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First Law: A robot may not injure a human

being or, through inaction, allow a human being

to come to harm. Second Law: A robot must

obey the orders given to it by human beings,

except where such orders would conflict with

the First Law. Third Law: A robot must protect

its own existence as long as such protection

does not conflict with the First and Second

Laws (ASIMOV, Isaac, 1950).



RESUMO

CAMARGO, Mayron Vinicius Lopes de. Implementação e Availiação de Performance de um
Digital Twin em um Sistema de Lubrificação de um Motor Diesel de Aplicação Pesada.
2023. 64 f. Dissertação (Mestrado em Engenharia Elétrica e Informática Industrial) –
Universidade Tecnológica Federal do Paraná. Curitiba, 2023.

Este trabalho explora a aplicação da identificação de sistemas a um sistema de lubrificação
encontrado em motores a diesel de aplicação pesada. Esses motores são equipados com uma
bomba de óleo variável e um jato de pistão de refrigeração. O objetivo é estabelecer um modelo
dinâmico que capture com precisão a relação entre o ciclo de trabalho das válvulas e os valores
de pressão resultantes sob condições normais de operação na estrada, a serem usados como um
digital twin do sistema. Além disso, o estudo visa determinar se um modelo recursivo simples
pode descrever o sistema com precisão suficiente. Diferentes modelos lineares e não lineares
foram avaliados e validados para identificar o melhor ajuste para o sistema. Em última análise, o
sistema foi descrito usando um modelo Hammerstein-Wiener, resultando em um raiz quadrada
do erro médio (NRMSE) de 86,58% para a pressão na galeria principal e 89,76% para a pressão
na galeria do jato de refrigeração do pistão para os dados de validação.

Palavras-chave: Modelamento Caixa Preta. Modelamento de Sistemas Automotivos. Sensores e
Atuadores Automotivos. Digital Twin. Identificação de Sistemas.



ABSTRACT

CAMARGO, Mayron Vinicius Lopes de. Digital Twin Implementation and Performance
Evaluation in the Lubrication System of a Heavy-Duty Diesel Engine. 2023. 64 p.
Dissertation (Bachelor’s Degree in Electrical and Computer Engineering) – Universidade
Tecnológica Federal do Paraná. Curitiba, 2023.

This work explores the application of system identification to a lubrication system found in heavy-
duty diesel engines. These engines are equipped with a variable oil pump and a cooling piston jet.
The objective is to establish a dynamic model that accurately captures the relationship between
the duty cycle of the valves and the resulting pressure values under normal road operating
conditions to be used as a digital twin of the system. Additionally, the study aims to determine
whether a simple recursive model can sufficiently describe the system with enough precision.
Different linear and nonlinear models were evaluated and validated to identify the best fit for
the system. Ultimately, the system was described using a Hammerstein-Wiener model, resulting
in an 86.58% Normalized Root Mean Squared Error (NRMSE) for main gallery pressure and
89.76% for piston cooling jet gallery pressure against the validation set.

Keywords: Black box modeling. Modeling of automotive systems. Automotive sensors and
actuator. Digital Twin. System Identification.
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1 INTRODUCTION

This work explores the practical application of a digital twin using system identification

techniques to identify a lubrication system found in heavy-duty diesel engines. The digital twin

described here is the dynamical description of the system’s dynamic behavior using simple

equations in function of indirect measurements.

1.1 TOPIC DELIMITATION

This dissertation is dedicated to the exploration of system identification models as they

are applied to the lubrication system within a heavy-duty diesel engine. The primary focus of

this study is the practical application of system identification techniques to real-world data,

with the aim of developing a model that accurately characterizes the dynamic behavior of this

specific system. The scope of this research is confined exclusively to the lubrication system

component of the engine and is specifically centered around the utilization of regressive models

for modeling purposes.The use of machine learning techniques such artificial neural networks

were not considered in this works, since the main idea is the use of recursive models that can be

easily implemented in micro controllers running in real time.

1.2 PROBLEMS AND ASSUMPTIONS

Extensive literature exists on the study and identification of diesel engine emission-

related components. One such study uses artificial neural networks to estimate the fuel injected

by the engine(ZHANG, 2022). Different data-driven control techniques and future challenges

related to engine after-treatment can be found in literature(JIANG et al., 2022). Studies show the

use of different model structures to predict NOx1 emissions, comparing accuracy in steady-state

and transient conditions(SMITS et al., 2022). Also, the use of system identification to study

exhaust gas control systems for diesel particulate filter regeneration aims to achieve efficient

regeneration(HUANG et al., 2023).

There are few studies that focus on modeling oil systems in diesel engines. Hence, this

work explores system identification techniques using both linear and nonlinear models to propose
1 Oxides of nitrogen are pollutant gases released during combustion(THOMAS, 1997).
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a digital twin representation for the system in study. A digital twin refers to a virtual representation

of a physical entity or system, such as a product, process, or environment, which is created

through the integration of real-time data from the physical counterpart and digital simulations

(NIKOLAKIS et al., 2019). This technology allows for monitoring, analysis, and optimization of

the physical system’s performance, enabling a deeper understanding of its behavior, predicting

potential issues, and facilitating data-driven decision-making for improvements(WANG et al.,

2021).

This research centers on the challenge of characterizing the dynamic behavior of a

complex system using a simplified regression model, with a primary focus on modeling the

system itself. Assumptions are made that the collected variables encompass the core aspects

of the system, and their interrelationships can be adequately represented, even through linear

models. These assumptions are grounded in extensive knowledge and prior studies of lubrication

systems, where key variables influencing system behavior have been identified. Nonetheless, the

possibility is acknowledged that linear dynamical systems may not fully capture the intricacies

of the system’s dynamics, potentially necessitating more advanced modeling techniques.

1.3 OBJECTIVES

1.3.1 Main Objective

The objective of this study is to apply system identification techniques to obtain a

mathematical model capable of describing the dynamics of a real lubrication system applied in

diesel engines, which can be used as a digital twin of the actual system.

1.3.2 Specific Objectives

The specific objectives are as follows:

1. To investigate various types of mathematical models and gain a comprehensive understand-

ing of their behavior in relation to the behavior of the system;

2. Identify and analyze existing mathematical models commonly used;

3. Apply the selected mathematical models to the collected data and assess their performance

in accurately predicting engine oil pressure behavior;
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4. Evaluate the performance and accuracy of the mathematical models by comparing their pre-

dictions with the collected data from the diesel engine, enabling a quantitative assessment

of their reliability and effectiveness;

5. Improve the overall understanding of the system under investigation through a compre-

hensive analysis and interpretation of the model results, identifying any discrepancies or

areas where further refinement is required to enhance the accuracy and reliability of the

mathematical model;

6. Develop a digital twin implementation of the lubrication system that is capable of describ-

ing the system’s dynamic behavior.

1.4 JUSTIFICATION

The lubrication system is essential within an engine, serving as a key for enhancing

its reliability and durability. This intricate system ensures the smooth operation of the engine’s

moving components. A delicate, continuous film of oil is meticulously pumped to envelop and

glide between these components, fulfilling two primary objectives. Firstly, it serves as a guardian

of the engine’s well-being by meticulously lubricating bearing surfaces to mitigate wear and

friction. Secondly, it acts as a vigilant sentinel, dissipating the heat generated from friction to

maintain the optimal operational temperature of the bearings. Such a vital role demands precision

and control, a responsibility borne by the Electronic Control Unit (ECU).

The importance of the engine’s lubrication system cannot be overstated. Despite its

behind-the-scenes operation, its fragility underscores its critical role. A malfunction or damage to

this system can lead to catastrophic consequences in a remarkably short span. This vulnerability

arises from the immense energy generated by friction within the engine’s mechanical components.

Therefore, an in-depth understanding of this system isn’t merely advantageous; it is integral to

the very existence of the engine itself (Engineers Edge, 2023).

Within this intricate system, a group of control components assumes a pivotal role.

These components are responsible for managing the flow of oil within the engine and regulating

oil pressure in the galleries. In the following section, one will embark on an extensive exploration

of these crucial elements, unveiling their complexities and functions in finer detail.

The significance of developing a precise model for the oil system extends beyond the

realm of theoretical understanding. It holds practical implications for the industry, offering the
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potential for predictive maintenance and performance enhancement throughout the engine’s life

cycle. A robust model that accurately describes and predicts oil pressure behavior aids in the

early identification of potential issues. Additionally, it can communicate vital points of concern

to the vehicle’s ECU, enabling analysis and improvements to the overall system performance.

By incorporating the concept of a "digital twin," which refers to a virtual counterpart

of a physical entity created through the integration of real-time data and digital simulations

(NIKOLAKIS et al., 2019), it will be developed a mathematical model. This model will serve

as a dynamic representation of our real-world system, facilitating our endeavor to understand

and analyze its behavior. The model is a simple description of the dynamic behavior in real time

using indirect measurements.

This implementation holds potential significance for the industry, as it can provide

assistance in various aspects. An illustrative application involves its use for monitoring the

operational status of a system. When the measurements of the system align with the model, it

indicates smooth functioning. Conversely, deviations between the system and the model can

serve as signals, aiding in the diagnosis of potential issues with the system.

1.5 METHODOLOGICAL PROCEDURES

This study begins with the data collection from a heavy-duty diesel vehicle operating

under real-world conditions. Key variables, crucial for our analysis, were gathered using a

designated automotive protocol called Extended Calibration Protocol (XCP). This dataset served

as the primary input for subsequent modeling activities, the details of which will be expounded

upon in the following sections.

The collected data was then processed and utilized to feed various model topologies,

which will be elaborated upon later in this document. These models were fine-tuned and optimized

to best align with the acquired dataset, thereby ensuring their accuracy and effectiveness in

capturing the system’s dynamic behavior.

To assess and compare the performance of these models, rigorous analysis and evalua-

tion procedures were employed. The results obtained from each model were scrutinized, and

the most promising outcomes, demonstrating superior alignment with the collected data, were

singled out and highlighted for further discussion.

This methodological procedure provides a comprehensive overview of the data col-

lection, modeling, and evaluation processes that form the foundation of our study. Subsequent
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sections will delve into the specific details of these methodologies.

1.6 DOCUMENT STRUCTURE

This dissertation is organized into five distinct sections, each contributing to a compre-

hensive exploration of the study’s topic:

In Chapter 2 one will delve into a thorough review of the relevant literature. This is

essential for establishing a foundation of knowledge related to the subject matter. It presents an

overview of key concepts, theories, and prior research, helping readers understand the evolution

and background of the study.

Chapter 3 details the research methodology employed in this study. It outlines the

research design, data collection methods, and mathematical simplifications. The section provides

a clear explanation of how the study was conducted, ensuring transparency and replicability.

Chapter 4 presents and discusses the findings of the study. The results are analyzed and

interpreted in the context of the research questions or hypotheses. Visual aids such as tables,

charts, and graphs were included to enhance the presentation of results.

