schemes. Figure 5.2a shows three cells in the vicinity of a cell face f , across which the

velocity vf is known. The nodal variable values are labelled αD, αC and αU , representing the downwind,

central, and upwind positions relative to each other. The convection boundedness criterion is shown in Fig.

5.2b.

f
C

U

D

UP
CP

DP

fv

f

C

CD

LUD UD

DD

0 0.5 1

0.5

1

(a) (b)

Figure 5.2 – Normalized Variable Diagram. Adapted from STAR-CCM+, 2017

The normalized variable ξ (r, t) in the vicinity of the face is defined as:

ξ (r, t) =
α (r, t)− αU
αD − αU

(5.28)

The normalized face value:

ξf =
αf − αU
αD − αU

(5.29)
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calculated by any differencing scheme that uses only nodal value of α at points U , C and D, can be

written in the form:

ξf = ξf (ξC) (5.30)

where:

ξC =
αC − αU
αD − αU

(5.31)

To avoid non-physical oscillations in the solution, αC (and consequently αf ) has to be locally bounded

between αU and αD, meaning:

αU ≤ αC ≤ αD (5.32)

or

αD ≤ αC ≤ αU (5.33)

depending on the orientation of the velocity field. If this criterion is satisfied at every point in the

domain, the entire solution is free of non-physical oscillations. The boundedness criterion for convection

differencing schemes can be presented in the NVD diagram, showing ξf as a function of ξC , as the shaded

region in Fig. 5.2b (including the line ξf = ξC). It can also be expressed through the following conditions:

For 0 ≤ ξC ≤ 1 the bounded region lies above the line ξf = ξC and below ξf = 1.

For ξC < 0 and ξC > 1, ξf is equal to ξC .

NVD is concerned with convective transport alone. If sources or sinks are present, the conditions

that are given in Eq. 5.32 and Eq. 5.33 can be violated. The importance of the boundedness criterion is

especially clear in the case of variables which have physical bounds.

Central-Differencing

The central-differencing scheme (CDS) approximates the cell face centre value by linear interpolation

between the two nearest neighbouring cell centre values. The convective flux is computed as (PATANKAR,

1980):

(ṁφ)f = ṁf [fφ0 + (1− f)φ1] (5.34)

where the linear interpolation factor f is related to the mesh stretching. For a uniform mesh, f has a value

of 0.5 so that Eq. 5.34 may be rewritten as:

(ṁφ)f = ṁf
φ0 + φ1

2
(5.35)

Central-differencing is formally second-order accurate. However it is prone to dispersive error and is

beset with stability problems for most steady-state situations. The dispersive errors make it problematic for

discretizing positive-definite quantities (such as temperature or turbulent kinetic energy) where overshoots

cannot be tolerated. A significant advantage of central-differencing over second-order upwind is that,

when used to discretize velocity it preserves turbulent kinetic energy. Therefore, it is a useful scheme in

large eddy simulation (LES), where upwind schemes cause turbulent kinetic energy to decay unnaturally

fast.
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Bounded Central-Differencing

For a bounded central-differencing scheme, the convective flux is computed as (DARWISH; MOUKALLED,

1994; LEONARD, 1991):

(ṁφ)f =

ṁφFOU for ξ < 0 or ξ > 1

ṁ (σφCD + (1− σ)φSOU) for 0 ≤ ξ ≤ 1

(5.36)

where FOU stands for the cell-face centre value obtained through first-order upwind interpolation, SOU

for second-order upwind interpolation and CD for central-differencing interpolation.

A smooth and monotone function of ξ is:

σ = σ (ξ) (5.37)

which satisfies σ(0) = 0 and σ(ξ) = 1 for ξubf ≤ ξ. ξubf is called the upwind blending factor whose value

ensures a proper balance between the accuracy and robustness of the scheme. Thus, smaller values of ξubf

provide more accuracy, while larger values increase the robustness of the scheme.

To maintain boundedness, the bounded central-differencing scheme turns into a first-order upwind

scheme when the convection boundedness criterion is not satisfied, for example when ξ < 0 or ξ > 1. The

central-differencing scheme on the contrary, which is formally a second-order accurate scheme, does not do

that. Thus, the bounded central-differencing scheme can be more dissipative than the central-differencing

scheme, especially on coarser meshes.

Hybrid MUSCL 3rd-Order/Central-Differencing

The scheme is valid for both steady and unsteady simulations, and has one model parameter σ, which

is used to control the numerical dissipation in the scheme. As with the bounded central-differencing

scheme, this scheme uses a Normalized-Variable Diagram (NVD) value to ensure the boundedness of the

scheme by switching to FOU in regions of non-smooth flows.

When smooth local flow conditions are detected, the scheme is constructed as a blend between a

MUSCL 3rd-order upwind and a 3rd-order central-differencing reconstruction scheme. The convective

flux is computed as:

(ṁφ)f =

ṁφFOU for ξ < 0 or ξ > 1

ṁ (σφMUSCL3 + (1− σ)φCD3) for 0 ≤ ξ ≤ 1

(5.38)

The blending factor σ is user-controlled and must be decided based on the physical problem or model.

Overall, the method causes less dissipation compared with the BCD scheme. At the same time, it is robust

(due to its boundedness) and capable of simulating steady and unsteady flows from incompressible to

high-speed compressible regimes.
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5.1.3 Temporal discretization

To obtain the solution for a time-dependent problem, the time itself must also be subdivided into

time-steps. In STAR-CCM+, by default for LES problems, the discretization of the transient term must be

fully implicit. Although it has the advantage for being unconditionally stable allowing larger time-steps,

the physical link between space and time in LES avoids such time-steps of being chosen. The robustness

of the method is obfuscated by the need for internal iterations between time-steps, increasing the total

time of the computation.

The Euler implicit scheme, a first-order temporal scheme, solves the transient term by approximating

the solution based on the current field, that is (PATANKAR, 1980):

∂

∂t
(ρφV )0 =

(ρφV )n+1
0 − (ρφV )n0

∆t
(5.39)

where n+ 1 represents the current time-step and n the previous one. The dependence on the current field

imposes the necessity for an iterative process.

Equation 5.39 may also be discretized with second-order accuracy becoming:

∂

∂t
(ρφV )0 =

(
α2 − 1

) [
(ρφV )n+1

0 − (ρφV )n0

]
+
[
(ρφV )n−1

0 − (ρφV )n0

]
α (α− 1) ∆tn+1

(5.40)

with:

α = 1 +
∆tn+1

∆tn
(5.41)

∆tn+1 = tn+1 − tn (5.42)

∆tn = tn − tn−1 (5.43)

The second-order scheme requires the solution at the current time-step n+ 1 as well as the solution at

the previous two time-steps n and n− 1.

5.2 Solver algorithm

The solution procedure starts by discretizing the momentum and continuity equations in a similar way

to the generic scalar transport equation shown in the last section. By setting φ and Sφ accordingly one

gets:

∂

∂t
(ρuV )0 +

∑
f

[ρuu · a]f = −
∑
f

(pI · a)f +
∑
f

T · a (5.44)

where v is the velocity vector, I is the unity tensor and T is the viscous stress tensor.
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In order to solve a fluid flow problem, one needs to find a velocity field that satisfies the continuity

and momentum equations simultaneously. The problem is that the main momentum source is pressure, for

which there is no transport equation. If the fluid is compressible, the continuity equation may be used to

obtain the density and the pressure may be then obtained from an equation of state. For incompressible

fluids, the link between density and pressure is broken by definition. In this case, the coupling between

pressure and velocity is constrained by the continuity equation, that is, if the pressure field is correct, the

velocity field must be divergence-free (VERSTEEG; MALALASEKERA, 2007).

In STAR-CCM+, this problem is approached by a guess-and-correct procedure. The SIMPLE algo-

rithm, which means Semi-Implicit Method for Pressure-Linked Equations, is based on guessing a pressure

field to obtain the corresponding velocity field. The details of the method can be found in relevant CFD

literature.

In Eq. 5.44, the convective and diffusive fluxes are discretized as described in the last section. The

discretization of the pressure gradient requires special attention. Pressure appears as pressure gradient in

the momentum equations. In order to compute the pressure gradient term, the pressure must be evaluated

at each face.

pf =
a0pf0 + a1pf1

a0 + a1
(5.45)

where a0 and a1 are the average of the momentum coefficients for all components of momentum for cells

0 and 1, respectively. pf0 and pf1 are interpolated from cell values and reconstruction gradients according

to Eq. 5.18.

At boundaries, the cell 1 contribution comes from a fictitious “ghost cell” in which the velocity has

been reflected about the boundary face. Therefore Eq. 5.45 becomes:

pf = pf0 (5.46)

The algebraic system of equations if solved iteratively using the AMG method (Algebraic Multigrid).

5.3 LES formulation

The filtering operation is perfomed implicity by the finite-volume discretization itself. A filtered

quantity is then defined as:

f(r, t) =
1

V

∫
V

G(r, r′)f(r′, t)dV (5.47)

where V is the volume of a computational cell. The adopted filter function G is the top-hat or box-filter
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where:

G
(
r, r′

)
=


1

V
, r′ ∈ V

0, otherwise
(5.48)

The filter width ∆ takes full advantage of the grid resolution. It is taken to be the cubic root of the cell

volume V determining the scales that will be filtered out such that:

∆2 = C2
sV

2/3 (5.49)

The model constant Cs is computed from:

C2
s =

〈LijMij〉
〈MijMij〉

(5.50)

where the brackets 〈 〉 represent the averaging process over homogeneous directions as proposed by Lilly

(1992). In STAR-CCM+, taking averages is optional and deactivated by default since most of industrial

flows do not possess a homogeneous direction on which averages may be taken. Lij and Mij are defined

as:

Lij = ũi ˆ̃uj − ˆ̃ui ˆ̃uj (5.51)

Mij = 2∆2

∣∣∣S̃∣∣∣ ˆ̃Sij −

(
∆̂

∆

)2 ∣∣∣ ˆ̃S∣∣∣ ˆ̃Sij

 (5.52)

where ∆̂/∆ is the test-to-grid filter ratio. Germano et al. (1991) made a battery of tests founding the

optimal value to this ratio as being 2. Any test-filter quantity is evaluated as:

ˆ̃
φ =

1
N∑
n=0

Vn

N∑
n=1

φ̃nVn (5.53)

with n representing the cell number. The current cell is represented by n = 0 and its neighbours all the

way from n = 1 up to n = N .

The calculation of the turbulent viscosity in the Dynamic Smagorinsky model is then obtained from:

νt = ∆2S̃ = C2
sV

2/3S̃ (5.54)

where the constant C2
s is clipped to lie between 0 < C2

s < 106 for stability purposes. By doing that, no

backscatter is allowed.
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5.4 Boundary conditions formulation

For the solid boundaries, no-slip condition is applied. The physical implication is that the relative

fluid velocity tangential to the wall is set to zero. The velocity of the boundary f computed as:

uf = ulab
spec −

(
ulab

spec · a−Gf
) a

a2
(5.55)

where a is the face area vector and ulab
spec is the velocity in the laboratory frame (the default inertial

Cartesian coordinate system). Gf = ug · af is the grid flux, where ug is the grid velocity and af the face

area. The velocity ulab
spec is calculated as:

ulab
spec = umesh

spec + uref
mesh + ulab

ref (5.56)

where umesh
spec is the specified velocity, measured relative to the mesh, uref

mesh is the velocity of the mesh

relative to the cylindrical reference frame and ulab
ref is the velocity of the reference frame relative to the

laboratory frame.

The convective fluxes at the boundaries are then obtained by replacing φf , in Eq. 5.27, by the boundary

values φb. The diffusive fluxes are obtained by replacing φ1 by the boundary value φb and ∇φ by ∇φ0 in

Eq. 5.10.

For the periodic interfaces, as mentioned in section 4.2, the velocity components are transported

between interfaces (PATANKAR et al., 1977):

u(r, θ, z) = u(r, θ, z +H). (5.57)

The pressure, however, cannot obey the same condition since in this scenario there would be no mass

flow across the duct. The pressure drop, on the other hand, is periodic, that is:

∆p = p(r, θ, z +H)− p(r, θ, z) = p(r, θ, z + 2H)− p(r, θ, z +H). (5.58)

Therefore, Patankar et al. (1977) defined the pressure field based on two components:

p(r, θ, z) = −βz + P (r, θ, z) (5.59)

where β is a constant related to the global mass flow and P (r, θ, z) is related to the detailed local motions.

The expression for β is such that:

β =
p(r, θ, z)− p(r, θ, z +H)

H
. (5.60)

From Eq. 5.59, it is evident that P (r, θ, z) = P (r, θ, z+H) completing the description of the periodic

flow. In pressure-based solvers, such as SIMPLE, because the value for β is not known a priori, it must be

iterated until the specified mass flow rate for the duct is achieved. The correction of β is performed in the
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pressure-correction step, where the value of β is updated based on the difference between the desired and

calculated mass flow rates.

5.5 Wall treatment

As seen from the literature review, walls are the source of vorticity and the correct prediction of the

flow field in its vicinities is essential. Although solving the flow field that close to the wall is much more

expensive (computationally speaking) than modelling it, in the present work, wall functions are not used.

