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ABSTRACT

The recent advancements in artificial intelligence have already impacted many aspects of mod-

ern life but have yet to impact one important aspect of the consumer experience in a meaningful

way: shopping in physical stores. Tech giants such as Amazon have recently deployed the

so called smart carts to their physical retail stores, allowing customers to have an improved

shopping experience, including better product information and a seamless checkout process. In

that regard, this work analyses the current market and describes the development of a prototype

that achieves similar functionality to the ones currently available, using the same building blocks

such as computer vision and sensor data. A Deep Learning model was developed for product

detection and deployed to a single board computer capable of running inferences at 4 FPS with

an average precision higher than 80%. Finally, this work discusses the challenges and practical

constraints of developing such a prototype and also presents suggestions for future work to

improve the solution into a commercial product.

Keywords: artificial intelligence; deep learning; smart devices; sensors; object detection.



RESUMO

Os recentes avanços em inteligência artificial já impactaram diversos aspectos da vida moderna

mas ainda não atingiram um aspecto importante da experiência dos consumidores: compras

em lojas físicas. Gigantes da tecnologia como a Amazon lançaram recentemente os chamados

carrinhos inteligentes (smart carts) em suas lojas físicas, proporcionando aos consumidores

uma melhor experiência de compra, com mais informações sobre os produtos e um processo

de pagamento rápido e prático. Neste sentido, o presente trabalho analisa o contexto atual

do mercado e descreve o desenvolvimento de um protótipo que entrega funcionalidades

similares aos produtos disponíveis no mercado utilizando as mesmas bases tecnológicas de

visão computacional e sensores. Um modelo de aprendizado profundo (Deep Learning) foi

desenvolvido para a detecção de produtos e implantado em um Single Board Computer capaz

de executar inferências em aproximadamente 4 Quadros Por Segundo com uma precisão

média acima dos 80%. Finalmente, o trabalho discute os desafios e restrições práticas do

desenvolvimento do protótipo e prepara o caminho para trabalhos futuros que podem levar o

desenvolvimento até um produto comercial.

Palavras-chave: inteligência artificial; aprendizado profundo; smart devices; sensores; de-

tecção de objetos.
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1 INTRODUCTION

1.1 Motivation

With the advancement of high speed mobile networks and smartphone penetration, cus-

tomer demands are on an ever increasing trajectory for more personalized and digital experi-

ences. Companies worldwide are fighting for customer attention in the digital era by developing

products and services that bring state-of-the-art technologies to the masses in the so called

smart devices and systems (SHAFIQUE et al., 2020).

As an example of such advancements, smart speakers such as the Amazon Echo (GAO

et al., 2018), shown on Figure 1, include the latest and greatest in terms of Natural Language

Processing and Deep Learning (YOUNG et al., 2018), allowing customers to interact with the

product in an conversational manner that was considered to be science fiction material until a

couple of years ago.

Figure 1 – Amazon Echo 4th Gen Smart Speaker promotional material

Source: Amazon (2022).

This device is a gem! When I’m busy in the kitchen, for example, and
can’t get to a computer to find info or music to play, Alexa would be
there to listen and do what I ask.
Customer review from Gao et al. (2018)

Alongside the devices themselves, entirely new markets have emerged such as the third-

party software extensions called Alexa Skills (AMAZON, 2022b).

These skills function much like mobile phone apps, extending and enhancing the func-

tionality of the device and can be sold to end users.

Developers can then easily leverage the highly advanced machine learning models

through Application Programming Interface (API) and focus exclusively on their business logic,

as shown on Figure 2.
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This can be valuable as Machine Learning models are considered to be expensive to

develop and maintain, with some sources mentioning a minimum expenditure of US$ 60.000

over a five year period considering both tasks (PHDATA, 2021).

Figure 2 – Diagram showing the steps of an interaction with an Alexa Skill

Source: Amazon (2022b).

More impressively, such technological advancements have been able to reach a consid-

erable amount of households in a short period of time in developed countries like the United

States, as shown on Figure 3.

Figure 3 – US Smart Speaker Penetration from 2017 to 2022

Source: Intelligence (2022).

On developing countries such as Brazil, these innovations tend to have delayed arrivals

due to historical economic barriers but the potential customer base has attracted big tech com-

panies like Amazon, which are able to shorten the arrival delay with their economic power.

In Figure 4, we can see an example of a smart speaker advertisement from Amazon for

the Brazilian customer base.
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Figure 4 – Localized promotional material for the Echo Show 10 targeting Brazilian customers

Source: Amazon (2022).

According to the research company IDC Brasil, the Brazilian home automation market

– in which smart speakers are included – would have reached US$ 291 million on 2021, an

impressive figure that might explain the attractiveness of our market (BRASIL, 2021).

But even with all of these innovations impacting customer behaviors day by day, one

important aspect of consumer life still has not had any significant changes in the last couple of

years: shopping on physical stores.