Finally, chapter 5 encapsulates the study’s conclusions and implications. It summarizes

the key findings, discusses their significance, and relates them to the research objectives. Addi-

tionally, this section may suggest areas for further research and reflect on the broader implications

of the study’s outcomes.
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2 LITERATURE REVIEW

In this chapter, one can find two main sections. The first section will thoroughly examine

the concepts relevant to the system under study. The second section will delve into the theory of

system identification, giving the notion of its principles and applications.

2.1 HEAVY DUTY DIESEL ENGINE

A diesel engine, a type of compression-ignition engine, utilizes diesel as its primary

fuel source (AGARWAL et al., 2008). Typically, in on-road applications and trucks, a four-stroke

diesel engine is employed (NAIK et al., 2015). Diesel engines employ various fuel injection

methods, with direct injection being highly used in contemporary applications. Diesel engines

find extensive use in heavy-duty scenarios, encompassing trucks, buses, specific off-road vehicles,

marine engines, generators, and more(HOANG, 2020). They are often categorized as low-speed,

medium-speed, or high-speed engines, with high-speed engines capable of operating at speeds

exceeding 1000 RPM (XIN, 2011).

Diesel engine boasts the highest thermal efficiency compared to all other internal

and external combustion engines, primarily owing to its high expansion ratio (LEONE et al.,

2015). In a diesel engine, the combustion chamber initially receives only air before undergoing

compression. This air is subsequently compressed within a range of ratios, typically between 15:1

and 23:1. The elevated compression ratio results in a significant rise in temperature within the

combustion chamber (KLEIN, 1991). The injection process is constructed to disperse diesel fuel

in minute droplets. These diesel droplets, upon contact with the intensely heated and compressed

air, spontaneously ignite, initiating the combustion process(AGRAWAL, 2022). During the initial

phase of the power stroke, the combustion unfolds at a nearly constant pressure (REIF, 2010).

The lubrication system plays a pivotal role in a diesel engine, serving multiple essential

functions such as (i) friction reduction; (ii) temperature control; and (iii) mechanical component

cleaning (NEEDELMAN; MADHAVAN, 1988). In order to illustrate the flow of oil within an

engine, one can simplify the process into several distinct steps, as depicted in Figure 1:

1. The oil pump draws oil from the oil pan (Figure 1, component 1), where it is stored;

2. The pump (Figure 1, component 2) then directs the oil to the primary bearings of the
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crankshaft (Figure 1, component 3), where linear energy is converted into rotational energy;

3. Subsequently, the oil traverses through small oil passages drilled within the crankshaft,

ultimately reaching the rod bearings (Figure 1, component 4);

4. From there, it continues its path via an oil conduit to the cylinder head (Figure 1, component

5);

5. Within the engine, the oil circulates through designated oil galleries (Figure 1, component

6), nourishing the camshaft (Figure 1, component 7) bearings and valves;

6. Finally, the oil is dispersed to the pistons, piston rings, and wrist pins, which receive oil

thrown off from the connecting rod bearings;

Figure 1 – Diesel engine simplified lubrication components
and structure.

Source: Lubricants (2023).

2.2 OIL SYSTEM

Lubrication systems play a crucial role in managing engine thermal behavior

(MARATHE et al., 2022). The first technique explores the implementation of a variable oil pump,

while the second technique examines the utilization of piston cooling to regulate the oil flow

demanded by the engine.
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2.2.1 Variable Oil Pump

The utilization of variable oil pumps is commonly employed in diesel engines to

regulate the overall oil flow to the engine (ZHANG et al., 2019). Different configurations of

variable oil pumps have demonstrated a potential reduction of up to 3.4% in fuel consumption in

modern diesel engines (BRACE et al., 2009). Typically, the oil pump is connected to the engine

crankshaft, resulting in oil flow variations corresponding to changes in engine speed (ZHANG et

al., 2019).

An engine that has a variable oil pump system has its control of the oil pressure in

the main gallery achieved through a variable oil pump, controlled by an external electrical

control valve called OCV. This valve regulates the re-circulation of oil to the pump, subsequently

influencing the position of the rotor. When the valve opens, the flow is directed into the chamber,

exerting pressure on the spring that holds the rotor in its main position (WANG et al., 2012).

Typically, the spring is positioned to enable maximum flow. However, when the valve is adjusted,

compressing the spring, the rotor’s position changes, resulting in a reduction in the volume

between each rotor blade flap (LOGANATHAN et al., 2011). Consequently, a smaller gap

between the flaps leads to a decrease in the oil flow produced by the pump, subsequently

reducing the system’s pressure(WANG et al., 2012). This technique effectively reduces flow

when there is no demand from the consumers, resulting in lower energy consumption by the

pump (LIU; ZHAI, 2023). Figure 2 illustrates the structure of a variable oil pump with its rotor

in the center and the sprint that changes the rotor flaps position at the right-hand side of the rotor.

The oil pump is directly connected to the crankshaft, which means that its rotational

velocity is directly proportional to the crankshaft speed (ZHANG et al., 2019). Consequently,

the flow rate of the pump is also directly influenced by the engine speed. However, the pressure

variation within the system is subject to changes based on the system’s constraints. These

constraints are typically associated with the oil system consumers, which can vary during engine

operation (LIU; ZHAI, 2023).

2.2.2 Piston Cooling Jet

In this study, another technique implemented in the engine is the utilization of a PCJ. By

directing an oil jet to an internal gallery within the piston, a cooling piston oil system can enhance

heat transfer and reduce piston temperature, particularly in low-speed diesel engines (BUSH;
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Figure 2 – Structure of a variable oil pump.

Source: Zhang et al. (2019).

LONDON, 1966). Depending on the operating conditions, this technique has demonstrated the

potential to lower piston temperature by up to 80∘C (LUFF et al., 2012). In the 1990s, this

technique was adapted for turbocharged1 diesel engines operating at higher engine speeds by

increasing the oil flow rates, resulting in a notable decrease in piston temperature (LEITES;

CAMARGO, 1993). Currently, this system is commonly employed in modern heavy-duty turbo

diesel engines.

The system comprises a piston-cooling jet nozzle, which is connected to an oil gallery

and positioned inside the engine, pointing towards the engine piston’s back. Various nozzle

structures can be observed in Figure 3. The flow of the nozzle is regulated by a valve that controls

the oil flow to the oil gallery, where the nozzle is connected. By manipulating the flow through

this valve, the flow rate of the nozzle can be effectively controlled.

The design in Figure 3 (a) and (b) is used at a specific oil pressure (typically 2 to 2.5

bar) generated by the oil pump during the engine running, the spring-loaded ball valve, which is

housed inside the ball valve housing, opens, and oil squirts at a precisely defined angle onto the

underside of the piston crown. The purpose of the ball valve is to ensure that there is no cooling

oil squirting at the piston underside when the engine is running at low load or idle condition and
1 Engines mounted with a turbocharger that can operate with intake pressures higher than ambient pressure

(LUMSDEN et al., 2009).
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Figure 3 – Different nozzles types for a piston cooling jet. (a)
and (b) show jet nozzles with ball valve housing
at the inlet. (c), no ball valve housing is provided
at the inlet of the jet nozzle.

Source: Ting (2007).

that the piston temperature is still maintained dose to its ideal thermal operating levels. However,

when an engine is running at a high load, high-pressure cooling oil driven by the oil pump will

pass through the jet nozzle by pressing the ball valve, and the cooling oil flows through the

orifice. The design shown in Figure 3 (c) ensures that the jet nozzle keeps squirting cooling oil to

the piston underside surface whenever the engine is running. Therefore, this type of jet nozzle is

used for heavily thermally loaded engines that require piston cooling at all load conditions(TING,

2007).

2.3 SYSTEMS IDENTIFICATION

This section will focus on the exploration of different types of models that are studied

in this work. Each subsection will provide a brief introduction to the model and its corresponding

mathematical equation. The models will be divided into linear and nonlinear, and each category

will be explored independently. First, it will present some concepts involving system identification

and later in this section, it will explore the models and metrics commonly used.
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2.3.1 System Identification Steps

Finding a model structure that accurately represents a physical system with sufficient

precision poses a significant challenge. The process of finding a model solution solely based

on mathematical and physical concepts is known as white box modeling (AGUIRRE, 2004). In

contrast, black box modeling does not require any prior knowledge about the system (AGUIRRE,

2004). Black box modeling involves analyzing and using data to develop a mathematical model

(LJUNG, 1998).

Regarding the system identification process using black box modeling, Aguirre et al.

(1998) outline several steps: (i) data acquisition; (ii) mathematical representation; (iii) model

structure; (iv) parameter estimation; and (v) model validation.

2.3.1.1 Data Acquisition

The objective of the data acquisition process is to gather data that can accurately

represent the real system. This initial step is crucial as it determines whether the identified model

will be representative (AGUIRRE, 2004). Poor data collection can lead to a poorly represented

system.

When choosing input signals, 𝑢(𝑘), it is important to assess their correlation with the

output signal, 𝑦(𝑘). This can be achieved using the cross-correlation function, as shown in

Equation 1.

𝑟𝑢𝑦(𝑛) =
1

𝑁

𝑁−𝑛∑︁
𝑘=1

𝑢(𝑘)𝑦(𝑘 + 𝑛), (1)

here, 𝑟𝑢𝑦 ∈ R represents the correlation between the signals, 𝑛 ∈ N is a relative sample delay,

𝑢(𝑘) ∈ R is the input signal, 𝑦(𝑘) ∈ R is the output signal, and 𝑁 ∈ N is the number of samples.

If 𝑟𝑢𝑦(𝑛) > 0, it indicates a positive correlation, meaning the signals have the same

direction. If one signal increases, the other will also increase. Conversely, if 𝑟𝑢𝑦(𝑛) < 0, the

signals have a negative correlation or opposite directions, where an increase in one signal

corresponds to a decrease in the other. If 𝑟𝑢𝑦(𝑛) ≈ 0, the signals have no correlation, and such

an input signal can be discarded for consideration in the mathematical model.

Furthermore, the selected signals must provide a comprehensive representation of the

system. This implies that the signals should contain a wide range of frequency components to

effectively excite all the components of the real system (AGUIRRE, 2004). The frequency com-
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ponent band that covers the entire range of interest is referred to as a "white signal" (AGUIRRE,

2004). If the collected signal does not contain all these frequency components, the identification

process may fail to accurately model the dynamic behavior of the output signal that was not

adequately excited by the input signal.

It is important to notice that the data collection for the signals must be made in a way

that a wide range of combinations can be checked. This way it is possible to guarantee that the

dynamic behavior of the system is being excited in all frequency components. When it is not

possible to excite the system in such a way, the best option is to restrict the data around the

operation point of the system and vary the conditions as much as possible. This way it is possible

to ensure that the model can describe the dynamical behavior with enough precision around the

operation point and sometimes can be linearized around it.

2.3.2 Sampling Time

The term sampling period, 𝑇𝑠, corresponds to the time between one collected sample

and the next. When the data collection process selects only certain points of time, the data

becomes discrete, and therefore the signal becomes discrete. To determine a value for 𝑇𝑠, the

main reference in this matter is the Nyquist criterion, which states that the sampling frequency

should be at least twice the maximum frequency component of the signal of interest.