The computational expense that is associated with this approach can be significant, particularly for large

Reynolds number flows where the viscous sublayer can be very thin.

The transport equations are solved all the way to the wall cell. The wall shear stress is computed as:

Tw = (µ+ µt)
[
∇u + (∇u)T

]
w

(5.61)

To resolve the viscous sublayer, a sufficiently fine mesh with near-wall cells located at y+ < 1 is

required.

5.6 Initial conditions

For flows that are statistically steady, initial conditions are unimportant (CELIK, 2001). On the other

hand, initiating the flow field with adequate values help to reach steadiness faster and save some CPU

time.

In the present work, a steady state flow simulation using a RANS model is conducted to serve as

initial field. The results are used to estimate the wall stresses from which the space and time resolution

requirements may be achieved. A divergence-free perturbation field is then superimposed to the velocity

field with the aid of the Synthetic Eddy Method (SEM) of Jarrin et al. (2006). For the base solution, the

SST-kω model of Menter (1992) is used.

The method requires the turbulent intensity and length scale as parameters. According to the software

user manual, these informations must be retrieved from experimental data or from a previous LES or

Reynolds Stress Model simulation. However, these exigencies regard the usage of the method as generating

synthetic turbulence for an inflow boundary condition. For the present study, the method is used only to

trigger turbulence as an initial condition. Since the flow statistics are collected after statistical steadiness,

these parameter are somewhat unimportant. Therefore, for every simulation, including the test cases, the

turbulence intensity was set to 10% and the length scale to the characteristic scale of the flow.

5.7 Resolution requirements

In implicit LES, the scale separation depends on the discretization of the flow field, which will

characterize the filter width ∆ and so the SGS model. Since the time-step may accompany ∆, the
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simulation is never grid/time-step independent. Usually, the filter width ∆ and some correspondent

time-step are chosen in accordance to the CPU time one is wiling to spend.

Ideally, the energy containing eddies must be resolved in all directions which implies that the cut-

off wave number must lie within the inertial subrange. In terms of non-dimensional wall units, it is

recommended to have 50 ≤ ∆x+ ≤ 150, ∆y+ ≤ 2 and 15 ≤ ∆z+ ≤ 40 (Eq. 5.62), where x, y and z

are the streamwise, wall-normal and spanwise directions, respectively (??).

∆x+ =
uτ∆x

ν

∆y+ =
uτ∆y

ν

∆z+ =
uτ∆z

ν

(5.62)

where uτ is the friction velocity defined as uτ = (τw/ρ)0.5. These constraints are necessary to resolve

near-wall events such as bursting and sweeping and coherent structures such as hairpin vortices and

slow-speed streaks.

The time-step requirement may be estimated from the Courant-Friedrichs-Lewy (CFL) number

described in Eq. 5.63. For explicit marching schemes, it is recommended to stay below 1. Although

implicit schemes are unconditionally stable for any size of time step (VERSTEEG; MALALASEKERA,

2007), the CFL can still be used to relate ∆t to ∆.

CFL =
U∆t

∆x
+
V∆t

∆y
+
W∆t

∆z
(5.63)

Since the time and space discretizations are physically bounded in the case of LES, the CFL must be

kept, ideally, with an unity order of magnitude along the entire domain.

5.8 Grid generation

The grid is orthogonal, non-uniform and structured. The meshing algorithm in STAR-CCM+ allows to

work in a Cartesian coordinate system only. A representation of a grid is given in Fig. 5.3. Every element

is hexahedral. The elements are stretched towards the duct centre in a hyperbolic fashion.

The hyperbolic stretching function follows the relation below:

s(ni) = 1 +
tanh [Fs(ni/N − 1)]

tanh (Fs)
, ∀ Fs 6= 0 (5.64)

where N is the total number of layers, ni is the current node, Fs the overall stretching factor and s(ni)

the distribution value for the current node ni. This function was chosen because this is the only option

that allows a two-side stretching, that is, clustering elements in both opposite walls.

When a two-side stretching is used, the size distribution is given by two separate functions, which

must converge at some point. The user must specify the value for the total number of elements N and



Chapter 5. Numerical Implementation 61

x

y

or

ir



0

max

maxr

Figure 5.3 – Grid configuration

the value for s(1) of both series. The value for s(1) is calculated from the ∆r+ and ∆θ+ constraints.

However, the chosen value for N implies ∆r+
max and ∆θ+

max, representing the maximum element sizes

measured in wall-units. To estimate an appropriate value for N , the steps below were followed:

1. Evaluate each wall-average shear stress magnitude from the RANS-based solution.

2. Calculate the friction velocities from:

Vτ =

√
τw
ρ

(5.65)

3. Calculate the s(1) requirements, assuming ∆r+,∆θ+ = 1, for each wall from:

s(1) = 2
ν

Vτ
(5.66)

From Eq. 5.66, the values for ∆ri, ∆ro, ∆θ0 and ∆θα are obtained. To facilitate step 4, the smallest

spacing is taken as default for every wall.

4. Estimate the number of elements N for O(∆+
max) = 10.

a) Guess a value for N ;

b) Calculate Fs from Eq. 5.64;

c) Calculate s(N);

d) Calculate ∆+
max
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e) Repeat until O(∆+
max) = 10

5. Calculate the number of elements in the streamwise direction by:

a) Evaluate the wall-average axial shear stress for each wall and take the greater.

b) Calculate the number of elements assuming ∆z+
max = 50:

Nz =
H

∆z
=

H

ν∆z+
max

√
τwz
ρ

(5.67)

where H is the unknown duct height. Some tests have revealed that using H∗ = H/Dh = 5

is a good guess and usually respects the two-point correlation constraint. For the highest Reω,

however, smaller values for H were used to reduce the computation time.
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6 Test Cases and Grid Dependency

In this chapter, the results for the selected test cases are presented in first place and the capabilities

and limitations of the method are discussed. The selected numerical schemes are then used to run a

grid-independence study for the proposed problem.

6.1 Test case 1: Turbulent periodic channel flow

The periodic channel flow study of Moser and Moin (1987) is still a reference DNS solution in the

present days. In this study, the incompressible turbulent flow within infinite parallel plane plates is solved

for Reτ = 180 (based on the shear velocity and channel half-width δ). The problem is known to be

the simplest case from which insights on the structural and statistical characteristics of wall-bounded

turbulence can be derived. Besides, the simplicity found in the geometry and boundary conditions makes

it very suitable for numerical verification.

The channel geometry is presented in Fig. 6.1 along with the adopted coordinate system. The channel

is characterized by the half-width δ and the periodic lengths in the streamwise x and spanwise z directions

are 4πδ and 2πδ respectively.

,x u

,z w

,yFlow
2



2

Figure 6.1 – Channel geometry and coordinate system of Moser and Moin (1987)

6.1.1 Grid generation

The domain dimensions are calculated for δ = 0.5 m. The complete grid description is given in Table

6.1. The elements distribution in the wall-normal direction follows a hyperbolic progression adjusted to

guarantee y+ < 1. The total number of elements for the present study is 262,144 (64× 64× 64, in x, y, z)

against 3,962,880 (192× 129× 160, in x, y, z) of Moser and Moin (1987).
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Table 6.1 – Grid characteristics for Test Case 1

Description Value
Channel half-width δ 0.5 m

Channel streamwise dimension 6.4δ 3.2 m

Channel spanwise dimension 3.2δ 1.6 m

Nx - uniformly spaced 64→ ∆+
x ≈ 18

Ny - hyperbolically distributed 64→ y+ ≈ 1

Maximum spacing (channel centreline) ∆y+
max ≈ 16

Nz - uniformly spaced 64→ ∆+
z ≈ 9

6.1.2 Boundary conditions and initial field

Periodicity is imposed in both spanwise and streamwise directions. The flow is driven by a constant

mass flow rate which is calculated from the provided Reb = 5600, based on the bulk velocity and 2δ. For

top and bottom walls, no-slip condition is applied.

The initial flow field is taken to be the steady state solution obtained from a SST-kω RANS-based

model simulation. A random perturbation field, based on the SEM (Synthetic Eddy Method) of Jarrin et

al. (2006), is then superimposed to the velocity field with 10% of turbulent intensity.

6.1.3 Solution method

The solution was obtained with a time-step size of ∆t = 0.05 s (CFL ≈ 0.2). For time integration, a

second-order implicit scheme was used with inner iteration convergence being assumed when all equations

absolute residual reached an order of magnitude of 10−5. The flow statistics were collected for 30 flow

times.

6.1.4 Results

The results were obtained by space averaging the time-averaged variables along the x- and z-

coordinates. Table 6.2 describes the comparison of mean flow variables of the present simulation with

those of Moser and Moin (1987). It is seen from 6.2 that regardless of the method employed on discretizing

the convective terms, the results depart little from those of DNS. This is an expected outcome for such a

simple case, considering the geometry and Reynolds number at which the flow takes place.

Table 6.2 – Mean flow variables

Description DNS BCD15 (%) BCD10 (%) MUSCL10 (%) CDS (%)
Uc/Um 1.16 1.15 (−0.86) 1.15 (−0.86) 1.16 (∼) 1.17 (0.86)

Uc/uτ 18.30 17.97 (−1.80) 18.50 (1.09) 18.29 (−0.05) 17.55 (−4.10)

Um/uτ 15.68 16.77 (−6.95) 16.03 (2.23) 15.81 (0.83) 15.04 (−4.08)

Reτ 178.12 167.01 (−6.24) 174.73 (−1.90) 177.07 (−0.59) 186.15 (4.5)

The centreline streamwise velocity was well predicted by every method, as seen from the ratio Uc/Um.

For the MUSCL method, the predicted value was exactly that of MMK with oscillations of less than 1%
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Figure 6.2 – Mean streamwise velocity profiles

for the remaining methods. The streamwise velocity profile is given in Fig. 6.2. In Fig. 6.2a, the velocity is

normalised by the shear velocity uτ =
√
τw/ρ and plotted across the channel half width. The wall normal

coordinate y is normalised by the channel half-width. Although both LES and DNS profiles show good

agreement, a slight difference can be noticed with respect to the results obtained with the CDS method for

which an overprediction in the wall-shear shifted the U+ profile downwards. After the buffer layer, as

seen in Fig. 6.2b as y+ > 10, the upwind-dependent methods had their profiles almost collapsing over the

DNS curves.

In the vicinity of the walls, every method underpredicted the velocity gradient as illustrated in Fig. 6.3.

For y+ < 5, known as the viscous sub-layer region, it is expected that the velocity profile assumes the

form U+ = y+. Even in the DNS results, however, the curve departures from this tendency as y+ > 3.

Nonetheless, the discrepancy encountered for the LES results could be attributed to grid resolution within

the sub-layer.

The second-order statistics are presented in Fig. 6.4. The profiles were all normalised with respect to

the wall-shear velocity uτ and are plotted across the channel half-width 0 ≤ y/δ ≤ 1.

Every quantity shown in Fig. 6.4 is expected to drop to zero at the walls. Since this is the most

grid-requiring region, the upwind blending present in the methods BCD15 and BCD10 seems to provide

the best results for the first few points. On the other hand, away from the walls, the less the upwinding the

better the agreement with DNS data. The position and intensity of the profile peaks were better predicted

by the MUSCL10 method with an excellent agreement for the u′RMS profile as shown in Fig. 6.4a.

6.2 Teste case 2: Taylor-Couette-Poiseuille flow

In order to test the code for rapidly rotating flows in the presence of curvature, the study of Poncet

et al. (2014) was chosen, in which the Taylor-Couette-Poiseuille problem is numerically solved by an
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Figure 6.3 – Viscous sub-layer velocity profile

in-house spectral LES code and the results are provided with great level of detail.

The problem geometry is presented in Fig. 6.5. The values for the aspect ratio Γ, the radius ratio η,

the axial Reynolds number Reb and the rotational Reynolds number Reω are discriminated in Table 6.3.

Table 6.3 – Geometric details for the narrow-gap cavity

Description Value
Aspect ratio Γ = H/∆r 10

Radius ratio η = ri/ro 8/9

Angular gap α 3
4π

Axial Reynolds number Reb = Wb∆r/ν 3745

Rotational Reynolds number Reω = ω∆rri/ν 16755

Swirl parameter N = Reω/Reb 4.47

6.2.1 Grid generation

The grid elements were distributed in order to guarantee ∆r+ < 1 in both inner and outer walls. For

the streamwise and spanwise directions, the elements spacing was chosen so that (∆θ+,∆z+) ≈ 50.

In the r-direction, the grid elements were distributed in a hyperbolic fashion while in the streamwise

and spanwise directions, the element distribution was uniform. The information regarding the numerical

details are shown in Table 6.4. The quantities expressed in wall-units were calculated based on the values

obtained from the MUSCL10 case.