According to Associação Brasileira de Supermercados (ABRAS) - the Brazilian Super-

market Association - the Brazilian grocery retail sector has reached an impressive total revenue

of R$ 611 billion in 2021 - roughly US$ 117 billion on October 2022 conversion rates - making

up 7,03% of the national Gross Domestic Product (GDP). About 28 million customers visit one

of the more than 92.000 stores countrywide on a daily basis (ABRAS, 2022).

Despite all the technological advancement seen over the last few years and the economic

relevance of such sector, retail grocery shopping still exhibits the same limitations found a decade

ago. In a survey conducted in 2019, Capgemini has found out five key pain problems related to

physical stores in general (CAPGEMINI, 2020):

1. Long queues for payment checkout

2. Out of stock products

3. Difficulties in locating products in the store

4. Not being able to find a store associate to help

5. Lack of product information when I select products

The survey results can be seen in more detail in Figure 5.
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Figure 5 – Top five customer pain points in retail stores

Source: (CAPGEMINI, 2020).

More interestingly, the survey points out that at least half of the survey respondents be-

lieve that all of the five pain points can be solved through automation. Even in light of the recent

pandemic scenario, innovations that increase automation such as e-commerce platforms had

their adoption increased in 2020 but 2021 showed a trend of consumers shifting back to their

pre-pandemic behavior, favoring physical retail stores (KANTAR, 2022).

It is in this scenario of customer pain and enormous market potential that this thesis will

explore a technological solution to improve customer experience and increase sales, namely the

smart shopping cart.

1.2 Current scenario

In this next section, we’ll explore some of the existing solutions and the user experience

provided by them.

1.2.1 Caper Cart

Developed by the Caper1 company, the Caper Cart was the worlds’s first AI-powered

smart cart (CAPER, 2020)

1 https://caper.ai
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The first version was launched in 2017 and offered grocer’s the great advantage of not

requiring any infrastructure overhaul for deployment. In Figure 6, we can see the cart deployed

at American retail store.

Figure 6 – Caper Cart at a retail store

Source: Caper (2020).

For end users, it offered visual product recognition and a payment terminal, allowing

them to avoid the dreaded queues by the end of their shopping session. Additionally, customers

were able to search products, get discounts and locate items more easily with the help of the

interactive user interface provided by the cart that can be seen on Figure 7.

Figure 7 – Caper Cart user interface

Source: Caper (2020).

Although Caper does not publicize the cost of each cart, it is estimated that each unit

costs between US$ 5,000 and 10,000 (POST, 2021).
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Acquired by Instacart2 in 2021 for US$ 350 million, Caper is developing in 2022 the third

version of its Smart Shopping Cart, advertising an increase of 65% in the basket volume and

a 10 month break even period, as shown on Figure 8.

Figure 8 – Caper Cart 3 promotional material

Source: Caper (2022).

1.2.2 Amazon Dash Cart

Available at the Amazon Fresh3 retail chain, the Amazon Dash Cart is the company’s first

smart cart available to end users and is shown in Figure 9.

According to Amazon, it uses computer vision and sensors to allow customers to simply

add items to their cart like they usually would. The cart accounts all the items present in the

cart, displaying a list which includes their prices and subtotal. By the end of their item selection,

customers can check-out automatically without having to go through queues, solving the biggest

customer pain point pointed out by Capgemini (2020).

Looking to make grocery trips quicker? With the Amazon Dash Cart
you can skip the checkout line and roll out to your car when you are
done.

The Dash cart uses a combination of computer vision algorithms and
sensor fusion to help identify items placed in the cart - simply grab an
item, scan it on one of the Dash Cart cameras, and place it in the cart
like you normally would.
Amazon (2022)

2 https://instacart.com
3 https://www.amazon.com/fmc/m/30003175?almBrandId=QW1hem9uIEZyZXNo
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Figure 9 – Amazon Dash Cart

Source: Amazon (2022).

In addition to the item accounting capabilities, the user interface provided by the Cart

also allows customers to search for the location of items in the store and see more information

about them, improving the customer experience.

One of its particularities is that it requires the download and usage of an mobile phone

app for using the cart, something not required by Caper’s Cart.

As of October 2022, the Amazon Dash Cart is exclusively available at the Amazon Fresh

chain and therefore no commercial information regarding cost per unit is available.

1.2.3 Nextop

Founded in 1997, Nextop4 is a Brazilian company that develops products with a focus on

the grocery stores market, with an emphasis on loss prevention.

Their smart cart offering, shown in Figure 10, is the first deployed in Brazil and Latin

America according to the company and was initially rolled out to the Enxuto supermarket chain

in 2022 (TOTAL, 2022).

4 https://nextop.com.br
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Figure 10 – Smart Cart Nextop® deployed to a Brazilian supermarket

Source: Nextop (2022).