However, Aguirre (2004) suggest a value for 𝑇𝑠 between 5 and 10 times the maximum

frequency component of the signal. For black box identification, Aguirre (2004) also proposes

that the value of 𝑇𝑠 should be as small as possible. Nevertheless, if the samples become redundant,

meaning 𝑢(𝑘) ≈ 𝑢(𝑘 + 1), this signal can be sub-sampled. The sub-sampling process is also

known as decimation. For an oversampled signal, the cross-correlation function, Equation 1, has

low decaying values. Aguirre (2004) also suggests using decimation until the cross-correlation

function reaches its valley within a range of 5 to 25 delays. Considering that in this case, the

data acquisition process discretizes the continuous signal, the mathematical representation of the

model should represent a discretized system.
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2.3.3 Types of Models

2.3.3.1 ARX

The Autoregressive with Exogenous Inputs model, also known as ARX, is a mathe-

matical framework that describes a system in which the output variable is modeled as a linear

combination of its past values and external input variables (LJUNG et al., 1987). It is defined in

(2) in function of 𝑞−1 which is the lag operator where −1 means one sample lag.

𝐴(𝑞) 𝑦(𝑘) = 𝐵(𝑞)𝑢(𝑘) + 𝜈(𝑘), (2)

in which 𝐴(𝑞) ∈ R𝑁𝑦 is the polynomial function of the lag operator for the outputs, 𝑦(𝑘) ∈ R𝑁𝑦

represents the discrete-time system’s outputs, 𝐵(𝑞) ∈ R𝑁𝑢 is the polynomial function of the

lag operator 𝑞 for the inputs, 𝑢(𝑘) ∈ R𝑁𝑢 is a vector representing the discrete-time inputs of

the system, 𝑁𝑢 ∈ Z the number of input signals, 𝑁𝑦 ∈ Z the number of output signals, and

𝜈(𝑘) ∈ R𝑁𝑦 is the noise component for each output. In this type of modeling, the noise 𝜈(𝑘) is

considered white noise. As this is a simple linear regressive model, linear optimization algorithms

can be used to estimate its parameters. The operator 𝐴(𝑞) and 𝐵(𝑞) can be defined as follows:

𝐴(𝑞) = 1− 𝑎1𝑞
−1 − ...− 𝑎𝑛𝑞

−𝑛𝑎 , (3)

𝐵(𝑞) = 𝑏1𝑞
−1 + ...+ 𝑏𝑛𝑞

−𝑛𝑏 , (4)

where 𝑎1, · · · , 𝑎𝑛, 𝑏1, · · · , 𝑏𝑛 ∈ Z represent the coefficients of the system, 𝑞−1 is the lag operator,

representing one sample delay, and 𝑛𝑎,𝑛𝑏 ∈ R define the operators’ regressor order.

2.3.3.2 ARMAX

An Autoregressive Moving Average with Exogenous Inputs model, also known as

ARMAX model, is a variation of the ARX model in which a moving average component is

added to the equation for ARX shown in (2) (LJUNG et al., 1987). The resulting equation can

be described as:

𝐴(𝑞) 𝑦(𝑘) = 𝐵(𝑞)𝑢(𝑘) + 𝐶(𝑞) 𝜈(𝑘), (5)

in which 𝐶(𝑞) ∈ R𝑁𝑦 is a polynomial delay operator for the noise 𝜈(𝑘) ∈ R𝑁𝑦 . Different from

an ARX, for an ARMAX model 𝐶(𝑞) can be defined as:

𝐶(𝑞) = 1 + 𝑐1𝑞
−1 + · · ·+ 𝑐𝑛𝑞

−𝑛𝑐 , (6)
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here 𝑐1, · · · , 𝑐𝑛 ∈ R represents the coefficient of the moving average component for the noise.

2.3.3.3 Hammerstein-Wiener

The Hammerstein model can be defined as a series connection of a dynamic model with

a static nonlinear function (MÜNCHHOF; ISERMANN, 2011). As an example, consider the

discrete dynamical system, with 𝑘 ∈ Z, with input 𝑤(𝑘) ∈ R, and 𝑣(𝑘) ∈ R defined by:

𝐻(𝑧) =
𝑉 (𝑧)

𝑊 (𝑧)
=

𝒵{𝑣(𝑘)}
𝒵{𝑤(𝑘)}

, (7)

in which 𝒵{.} is the Z transform operator.

The static nonlinearity can be defined as any nonlinear function 𝑓(·) : R𝛼 → R𝛽 , being

𝛼 and 𝛽 ∈ N. In a dynamic block, the current output depends on its past values, while the

output of static blocks depends only on its current inputs (LJUNG et al., 1987). When the static

nonlinear function 𝑓(·) is connected to the input signal 𝑤(𝑘) of the dynamical system 𝐻(𝑧), the

representation is called Hammerstein model. Hence, the output 𝑦(𝑘) of the Hammerstein model

is equal to the output 𝑣(𝑘) of the dynamical system. The connections between the functions can

be seen in Figure 4.

Figure 4 – Representation of a Hammerstein model where the input signal 𝑢(𝑘) is connected to
the static nonlinear function 𝑓(·) and the output of the dynamic model 𝑣(𝑘) is the final
output of Hammerstein model 𝑦(𝑘).

Source: Author.

However, when this same type of nonlinear function 𝑓(·) is connected to the output

of the linear model 𝑣(𝑘) it results in a Wiener model. In this configuration, the input of the

Wiener model 𝑢(𝑘) is the same as the input 𝑤(𝑘) of the dynamic system 𝐻(𝑧). The graphical

representation of this model can be seen in Figure 5.

Hence, when both configurations are combined into a single model with a nonlinear

function 𝑓𝑖(·) connected to the input 𝑤(𝑘) of the dynamical system 𝐻(𝑧) and another nonlinear

function 𝑓𝑜(·) to the output 𝑣(𝑘) of the dynamical system 𝐻(𝑧), the final configuration is the

so-called HW model. In this configuration both the input 𝑤(𝑘) and output 𝑣(𝑘) of the dynamical
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Figure 5 – Representation of a Wiener model where the output signal from the dynamic system
𝑣(𝑘) is connected to the static nonlinear function 𝑓(·) and the input of the dynamic
model 𝑣(𝑘) is the input of the Winer model 𝑢(𝑘).

Source: Author.

system are different from the input 𝑢(𝑘) and output 𝑦(𝑘) of the HW model. The complete

structure can be seen in Figure 6.

Figure 6 – Representation of a HW model where the input signal from the dynamic system 𝑤(𝑘) is
connected to the static nonlinear function 𝑓𝑖(·) and the output of the dynamic model
𝑣(𝑘) is connected to the static nonlinear function 𝑓𝑜(·).

Source: Author.

If instead of the transfer function 𝐻(𝑧) it is used a notation of polynomial of regressors

as the other models presented, it is possible to define the output 𝑣(𝑘) as a function of the input

𝑤(𝑘) as the following:

𝑣(𝑘) =
𝐵(𝑞)

𝐹 (𝑞)
𝑤(𝑘), (8)

where 𝐹 (𝑞) ∈ R𝑁𝑣×𝑁𝑤 is the polynomial function of the lag operator applied to the output

𝑣(𝑘) ∈ R𝑁𝑣 from the linear dynamical system and 𝐵(𝑞) ∈ R𝑁𝑣×𝑁𝑤 the polynomial function

of the lag operator applied to the input 𝑤(𝑘) ∈ R𝑁𝑤 . Also, the relation between the input and

output of the linear system can be defined as 𝐻(𝑞) ∈ R𝑁𝑣×𝑁𝑤 in the following way:

𝐻(𝑞) =
𝐵(𝑞)

𝐹 (𝑞)
. (9)

There are several nonlinear static functions that can be used in the HW model for 𝑓𝑖(·)

and 𝑓𝑜(·). One of them is the Piecewise Linear PWL. This type of function can be represented in
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(10):

f (u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑚𝑅1𝑢, 𝑖𝑓 0 ≤ 𝑢 ≤ 𝑢𝑅1,

𝑚𝑅2(𝑢− 𝑢𝑅1) +𝑚𝑅1𝑢𝑅1, 𝑖𝑓 𝑢 > 𝑢𝑅1,

𝑚𝐿1𝑢, 𝑖𝑓 𝑢𝐿1 ≤ 𝑢 < 0,

𝑚𝐿2(𝑢− 𝑢𝐿1) +𝑚𝐿1𝑢𝐿1, 𝑖𝑓 𝑢 < 𝑢𝐿1,

(10)

in which 𝑚𝐿2,𝑚𝐿1,𝑚𝑅1 and 𝑚𝑅2 are the slopes of the linear segments, 𝑢𝐿1 is a constant for

negative inputs and 𝑢𝑅1 is a constant for positive inputs (TAO; TIAN, 1998).

Figure 7 – Example of a PWL function with 𝑚𝑅1 = −2, 𝑚𝑅2 = 4, 𝑚𝐿1 = 6, 𝑚𝐿2 = −4, 𝑢𝐿1 = −4,
and 𝑢𝑅1 = 6.
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Source: Author.

2.3.3.4 NARX

The Nonlinear Autoregressive with Exogenous Inputs, also known as NARX, is another

type of nonlinear model. The NARX model is a variation of ARX that includes nonlinear

components (BILLINGS, 2013). The combination of its signals can vary a lot, giving this type

of model a high degree of freedom. The polynomial NARX can be described as,

𝑦(𝑘) = 𝐹 𝑙[𝑦(𝑘 − 1), · · · ,𝑦(𝑘 − 𝑛𝑦), 𝑢(𝑘 − 𝑑), (11)

𝑢(𝑘 − 𝑑− 1), · · · ,𝑢(𝑘 − 𝑑− 𝑛𝑢)] + 𝑒(𝑘),
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where 𝑛𝑦, 𝑛𝑢 ∈ N are the maximum delays for the system’s output and input, respectively. Here,

𝑢(𝑘) ∈ R𝑁𝑢 is the system input, 𝑦(𝑘) ∈ R𝑁𝑦 is the system output at discrete time 𝑘 ∈ N, and

𝑒(𝑘) ∈ R𝑁𝑦 represents the residue and uncertainties at discrete time 𝑘. The function 𝐹 𝑙 is a

nonlinear function of the inputs and output regressors with nonlinearity degree 𝑙 ∈ N and 𝑑 is

the dead-time (BILLINGS, 2013).

2.3.4 Performance Metric

When quantifying the accuracy of a dynamic model, the Mean Square Error (MSE),

and Normalized Root Mean Square Error (NRMSE) are used to determine the fitness between

the model and collected data (LJUNG, 1999).

𝑀𝑆𝐸 =
1

𝑁

𝑁−1∑︁
𝑘=0

[𝑝(𝑘)− 𝑝(𝑘)]2 , (12)

𝑁𝑅𝑀𝑆𝐸 =

{︃
1−

√︃∑︀𝑁−1
𝑘=0 (𝑝(𝑘)− 𝑝(𝑘))2∑︀𝑁−1
𝑘=0 (𝑝(𝑘)− 𝑝)2

}︃
100%, (13)

considering

𝑝 =
1

𝑁

𝑁−1∑︁
𝑘=0

𝑝(𝑘), (14)

where 𝑝 is the estimated output from the system, p(k) represents the actual value of the variable

and 𝑁 is the number of samples, k is the sample number, which varies from 0 to 𝑁 − 1.