Table 6.4 – Numerical details for the narrow-gap cavity

∆r+
i ∆r+

o (ri∆θ)
+ (ro∆θ)

+ ∆z+
i ∆z+

o Nr, Nθ, Nz δt (CFL)
0.20 0.24 77.83 78.48 48.82 45.43 51,131,71 0.05 s (0.13)
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Figure 6.4 – Second order-statistics

6.2.2 Boundary conditions and initial field

For the boundaries contained in the rθ-plane, translational periodicity was applied, that is φ(r, θ, z) =

φ(r, θ, z + H), with φ representing any flow quantity. For the boundaries contained in the rz-plane,

rotational periodicity was applied with φ(r, θ, z) = φ(r, θ + α, z). The inner wall (r = ri) is configured

to rotate at a constant speed, obtained from Reω, while the outer wall (r = ro) remains stationary. The

axial flow is driven by a constant mass flow rate obtained from ReQ.

As for the channel flow case, the initial flow field was obtained from a converged steady state

RANS-based solution, on which a 10% intensity turbulent field was superimposed.

6.2.3 Results

The results were obtained by time-averaging the flow quantities during 10 FTT’s. The presented

quantities were also space-averaged in the stream and spanwise directions along the entire domain.
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Figure 6.5 – Geometry description and coordinate system of Poncet et al. (2014)

The axial and tangential velocity profiles are presented in Fig. 6.6, both in good agreement with the

reference results. From Figs. 6.6a and 6.6b, the CDS method seems to overestimate the velocity gradients

near the walls. The BCD10 and MUSCL10 methods provided excellent predictions for both profiles.
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Figure 6.6 – Mean velocity profiles

Figure 6.7 covers the comparison of second-order quantities with the reference data. Every method

provided shape-preserved profiles with qualitatively good results. Except for the axial velocity fluctuation,

shown in Fig. 6.7a, the overpredictions of the CDS method for every other quantity exceeded those of the

other methods. The BCD10 method provided the best predictions with a deserved highlight for the v′rms
and Rrθ profiles, shown in Figs. 6.7c and 6.7d respectively.
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Figure 6.7 – Radial distribution of second-order quantities
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6.3 Test case 3: Square duct turbulent flow

In order to investigate the capabilities of the SGS model on dealing with anisotropic flows, the

turbulent flow in a square-sectioned duct was implemented in accordance with the DNS study of Pinelli et

al. (2010). It is expected that the model will be able to capture one of the distinguishable features of this

flow configuration, the Prandtl’s secondary motion of the second kind, which arises from the imbalance of

Reynolds stresses in the duct corners.

The problem geometry is illustrated in Fig. 6.8. The duct is characterized by the half width δ and

streamwise period L = 4πδ. The coordinate system is locate at the duct centre line. The Reynolds number

based on the bulk velocity and channel half width is Reb = 3500.

,x u

,z w

,y

2

4L

Figure 6.8 – Square duct geometry and coordinate system of Pinelli et al. (2010)

6.3.1 Grid generation

The duct was conceived for δ = 0.05, from which any other dimension can be obtained. The grid

spacing in the wall-normal directions was chosen in order to guarantee y+ = z+ < 1 with maximum

spacing of ∆y+
max = ∆z+

max ≈ 20. In the streamwise direction, the elements were uniformly distributed

with ∆x+ < 50. The complete geometry and grid descriptions are found in Table 6.5.

Table 6.5 – Grid characteristics for Test Case 2

Description Value
Duct half-width δ 0.05 m

Duct streamwise dimension L = 12δ 0.6 m

Duct width 0.1 m

Nx - uniformly spaced 64→ ∆+
x ≈ 47

Ny - hyperbolically spaced 64→ y+ ≈ 1

Nz - hyperbolically spaced 64→ z+ ≈ 1

6.3.2 Boundary conditions and initial field

For the duct walls, no-slip condition was applied. In the streamwise direction, fully developed flow

was guaranteed by periodic boundary conditions, that is, φ(x, y, z) = φ(x+ L, y, z), with φ representing



Chapter 6. Test Cases and Grid Dependency 71

any flow quantity. The flow was driven by a constant mass flow rate, obtained from Reb.

The initial field was obtained from a converged steady-state RANS-based solution, on which a 10%

intensity turbulent field was superimposed.

6.3.3 Results

The results were obtained by integrating the flow field for 100 FTT’s after statistically steady state

was achieved. The strong anisotropy requires long integration periods if one seeks to obtain symmetrical

profiles as reported by Pinelli et al. (2010), who integrated for 1000 FTT’s.

Figure 6.9 compares both streamwise and cross-stream velocity profiles with the reference data,

obtained by x-averaging over a plane located at z/δ = −0.7 and normalizing by the bulk velocity

Ub. Averaging over both coordinates helps to decrease the required integration time to obtain quasi-

symmetrical profiles. As seen from Fig. 6.9b, only the CDS method delivered a quasi-symmetrical profile

for the cross-stream velocity. Specifically for this quantity, the experimental results of Kawahara et al.

(2000) retrieved from Pinnelis’s paper are shown to illustrate that perfect symmetry was not obtained.

Nonetheless, comparing the streamwise and cross-stream velocity magnitudes, it can be said that the

results obtained from the LES computations compare favourably to the reference data.
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Figure 6.9 – Mean streamwise and cross-stream velocity profiles evaluated at z/h = −0.7

The root-mean-square of the streamwise and cross-stream velocities are shown in Fig. 6.10. The

profiles were obtained by x-averaging over planes located at z/h = −0.7 and normalised by the flow

bulk velocity. No significant difference can be noticed for the streamwise velocity profile, shown in Fig.

6.10a. Regardless of the utilized method, the LES profiles agree well with the reference solution. For

the cross-stream velocity fluctuation, however, the CDS method overpredicted the peaks in more than

20%, misrepresenting the profile shape. The upwind-dependent methods, in the other hand, provided

qualitatively good results with and average underprediction of about 10% for the MUSCL10.

Figure 6.11 illustrates the shear-stress distribution along the duct walls. The profile was normalised by

the wall mean shear-stress and plotted in wall units. The MUSCL10 method delivered the best qualitative



Chapter 6. Test Cases and Grid Dependency 72

y/δ
-1 -0.5 0 0.5 1

〈u
′ 〉
r
m
s
/
U

b

0

0.05

0.1

0.15

0.2

DNS

BCD10

CDS

MUSCL10

(a) RMS of streamwise velocity fluctuation

y/δ
-1 -0.5 0 0.5 1

〈w
′ 〉
r
m
s
/
U

b

0

0.02

0.04

0.06

0.08

(b) RMS of cross-stream velocity fluctuation

Figure 6.10 – Root mean square of streamwise and cross-stream velocity fluctuations evaluated at z/h =
−0.7

and quantitative results, predicting both profile shape and wall shear magnitude more accurately than the

other methods. Preserving the shear-stress profile is a desirable feature since the maxima and minima

represent the position of high and low velocity streaks, respectively (PINELLI et al., 2010).
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Figure 6.11 – Shear stress distribution along the wall

Finally, Fig. 6.12 shows the line integral convolution (CABRAL; LEEDOM, 1993) of the the secondary

motion averaged over 100 FTT’s. As mentioned before, the best method on providing symmetrical results

was the CDS, which can now be confirmed by comparing Fig. 6.12c with 6.12d. However, the other

methods were also able to deliver qualitatively good results. It is noteworthy to say that the statistics were

collected for only a tenth of the reference results and maybe, it wasn’t enough to achieve the desired

symmetry. The maximum intensity of the secondary motion is also displayed in Fig. 6.12. Madabhushi

and Vanka (1991) reported a maximum intensity of 2.5% of the bulk flow. In that sense, the best agreement

was achieved with the MUSCL10 method and the highest deviation was attributed to the CDS method.
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(a) BCD10 - 3.21% intensity (b) MUSCL10 - 2.52% intensity

(c) CDS - 4.43% intensity (d) DNS

Figure 6.12 – Line integral convolution of the mean secondary motion obtained with (a) BCD10, (b)
MUSCL10, (c) CDS methods. (d) DNS solution of Pinelli et al. (2010)

6.4 Grid dependency test

From the test cases presented above, the MUSCL method with 10% of upwinding was selected as

the default scheme for the discretization of convective terms. In order to investigate the adequate spacial

discretization for the annular-sector problem, a grid dependence test was conducted as presented in Tab.

6.6 with the main purpose of investigating the maximum element spacing influence and the appropriate

duct height. The geometry of the annular-sector is defined by the angular gap α = 40◦, a radius ratio

η = 0.5, outer radius R = 2m and height H = 10Dh (10 times the hydraulic diameter). The axial

and rotational Reynolds numbers are Reω = Reb = 5800. The number of elements in the wall-normal

directions was increased in a factor of 1.5. In the streamwise direction, 117 elements (∆z+
max ≈ 50)
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elements were used. The size of the wall-adjacent elements for both r- and θ-directions were set the same

for every case.

Table 6.6 – Numerical details of the grid-independence test

Case A B C
Nr, Nθ, Nz 31, 31, 117 45, 45, 117 69, 69, 117

∆r+
i ,∆r+

o , ∆r+
max 0.49, 1.04, 92.19 0.49, 1.04, 55.92 0.50, 1.04, 32.22

∆θ+
0 ,∆θ+

α , ∆θ+
max 0.84, 0.53, 129.90 0.83, 0.53, 72.56 0.83, 0.53, 49.10

∆z+
max 52.87 51.72 51.69

∆t [s] 0.01 0.01 0.01
CFLmax 0.67 0.65 0.65

CPU time [hr] 225.40 551.59 668.69
FTT 13.65 18.58 15.78

As mentioned before, the duct height must be such that will cause no interference in the results due

to the periodic boundary condition. In order to verify that, two-point correlation functions were used.

As shown in Fig. 6.13, the correlation function Rii for each velocity component falls to zero before the

maximum streamwise separation, which is located at≈ 5Dh due to the symmetry imposed by the periodic

condition. Since the grid dependency was conducted with the lowest Reω, a duct height of about 5Dh

may fit the other cases.
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Figure 6.13 – Two-point correlation functions evaluated at r∗ = 1.05

Table 6.7 compares the resulting surface-averaged wall shear stress magnitude for each solid boundary

of each case. The percentage difference from Case-A to B does not exceed 6% and falls to less than 2%

when Cases B and C are compared. This is an expected outcome due to the nature of the hyperbolic

stretching function as shown in Fig. 6.14. It is seen that, for the amount of elements that was used, the

size of the first 5 elements is almost indistinguishable among the grids.

The friction factor f is compared in Tab. 6.8. Since it is obtained from an integral force balance across

the duct, the percentage difference range found in the results are similar to that of the stresses. The friction
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Table 6.7 – Surface average of the time-averaged wall shear stress magnitude

Case A B [%]BA C [%]CB

〈τw〉|r=ηR 0.0142 0.0150 5.76 0.0153 1.57
〈τw〉|r=R 0.0662 0.0671 1.40 0.0673 0.22
〈τw〉|θ=0 0.0447 0.0430 -3.68 0.0431 0.09
〈τw〉|θ=α 0.0170 0.0175 3.03 0.0177 0.69
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Figure 6.14 – Radial distribution of the first 15 grid elements

factor is obtained as described in Eq. 6.1.

f =
−dP/dz
0.5ρW 2

b

Dh (6.1)

Table 6.8 – Friction factor dependence on the grid resoltuion

Case A B [%]BA C [%]CB

f 0.1603 0.1610 0.45 0.1615 0.32

First and second order quantities profiles were compared at three different plane sections as illustrated

in Fig. 6.15. The r-z planes are located at 20%, 50% and 80% of α. The quantities were averaged in the

streamwise direction.

Figure 6.16 shows the mean velocity profiles at θ = 0.2α. As mentioned before, in the near-wall

region, the profiles behave similarly such that the curves overlap one another. In the bulk flow region,

however, Case-A departs from the others. The local maximum for 〈vz〉 is anticipated in Case-A, as shown

in Fig. 6.16a. In Fig. 6.16b, the local minimum for 〈vθ〉 is underpredicted in Case-A which also fails to

capture the profile inflexions. For Case-B and C, the profiles agree.

At the centre plane, as shown in Fig. 6.17, the three tested grids delivered similar results. The exception

is for Case-A in Fig. 6.17b, in which the local maximum for the 〈vθ〉 profile is underpredicted.



Chapter 6. Test Cases and Grid Dependency 76

z



r

0 

 

Figure 6.15 – Section planes for the flow quantities evaluation
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Figure 6.16 – Mean velocity field evaluated at θ = 0.2α

For the plane located at θ = 0.8α, cases B and C show excellent agreement for both 〈vz〉 and 〈vθ〉
profiles, as seen in Fig. 6.18.

Lastly, the profiles for the axial and tangential fluctuations are presented in Fig. 6.19. For the Case-A

profiles, the fluctuation intensities are overpredicted towards the inner wall and underpredicted in outer

wall region.

One last test, in the absence of experimental or DNS data to compare with, is to use the ratio of the

SGS viscosity to molecular viscosity µSGS/µ. When this ratio is not more than the order of 10, the LES

solution is considered to be very accurate. When it reaches 100, the simulation is found to be somewhat

inaccurate (DURBIN; REIF, 2011). Since µSGS depends on the grid refinement, it decreases as the number
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Figure 6.17 – Mean velocity field evaluated at the duct centre plane θ = 0.5α
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Figure 6.18 – Mean velocity field evaluated at θ = 0.8α

of elements increases. A SGS model activity parameter is then defined as:

s =
µSGS

µSGS + µ
(6.2)

which ranges between zero and unity, with zero corresponding to DNS and unity to a very coarse-grid

LES. Unfortunately, STAR-CCM+ does not export µSGS as a field variable. An alternative is to consider

the ratio of the SGS kinetic energy kSGS to the total kinetic energy (kSGS + k, with k representing the
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Figure 6.19 – Root mean square of the axial and tangential velocity fluctuation components evaluated at
θ = 0.5α

resolved turbulent kinetic energy). Therefore, s may be redefined as:

s =
kSGS

kSGS + k
(6.3)

which also ranges from zero to one, with s = 0 representing a DNS solution and s = 1 a RANS solution.

The software manual recommends to stay within 0.05 < s < 0.10 but does not stablish any criterion to

calculate it, that is, it does not mention if the reference value for s must be taken as the domain average or

maximum. The criterion used in this study is to compare the maximum value of s among 90% of the grid

cells.

Figure 6.20 shows the relative frequency distribution of s divided in 50 bins. The vertical lines

represent the thresholds for 90% of the grid cells. As mentioned before, refining the grid diminishes the

influence of the SGS model. For Case-C, the maximum value for s is lower than 0.1 for 90% of the grid

cells. On the other hand, the comparisons with Case-B have shown very good agreements, even with the

threshold extended to 0.30.

From Tab. 6.6, the CPU time demand for each case can be adjusted, for the sake of comparison, to 10

FTT. This would leave Case-A, B and C, with around 165, 297 and 424 hours, respectively. The results

have shown that the Case-A grid is too coarse to capture some details such as profile inflexions. Case-C,

in the other extreme, demands too much CPU time while its results agree well with Case-B grid, which

saves about 30% of CPU time. Therefore, for the continuation of the study, grids with characteristics as in

Case-B will be taken as default.
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7 Results

In this chapter, results for the turbulent flow in the annular-sector duct are presented. Firstly, the

solution is obtained for a non-rotating duct with stationary walls so that it can be qualitatively compared

to the square duct case of Pinelli et al. (2010). Secondly, the duct is put to rotate in order to investigate

the influence of rotation. Lastly, the combined shear-induced and rotation effects are investigated and the

influence of the governing parameters is presented.

7.1 Cases summary

The problem investigation was carried out as presented in Tab. 7.1. Case A is a non-rotating case with

stationary outer wall (relative to the RRF). In Case B, the duct is put to rotate but the outer wall remains

stationary (relative to the RRF), that is, u(r = R, θ, z) = 0. The C group investigates the rotational speed

influence by means of the swirl parameter Γ. Henceforward, the boundary conditions are as described in

section 4.2. Group D simulations vary the duct apex angle α and finally, group E brings the effect of the

radius ratio η.

Table 7.1 – Numerical details of the parametric investigation

Parameters
Case Reb = WbDh

ν
Γ = ωDh

Wb
α [◦] η = ri

ro

A 5800 0 40 0.5
B 5800 1 40 0.5
C1

5800
1

40 0.5C2 5
C3 10
D1

5800 1
15

0.5D2 40
D3 75
E1

5800 1 40
0.3

E2 0.5
E3 0.7

Although cases C1, D2 and E2 represent the same simulation, they were renamed according to the

parameter group that is being analysed during the results discussion.

For every case, the flow field was calculated until two-point correlation functions Ruu stopped varying

in time, which took approximately 3 flow-through time periods (FTT = h/Wb). At this stage, the flow

is said to be statistically steady (DAVIDSON, 2004). The statistics were then collected for at least 10

FTT but the precise time can be found in the details table presented for each case along with the required

CPU time. The simulations were all performed in Intel Core i7-6700K (4.00 GHz) 16GB RAM desktops

running Windows 10.
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7.2 Stationary duct

The stationary duct case, referred as Case A in Tab. 7.1, was investigated to seek some similarity with

the turbulent square duct case of Pinelli et al. (2010), presented in Chaper 6, as well as to serve as a base

for comparison with the other cases. The grid characteristics are given in Tab. 7.2 along with the flow

integration time.

Table 7.2 – Numerical details of Case A

H∗ R[m] Nr,Nθ,Nz ∆r+
i (∆r+

o ) ∆θ+
0 (∆θ+

α ) δt[s] CFLmax FTT CPU [hr]
4 2 45, 45, 47 0.357 (0.3309) 0.3550 (0.3529) 0.020 0.038 103 423.28

Figure 7.1 shows both instantaneous and time-averaged secondary velocity field for Case A, obtained

from Eqs. 7.1 and 7.2, respectively.

us = vrêr + vθêθ (7.1)

〈us〉 = 〈vr〉êr + 〈vθ〉êθ (7.2)

The vector magnitudes are normalised by the bulk velocity Wb. The secondary velocity field in

Fig. 7.1b presents the same pattern seen for the square duct (Fig. 6.12), that is, the Prandtl’s secondary

motion of second kind (MADABHUSHI; VANKA, 1991). The flow splits up in an octant fashion with

counter-rotating vortices that reach 2.6% of the bulk flow intensity, which agrees well with the study of

Madabhushi and Vanka (1991), that reported a 2.5% intensity for the square duct case at Reb = 3500.

The absence of rotation allows symmetry to take place in the θ-direction with the symmetry plane located

at θ = α/2. However, as in the square duct case presented in Section 6.2, the flow was not integrated long

enough ir order to a perfect symmetric secondary field to be verified.

In Fig. 7.1a, the line integral convolution (CABRAL; LEEDOM, 1993) of the instantaneous secondary

velocity field is displayed. Vortical structures on a wide range of scales can be perceived. The velocity

magnitude for the instantaneous motion can be as large as 5 times its mean counterpart, reaching up to

14% of the bulk flow intensity as illustrated by the dark red shades, highlighting the effect of turbulence

on mean flow momentum.

Figure 7.2 shows the mean streamwise velocity contours normalised by Wb. The secondary velocity

field convect mean-flow momentum from the central region to the corner region along the corner bisectors

(MADABHUSHI; VANKA, 1991). This is evidenced by the associated distortion of the profile towards

the duct corners.

The mean streamwise velocity and the RMS of its fluctuating quantity are shown in Fig. 7.3. The

profiles were evaluated at z = 0.7δ and θ = 0.7(α/2), for the square duct and Case A, respectively. The

wall-normal coordinate for the square duct was translated to lie between 0 ≤ y/δ ≤ 1. In Fig. 7.3a, the

effect of the shear stress difference between inner and outer walls appears as the velocity profile peaks

closer to the outer wall, where shear stresses are smaller. Nevertheless, the resemblance found for the

geometries is notable, both in shape and intensity.
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(a) Line integral convolution of the instantaneous
secondary field

(b) Mean secondary field

Figure 7.1 – Secondary velocity field normalised by the bulk velocity

Figure 7.2 – Contours of the mean streamwise velocity normalised by Wb superposed on the secondary
velocity field. The isolines are distorted towards the corners as a result of the secondary
motion effect

In Fig. 7.3b, the mean streamwise velocity fluctuation profiles overlap close to the walls. The Case A

profile does not present symmetry as in the square duct case as turbulence intensity decreases towards

r∗ = 0. The smaller turbulent kinetic energy in the inner wall may be attributed to the transverse curvature

effect. Since the surface area of the inner wall is smaller than that of the outer wall, it supplies relatively

less turbulent kinetic energy than the outer wall to the same volume of flow (CHUNG et al., 2002).

Intriguingly, at the duct symmetry plane (θ = 0.5α), the profiles for 〈vz〉 and 〈v′z〉rms do not show

the same trend, as represented in Fig. 7.4. The streamwise velocity is compared with that of the square

duct case, evaluated at the symmetry plane, and the DNS study of Chung et al. (2002) for the concentric

cylinders problem. Although the DNS results were obtained for the same radius ratio and ReDh = 8900,
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both 〈vz〉 and 〈v′z〉rms profiles are strikingly symmetric along the r-direction and similar to those of the

square duct case.
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Figure 7.3 – Mean streamwise velocity and RMS of streamwise velocity fluctuation evaluated at θ =
0.7(α/2) for Case A and z = −0.7δ for the square duct
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Figure 7.4 – Mean streamwise velocity and RMS of streamwise velocity fluctuation evaluated at θ = 0.5
for Case A and z = 0 for the square duct

The shear stress distributions along the inner and outer walls are represented in Fig. 7.5. The profiles

were normalised by the wall-averaged shear stress magnitude 〈τw〉, which is taken to be the arithmetic

average of 〈τw〉 for each of the four duct walls. The effect of curvature becomes more evident as the

inner wall shear stress is, in general, greater than the outer wall shear stress. The shear stress magnitude

is almost entirely due to the axial component. The inner wall profile exhibits two maxima while three
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are noticed for the outer wall. However, the lack of symmetry in the outer wall profile may be another

indication that the flow was not integrated long enough. As discussed in the work of Pinelli et al. (2010),

the peaks represent the probable position of high velocity streaks. At the duct centre, the stress magnitudes

are very similar, what may explain the symmetry found in the 〈vz〉 and 〈v′z〉rms profiles of Fig. 7.4.
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Figure 7.5 – Shear stress distribution along the inner and outer walls normalised by the wall shear stress
magnitude.

7.3 Rotating duct

The rotation of the reference frame introduces in the governing equations two fictitious entities: the

centrifugal and Coriolis forces. The effect of the Coriolis force is to deflect a fluid particle in a direction

perpendicular to its instantaneous velocity vector and to the axis of rotation. When viewed from an inertial

frame of reference this behaviour is a direct result of the conservation of angular momentum, since a

particle moving radially outward tends to spin down, while one moving inward will spin up (DAVIDSON,

2013). The centrifugal force always points radially outward with magnitude (per unit volume) ρω2r and

unlike the Coriolis force, it is independent of the particle motion.

In order to investigate the effect of rotation in comparison with the stationary case, the duct was put to

rotate at a constant speed ω. The grid characteristics and numerical details are given in Tab. 7.3.

Table 7.3 – Numerical details of Case B

H∗ R[m] Nr,Nθ,Nz ∆r+
i (∆r+

o ) ∆θ+
0 (∆θ+

α ) δt[s] CFLmax FTT CPU [hr]
4 2 45, 45, 45 0.8187 (0.7511) 0.7877 (0.8106) 0.050 0.160 128 63.03

Figure 7.6 shows the mean secondary velocity field for cases A and B. The vector magnitudes

were normalised by the bulk velocity. The axial axis points inward the page so that rotation direction is

clockwise. By comparing Figs. 7.6a and 7.6b, it is seen that the presence of rotation completely alters the

flow pattern and increases its strength. While the duct rotates in the clockwise direction, the core vortex
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assumes a counterclockwise rotating motion. The octant-organized counter-circulating vortices seen in

Fig. 7.6a give place to a Coriolis-induced swirling motion, with a core vortex centred between small and

less intense vortices placed near the duct corners. For the present Reω, magnitude goes from 2.6% to 10%

of the bulk flow.

(a) Case A (b) Case B

Figure 7.6 – Mean secondary velocity field normalised by the bulk velocity. (a) Stationary duct case with
Reb = 5800 and Γ = 0. (b) Rotating duct case with Reb = 5800 and Γ = 1. Rotation
direction is clockwise.

The mean streamwise velocity field is compared in Fig. 7.7. The contours are linearly spaced in 16

levels ranging from 0.1 ≤ 〈vz〉 ≤ 1.4. By comparing both rotating and non-rotating ducts, it is seen

that rotation weakens the effect of mean flow momentum convection towards the corners, increasing the

velocity magnitude at the duct centre. This can be evidenced by the isolines distribution across the duct

cross-section and the value for centre-most isoline. For Case A, the isolines are more concentrated near

the walls, flattening the profile at the centre.

(a) Case A (b) Case B

Figure 7.7 – Mean streamwise velocity field normalised by the bulk velocity. Sixteen contour levels
linearly spaced between 0.1-1.4 are shown
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The rotation contribution to the wall shear stress magnitude is represented in Tab. 7.4. For Case A,

the shear stress magnitude is higher at the inner wall, lower at the outer wall and equivalent at the lateral

walls, which agrees with the flow pattern shown in Fig. 7.6a. The introduction of rotation distributes the

stress more evenly as seen for Case B. On the other hand, it contributes to an increase of 25% in the

friction factor due to the secondary motion effect. The value for f (Eq.6.1) in Case A agrees well with the

prediction of Tao et al. (2000) where f = 0.2685 Re−0.25
b = 3.078× 10−2.