The performance metric is used to quantify the accuracy. MSE will never be negative

since the errors are squared. The value of the error ranges from zero to infinity. MSE increases

exponentially with an increase in error. A good model will have a MSE value closer to zero.

NRMSE is a good measure when you want to compare the models of different dependent

variables or when the dependent variables are modified (log-transformed or standardized). It

overcomes the scale dependency and eases comparison between models of different scales or

even between datasets. A model that presents a good fit will have an NRME close to 100%.

Other types of evaluation metrics are used such as Mean Absolute Error (MAE), Mean

Bias Error (MBE), Relative Absolute Error (RAE), Mean Absolute Percentage Error (MAPE),

Relative Squared Error (RSE), Relative Root Mean Squared Error (RRMSE). These other

techniques will not be covered in this work.
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2.4 DIGITAL TWIN

Industry and academia define a digital twin in several different ways (TRAUER et al.,

2020). For example, according to some, a digital twin is a virtual representation/model that

interacts with the physical system throughout its life cycle (GRIEVES; VICKERS, 2017). Other

widely circulated definitions regard the need to exchange information between the two spaces

involving sensors, data, and models (LEE et al., 2013).

The origin of the Digital Twin is attributed to Michael Grieves and his work with

John Vickers of NASA, with Grieves presenting the concept in a lecture on product life-cycle

management in 2003 (GLAESSGEN; STARGEL, 2012). In a time when Grieves describes

virtual product representations as “ . . . relatively new and immature” and data collected about

physical products as “ . . . limited, manually collected, and mostly paper-based”, Grieves and

Vickers saw a world where a virtual model of a product would provide the foundations for

product life-cycle management.

The initial description defines a Digital Twin as a virtual representation of a physical

product containing information about said product, with its origins in the field of product life-

cycle management. In an early paper (GLAESSGEN; STARGEL, 2012) Grieves expands on this

definition by describing the Digital Twin as consisting of three components, a physical product,

a virtual representation of that product, and the bi-directional data connections that feed data

from the physical to the virtual representation, and information and processes from the virtual

representation to the physical. Grieves depicted this flow as a cycle between the physical and

virtual states (mirroring or twinning); of data from the physical to the virtual, and of information

and processes from the virtual to the physical. The virtual spaces themselves consisting of any

number of sub-spaces that enable specific virtual operations: modelling, testing, optimisation,

etc.

Since the inception of the Digital Twin in 2003 the concept has grown in interest, and

is now listed by Gartner as a key strategic technology trend for 2019 (PANETTA, 2018). This

growth is largely driven by advances in related technologies and initiatives such as Internet-

of-Things, big data, multi-physical simulation, and Industry 4.0, real-time sensors and sensor

networks, data management, data processing, and a drive towards a data-driven and digital

manufacturing future (JONES et al., 2020). As a consequence, both academia and industry have

been researching, developing, and seeking to apply Digital Twins or the principles it represents.
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This growth has led to inconsistent application and divergence beyond the original descriptions

of Greives, leading to a need for consolidation of the concept in light of current research and

industry application (JONES et al., 2020).

In this study, a Digital Twin is delineated as the dynamic representation of a physical

system, achieved without resorting to direct measurements of the system itself. The Digital

Twin furnishes the dynamic behavior of its physical counterpart without necessitating direct

measurement; instead, it relies on the estimation of behavior through the utilization of indirect

variables. The models comprising the Digital Twin are instantiated within a digital environment,

serving as a means for comprehensive study and analysis. In Figure 8 an example of a system

with a digital twin is presented.

Figure 8 – Example of a system with a digital twin. Where 𝑢(𝑘) is represented as a discrete input
of the system, 𝑦(𝑘) is the real output of the system, 𝑦(𝑘) is the digital twin output of the
system, and 𝑒(𝑘) is the error between the digital twin and the real system.

Source: Author.

It is important to note that one practical application of a Digital Twin lies in its asso-

ciation with modeling a system that can be integrated into an embedded system. This model

serves various functions, including diagnosis and serving as a foundation for control mechanisms.

Achieving such modeling involves the application of system identification concepts, coupled

with a deep understanding of the technical intricacies of the twin system. When the system

identification process is executed effectively, a Digital Twin of the actual system can be imple-

mented within the embedded software. This digital representation can then be compared to real

measurements obtained from the physical system, offering a valuable means of verification and

analysis.
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2.5 PARTIAL CONSIDERATIONS

This literature review encompasses a comprehensive exploration of crucial elements in

the realm of heavy-duty engines, with a particular focus on oil pumps and the utilization of piston

cooling jets in diesel engines. Additionally, key concepts in system identification, including

ARX models, ARMAX models, Hammerstein-Wiener models, and NARX models, have been

elucidated.

Oil Pumps in Heavy-Duty Engines: The section outlines the utilization of oil pumps

in diesel engines and underscores their pivotal role in lubricating the system. This specific

application has notable implications for both fuel consumption and the overall efficiency of the

engine. Consequently, contemporary practices favor the implementation of variable oil pumps

over fixed counterparts, as the former allows for electronic control. This adaptability addresses

the dynamic requirements of the engine, enabling optimized performance and enhanced efficiency

compared to the limitations associated with fixed oil pumps devoid of electronic control.

Piston Cooling Jets in Diesel Engines: In the context of diesel engines, the use of

piston cooling jets it is one strategy to manage thermal loads. The literature reveals that piston

cooling jets contribute significantly to temperature regulation in diesel engines, preventing

overheating and enhancing overall thermal efficiency. The detailed examination of these cooling

mechanisms underscores their relevance in the pursuit of improved diesel engine performance

and durability.

System Identification and Model Types: The review delves into the realm of system

identification, a tool for understanding and modeling complex dynamic systems. Three prominent

model types have been explored in the literature:

- ARX Models (AutoRegressive with eXogenous inputs): ARX models capture the dy-

namic behavior of a system by relating the current output to past outputs and inputs. These

models provide insights into the system’s inherent dynamics and response to external

stimuli.

- ARMAX Models (AutoRegressive Moving Average with eXogenous inputs): Extending

beyond ARX, ARMAX models incorporate a moving average component, offering a more

nuanced representation of system dynamics. The inclusion of exogenous inputs enhances

the model’s predictive capabilities.
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- Hammerstein-Wiener Models: Hammerstein-Wiener models adopt a nonlinear approach,

acknowledging the nonlinearity present in many real-world systems. By combining linear

and nonlinear components, these models offer a more faithful representation of complex

system behavior.

- NARX Models (Nonlinear AutoRegressive with eXogenous inputs): NARX models

explicitly embrace nonlinearity, making them adept at capturing intricate relationships

within dynamic systems. These models are particularly useful when dealing with systems

exhibiting nonlinear behavior.

The forthcoming chapter will delineate the methodology employed in this study and

illustrate how the concepts expounded herein were applied. This section aims to elucidate the

diverse methodologies employed, showcasing the multifaceted applications of the concepts

discussed in the preceding chapters. It will delve into the specific ways in which these theoretical

frameworks were operationalized to drive the development and execution of the study.
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3 METHODS

The physical system in this study describes the oil system of a heavy-duty diesel engine.

It was modeled using real data obtained from a heavy-duty 13-liter turbo diesel engine, equipped

with a variable oil pump and a PCJ valve as presented in section 2.2. The relationship between

the pressures and voltages applied to each valve was determined by measuring them at different

running operating points in torque and engine speed. This means a scenario with different driving

conditions for the vehicle. The variables measured for each point are engine rotational speed

based on the measurement of the sensor in revolutions per minute, 𝜔(𝑘), estimated indicated

torque of the engine in Nm, 𝜏(𝑘), OCV duty cycle in percentage, 𝐷𝑜𝑐𝑣(𝑘), PCJ valve duty cycle

in percentage, 𝐷𝑜𝑐𝑣(𝑘), PCJ pressure in kPa, 𝑃𝑝𝑐𝑗(𝑘), and main gallery pressure in kPa, 𝑃𝑚𝑔(𝑘).

The variables were sampled at a variable sampling time, varying from 100 ms to 200 ms. The

sampled time of 100 ms was prioritized, but since the protocol used to collect the data has a

limitation with regard to the busload, not all variables were able to be sampled at this sampling

rate. Therefore, there was the need to increase it to 200 ms for some of them.

Figure 9 – Inputs and outputs of the physical oil system: The oil system receives various inputs, and based on
those conditions, the pressure changes in two different measured points. The input variables of the
systems are engine rotational speed in revolutions per minute, 𝜔(𝑘), estimated indicated torque
of the engine in Nm, 𝜏(𝑘), OCV duty cycle in percentage, 𝐷𝑜𝑐𝑣(𝑘), and PCJ valve duty cycle in
percentage, 𝐷𝑝𝑐𝑗(𝑘). The outputs are PCJ pressure in kPa, 𝑃𝑝𝑐𝑗(𝑘), and main gallery pressure in
kPa, 𝑃𝑚𝑔(𝑘).

Source: Author.

The Universal Measurement and Calibration Protocol, also known as the XCP was

used to collect data from the engine control unit of the vehicle, and the data was resampled at a

sampling time of 200 ms. The variables sampled at higher frequencies were downsampled to 200

ms sample time, so all the variables were discretized at the same rate. Hence, the final sampling

time for the estimation was 200 ms. Fig. 9 shows the block diagram of the system used in the
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study. The inputs of the actual system consist of engine speed, indicated torque, and the duty

cycle of the valves, while the outputs are the system’s pressures.

Figure 10 – Data from the oil system used in the validation set. All the inputs and outputs of the system are in
a time window of 1000 s. Where 𝜔(𝑘) is the engine speed in revolutions per minute, 𝜏(𝑘) indicated
torque in Nm, 𝐷𝑜𝑐𝑣(𝑘) OCV duty cycle in percentage, 𝐷𝑝𝑐𝑗(𝑘) PCJ duty cycle in percentage,
𝑃𝑝𝑐𝑗(𝑘)𝑃𝑝𝑐𝑗(𝑘) PCJ pressure in kPa, and 𝑃𝑚𝑔(𝑘) the main gallery pressure in kPa.
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Source: Author.

The dataset was divided into two groups: an estimation set and a validation set. The

estimation data consists of 8209 points and the validation group of 3519 points. When adding

the samples, the total time of acquisition was close to 40 minutes. The parameters of the model

were optimized using 70% of the data, while the remaining 30% was used for validation to check

the final model fitness. Since the data represents a time series of a dynamical system, the data

was split in a temporal base, using part of the running time as estimation and the other part as

validation. The estimation set was used to estimate the model parameters and the validation set

was used to test this model against real data and check its fit. An 1000s time window of the

validation set can be seen in Fig. 10.