Table 7.4 – Normalised wall-averaged shear stress magnitude

〈τ〉w × 103

Case Reb Γ r = ηR r = R θ = 0 θ = α 〈τ〉w × 103 f × 102

A 5800 0 8.145 7.372 7.876 7.916 7.760 3.104
B 5800 1 9.787 9.562 9.839 9.699 9.702 3.881

[%] 20.16 29.71 24.92 22.52 25.03 25.03

The mean radial and tangential velocities for Case B are compared in Fig. 7.8. The profiles were

evaluated at θ = 0.5α and r∗ = 0.5. As seen in the secondary motion vector field shown in Fig. 7.6b,

for θ = 0.5α, the flow is mostly oriented in the θ-direction. The same happens for r∗ = 0.5 with the

flow being mostly oriented in the r-direction. The combination of both velocity components creates the

circulatory pattern. The inflexions near the walls are confirmations of the presence of counter-rotating

vortices. The contribution of the centrifugal force is seen in Fig. 7.8a. The radial velocity is higher in the

peaks oriented outwards while no substantial difference is seen for the peaks magnitude on the tangential

velocity profile.
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Figure 7.8 – Mean radial and tangential velocity distributions along the r- and θ- directions evaluated at
θ = 0.5α and r∗ = 0.5.

The effect of rotation on the time-averaged turbulent kinetic energy is shown in Fig. 7.9. The contour

values were normalised by the bulk velocity. For Case A, the turbulent kinetic energy is mainly convected

by the axial flow as seen in Fig. 7.9a. When rotating, the volume-average 〈k〉/W 2
b goes from 0.888×10−2
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to 1.326×10−2, representing an increase of almost 50%. The Coriolis-induced vortex possibly contributes

to convect turbulent momentum along the duct cross-section as seen in Fig. 7.9b, although it would be

necessary to check the turbulent kinetic energy budgets in order to be sure.

(a) Case A (b) Case B

Figure 7.9 – Contours of the mean turbulent kinetic energy normalised by the bulk velocity〈k〉/W 2
b . (a)

Stationary duct case. (b) Rotating duct case.

Figure 7.10 confirms the aforementioned effect of rotation on the turbulent quantities. Radial distribu-

tions of the Reynolds stress tensor normal components for cases A and B are compared. Every component

is increased in the presence of rotation. The effect of curvature seen on 〈v′r〉rms and 〈v′θ〉rms is diminished

and 〈v′z〉rms increases at the centre as a result of the secondary motion.
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Figure 7.10 – Root mean square of the radial, tangential and axial velocity fluctuations evaluated at
θ = 0.5α. Comparison between cases B and A. (a) RMS of radial velocity fluctuation. (b)
RMS of tangential velocity fluctuation. (c) RMS of axial velocity fluctuation.
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7.4 Effect of the stationary outer wall

To analyse the effect of the stationary wall, Case C1 was compared with Case B. The difference

between them lies in the boundary condition for the outer wall. Whilst the outer wall rotates with the duct

angular speed in Case B, it remains stationary in Case C1.

Considering the duct cross-section, a boundary condition set such as in Case C1 resembles the

lid-driven cavity problem. A schematic representation of the flow dynamics is given in Fig. 7.11. The

motion within the cavity is maintained by the continuous diffusion of kinetic energy from the moving lid.

Besides the centred primary vortex, three secondary recirculating structures form due to the presence of

the bounding walls: the downstream, upstream and upper secondary eddies.

lidU



Downstream

secondary

eddy

Upstream

secondary

eddy

Upper

secondary

eddy

Figure 7.11 – Lid-driven cavity flow schematics. Adapted from Koseff and Street (1984b).

In the present scenario, the secondary motion is driven by rotation, with or without the contribution of

the outer wall, and the lid (outer-wall) remains stationary.

The mean secondary field normalised by the bulk velocity is shown in Fig. 7.12. In Fig. 7.12a, the

flow in the vicinities of the walls is preferably oriented clockwise, in opposition to the Coriolis-induced

swirl. The shear-induced motion from the stationary wall, however, contributes to the swirling motion as

shown in Fig. 7.12b. The mean secondary motion maximum intensity is increased from 10% to almost

twice that of the bulk flow, as seen in the colour bar in Fig. 7.12b.

The centred primary vortex grows to the size of the duct cross-section as the same pattern found for

the lid-driven cavity problem forms (KOSEFF; STREET, 1984a). In Fig. 7.12b, the three recirculation

structures known as downstream, upstream and upper secondary eddies are clearly noticed. The shear

stress magnitude at the outer (r = R) and θ = α walls is substantially increased, driving the friction

factor from f = 3.881× 10−2 to f = 16.101× 10−2.

The mean velocity profiles for both cases are shown in Fig. 7.13. The 〈vr〉 profile was evaluated

at r∗ = 0.5. The remaining profiles were evaluated at θ = 0.5α. Every curve was averaged along the
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(a) Case B (b) Case C1

Figure 7.12 – Mean secondary velocity field normalised by the bulk velocity.

streamwise direction. The 〈vr〉 and 〈vθ〉 profiles for Case C1 are the typical profiles found for the square

cavity at the symmetry planes. The radial velocity peak at the downstream wall corresponds to the

downstream jet. Both downstream and upstream velocity peaks mark the viscous boundary layer. The

secondary motion is completely altered both in shape and magnitude due to the new boundary condition.

The mean axial velocity profile is slightly tilted towards the outer wall and the gradient in this region

becomes steeper. The maximum axial velocity magnitude is not affected.
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Figure 7.13 – Effect of the stationary wall on the mean velocity profiles. (a) Mean radial velocity evaluated
at r∗ = 0.5. (b) Mean tangential velocity and (c) mean axial velocity evaluated at θ = 0.5α.

The counter-rotating wall effect on the normal components of the Reynolds stress tensor is shown in

Fig. 7.14. The double peaks are evident for every profile suggesting that stronger velocity fluctuations are

concentrated near the walls. Both radial and tangential components are dramatically changed. The radial

distribution for the three components becomes qualitatively similar, with higher intensities near the inner

wall. The symmetry for the axial velocity fluctuation is lost as the outer wall peak is lessened. The inner
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peak is substantially higher than the outer one, indicating that the most energetic turbulence occurs near

the inner wall.
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Figure 7.14 – Root mean square of the (a) radial, (b) tangential and (c) axial velocity fluctuations evaluated
at θ = 0.5α. Comparison between cases C1 and B.

7.5 Effect of the swirl parameter Γ

This section presents the effect of Reω magnitude on the mean flow dynamics and turbulent quantities.

The axial Reynolds number Reb is kept constant and the magnitude of Reω is dictated by the value of the

swirl parameter Γ, for which details are found in Tab. 7.1. The cases related to this section are referred to

as C1, C2 and C3.

It is usual, when dealing with the lid-driven problem, to normalise quantities by the lid speed.

Therefore, although the Reω has been defined in terms of the hydraulic diameter, the normalisation of the

r- and θ-oriented quantities was conducted in terms of ωR. For the z-oriented quantities, the flow bulk

velocity Wb was used as normalisation parameter.

The details concerning the geometric and grid characteristics are summarised in Tab. 7.5.

Table 7.5 – Numerical details of Group C

Γ H∗ R[m] Nr,Nθ,Nz ∆r+
i (∆r+

o ) ∆θ+
0 (∆θ+

α ) δt[s] CFLmax FTT CPU [hr]
C1 1 10 2 45, 45, 117 0.4464 (0.9696) 0.6644 (0.4828) 0.010 0.6456 18.6 330.52
C2 5 4 2 101, 101, 64 0.3115 (0.7777) 0.5721 (0.2527) 0.005 6.434 11.40 290.29
C3 10 2 2 121, 121, 41 0.4434 (0.9659) 0.6714 (0.4828) 0.010 0.652 16 785.56

Increasing Γ allows the duct height H = h/Dh to be reduced as described in Tab. 7.5, saving a great

amount of CPU time. For security, two-point correlation functions were evaluated for every case and as

illustrated in Fig. 7.15, 〈Ruu〉 falls to zero before the maximum streamwise separation. Here, R refers to

the correlation function, not to be mistaken with the Reynolds stress-tensor components.
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Figure 7.15 – Two-points correlation functions evaluated at r∗ = 0.05. (a) Case C1. (b) Case C2. (c) Case
C3.

7.5.1 Mean flow

The effect of Γ on the radial and tangential distributions of the mean axial velocity 〈vz〉 is shown in

Fig. 7.16a and 7.16b, respectively. As Γ increases, the axial velocity profiles tend to a laminar shape in

the bulk region.
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Figure 7.16 – Radial and tangential distributions of the mean axial velocity normalised by the bulk
velocity.

This effect is better visualised in Fig. 7.17, in which the contours of the mean axial velocity are shown

for cases C1, C2 and C3. The streamwise and spanwise motions are highly coupled as it can be seen by

the substantial change in the axial velocity distribution. For Case C1, in Fig. 7.17a, the axial velocity

profile is skewed towards the outer-left corner. As Γ is increased, the axial profile skewness is reduced
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as it tends to a more symmetrical arrangement with smoother gradients. The increase in the maximum

axial velocity is also evidenced in the colour bars. The maximum velocity position, however, seems to be

independent of Γ as schematically illustrated in Fig. 7.18. The maximum coordinates were obtained by

solving ∂〈vz〉/∂r = ∂〈vz〉/∂θ = 0.

(a) Case C1 (b) Case C2 (c) Case C3

Figure 7.17 – Contours of the mean axial velocity normalised by the bulk velocity. 32 levels are shown.

+

C1

C2

C3

Figure 7.18 – Schematic representation of the maximum axial velocity position as a function of Γ. The
dashed lines represent r∗ = 0.5 and θ = 0.5α.

The mean azimuthal velocity components distribution along the r- and θ-direction is shown in Fig.

7.19. The profiles for the tangential and radial components were evaluated at θ = 0.5α and r∗ = 0.5,

respectively. The curves were normalised by ωR. The experimental results of Prasad and Koseff (1989)

for a square lid-driven cavity at Re = 10000 (based on the lid speed and cavity length) are also displayed.

The resemblance of the profiles indicates that both configurations exhibit some similarities. The difference

found for the gradients at the bulk region may be a manifestation of the curvature and/or rotation effects.

Increasing Γ makes the boundary layers thinner which can be verified as the velocity profiles are shifted

toward the walls in Fig. 7.19a and b.

Figure 7.20 displays the line integral convolution of the secondary velocity field as a function of

Reω. The fluid in contact with the outer wall is accelerated along the downstream wall. The flow then

separates from the wall creating the so-called downstream secondary eddy (DSE). On its way toward the
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Figure 7.19 – Radial distribution of the mean tangential velocity and tangential distribution of the mean
radial velocity. Both profiles were normalised by ωR. The square markers represent the
experimental data of Prasad and Koseff (1989) for a square lid-driven cavity flow at
Re = 10000.

upstream wall, the core circulating structure creates another structure called upstream secondary eddy

(USE). Before reaching the outer wall it separates again and the upper eddy (UE) is also formed.

The influence of Reω on this configuration of the secondary motion happens in the same manner as

found for square cavities. In the study of Koseff and Street (1984b), for a cavity with 1:1 aspect ratio,

the DSE size is reduced as the lid speed is increased. The same tendency is seen in Fig. 7.20. As Reω
is increased, the point of separation is shifted inwards, reducing the size of the DSE. This happens as a

direct result of the jet velocity along the downstream wall. The more the velocity the more inertia, making

it difficult to accelerate the fluid in the θ-direction. The size of the USE, on the other hand, is apparently

independent of Reω, within the tested range.

The swirl parameter effect on the friction factor is represented in Fig. 7.21. The value found in the

absence of rotation is represented by the dashed line. Since f is normalised by the streamwise dynamic

pressure, its value is expected to depart from the the dashed line as Γ increases. Assuming that the friction

factor may be represented as the sum of the streamwise and secondary motion contributions, that is:

f = C1Re
−0.25
b + C2Γn (7.3)

and making use of the correlation proposed by Tao et al. (2000), a power-law expression for f that fits the

results for cases C1, C2 and C3 may be written as:

f = 0.2685Re−0.25
b + 0.13Γ1.52. (7.4)
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(a) Case C1 (b) Case C2 (c) Case C3

Figure 7.20 – Effect of Γ on the secondary motion. Line integral convolution of the secondary field is
shown. Colour bands represent the field magnitude normalised by ωR. 32 levels are shown.
(a) Case C1 with Γ = 1. (b) Case C2 with Γ = 5. (c) Case C3 with Γ = 10.

When Γ = 0, Eq. 7.4 returns the value found for Case A. The average deviation for the proposed

correlation is 1.65%.
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Figure 7.21 – Effect of the swirl parameter Γ on the friction factor f . The dashed line represents the
friction factor obtained for Case A.

For case C3, an interesting feature develops as the flow is curved as it passes along the DSE. The flow

over concave surfaces may cause transverse vortices to form, the so called Taylor-Göertler-like (TGL)

vortices. In Fig. 7.22, the line integral convolution of the instantaneous velocity field is shown on a plane

located at θ = 0.05α. The curvature experienced by the flow when passing over the DSE results in the

formation of TGL structures.
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Figure 7.22 – Line integral convolution of the instantaneous velocity field of Case C3 evaluated at θ =
0.05α. Taylor-Göertler-like vortices form close to the downstream wall.

7.5.2 Turbulent statistics

The root mean square of the streamwise velocity fluctuations for cases C1, C2 and C3, evaluated at

θ = 0.5α and r∗ = 0.5 are shown in Fig. 7.23. The profiles were normalised by the flow bulk velocity.

The peaks magnitudes are substantially increased but at the bulk region, little influence is perceived. It is

possible that, in one way, increasing Γ leads to a more turbulent state near the walls but in the other way,

the resulting swirling motion stabilises the flow in the bulk region.

In the r∗ distribution in Fig. 7.23a, the inner to outer peak difference increases with Γ, suggesting that

the more energetic structures are localised near the inner wall. Although in less pronounced manner, the

same trend can be seen for the θ distribution in Fig. 7.23b. The profiles peak near the walls with higher

intensities at the upstream wall.

In Fig. 7.24, the radial distributions of 〈v′θ〉rms and 〈v′r〉rms along θ = 0.5α are compared with the

experimental results of Prasad and Koseff (1989) for the lid-driven square cavity flow. The results for

the annular-sector are in qualitative agreement with those of the square cavity. The higher intensities for

〈v′θ〉rms and 〈v′r〉rms are localised near the inner wall. It is intriguing that for cases C2 and C3, the profiles

seem to scale with ωR while they do not for Case C1. Another characteristic that manifests only for cases

C2 and C3, in the 〈v′θ〉rms profile, is a double peak close to the outer wall.

The contribution of Γ for the mean turbulent kinetic energy is displayed in Fig. 7.25. In order to

confirm the tendency to laminarisation as Γ increases, the contours of 〈k〉 were normalised by the bulk

velocity. In the first place, a very different pattern is seen for Case C1, which may explain the difference in

the 〈v′θ〉rms and 〈v′r〉rms profiles in Fig. 7.24. 〈k〉 increases at the region of the descending jet with inner

wall collision but the maximum 〈k〉 is localised in the USE region. For cases C2 and C3, a very similar

pattern develops. As the descending fluid takes longer to separate from the downstream wall, it collides

directly on the inner wall. This region then concentrates higher values for 〈k〉 while the bulk remains

mostly laminar. Although the maximum 〈k〉 for Case C3 is almost two orders of magnitude higher than

for Case C1, the 〈k〉 in the very centre was found to increase by a factor of 2 for Case C2 and a factor of

3.4 for case C3. Therefore, the combined effects of the rotation and stationary wall seems to, somehow,

contribute to stabilise the flow within the primary vortex as Γ increases.
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Figure 7.23 – Root mean square of the axial velocity fluctuation as a function of Γ. The profiles were
normalised by Wb.
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Figure 7.24 – Root mean square of the radial and tangential velocity fluctuations evaluated at θ = 0.5α.
Both profiles were normalised by ωR. The square markers represent the experimental data
of Prasad and Koseff (1989) for a square lid-driven cavity flow at Re = 10000.

The contribution of the Reynolds stress tensor shear components to the total shear is represented in

Figs. 7.26 and 7.27, for cases C1 and C3, respectively. The total shear stress tensor, which is defined as:

TT = T + R (7.5)

the sum of viscous and turbulent shear stresses. For the present study, the Reynolds stress tensor R is still
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(a) Case C1 (b) Case C2 (c) Case C3

Figure 7.25 – Mean turbulent kinetic energy 〈k〉 as a function of Γ. Contours were normalised by W 2
b . (a)

Case C1 with Γ = 1. (b) Case C2 with Γ = 5. (c) Case C3 with Γ = 10.

subdivided into a resolved and a modelled part, that is:

R = Rres + TSGS. (7.6)

The resolved part is obtained directly from Eq. A.37. The unresolved part, modelled according to Eq.

4.17, depends on µSGS, which STAR-CCM+ does not provide as a field variable. Therefore, it is worth

mentioning that the complete analysis of the turbulent stresses contribution to the total shear stresses

would require TSGS. Nevertheless, great insight can be drawn of the profiles obtained from the resolved

part of R.

In Fig. 7.26, the contributions of R to TT for Case C1 are presented. The profiles were normalised

by the wall-averaged shear stress magnitude 〈τw〉. In general, the viscous shear dominates within a very

slender space, the viscous boundary layers. Beyond this region, the flow may be considered inviscid as the

total shear stresses become exclusively related to turbulent phenomena. The higher the Γ, the more the

viscous stresses dominance is confined to the vicinities of the walls. In Fig. 7.27, the viscous part of TT is

almost indistinguishable.

Figures 7.26a and 7.27a show that in the bulk, shear stress is two-component as T Trθ = 0. The

stabilizing effect of Γ through the counter-rotating wall is again evidenced. By comparing Figs. 7.26a and

7.27a, the total shear for Case C3 becomes mostly related to viscous effects. The T Trθ component is also

responsible for most of the wall shear stress magnitude. From Figs. 7.26b and 7.27b, the turbulent stresses

contributions to the total shear stress fall by one order of magnitude. The θz distribution, in Figs. 7.26c

and 7.27c is completely modified by increasing Γ. As for the turbulent kinetic energy, which accounts for

the normal component of R, the influence of the downstream jet on the way that turbulent stresses are

convected by the mean flow, seems to be more significant on the T Tθz component of T.
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Figure 7.26 – Reynolds shear stress contribution to the total shear stress for C1 evaluated at θ = 0.5α. (a)
Rrθ-component. (b) Rrz-component. (c) Rθz-component. The profiles were normalised by
the wall-averaged shear stress magnitude.
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Figure 7.27 – Reynolds shear stress contribution to the total shear stress for C3 evaluated at θ = 0.5α. (a)
Rrθ-component. (b) Rrz-component. (c) Rθz-component. The profiles were normalised by
the wall-averaged shear stress magnitude.
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7.6 Effect of the duct apex angle α

This section presents the effect of the duct apex angle α on the mean flow dynamics and turbulent

quantities. The swirl parameter is kept constant and the value of α is varied according to Tab. 7.1. The

cases related to this section are referred to as D1, D2 and D3.

The details concerning the geometric and grid characteristics are summarised in Tab. 7.6.

Table 7.6 – Numerical details of Group D

α [◦] H∗ R[m] Nr,Nθ,Nz ∆r+
i (∆r+

o ) ∆θ+
0 (∆θ+

α ) δt[s] CFLmax FTT CPU [hr]
D1 15 5 2 31, 60, 138 0.2163 (0.8771) 0.3988 (0.2728) 0.005 3.5053 14.2 157.35
D2 40 10 2 45, 45, 117 0.4464 (0.9696) 0.6644 (0.4828) 0.010 0.6456 18.6 330.52
D3 75 5 2 61, 35, 50 0.5344 (0.8986) 0.6988 (0.5647) 0.100 2.4801 48.1 68.47

Two-point correlation functions are shown in Fig. 7.28. From the profiles, it is seen that the duct

height was chosen appropriately.
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Figure 7.28 – Two-points correlation functions evaluated at r∗ = 0.05. (a) Case D1. (b) Case D2. (c) Case
D3.

7.6.1 Mean flow

The effect of α on the radial and tangential distributions of the mean axial velocity 〈vz〉 is shown

in Fig. 7.29a and 7.29b, respectively. For Case D1, the fluid separates earlier so that the primary vortex

occupies the upper half of the duct cross-section. From the D1 profile shown in Fig. 7.29a, two distinct

regions are created and limited by the profile inflexion at r∗ ≈ 0.3. The inner region flows more slowly

and the flow is almost purely axial (see Fig. 7.31a). The upper region develops the helical pattern resulting

from the combination of the axial and circulating motions. A similar phenomenon occurs for Case D3.

The axial flow departures from the symmetry plane as two counter-circulating structures develop.

The effect of α can be visualised in Fig. 7.30, in which the contours of the mean axial velocity are

shown for cases D1, D2 and D3. In Fig. 7.30a, the preference of the axial flow for the upper part of the
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Figure 7.29 – Radial and tangential distributions of the mean axial velocity normalised by the bulk
velocity.

duct is evidenced. In a process where heat generated by the inner wall must be convected is considered,

a flow pattern like the one of Case D1 would be, probably, more ineffective than for other geometric

configurations considered in this study. Since the main driving force for the secondary motion is provided

by the outer wall, the more fluid in contact with it the higher the strength of the swirling motion within

the duct. For Case D3, in Fig. 7.30c, the flow assumes a complex pattern with two separated cores with

the left one resembling the pattern developed by D2. In this configuration, the maximum axial velocity is

also substantially affected, being lessened in approximately 8%, compared to Case D2.

(a) Case D1 (b) Case D2 (c) Case D3

Figure 7.30 – Contours of the mean axial velocity as a function of α. The contours were normalised by the
bulk velocity. 32 levels are shown. (a) Case D1 with α = 15◦. (b) Case D2 with α = 40◦.
(c) Case D3 with α = 75◦.

The profiles for 〈vθ〉 and 〈vr〉 respectively evaluated at θ = 0.5α and r∗ = 0.5 are shown in Fig. 7.31.

The radial distribution of 〈vθ〉 for Case D1, in Fig. 7.31a, matches the expected behaviour seen in Fig.
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7.30a. 〈vθ〉 is practically null for r∗ < 0.3. The primary vortex for D1, in Fig. 7.32a, develops an elliptical

shape rather than circular as in the other cases. It causes the velocity gradient in the r-direction to be less

steep. In Fig. 7.31b, the counter-circulating pattern for Case D3 appears through the profile inflexion at

θ/α ≈ 0.58. The absence of the upstream wall allows the ascending jet to penetrate through the symmetry

plane. This can be elucidated by the deviation of the 〈vr〉 profile from the others.
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Figure 7.31 – Radial distribution of the mean tangential velocity and tangential distribution of the mean
radial velocity for Group D. Both profiles were normalised by ωR.

The effect of α on the secondary motion configuration is illustrated in Fig. 7.32. The line integral

convolution of the secondary velocity field, normalised by ωR is shown. Colour bands represent the

velocity magnitude. For Case D1, in Fig. 7.32a, the DSE forms in the inner-right corner, as a result of the

global motion of the counter-circulating vortex. The same happens for the USE which is reallocated at the

inner-left corner. Compared to cases D2 and D3, the magnitude of the secondary motion is smaller due to

the hindering action of the wall stresses. The high velocities become confined close to the outer wall and

downstream jet. For case D3, the downstream jet penetrates through the symmetry plane as it separates

from the inner wall. The USE is replaced by a primary counter-circulating structure which interacts in a

very complex manner with the outer wall boundary layer.

The apex angle influence on the friction factor is represented in Fig. 7.33. The value for the Taylor-

Couette-Poiseuille (TCP) problem obtained from a steady RANS solution is also displayed. Increasing

the duct apex angle causes a reduction in the friction factor, which tends to the TCP value. This can be

explained by the contribution of the outer wall to the total wall shear stress magnitude. Since the friction

factor is calculated by averaging the wall shear stress along the duct perimeter, the more the available area

the less the stress peaks at the outer wall contribute to the wall total stress. As in the TCP configuration

there are no corner, the friction factor for the given η is minimum.

It is noteworthy to mention that, in the stationary laminar case, the behaviour of the friction factor is

completely different. In the study of Sparrow et al. (1964), the analytical solution of an annular-sector
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(a) Case D1 (b) Case D2 (c) Case D3

Figure 7.32 – Line integral convolution of the secondary motion. Colour bands represent the field magni-
tude normalised by ωR. 32 levels are shown. (a) Case D1 with α = 15◦. (b) Case D2 with
α = 40◦. (c) Case D3 with α = 75◦.
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Figure 7.33 – Effect of the duct apex angle α on the friction factor f . The dashed line represents the f for
the Taylor-Coutte-Poiseuille problem with the same boundary conditions obtained from a
steady RANS solution.

is derived for different radius ratios and apex angles. The friction factor does not show a monotonic

behaviour with α, neither with η. The same pattern cannot be verified for the present study due to the

contributions of rotation and outer wall shear, which outshine the contribution of the pure axial flow.

As done for Group C, a power-law expression may be obtained to characterize the influence of α on

the friction factor as follows:

f = 0.135
( απ

180

)−0.46
(7.7)

The usage of the relation above is, however, restricted to η = 0.5 and Γ = 1. The average deviation

for the correlation is 4.01%.
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7.6.2 Turbulent statistics

Figure 7.34 displays the radial and tangential distributions of the axial velocity fluctuation along

θ = 0.5α and r∗ = 0.5. The counter-circulating pattern created in cases D1 and D3 alters the distributions

seen so far. Apparently, the flow is more unstable at the contact region between the counter-circulating

vortices. This can be evidenced by the profiles of 〈v′z〉rms for cases D1 and D3 peaking near the duct

centre.
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Figure 7.34 – Root mean square of the axial velocity fluctuation. The profiles were normalised by Wb.

In Fig. 7.35, the contour plot of the mean turbulent kinetic energy corroborates with the pattern

of Fig. 7.34. The contact region between the counter-circulating vortices holds most of the turbulent

kinetic energy. For Case D2, however, this region cannot be verified. Comparing every flow configuration

shown so far, it can be postulated that the greatest instabilities are somehow related to the downstream jet

detachment at some point. For Cases C1(D2) and D3, it happens as the flow separates from the inner wall.