In order to perform the estimation, the system was divided into two different subsystems,

which were studied separately. Although the system is a MIMO model, it was split into two
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different MISO models. The first MISO used engine speed in revolutions per minute, 𝜔(𝑘),

indicated torque, 𝜏(𝑘), OCV duty cycle, 𝐷𝑜𝑐𝑣(𝑘), PCJ duty cycle, 𝐷𝑝𝑐𝑗(𝑘), and PCJ pressure,

𝑃𝑝𝑐𝑗(𝑘), as the inputs to estimate the main gallery pressure, 𝑦1(𝑘). The input vector for this

model, 𝑢1(𝑘) ∈ R5, is defined as

𝑢1(𝑘) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐷𝑜𝑐𝑣(𝑘)

𝐷𝑝𝑐𝑗(𝑘)

𝜔(𝑘)

𝜏(𝑘)

𝑃𝑝𝑐𝑗(𝑘)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (15)

The second MISO used engine speed, 𝜔(𝑘), indicated torque, 𝜏(𝑘), OCV duty cycle,

𝐷𝑜𝑐𝑣(𝑘), PCJ duty cycle, 𝐷𝑝𝑐𝑗(𝑘), and main gallery pressure, 𝑃𝑚𝑔(𝑘), as the inputs to estimate

the PCJ gallery pressure in kPa, 𝑦2(𝑘). The input vector for this model, 𝑢2(𝑘) ∈ R5, is defined as

𝑢2(𝑘) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐷𝑜𝑐𝑣(𝑘)

𝐷𝑝𝑐𝑗(𝑘)

𝜔(𝑘)

𝜏(𝑘)

𝑃𝑚𝑔(𝑘)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (16)

Since the variables require different models, they were analyzed separately. For each

topic, both linear and nonlinear models were evaluated, and the NRMSE for each option was

assessed. Both algorithms used are from the Matlab System Identification tool chain. To estimate

the parameters of the linear models such as ARX, Matlab uses a QR factorization to solve the

least squares estimation problem. For the nonlinear systems, For the nonlinear systems the search

algorithm was set to a subspace Gauss-Newton least-squares search. A complete diagram of the

two systems can be seen in Figure 11.

The first model analyzed was a linear ARX model. The order selection for the ARX

was determined by varying the configuration and assessing the NRMSE of each one during the

validation. Different configurations for poles and zeros were tested, but only the combination

with the highest NRMSE was used to compare the different models. The transport delay, or

input-to-output delay, was set to one sample for all cases. The input-to-output delay was set to one

sample so one has a model that can estimate the next step of its state for the next code iteration.

Since this is a linear system, the least-squares method was used to estimate the coefficients of

this type of model.
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Figure 11 – Inputs and outputs of the two MISO systems based on the MIMO system. The first MISO
estimates the main gallery pressure in kPa, 𝑦1(𝑘), and the second one the PCJ pressure in kPa,
𝑦2(𝑘). The input variables of the systems are engine rotational speed in revolutions per minute,
𝜔(𝑘), estimated indicated torque of the engine in Nm, 𝜏(𝑘), OCV valve duty cycle in percentage,
𝐷𝑜𝑐𝑣(𝑘), PCJ valve duty cycle in percentage, 𝐷𝑝𝑐𝑗(𝑘), PCJ pressure in kPa, 𝑃𝑝𝑐𝑗(𝑘), and main
gallery pressure in kPa, 𝑃𝑚𝑔(𝑘).

Source: Author.

The second linear model used was an ARMAX, which is a variation of an ARX, but

with an additional moving average term. The definition of this model can be seen in (5). The order

selection for 𝐴(𝑞) and 𝐵(𝑞) was the same used for the ARX model. However, the additional

noise regressor, 𝐶(𝑞), was set to a first-order regressor. The transport delay, or the input-to-output

delay, was also set to one sample.

The third model analyzed in this study is a nonlinear HW model, which combines a

linear ARX with static nonlinear functions. These functions 𝑓𝑖(.) and 𝑓𝑜(.), shown in the block

diagram in Fig. 6, were set to PWL functions with ten breakpoints. The input-to-output delay

was also set to one sample in this case.

The last type of model tested was a NARX with a variation of zeros and poles the

same way as the other models. The non-linearities explored for the NARX model were defined

by employing a linear output function incorporating an offset. In this context, this specific

non-linearity involves taking the output of the regressor and subjecting it to a linear function, to

which an offset is applied.

The models were determined through the utilization of Matlab scripts. Matlab’s built-in

functions were employed to compare and estimate parameters across different configurations

and conditions. Additionally, the system identification toolbox was utilized, given its integral
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role in this analysis. The Matlab version employed for these processes was 2021b.

With regard to the execution of the models to estimate the parameters for each of the

models, the following hardware configuration was used:

• Central Processing Unit (CPU): Intel Core i7 processor, exemplifying multicore archi-

tecture to support intricate computations and concurrent processing;

• Random Access Memory (RAM): RAM capacity of 8 GB;

• Graphics Processing Unit (GPU): NVIDIA GeForce or Intel Iris Xe Graphics series;

• Operating Environment: Operational under Windows 10;

• Tool Used: Matlab 2021b;

This hardware configuration served as the foundation for estimating and executing all

the models outlined in this study. Additionally, the execution time for each parameter estimation

process was meticulously measured and subsequently compared. The timing analysis involved

utilizing the dataset for parameter estimation in the models, with the resultant times subjected to

thorough comparison.

3.1 PARTIAL CONSIDERATIONS

This methodology delineates the comprehensive approach employed in the execution of

this study. Commencing with an elucidation of the data collection procedure, this phase focused

on identifying and gathering variables from a vehicle using a serial protocol commonly utilized

in automotive applications. Subsequently, the sample times for each variable were normalized to

establish a consistent time base.

Following the data collection phase, the study delved into the definition and breakdown

of models. This involved a meticulous determination of the number of models, as well as the

configurations of inputs and outputs. Additionally, the dataset was partitioned into validation

and estimation sets. The estimation set was utilized for parameter estimation of a specific model,

while the validation set served as a means to assess the behavior of the estimated model.

Within this section, a detailed presentation was made regarding the configuration of both

linear and nonlinear models, elucidating the considerations that influenced their establishment

during the course of the study. Notably, the configurations of these models varied in terms of
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the number of poles and zeros, adhering to the mathematical conditions outlined in the previous

section.

Concluding the methodology, the hardware configuration employed for model estima-

tion was explicated, providing insights into the tools and equipment utilized in the practical

implementation of the study.
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4 RESULTS AND DISCUSSION

The results will be presented in two subsections. The first subsection will describe the

estimates of the main gallery pressure, while the second subsection will focus on the estimates of

the PCJ pressure. The model with the highest NRMSE is presented at the end of each subsection.

4.1 MAIN GALLERY PRESSURE

The results for the estimation of the parameters are exhibited based on the two best

models selected and the two worst models compared against the validation set for each configu-

ration. The validation set was used to check if the parameters estimated during the estimation of

the parameters for that specific model can reflect the behavior of the remaining points of data as

discussed in the previous section.

By varying the configuration of the ARX model across a range from 1 to 4 for both

zeros and poles, it was identified the most suitable model as the ARX model, characterized

by a third-order 𝐴(𝑞) as defined in Equation (3) and a fourth-order 𝐵(𝑞). Conversely, the least

effective ARX model consisted of a first-order 𝐴(𝑞) and a fourth-order 𝐵(𝑞). The characteristics

of the zeros are presented in vector notation, following the conventions introduced in 15. The

results regarding the model against the validation set are presented in Table 1. The column

representing the poles is shown in a vector form, where each of its positions corresponds to the

number of poles of one of the inputs. The vector of inputs can be checked in the previous section

in Equation (15). Also, in this table, the column regarding the execution time shows the time in

seconds that the hardware took to estimate the parameters of the model.

When incorporating an additional term to create an ARMAX model with a first-order

𝐶(𝑞), the outcomes exhibited a small variation in the dynamic behavior compared to the ARX

model. The poorest-performing ARMAX model failed to adequately capture the system dynamics

using the validation data, resulting in a model that could not represent the real data at all. As

a result, the NRMSE for these models was recorded with a high magnitude negative number,

represented as −∞, when running the model with the parameters estimated with the training

set against the data from the validation set. Just noting that the best possible NRMSE is a value

close to 100 %. Conversely, the most proficient ARMAX model exhibited a 2% enhancement in

NRMSE compared to the best ARX.
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Table 1 – Linear Models validation results for main gallery pressure using the parameters estimated in the
parameter estimation phase.

Model Poles Zeros Moving Average Order NRMSE Execution Time

ARX 3 [4,1,3,3,1] NA 74.70% 0.19 s
ARX 3 [4,1,4,3,1] NA 74.67% 0.36 s
ARX 1 [1,3,1,4,1] NA 56.19% 0.24 s
ARX 1 [1,3,1,1,1] NA 56.28% 0.17 s

ARMAX 3 [4,3,4,1,4] 1 76.63% 0.78 s
ARMAX 1 [3,4,2,4,2] 1 76.60% 0.71 s
ARMAX 3 [2,2,3,4,3] 1 −∞ 1.44 s
ARMAX 1 [2,4,4,4,4] 1 −∞ 0.95 s

Source: Author.

The worst configurations for the models against the validation set were raised to show

that when running those models during the parameters estimation high NRMSE results were

presented. The results for those models during the parameter estimation phase can be seen in

Table 2. That gives the notion that the models can find a combination to describe the system

dynamics when estimating the parameters, but they were not able to generalize the model for

different conditions. Here, the validation set and estimation set is from the same system, however,

it was operating in a different region.

Table 2 – Results for linear models in the parameters estimation phase. The results presented in this table
were returned by the training algorithm during using the dataset used in this specific phase.

Model Poles Zeros Moving Average Order MSE FPE NRMSE

ARX 3 [4, 1, 3, 3, 1] NA 21.89 21.99% 85.14%
ARX 3 [4, 1, 4, 3, 1] NA 21.24 21.35% 85.36%
ARX 1 [1, 3, 1, 4, 1] NA 39.95 40.10% 79.92%
ARX 1 [1, 3, 1, 1, 1] NA 42.57 42.69% 79.27%

ARMAX 3 [4, 3, 4, 1, 4] 1 23.51 23.65% 84.60%
ARMAX 1 [3, 4, 2, 4, 2] 1 54.37 54.65% 76.57%
ARMAX 3 [2, 2, 3, 4, 3] 1 28.69 28.85% 82.98%
ARMAX 1 [2, 4, 4, 4, 4] 1 29.22 29.39% 82.83%

Source: Author.

Figure 12 visually compares the two top-performing models. Notably, both linear

models achieved accurate estimations under conditions where the pressure derivative is not

so high. Also, during more aggressive transient conditions, the behavior of the two models

presented a similar behavior, showing a high NRMSE to describe the system’s dynamics under

those conditions. The final best result achieved was from the ARMAX model with a third-order
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𝐴(𝑞), a fourth-order 𝐵(𝑞), and a first-order moving average term, 𝐶(𝑞), with a NRMSE of

76.63%.