For Cases C2, C3 and D1, it happens as the flow separates from the downstream wall.

The radial distribution of 〈v′θ〉rms and 〈v′r〉rms along the geometry symmetry plane are illustrated in

Fig. 7.36. The profiles for Case D3 stand out from the others, which is a confirmation that the absence of

the wall hindering the ascending jet contributes to turbulence intensification.

7.7 Effect of the radius ratio η

This section presents the effect of the radius ratio η on the mean flow dynamics and turbulent quantities.

The swirl parameter is kept constant at Γ = 1 and the value of η varies as described in Tab. 7.7. The cases

related to this section are referred to as E1, E2 and E3.

The details concerning the geometric and grid characteristics are summarised in Tab. 7.7.
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(a) Case D1 (b) Case D2 (c) Case D3

Figure 7.35 – Contours of the mean turbulent kinetic energy 〈k〉 normalised by W 2
b . (a) Case D1 with

α = 15◦. (b) Case D2 with α = 40◦. (c) Case D3 with α = 75◦.
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Figure 7.36 – Root mean square of the radial and tangential velocity fluctuations evaluated at θ = 0.5α.
Both profiles were normalised by ωR.

Table 7.7 – Numerical details of Group E

η H∗ R[m] Nr,Nθ,Nz ∆r+
i (∆r+

o ) ∆θ+
0 (∆θ+

α ) δt[s] CFLmax FTT CPU [hr]
E1 0.3 6.5 10 35, 41, 64 0.3765 (0.8586) 0.5475 (0.4357) 0.250 0.5531 13.11 171.85
E2 0.5 10 2 45, 45, 117 0.4464 (0.9696) 0.6644 (0.4828) 0.010 0.6456 18.60 330.52
E3 0.7 3 10 55, 45, 55 0.4042 (0.8427) 0.6409 (0.3823) 0.100 0.6906 25.96 252.60

Two-point correlation functions are shown in Fig. 7.37. For Case E1, in Fig. 7.37a, the profile behaves

strangely what may indicate some incoherence in the numerical setup. The correlation functions fall to

zero before the maximum streamwise separation though.
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Figure 7.37 – Two-points correlation functions evaluated at r∗ = 0.05. (a) Case E1. (b) Case E2. (c) Case
E3.

7.7.1 Mean flow

The effect of η on the mean streamwise velocity is represented in Fig. 7.38. The profiles were

normalised by Wb and evaluated at θ = 0.5α and r∗ = 0.5, in Figs. 7.38a and 7.38b, respectively. The

effect of η is very similar to that of α. For Case E1, the radial distribution shows the same pattern of Case

D1, with a slow moving inner core. For Case E3, the tangential distribution reveals two separate cores

with a slowing fluid near the geometry symmetry plane.
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Figure 7.38 – Effect of η on the radial and tangential distributions of the mean axial velocity. The profiles
were normalised by the bulk velocity.

For the tangential velocity distribution, in Fig. 7.39a, Case E1 presents a slight difference when

compared with Case D1, from Fig. 7.29a. The secondary motion is more intense for Case E1, which
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can be verified by means of the velocity magnitude in the slow moving region and also by the velocity

gradient in the primary vortex, which is steeper for Case E1. For Case E3, on the other hand, no substantial

difference can be noticed in the profiles for both 〈vθ〉 and 〈vr〉 when compared with Case D3.
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Figure 7.39 – Radial distribution of the mean tangential velocity and tangential distribution of the mean
radial velocity. Both profiles were normalised by ωR.

Figure 7.40 compares the velocity distributions for cases D1×E1 and D3×E3. The 〈vθ〉 profiles, in

Fig. 7.40a, and 〈vr〉 profiles, in Fig. 7.40b, of cases D3 and E3 are indeed similar.

The contour of the axial velocity for Group E are shown in Fig. 7.41. In Fig. 7.41a, a strange distortion

in the axial contours points, possibly, to a poor grid resolution. Nevertheless, the velocity distribution and

magnitude present a similar pattern to that seen for Case D1. In Fig. 7.41c, the contact region between the

counter-circulating cores is better defined but no substantial difference is noted in the distribution as a

whole. As seen for group D, the maximum axial velocity is shifted from the duct centre for cases E1 and

E3. The η influence on its magnitude, however, is less relevant than the effect caused by Γ, with variations

ranging from 1% to 3%.

The resulting secondary motion when η is varied is illustrated in Fig. 7.42. The elliptical shape for the

primary vortex seen for Case D1 no longer exists for Case E1, in Fig. 7.42a. The available space allows

the expected circular shape to establish. Case E3 pattern, in Fig. 7.42c, is practically identical to D3. The

main difference lies in the shape and position of the secondary eddy formed in the inner-right corner,

which is slightly bigger and tilted toward the vertical wall for Case E3.

Despite the fact that the streamwise and spanwise flow fields are very similar for Groups E and D,

the friction factor follows a different behaviour. The f curve is not monotonic as for Group D. Instead,

it places Case E2 as the minimum point of f for the investigated configurations. The effect of η, as

represented in Fig. 7.43, is also more significant than the effect of α (see Fig. 7.33). The friction factor for

cases E1 and E3 are approximately 3 times higher than for cases D1 and D3.
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Figure 7.40 – Similarity between cases D1-E1 and D2-E2. (a) Radial distribution of the mean tangential
velocity and (b) tangential distribution of the mean radial velocity. Profiles were normalised
by ωR.

(a) Case E1 (b) Case E2 (c) Case E3

Figure 7.41 – Contours of the mean axial velocity normalised by the bulk velocity. 32 levels are shown.
(a) Case E1 with η = 0.3. (b) Case E2 with η = 0.5. Case E3 with η = 0.7.

7.7.2 Turbulent statistics

The effect of η on the axial velocity fluctuation is represented in Fig. 7.44. As seen for Group

D, besides the near wall region, the profiles present peaks in the contact region between the counter-

circulating cores. The 〈vz〉rms distribution for both groups is pretty much the same. The η contribution to

the magnitude of 〈vz〉rms is more pronounced for case D1 than for E1. The bad characterisation of the

peak for case E1, in Fig. 7.44a, is another indication of poor grid resolution.

The effect of η on the radial and tangential normal components of the Reynolds stress tensor, shown

in Fig. 7.45, is the opposite of α. Using case E2=D2 as base for comparison, increasing η shifts both

radial and tangential profiles downwards for case E3 while the profiles of case E1 are shifted upwards.
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(a) Case E1 (b) Case E2 (c) Case E3

Figure 7.42 – Line integral convolution of the secondary motion. Colour bands represent the field magni-
tude normalised by ωR. 32 levels are shown. (a) Case E1 with η = 0.3. (b) Case E2 with
η = 0.5. Case E3 with η = 0.7.
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Figure 7.43 – Effect of the radius ratio η on the friction factor f .

The overall effect of η on the turbulent kinetic energy is not as expected. From the contours of 〈k〉,
shown in Fig. 7.46, it is found that the magnitude of 〈k〉 for Case E1, in Fig. 7.46a, is less than half of

Case D1, from Fig. 7.35a. On the other hand, the friction factor is three times higher for Case E1. The

same effect is not verified when comparing cases D3 and E3, in Figs. 7.35c and 7.46c, respectively. For

the latter, the higher the 〈k〉, the higher the f .

A plausible explanation for that is the fact that for Case E1, although 〈k〉 is smaller, the secondary

motion is more intense, convecting 〈k〉 across the duct more effectively. This can be verified by the area

occupied by the red shades in Fig. 7.46a.
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Figure 7.44 – Effect of η on the axial velocity fluctuation. The profiles were normalised by Wb.
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Figure 7.45 – Effect of η on the radial and tangential velocity fluctuations evaluated at θ = 0.5α. The
profiles were normalised by ωR.

7.8 Conclusion

The stationary duct case, presented in section 7.2, was found to resemble the characteristics of the

square duct case. The mean profiles were compared with the DNS study of Pinelli et al. (2010). The

difference found for the results, although not substantial, was attributed to the effect of the duct curvature.

The secondary motion arrangement formed the same pattern of the square duct with octant-organised

counter-rotating vortices. The maximum intensity of the secondary motion, 2.6% of the bulk flow, agreed

very well with the results presented by Madabhushi and Vanka (1991). The friction factor was obtained
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(a) Case E1 (b) Case E2 (c) Case E3

Figure 7.46 – Contours of the mean turbulent kinetic energy 〈k〉 normalised by W 2
b . (a) Case E1 with

η = 0.3. (b) Case E2 with η = 0.5. Case E3 with η = 0.7.

and compared with the experimental prediction of Tao et al. (2000). The departure from the experimental

correlation was of less than 1%.

The presence of rotation, described in section 7.3, caused the flow to experience the centrifugal

and Coriolis effects. The secondary motion, besides having its intensity increased to approximately

10% of the bulk flow, was completely altered. The octant-organised pattern was replaced by a primary

Coriolis-induced vortex with small and less intense structures near the corners. The friction factor was

increased in 25%. The Coriolis-induced swirling motion was found to contribute to turbulent kinetic

energy convection, increasing its volume-average in almost 50%.

By fixing the outer wall, the secondary motion assumed a flow pattern very similar to that found for

lid-driven cavity problems. As described in section 7.4, the primary and secondary structures mentioned

in the study of Koseff and Street (1984a) were all verified for Group C, in which the duct cross-section

shape is closer to the square cavity. The fixed wall contributed to the swirling motion, driving the flow

intensity from 10% to almost 200% of the bulk flow. The friction factor was increased by a factor of 4.

With the fixed outer wall, in section 7.5, the rotation speed of the duct was varied according with

the investigated range of the swirl parameter Γ. The axial mean flow was substantially affected by Γ.

Increasing Γ, for the investigated configuration, creates some sort of low turbulent intensity bulk region

and the axial velocity profile develops a laminar-like shape. The tendencies regarding the secondary

motion structures, as described in the the study of Koseff and Street (1984b) when increasing the lid

speed, were also verified as the effect of Γ. A correlation for the friction factor was proposed as the

sum of the stationary duct friction factor and the rotation-induced friction factor. For the highest Γ,

Taylor-Göertler-like vortices formed as the flow is curved along the downstream secondary eddy. As Γ

was increased, the more energetic turbulence tended to concentrate near the walls with higher intensities

near the inner wall. The viscous contribution to the total shear followed the same trends as the boundary

layers thickness was reduced. The tendency to more stable bulk region was confirmed by the behaviour of

the Reynolds stress tensor components.

The more unstable regions, on the other hand, were for every configuration, somehow related to the

separation of the fluid from the walls. The point where it separates from the downstream wall and the way
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it penetrates the duct cross-section have profound effect on the turbulent quantities and friction factor.

The duct geometry effect was then investigated by varying the duct apex angle α and radius ratio

η. The influence of both parameters presented several similarities. For both smaller α and η the motion

induced by the stationary outer wall caused the primary vortex to occupy the upper part of the duct. The

axial flow was then separated into a slow (inner wall region) and a fast (outer wall region) moving core.

For the case regarding the smaller α, the slow moving core was organised in a quasi purely-axial flow. For

both bigger α and η, the flow also separated into two horizontally arranged cores.

The geometry effect on the friction factor showed an intriguing behaviour. While increasing α reduces

the friction factor, driving it to the value found for the annular case, increasing η displays a minimum

point. The minimum point in f , found for case E2, suggests that an optimal hydrodynamical configuration

may be determined. However, the confirmation would require a broader parametric analysis.
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8 Conclusions

In this thesis the turbulent flow of a Newtonian fluid within an annular-sector duct subjected to

parallel-mode rotation was solved numerically with the aid of a commercial CFD software. The study

was motivated by the lack of in-depth understanding of the interplay between rotation- and shear-induced

phenomena over the mean flow and turbulence-related quantities for a problem that has vast applicability

in rotating machinery and internal cooling systems.

The momentum exchange between the mean flow and turbulent structures was accounted through a

Large-Eddy Simulation technique. The numerical procedure and solution methodology were extensively

tested against literature reference data. The comparison allowed to explore the software capabilities and

limitations when dealing with complex turbulent flows. The results showed, in general, an excellent

agreement with the reference data, granting reliability to the results regarding the annular-sector problem.

For the latter, the influence of rotation and the shear effect of the stationary wall caused substantial change

in the mean flow and turbulent quantities, which the analysis was restricted to second-order statistics.

The numerical investigation was performed by varying the swirl parameter Γ = Reω/Reb, the duct

apex angle α and the radius ratio η. In general, the secondary motion presented characteristics strikingly

similar to the problem known as lid-driven cavity. The typical flow structures found for the lid-driven

problem could be also identified in the results, including Taylor-Göertler-like vortices. The secondary

and streamwise motions were found to be highly coupled. The way the secondary motion develops has

profound effect in the streamwise velocity distribution.

From an engineering perspective, the study contributed to the comprehension of the friction factor

sensibility to the characteristic parameters. Increasing Γ results in the monotonic increase of f . Increasing

α, on the other hand, results in the monotonic decrease (for the investigated range of α) of f toward

the value found for the annular duct with same Γ and η. For the radius ratio η, however, the friction

factor presented a non-monotonic behaviour which suggests that there may be an optimal hydraulic

configuration.

8.1 Suggestions for future research

For the annular-sector duct with the set of boundary conditions used in this study, the following topics

could be considered in future research:

• The study of the stationary case, which presented substantial similarities with the square duct case,

could be deeply investigated for a different set of α and η configurations. This could help to isolate

the effect of transverse curvature.

• The rotating case with non-stationary outer wall could also be investigated for different geometric

configurations. One could also mimic the centrifugal force resulting from rotation as a source
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term in the momentum equations and retain the duct stationary. That would help to access the

contribution of the Coriolis force to the flow dynamics.

• With the contribution of the stationary wall, the secondary motion was found to resemble the

lid-driven cavity problem. The behaviour of the secondary eddies, the downstream jet separation

point and the nature of the boundary layers could be investigated in detail. The stabilising effect of

the swirling motion could also be investigated for a broader range of Reω and Reb.

• Discussions regarding the mean axial motion were conducted somewhat superficially. However, the

results found in the literature showed that there is in fact a lot of room for discussion. As far as the

author is aware of, relevant studies regarding the combination of lid-driven with axial throughflow

are not available.

• The effect of the governing parameters on the turbulent quantities could be extended to the budgets

of the turbulent kinetic energy. The production mechanisms could then be accessed allowing more

insights on the turbulence dynamics.

• Finally, as a general suggestion, turbulence fundamental studies may always consider the use of

high-order numerical methods. Model-free simulations with accurate numerical schemes can serve

as an access road the fundamental concepts of turbulence and contribute to improve turbulence

models.
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APPENDIX A – Governing equations in
cylindrical coordinates

A.1 Conservation equaions

As seen from Fig. 4.1, Ω = ωêz and therefore, the Centrifugal and Coriolis forces in Eq. 4.5 reduce

to:

Ω× (Ω× r) = −∇
[

1

2
(Ω× r)2

]
= − ∂

∂r

[
1

2
(ωr)2

]
êr (A.1)

2Ω× u = 2ω(vrêθ − vθêr) (A.2)

The continuity and momentum equations are presented in cylindrical coordinates for a newtonian

incompressible fluid. The gravity is neglected.

Continuity:

1

r

∂

∂r
(rvr) +

1

r

∂

∂θ
(vθ) +

∂

∂z
(vz) = 0 (A.3)

r-component:

ρ

(
∂vr
∂t

+ vr
∂vr
∂r

+
vθ
r

∂vr
∂θ
−
v2
θ

r
+ vz

∂vr
∂z

)
− 2ωvθ = (A.4)

−∂p
∂r
− ∂

∂r

(
1

2
(ωr)2

)
+ µ

{
∂

∂r

(
1

r

∂

∂r
[rvr]

)
+

1

r2

∂2vr
∂θ2

− 2

r2

∂vθ
∂θ

+
∂2vr
∂z2

}
θ-component:

ρ

(
∂vθ
∂t

+ vr
∂vθ
∂r

+
vθ
r

∂vθ
∂θ

+
vrvθ
r

+ vz
∂vθ
∂z

)
+ 2ωvr = (A.5)

−∂p
∂θ

+ µ

{
∂

∂r

(
1

r

∂

∂r
[rvθ]

)
+

1

r2

∂2vθ
∂θ2

− 2

r2

∂vr
∂θ

+
∂2vθ
∂z2

}
z-component:

ρ

(
∂vz
∂t

+ vr
∂vz
∂r

+
vθ
r

∂vz
∂θ

+ vz
∂vz
∂z

)
= (A.6)

−∂p
∂z

+ µ

{
1

r

∂

∂r

(
r
∂vz
∂r

)
+

1

r2

∂2vz
∂θ2

+
∂2vz
∂z2

}
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A.2 Reynolds-averaged equations

The Reynolds decomposition states that any flow quantity φ(x, t) may represented as the sum of a

mean φ(x) and a time-varying fluctuating component φ′(x, t), that is:

φ(x, t) = φ(x) + φ′(x, t) (A.7)

where the following relations apply:

φ(x, t) =
1

T

t+T
2∫

t−T
2

φ(x, t)dt (A.8)

φ′(x, t) = 0 (A.9)

From Eq. A.8 and A.9 it is easy to show that:

sφ =
1

T

t+T
2∫

t−T
2

sφdt =
s

T

t+T
2∫

t−T
2

φdt = sφ (A.10)

∂φ

∂x
=

1

T

t+T
2∫

t−T
2

∂φ

∂x
dt =

∂

∂x

 1

T

t+T
2∫

t−T
2

φdt

 =
∂φ

∂x
(A.11)

∂φ

∂t
=

1

T

t+T
2∫

t−T
2

∂φ

∂t
dt =

∂

∂t

 1

T

t+T
2∫

t−T
2

φdt

 =
∂φ

∂t
(A.12)

φ =
1

T

t+T
2∫

t−T
2

φdt = φ (A.13)

φψ =
1

T

t+T
2∫

t−T
2

φψdt =
1

T

t+T
2∫

t−T
2

(
φ+ φ′

) (
ψ + ψ′

)
dt = φ ψ + φ ψ′ + φ′ ψ + φ′ψ′ (A.14)

φψ = φ ψ + φ′ψ′

φ+ ψ =
1

T

t+T
2∫

t−T
2

(φ+ ψ) dt = φ+ ψ (A.15)

where s represents a constant.
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A.2.1 Time-averaged continuity equation

Substituting Eq. A.7 into A.3 and averaging over time yields:

1

r

∂

∂r
(r(vr + v′r)) +

1

r

∂

∂θ

(
vθ + v′θ

)
+

∂

∂z
(vz + v′z) = 0 (A.16)

1

r

∂

∂r
(rvr) +

1

r

∂

∂θ
(vθ) +

∂

∂z
(vz) = 0 (A.17)

1

r

∂

∂r

(
rv′r
)

+
1

r

∂

∂θ

(
v′θ

)
+

∂

∂z

(
v′z
)

=
1

r

∂

∂r

(
rv′r
)

+
1

r

∂

∂θ

(
v′θ
)

+
∂

∂z

(
v′z
)

= 0 (A.18)
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A.2.2 Time-averaged Navier-Stokes

ρ

(
∂(vr + v′r)

∂t
+ (vr + v′r)

∂(vr + v′r)

∂r
+

(vθ + v′θ)

r

∂(vr + v′r)

∂θ
−

(vθ + v′θ)
2

r
+ (vz + v′z)

∂(vr + v′r)

∂z

)
− 2ω(vθ + v′θ) = (A.19)

− ∂

∂r

(
p+

1

2
(ωr)2

)
+ µ

{
∂

∂r

(
1

r

∂

∂r
[r(vr + v′r)]

)
+

1

r2

∂2(vr + v′r)

∂θ2
− 2

r2

∂(vθ + v′θ)

∂θ
+
∂2(vr + v′r)

∂z2

}

Term by term, Eq. A.19 becomes:

∂(vr + v′r)

∂t
=

∂

∂t

(
vr + v′r

)
=
∂vr
∂t

(A.20)

(vr + v′r)
∂(vr + v′r)

∂r
= vr

∂(vr + v′r)

∂r
+ v′r

∂(vr + v′r)

∂r
= vr

∂vr
∂r

+ vr
∂v′r
∂r

+ v′r
∂vr
∂r

+ v′r
∂v′r
∂r

= vr
∂vr
∂r

+ v′r
∂v′r
∂r

(A.21)

(vθ + v′θ)

r

∂(vr + v′r)

∂θ
=
vθ
r

∂(vr + v′r)

∂θ
+
v′θ
r

∂(vr + v′r)

∂θ
=
vθ
r

∂vr
∂θ

+
vθ
r

∂v′r
∂θ

+
v′θ
r

∂vr
∂θ

+
v′θ
r

∂v′r
∂θ

=
vθ
r

∂vr
∂θ

+
v′θ
r

∂v′r
∂θ

(A.22)

(vθ + v′θ)
2

r
=

(vθ + v′θ)(vθ + v′θ)

r
=
vθvθ + 2vθv

′
θ + v′θv

′
θ

r
=
vθvθ
r

+
v′θv
′
θ

r
(A.23)

(vz + v′z)
∂(vr + v′r)

∂z
= vz

∂(vr + v′r)

∂z
+ v′z

∂(vr + v′r)

∂z
= vz

∂vr
∂z

+ v′z
∂v′r
∂z

(A.24)

2ω(vθ + v′θ) = 2ω(vθ + v′θ) = 2ωvθ (A.25)
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The Centrifugal and pressure terms are add together to form the modified pressure term:

∂

∂r

(
p+

1

2
(ωr)2

)
=
∂P

∂r
(A.26)

∂

∂r

(
1

r

∂

∂r
[r(vr + v′r)]

)
=

∂

∂r

(
1

r

∂

∂r

[
r(vr + v′r)

])
=

∂

∂r

(
1

r

∂

∂r
[r(vr)]

)
+

∂

∂r

(
1

r

∂

∂r

[
r(v′r)

])
=

∂

∂r

(
1

r

∂

∂r
[r(vr)]

)
(A.27)

1

r2

∂2(vr + v′r)

∂θ2
=

1

r2

∂2(vr + v′r)

∂θ2
=

1

r2

∂2(vr)

∂θ2
+

1

r2

∂2(v′r)

∂θ2
=

1

r2

∂2vr
∂θ2

(A.28)

2

r2

∂(vθ + v′θ)

∂θ
=

2

r2

∂(vθ + v′θ)

∂θ
=

2

r2

∂(vθ)

∂θ
+

2

r2

∂(v′θ)

∂θ
=

2

r2

∂(vθ)

∂θ
(A.29)

∂2(vr + v′r)

∂z2
=
∂2(vr + v′r)

∂z2
=
∂2(vr)

∂z2
+
∂2(v′r)

∂z2
=
∂2vr
∂z2

(A.30)

Therefore, the r-component of the N-S equation becomes:

ρ

(
∂vr
∂t

+ vr
∂vr
∂r

+
vθ
r

∂vr
∂θ
− vθ

2

r
+ vz

∂vr
∂z

+ v′z
∂v′r
∂z
−
v′

2

θ

r
+ v′r

∂v′r
∂r

+
v′θ
r

∂v′r
∂θ

)
− 2ωvθ = (A.31)

−∂P
∂r

+ µ

(
∂

∂r

(
1

r

∂

∂r
[r(vr)]

)
+

1

r2

∂2vr
∂θ2

− 2

r2

∂(vθ)

∂θ
+
∂2vr
∂z2

)
Recalling the continuity equation for the fluctuating quantities to rearrange the terms in the left-hand side yields:

1

r

∂

∂r
(rv′rv

′
r) +

1

r

∂

∂θ

(
v′θv
′
r

)
+

∂

∂z
(v′rv

′
z) =

∂

∂r
(v′rv

′
r) +

v′rv
′
r

r
+
v′r
r

∂v′θ
∂θ

+
v′θ
r

∂v′r
∂θ

+ v′r
∂v′z
∂z

+ v′z
∂v′r
∂z

(A.32)
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Expanding the first derivative and evidencing v′r:

1

r

∂

∂r
(rv′rv

′
r) +

1

r

∂

∂θ

(
v′θv
′
r

)
+

∂

∂z
(v′rv

′
z) = v′r

(
������������
∂v′r
∂r

+
v′r
r

+
1

r

∂v′θ
∂θ

+
∂v′z
∂z

)
+ v′r

∂v′r
∂r

+
v′θ
r

∂v′r
∂θ

+ v′z
∂v′r
∂z

(A.33)

Finally, for analogy purposes, it is easier to identify the Reynolds stress-tensor components by representing the viscous stresses in terms of τ . Obviously, for a

Newtonian incompressible fluid, the normal stresses vanish. Eq. A.31 becomes:

ρ

(
∂vr
∂t

+ vr
∂vr
∂r

+
vθ
r

∂vr
∂θ
− vθ

2

r
+ vz

∂vr
∂z

)
− 2ωvθ = (A.34)
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[
1

r

∂

∂r
(rτ rr) +
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r
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τ θθ
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1

r
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(
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r

)
+
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(
v′rv
′
z

)
−
v′

2

θ

r

)

The θ-component may then be written as:

ρ

(
∂vθ
∂t

+ vr
∂vθ
∂r

+
vθ
r

∂vθ
∂θ
− vrvθ

r
+ vz

∂vθ
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+ 2ωvr = (A.35)
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r

)

As for Eq. A.35, by analogy, the z-component may be written as:

ρ
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Therefore, the Reynolds stress-tensor for a cylindrical coordinate system is defined as:

R = −ρ


v′rv
′
r v′rv

′
θ v′rv

′
z

v′θv
′
r v′θv

′
θ v′θv

′
z

v′zv
′
r v′zv

′
θ v′zv

′
z

 (A.37)

The turbulent kinetic energy k is then obtained from the half of the trace of R:

k =
1

2
Tr(R) =

1

2

(
v′rv
′
r + v′θv

′
θ + v′zv

′
z

)
(A.38)
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