Figure 12 – Measured pressure signal in the validation dataset for main gallery pressure
𝑃𝑚𝑔(𝑘) against the ARX an ARMAX models’ output 𝑦1(𝑘) in a 500 s time
window with sampling time of 200 ms.
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When testing the nonlinear models, a better result was achieved compared to the linear

ones. The HW model was set to 5, 10, 14, 18 nonlinear PWL for the inputs with the same

configuration for the output, and a linear model varing the number of poles and zeros from 1 to

4 were tested. The best performing model used a 5 nonlinear PWL with four poles and three

zeros. The Final Prediction Error (FPE) for this model was 18.27%, and the MSE 17.85 for the

estimation set. The final NRMSE achieved in the validation set was 84.86%. The model described

here comprises a fourth-order 𝐴(𝑞) and a third-order 𝐵(𝑞). Also, by looking at FPE and MSE

it is possible to see that the model could show a good estimate in both training and validation

sets. Table 3 consolidates the results from the best and worst nonlinear models tested using the

parameters estimated in the estimation phase using the estimation set against the validation data.
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Table 3 – Nonlinear Models validation results for main gallery pressure using the parameters estimated in
the parameter estimation phase.

Model Poles Zeros Nonlinearity NRMSE Execution Time

HW 4 [2, 3, 1, 2, 1] 5 PWL 84.86% 5.34 s
HW 4 [3, 2, 2, 3, 3] 10 PWL 84.67% 6.68 s
HW 1 [3, 4, 3, 2, 1] 10 PWL −∞ 4.74 s
HW 1 [3,1,1,3,4] 10 PWL −∞ 7.42 s

NARX 3 [4, 1, 4, 3, 1] Linear Function and Offset 75.54% 0.47 s
NARX 3 [4, 1, 4, 4, 1] Linear Function and Offset 75.52% 0.44 s
NARX 1 [2, 4, 1, 4, 1] Linear Function and Offset 58.82% 0.45 s
NARX 1 [2, 4, 1, 3, 1] Linear Function and Offset 58.86% 1.06 s

Source: Author.

Also, it is good to take note why the worst models were presented. Table 4 shows

the values during the estimation set. Here it is possible to check that during the training of the

parameters the results are a bit different from validation. Here, it is shown that depending on the

selection of the nonlinear model, the representation can diverge in a high degree from the real

data. This is shown by the high values of MSE and FPE presented by those models. That was

only seen in the HW models and it did no occur for the NARX models.

Table 4 – Results for nonlinear models in the parameters estimation phase. The results presented in this table
were returned by the training algorithm during using the dataset used in this specific phase.

Model Poles Zeros Nonlinearity MSE FPE NRMSE

HW 4 [3, 2, 2, 3, 3] 5 PWL 17.85 18.27% 86.58%
HW 3 [1, 3, 3, 4, 2] 10 PWL 24.51 25.46% 84.27%
HW 1 [3, 4, 3, 2, 1] 10 PWL 289.70 300.12 45.93%
HW 1 [3, 1, 1, 3, 4] 10 PWL 368.62 381.79 39.01%

NARX 3 [4, 1, 4, 3, 1] Linear Function with Offset 20.91 21.00% 85.47%
NARX 3 [4, 1, 4, 4, 1] Linear Function with Offset 20.88 20.98% 85.48%
NARX 1 [2, 4, 1, 4, 1] Linear Function with Offset 29.97 30.09% 82.61%
NARX 1 [2, 4, 1, 3, 1] Linear Function with Offset 30.08 30.19% 82.57%

Source: Author.

The NARX model presented an FPE of 21.00% and an MSE of 20.91 in the estimation

set. The NRMSE for this model was similar to the linear ARMAX model and presented almost

10.00% worse NRMSE than the HW model. The NARX model with the best configuration found

was composed of a third-order 𝐴(𝑞), fourth-order 𝐵(𝑞), and 1 sample input-output delay. The

nonlinearity used for the this model was a simple linear function with an offset for the output

of the regressors. The overall NRMSE achieved for this model was 75.54%. Also, here it is

good to notice that even the worst combination found was able to describe the model and find
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a set of parameters to represent the dynamics. This shows that even a low-order model is able

to generalize the dynamics of the system even with low NRMSE when compared to the other

configurations. Fig. 13 shows a comparison between the two nonlinear models.

Figure 13 – Measured pressure signal in the validation dataset for main gallery pressure
𝑃𝑚𝑔(𝑘) against the HW and NARX models’ output 𝑦1(𝑘) in a 500 seconds
time window.
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Using the notation described in section 3, the nonlinear functions for the HW model

with the best fit can be seen in Fig. 14. The resulting equations for 𝐹 (𝑞) and 𝐵(𝑞) are presented

in (17) to (26).

𝐹1(𝑞) = 1− 0.599𝑞−1 − 0.860𝑞−2 + 0.483𝑞−3, (17)

𝐹2(𝑞) = 1− 0.982𝑞−1 + 0.279𝑞−2, (18)

𝐹3(𝑞) = 1− 1.586𝑞−1 + 0.589𝑞−2, (19)
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𝐹4(𝑞) = 1− 2.617𝑞−1 + 2.400𝑞−2 − 0.782𝑞−3, (20)

𝐹5(𝑞) = 1− 2.160𝑞−1 + 1.324𝑞−2 − 0.164𝑞−3, (21)

𝐵1(𝑞) = 𝑞−1 − 0.402𝑞−2 − 0.832𝑞−3 + 0.267𝑞−4, (22)

𝐵2(𝑞) = 0.302𝑞−1 + 𝑞−2 − 0.444𝑞−3 − 0.165𝑞−4, (23)

𝐵3(𝑞) = −0.448𝑞−1 + 𝑞−2 − 0.693𝑞−3 + 0.142𝑞−4, (24)

𝐵4(𝑞) = −1.038𝑞−1 + 1.531𝑞−2 + 𝑞−3 − 1.489𝑞−4, (25)

𝐵5(𝑞) = −0.351𝑞−1 − 0.024𝑞−2 + 𝑞−3 − 0.674𝑞−4. (26)

Figure 14 – Nonlinear functions 𝑓𝑖(·) and 𝑓𝑜(·) for 𝑦1(𝑘). Where 𝑓𝑖(·):R5 → R5 composed by 𝜔(𝑘), engine
speed in revolutions per minute, 𝜏(𝑘) indicated torque in Newton-metre, 𝐷𝑜𝑐𝑣(𝑘) OCV duty
cycle in percentage, 𝐷𝑝𝑐𝑗(𝑘) PCJ duty cycle in percentage, 𝑃𝑝𝑐𝑗(𝑘) PCJ pressure in Kilopascal.
𝑓𝑜(·):R → R is the nonlinearity relation between the estimated main gallery pressure, 𝑦1(𝑘), and
the output of the linear system 𝑥1(𝑘).
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In summary, one can see that the ARMAX model demonstrated better results in describ-

ing the system compared to the ARX. Hence, the NRMSE value of the ARMAX model was 2%

greater than that of the ARX model. When adding the nonlinear component to the ARX model,

no increase in NRMSE was observed. The final HW model exhibited the best overall NRMSE,

which was approximately 10% higher than that of the linear ARX model. This is possibly due

to the type of nonlinearity used. Since for the NARX model only a linear function with offset

was used. It can be noticed that the difference between the models was greater for models that

can better describe the transient behavior in low-pressure points. This can be seen in the data

comparison shown in Figures 12 and 13.

The most significant difference between the models is apparent in their transient be-

havior. However, this discrepancy arises due to transitions between different operating points.

Essentially, the system’s nonlinearities in inputs and outputs result in distinct behaviors depend-

ing on the region. As the system’s inputs shift from one region to another, this variation becomes

more pronounced. Consequently, nonlinear models excel in addressing the intricacies of transient

behavior, providing a more faithful reflection of the system’s response during dynamic phases.

Conversely, if the transient dynamics do not necessitate such high precision and fidelity,

simpler linear models like ARX or ARMAX can suffice in describing the system’s behavior

adequately. Given that the distinction between ARX and ARMAX models is relatively modest,

opting for an ARX model provides a pragmatic solution. The advantages of simplicity in

implementation and a reduced risk of overfitting make the ARX model a fitting choice for

scenarios where a comprehensive representation of transient dynamics is not imperative.

4.2 PCJ PRESSURE

To estimate the PCJ model, a similar approach to the primary gallery pressure estimation

was employed. Just as in the previous models, both linear and nonlinear variants were explored,

with variations in the number of zeros and poles ranging from 1 to 4. To evaluate model

performance, the best and worst results were systematically compared.

For the linear models, utilizing both the ARX and ARMAX configurations, various

settings and combinations were examined. The specific configurations for these linear models

are detailed in Table 5. The values presented are comparing the models with the parameters

estimated agains the validation set. This comprehensive analysis allowed one can see insights

into the efficacy of different model setups in replicating the PCJ’s behavior accurately. The
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configuration for all ARMAX models presented was by using a first order moving average term.

Table 5 – Linear Models validation results for PCJ gallery pressure using the parameters estimated in the
parameter estimation phase.

Model Poles Zeros Moving Average Order NRMSE Execution Time

ARX 2 [4, 1, 4, 2, 2] NA 78.51% 0.12 s
ARX 4 [4, 1, 3, 2, 2] NA 78.51% 0.11 s
ARX 4 [1, 4, 2, 1, 1] NA −∞ 0.13 s
ARX 2 [1, 4, 2, 1, 1] NA −∞ 0.12 s

ARMAX 4 [4, 4, 3, 3, 1] 1 83.12% 1.13 s
ARMAX 1 [2, 3, 3, 3, 3] 1 82.96% 0.79 s
ARMAX 2 [2, 4, 3, 4, 4] 1 −∞ 1.49 s
ARMAX 2 [3, 1, 3, 3, 3] 1 −∞ 0.41 s

Source: Author.

When estimating the parameters, the results presented by each of the configurations

were a bit different. The results from the estimation phase can be seen in Table 6. Here, it

is possible to see that even models with a low NRMSE when compared to the validation set

presented a high NRMSE. This indicates that the parameter estimation found a set of parameters

that represents the dynamics of the system, but this model was not able to generalize the system‘s

behavior with that high NRMSE value.

Table 6 – Results for linear models in the parameters estimation phase. The results presented in this table
were returned by the training algorithm during using the dataset used in this specific phase.

Model Poles Zeros Moving Average Order MSE FPE NRMSE

ARX 2 [4, 1, 4, 2, 2] NA 4.84 4.86% 91.99%
ARX 4 [4, 1, 3, 2, 2] NA 4.80 4.82% 92.04%
ARX 4 [1, 4, 2, 1, 1] NA 4.91 4.93% 91.80%
ARX 2 [1, 4, 2, 1, 1] NA 4.99 5.01% 91.89%

ARMAX 4 [4, 4, 3, 3, 1] 1 3.84 3.86% 92.88%
ARMAX 1 [2, 3, 3, 3, 3] 1 4.45 4.47% 92.33%
ARMAX 2 [2, 4, 3, 4, 4] 1 11.84 11.91% 87.50%
ARMAX 2 [3, 1, 3, 3, 3] 1 11.97 12.02% 87.43%

Source: Author.

The ARMAX model emerged as the top-performing linear model for PCJ pressure

estimation, outshining the best ARX model by a notable margin, boasting a 5% lower NRMSE.

It is worth highlighting a distinction from the main gallery pressure estimation. In this case,

while both ARX and ARMAX models yielded promising combinations during the training phase

using the estimation set, the subsequent validation set revealed a significant drop in their ability

to represent the system accurately. This phenomenon signals a clear case of model overfitting,
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wherein the model becomes excessively tailored to the training data, impeding its capacity

to generalize and capture the system’s dynamics effectively. In Figure 15 the two models are

compared against the validation data. There one can see that the behavior of these two models is

similar; however, at some points of higher pressure, the ARMAX model showed a better fit to

the data. The best model was composed of a fourth-order 𝐴(𝑞) and fourth-order 𝐵(𝑞) ARMAX

model with a first order moving average term, 𝐶(𝑞).

Figure 15 – Measured pressure signal in the validation dataset for PCJ gallery pressure
𝑃𝑝𝑐𝑗(𝑘) against the ARX an ARMAX models’ output, 𝑦2(𝑘), in a 500 sec-
onds time window.
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In contrast to the linear models, the nonlinear models demonstrated notably improved

performance. The standout performer among these nonlinear models was the HW model, boasting

an impressively high NRMSE of 89.71%. This achievement represented a substantial 6% higher

NRMSE when compared to both the best NARX model that presented a NRMSE of 83.95%

and the top-performing linear model that presented a NRMSE of 92.88%. When compared the

best NARX model to the best ARMAX model, it is observed that the disparity in NRMSE was

not as pronounced. However, an essential observation is that the NARX model, even in its least

favorable combinations, managed to find a suitable generalization for the system. This stands in
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contrast to the HW model, in which the least effective configurations struggled to describe the

system’s dynamics comprehensively, emphasizing the robustness and flexibility of the NARX

approach. The summary of results using the estimation set to estimate the parameters of the

model and this model agains the validation set are shown in Table 7.

Table 7 – Nonlinear Models validation results for PCJ gallery pressure using the parameters estimated in the
parameter estimation phase.

Model Poles Zeros Nonlinearity NRMSE Execution Time

HW 4 [3, 4, 4, 4, 4] 5 PWL 89.76% 4.18 s
HW 4 [1, 2, 4, 2, 1] 5 PWL 89.72% 4.79 s
HW 1 [1, 1, 2, 1, 4] 10 PWL 58.08% 6.21 s
HW 1 [4, 1, 2, 2, 1] 10 PWL −∞ 5.06 s

NARX 4 [2, 1, 4, 2, 1] Linear Function and Offset 83.95% 0.22 s
NARX 3 [2, 1, 4, 2, 1] Linear Function and Offset 83.92% 0.20 s
NARX 1 [1, 4, 1, 1, 1] Linear Function and Offset 63.43% 0.42 s
NARX 1 [1, 4, 1, 2, 1] Linear Function and Offset 64.05% 0.20 s

Source: Author.

The worst models were brought up to show that even that models that presented a high

NRMSE during the training of the parameters could not present the same results against the

validation set. The concatenated data for the training set are summarized in Table 8.

Table 8 – Results for nonlinear models in the parameters estimation phase. The results presented in this table
were returned by the training algorithm during using the dataset used in this specific phase.

Model Poles Zeros Nonlinearity MSE FPE NRMSE

HW 4 [3, 4, 4, 4, 4] 5 PWL 9.82 10.08% 88.61%
HW 4 [1, 2, 4, 2, 1] 5 PWL 6.59 6.75% 90.67%
HW 1 [1, 1, 2, 1, 4] 10 PWL 145.29 150.37 56.21%
HW 1 [4, 1, 2, 2, 1] 10 PWL 364.82 377.67 30.61%

NARX 4 [2, 1, 4, 2, 1] Linear Function and Offset 4.49 4.51% 92.30%
NARX 3 [2, 1, 4, 2, 1] Linear Function and Offset 4.50 4.52% 92.29%s
NARX 1 [1, 4, 1, 1, 1] Linear Function and Offset 5.35 5.37% 91.59%
NARX 1 [1, 4, 1, 2, 1] Linear Function and Offset 5.34 5.36% 91.60%

Source: Author.

In Figure 16 it is shown that both HW and NARX models can better represent the

pressure behavior even in higher pressure values. When comparing the results from Figure 16

and Figure 15 shows that the main difference is within higher pressure values. Also, the high

drops in pressure were captured by the HW model, what it is not the case for all other model

representations.
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Figure 16 – Measured pressure signal in the validation dataset for PCJ gallery pressure
𝑃𝑝𝑐𝑗(𝑘) against the HW a NARX models’ output 𝑦2(𝑘) in a 500 seconds
time window.
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Using the notation described in section 3, the nonlinear functions for the HW model

with the best fit can be seen in Fig. 17. The resulting equations for 𝐹 (𝑞) and 𝐵(𝑞) are in (27) to

(36).
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Figure 17 – Nonlinear functions 𝑓𝑖(·) and 𝑓𝑜(·) for 𝑦2(𝑘). Where 𝑓𝑖(·):R5 → R5 composed by 𝜔(𝑘), engine
speed in revolutions per minute, 𝜏(𝑘) indicated torque in Nm, 𝐷𝑜𝑐𝑣(𝑘) OCV duty cycle in
percentage, 𝐷𝑝𝑐𝑗(𝑘) PCJ duty cycle in percentage, 𝑃𝑚𝑔(𝑘) main gallery pressure in kPa. 𝑓𝑜(·):
R → R is the nonlinearity relation between the estimated PCJ gallery pressure, 𝑦2(𝑘), and the
output of the linear system 𝑥2(𝑘).
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𝐹1(𝑞) = 1− 1.227𝑞−1 + 0.027𝑞−2 + 0.201𝑞−3, (27)

𝐹2(𝑞) = 1− 0.949𝑞−1 + 0.113𝑞−2 − 0.555𝑞−3 + 0.396𝑞−4, (28)

𝐹3(𝑞) = 1− 0.955𝑞−1 − 0.388𝑞−2 + 0.344𝑞−3 − 0.005𝑞−4, (29)

𝐹4(𝑞) = 1− 2.453𝑞−1 + 1.645𝑞−2 + 0.071𝑞−3 − 0.263𝑞−4, (30)

𝐹5(𝑞) = 1− 0.356𝑞−1 − 1.158𝑞−2 + 0.359𝑞−3 − 0.163𝑞−4, (31)
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𝐵1(𝑞) = −0.720𝑞−1 + 𝑞−2 − 0.294𝑞−3 − 0.016𝑞−4, (32)

𝐵2(𝑞) = −2.958𝑞−1 + 𝑞−2 − 0.160𝑞−3 + 2.063𝑞−4, (33)

𝐵3(𝑞) = −0.628𝑞−1 + 𝑞−2 + 0.254𝑞−3 − 0.117𝑞−4, (34)

𝐵4(𝑞) = −0.321𝑞−1 +−0.981𝑞−2 + 𝑞−3 − 0.340𝑞−4, (35)

𝐵5(𝑞) = 𝑞−1 − 0.278𝑞−2 − 1.002𝑞−3 − 0.276𝑞−4. (36)

4.3 DISCUSSION

After scrutinizing the results, it is evident that both systems exhibited a normalized

root mean square error (NRMSE) greater than 75% across all model types. The employment of

nonlinear models appeared more suitable for both systems, indicating a potential nonlinearity

associated with the inputs and outputs. This suggests the presence of nonlinearities within these

systems, implying that the impact of certain inputs and the effects of outputs vary depending on

the operating region.

For the estimation of main gallery pressure, the most suitable linear model was the

ARMAX model, with only a marginal difference compared to the ARX model. Although the ARX

model displayed superior results in NRMSE during the training phase, it struggled to generalize

as effectively as the ARMAX model, as evidenced by its performance on the validation set.

Among the nonlinear models for main gallery pressure estimation, the HW model

outperformed all others in both training and validation phases. Notably, increasing the number of

breakpoints in a piecewise-linear (PWL) function did not lead to a corresponding increase in

NRMSE. Moreover, a simpler HW model with fewer breakpoints exhibited shorter execution

times during training compared to configurations with more breakpoints, but the same number of

poles. While the NARX model yielded superior results to linear models, it fell short of achieving

the performance demonstrated by the HW model, likely due to the simplicity of the linear

function employed in its output.

Turning attention to PCJ pressure estimation, the results mirrored those of the main

gallery, albeit with a higher NRMSE across all configurations. This discrepancy may be attributed

to the mechanical linkage between the oil galleries, particularly the direct connection between
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the PCJ and main gallery pressures. Linear models, specifically the ARMAX model, exhibited

optimal performance during the training phase with a NRMSE of almost 92% and an 83.12%

NRMSE during validation. This outcome surpassed the results for main gallery estimation by

7.00%, potentially due to the mechanical linkage between the galleries and the use of main

gallery pressure as input to PCJ pressure model.

Among the nonlinear models for PCJ pressure estimation, the HW model again emerged

as the top performer. During parameter training, the NARX model initially outperformed the

HW model. However, when assessing results against the validation set, the HW model exhibited

a 6.00% improvement. Additionally, the optimal number of breakpoints for PWL in the HW

models was identified as 5, with an increase in this parameter not resulting in an escalation of

NRMSE.
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5 CONCLUSION

This work evaluates some dynamic empirical models of an oil system that is applied to

a turbo diesel engine. To achieve this, data was collected from a real-world application, and the

models’ parameters were estimated and validated using this dataset. Several models were tested

to identify the one that best describes the behavior of this dynamic system.

The main result of the study is the estimation of the main gallery pressure and PCJ

gallery pressure using a HW model with a PWL function. The model for main gallery pressure

presented an NRMSE of 84.86%. The worst-performing model for the same system when

comparing the best model configuration for each type was the ARX model, with an NRMSE

of 74.70%. Similar results were observed for the PCJ pressure estimation, with the HW model

outperforming the other models with an NRMSE of 89.76%, and the worst model being the

linear ARX model with an NRMSE of 78.51%. Both linear and nonlinear combinations were

able to achieve a NRMSE higher than 70% for both systems. For the PCJ pressure estimation the

results were even better showing that even the worst configuration tested presented a NRMSE

higher than 85%. The PCJ behavior is highly correlated with the main gallery pressure behavior,

so it makes sense that it is behavior had a better fit to the models when using the main gallery

pressure as input. This behavior is seen due to the mechanical configuration of the PCJ gallery in

the engine. The results here shown are always comparing the estimated parameters using the

estimation data with the validation data.

The level of accuracy achieved by the dynamic models was shown to have a NRMSE

higher than 70% for all models presented here, even for the linear ones. The results obtained

from the HW model can be considered the one that better describes the system by looking at its

NRMSE. This representation was used to describe a digital twin of the real system. A significant

advantage of using low-order regression models, such as the one proposed in this sutdy, is their

simplicity of implementation, which makes them a suitable choice for embedded systems. For

instance, the engine ECU can be a potential application of this model.

Conversely, it’s noteworthy that numerous model configurations exhibited difficulty

in capturing and generalizing the system’s dynamics effectively. This behavior serves as a

cautionary signal when considering the choice of a suitable model. Notably, nonlinear models

with a higher degree of freedom demonstrated a propensity to overfit the training data. This

overfitting phenomenon hindered their utility in the subsequent validation phase, rendering them
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less versatile and reliable in real-world applications. It is possible to conclude the overfit of

some models when checking the error values for the estimation phase and cross them against the

results from the validation phase.

Future work includes exploring different types of model structures, such as testing

grey-box strategies. An alternative approach would be to use various inputs and evaluate their

correlation with the output signal to make more informed input selections. In this scenario,

instead of using simple inputs, data from other actuators and sensors that could potentially

impact the oil system, such as temperature readings at different points of the engine, could

be utilized. Also, different combinations for the nonlinear models could be tested, since just a

simple configuration was used for the NARX models and no different combinations for input

non linearity and output non linearity were used for the HW models.

5.1 PUBLICATIONS

A paper based on this work called System Identification Study to Model a Digital Twin

for a Heavy-Duty Vehicle’s Oil System was presented at IEEE/IAS International Conference on

Industry Applications (INDUSCON) 2023. Also, a journal paper is being prepared about the

same work.
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ANNEX A – DIREITOS AUTORAIS - LEI N.O 9.610, DE 19 DE FEVEREIRO DE 1998:

DISPOSIÇÕES PRELIMINARES

3UHVLGrQFLD GD 5HS~EOLFD
&DVD &LYLO

6XEFKHILD SDUD $VVXQWRV -XUtGLFRV

/(, 1ž '( '( )(9(5(,52 '(

0HQVDJHP GH YHWR

9LGH /HL Qž GH 9LJrQFLD

$OWHUD DWXDOL]D H FRQVROLGD D OHJLVODomR VREUH GLUHLWRV DXWRUDLV

H Gi RXWUDV SURYLGrQFLDV

2 35(6,'(17( '$ 5(3Ò%/,&$ )DoR VDEHU TXH R &RQJUHVVR 1DFLRQDO GHFUHWD H HX VDQFLRQR D VHJXLQWH /HL

7tWXOR ,

'LVSRVLo}HV 3UHOLPLQDUHV

$UW ž (VWD /HL UHJXOD RV GLUHLWRV DXWRUDLV HQWHQGHQGR VH VRE HVWD GHQRPLQDomR RV GLUHLWRV GH DXWRU H RV TXH OKHV VmR

FRQH[RV

$UW ž 2V HVWUDQJHLURV GRPLFLOLDGRV QR H[WHULRU JR]DUmR GD SURWHomR DVVHJXUDGD QRV DFRUGRV FRQYHQo}HV H WUDWDGRV

HP YLJRU QR %UDVLO

3DUiJUDIR ~QLFR $SOLFD VH R GLVSRVWR QHVWD /HL DRV QDFLRQDLV RX SHVVRDV GRPLFLOLDGDV HP SDtV TXH DVVHJXUH DRV

EUDVLOHLURV RX SHVVRDV GRPLFLOLDGDV QR %UDVLO D UHFLSURFLGDGH QD SURWHomR DRV GLUHLWRV DXWRUDLV RX HTXLYDOHQWHV

$UW ž 2V GLUHLWRV DXWRUDLV UHSXWDP VH SDUD RV HIHLWRV OHJDLV EHQV PyYHLV

$UW ž ,QWHUSUHWDP VH UHVWULWLYDPHQWH RV QHJyFLRV MXUtGLFRV VREUH RV GLUHLWRV DXWRUDLV

$UW ž 3DUD RV HIHLWRV GHVWD /HL FRQVLGHUD VH

, SXEOLFDomR R RIHUHFLPHQWR GH REUD OLWHUiULD DUWtVWLFD RX FLHQWtILFD DR FRQKHFLPHQWR GR S~EOLFR FRP R

FRQVHQWLPHQWR GR DXWRU RX GH TXDOTXHU RXWUR WLWXODU GH GLUHLWR GH DXWRU SRU TXDOTXHU IRUPD RX SURFHVVR

,, WUDQVPLVVmR RX HPLVVmR D GLIXVmR GH VRQV RX GH VRQV H LPDJHQV SRU PHLR GH RQGDV UDGLRHOpWULFDV VLQDLV GH

VDWpOLWH ILR FDER RX RXWUR FRQGXWRU PHLRV yWLFRV RX TXDOTXHU RXWUR SURFHVVR HOHWURPDJQpWLFR

,,, UHWUDQVPLVVmR D HPLVVmR VLPXOWkQHD GD WUDQVPLVVmR GH XPD HPSUHVD SRU RXWUD

,9 GLVWULEXLomR D FRORFDomR j GLVSRVLomR GR S~EOLFR GR RULJLQDO RX FySLD GH REUDV OLWHUiULDV DUWtVWLFDV RX FLHQWtILFDV

LQWHUSUHWDo}HV RX H[HFXo}HV IL[DGDV H IRQRJUDPDV PHGLDQWH D YHQGD ORFDomR RX TXDOTXHU RXWUD IRUPD GH WUDQVIHUrQFLD GH

SURSULHGDGH RX SRVVH

9 FRPXQLFDomR DR S~EOLFR DWR PHGLDQWH R TXDO D REUD p FRORFDGD DR DOFDQFH GR S~EOLFR SRU TXDOTXHU PHLR RX

SURFHGLPHQWR H TXH QmR FRQVLVWD QD GLVWULEXLomR GH H[HPSODUHV

9, UHSURGXomR D FySLD GH XP RX YiULRV H[HPSODUHV GH XPD REUD OLWHUiULD DUWtVWLFD RX FLHQWtILFD RX GH XP IRQRJUDPD

GH TXDOTXHU IRUPD WDQJtYHO LQFOXLQGR TXDOTXHU DUPD]HQDPHQWR SHUPDQHQWH RX WHPSRUiULR SRU PHLRV HOHWU{QLFRV RX TXDOTXHU

RXWUR PHLR GH IL[DomR TXH YHQKD D VHU GHVHQYROYLGR

9,, FRQWUDIDomR D UHSURGXomR QmR DXWRUL]DGD

9,,, REUD

D HP FR DXWRULD TXDQGR p FULDGD HP FRPXP SRU GRLV RX PDLV DXWRUHV

E DQ{QLPD TXDQGR QmR VH LQGLFD R QRPH GR DXWRU SRU VXD YRQWDGH RX SRU VHU GHVFRQKHFLGR

F SVHXG{QLPD TXDQGR R DXWRU VH RFXOWD VRE QRPH VXSRVWR

G LQpGLWD D TXH QmR KDMD VLGR REMHWR GH SXEOLFDomR

H SyVWXPD D TXH VH SXEOLTXH DSyV D PRUWH GR DXWRU
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I RULJLQiULD D FULDomR SULPtJHQD

J GHULYDGD D TXH FRQVWLWXLQGR FULDomR LQWHOHFWXDO QRYD UHVXOWD GD WUDQVIRUPDomR GH REUD RULJLQiULD

K FROHWLYD D FULDGD SRU LQLFLDWLYD RUJDQL]DomR H UHVSRQVDELOLGDGH GH XPD SHVVRD ItVLFD RX MXUtGLFD TXH D SXEOLFD VRE

VHX QRPH RX PDUFD H TXH p FRQVWLWXtGD SHOD SDUWLFLSDomR GH GLIHUHQWHV DXWRUHV FXMDV FRQWULEXLo}HV VH IXQGHP QXPD FULDomR

DXW{QRPD

L DXGLRYLVXDO D TXH UHVXOWD GD IL[DomR GH LPDJHQV FRP RX VHP VRP TXH WHQKD D ILQDOLGDGH GH FULDU SRU PHLR GH VXD

UHSURGXomR D LPSUHVVmR GH PRYLPHQWR LQGHSHQGHQWHPHQWH GRV SURFHVVRV GH VXD FDSWDomR GR VXSRUWH XVDGR LQLFLDO RX

SRVWHULRUPHQWH SDUD IL[i OR EHP FRPR GRV PHLRV XWLOL]DGRV SDUD VXD YHLFXODomR

,; IRQRJUDPD WRGD IL[DomR GH VRQV GH XPD H[HFXomR RX LQWHUSUHWDomR RX GH RXWURV VRQV RX GH XPD UHSUHVHQWDomR

GH VRQV TXH QmR VHMD XPD IL[DomR LQFOXtGD HP XPD REUD DXGLRYLVXDO

; HGLWRU D SHVVRD ItVLFD RX MXUtGLFD j TXDO VH DWULEXL R GLUHLWR H[FOXVLYR GH UHSURGXomR GD REUD H R GHYHU GH GLYXOJi OD

QRV OLPLWHV SUHYLVWRV QR FRQWUDWR GH HGLomR

;, SURGXWRU D SHVVRD ItVLFD RX MXUtGLFD TXH WRPD D LQLFLDWLYD H WHP D UHVSRQVDELOLGDGH HFRQ{PLFD GD SULPHLUD IL[DomR

GR IRQRJUDPD RX GD REUD DXGLRYLVXDO TXDOTXHU TXH VHMD D QDWXUH]D GR VXSRUWH XWLOL]DGR�

;,, UDGLRGLIXVmR D WUDQVPLVVmR VHP ILR LQFOXVLYH SRU VDWpOLWHV GH VRQV RX LPDJHQV H VRQV RX GDV UHSUHVHQWDo}HV

GHVVHV SDUD UHFHSomR DR S~EOLFR H D WUDQVPLVVmR GH VLQDLV FRGLILFDGRV TXDQGR RV PHLRV GH GHFRGLILFDomR VHMDP RIHUHFLGRV

DR S~EOLFR SHOR RUJDQLVPR GH UDGLRGLIXVmR RX FRP VHX FRQVHQWLPHQWR

;,,, DUWLVWDV LQWpUSUHWHV RX H[HFXWDQWHV WRGRV RV DWRUHV FDQWRUHV P~VLFRV EDLODULQRV RX RXWUDV SHVVRDV TXH

UHSUHVHQWHP XP SDSHO FDQWHP UHFLWHP GHFODPHP LQWHUSUHWHP RX H[HFXWHP HP TXDOTXHU IRUPD REUDV OLWHUiULDV RX DUWtVWLFDV

RX H[SUHVV}HV GR IROFORUH

;,9 WLWXODU RULJLQiULR R DXWRU GH REUD LQWHOHFWXDO R LQWpUSUHWH R H[HFXWDQWH R SURGXWRU IRQRJUiILFR H DV HPSUHVDV GH

UDGLRGLIXVmR ,QFOXtGR SHOD /HL Qž GH

$UW ž 1mR VHUmR GH GRPtQLR GD 8QLmR GRV (VWDGRV GR 'LVWULWR )HGHUDO RX GRV 0XQLFtSLRV DV REUDV SRU HOHV

VLPSOHVPHQWH VXEYHQFLRQDGDV
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