In contrast to the carts developed by Amazon and Caper, Nextop’s cart requires an ad-

ditional step of scanning the product using the integrated barcode reader, shown in Figure 11,

before adding it to the cart. With that, the Nextop advertises for a triple validation system, using

the cameras, sensors and the barcode scanner to prevent losses (NEXTOP, 2022).

Figure 11 – Smart Cart Nextop® user interface with a payment terminal

Source: Total (2022).

Although loss prevention is an important selling point for the Brazilian market, the usage

of the barcode scanner creates, in our opinion, a worse customer experience, becoming a mobile
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checkout station. Also, the product does not include additional features such as product location

search and item details.

Figure 12 shows an advertisement, in Portuguese, that lists the following benefits:

• Innovative supermarkets sell 20% more

• Loss prevention

• Triple validation

• Freedom and agility

• New self checkout using artificial intelligence

• No queues

Figure 12 – Smart Cart Nextop® promotional material targeting supermarket owners. It advertises
for improved sales, loss prevention and reduced queues.

Source: Nextop (2022).

Offering a solution to the main end user pain point of having to go through long queues,

the product also advertises increased sales as a result of the innovative approach and also

allows a deeper understanding of the customer journey by collecting analytical data (TOTAL,

2022).

We are offering our customers an innovative and unique shopping
experience within Enxuto

With the smart cart, we broke through this barrier and managed to
monitor the entire customer’s purchase circuit in the physical store.
We have moved from the identified ticket era to the end-to-end iden-
tified journey

Bruno Bragancini Junior, Chief Executive Officer (CEO) of the Enxuto
Group from Total (2022)
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According to Nextop’s CEO, Juliano Camargo, the company has already invested R$ 8,5

millions - about US$ 1,63 million on October 2022 - and 4 and half years of research and

development.

Each Smart Cart is estimated to cost around R$ 120,000 or around US$ 23,020 on

October 2022 (TOTAL, 2022).

1.3 Objectives

After presenting the problem domain and the current market scenario, in this section we

discuss the objectives of this work.

1.3.1 Main objective

Develop a prototype of a smart shopping cart that utilizes computer vision and sensor

data for product recognition.

1.3.2 Specific objectives

• Build a mechanical assembly for the prototype

• Develop an interactive user interface for the prototype

• Collect a product dataset for training a deep learning model

• Train a Deep Learning model capable of detecting target products

• Learn the practical challenges of developing a Deep Learning based product

• Understand the economic viability of such a project in the Brazilian context
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2 BACKGROUND

In this section, we’ll define in greater detail the theory behind some most relevant tech-

niques used in the development of the prototype.

This section can be skipped for readers with familiarity on the topics discussed.

2.1 Neural Networks

Neural Networks, or Artificial Neural Network (ANN), are networks built out of intercon-

nected decisional Neurons that aim to replicate the behavior of the human brain, enabling com-

putational systems to cluster data and to make predictions (IBM, 2020b).

A Neuron is similar to a Digital Logic Gate, which is capable of producing different out-

puts depending on the input signals that are sent to it. A Neuron has weights, which are the

coefficients that are used for calculating the outputs; and biases, which are the boundaries that

represent how prone is an output to fit into a specific category of output.

The main difference between a digital logic gate and a Neuron is that, because neurons

are parameterized with weights and biases, we can apply learning algorithms to tune (or train)

Networks of Neurons using real world or synthetic data (NIELSEN, 2015).

2.1.1 Neurons

One of the most popular types of Neurons is the Perceptron, introduced by Rosenblatt

(1958) and is shown in Figure 13. A perceptron takes one or more binary inputs and produces a

single binary output.

Figure 13 – The Perceptron Neuron

Source: Nielsen (2015).

A Neuron does not necessarily have binary inputs and outputs. In fact, contemporary

systems commonly use a different type of Neuron known as the Sigmoid Neuron, which take real

numbers as inputs and also produces continuous outputs within the boundaries of the sigmoid

curve, shown in Figure 14, instead of discrete zeroes and ones.
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This is particularly useful for learning, since in Perceptrons small differences in the

weights or biases could yield to different outputs without a full transparency on how close the

output would have been to a different one (NIELSEN, 2015).

Figure 14 – Sigmoid Function

Source: Nielsen (2015).

2.1.2 Learning Algorithms

There are three main types of learning algorithms: Supervised, Unsupervised and Re-

inforcement. Supervised learning is employed when you know what are your expected outputs

and use this information to feed (train) your models such that they can start doing that on their

own; Unsupervised learning is applied when you do not know what are the expected labels in

your data or you do not have them available; and Reinforcement learning is used when algo-

rithms need to replicate specific behaviors depending on the feedback that is provided to them

(COURSERA, 2022).

Supervised learning is typically employed for regression and classification tasks; Unsu-

pervised Learning is typically used for clustering raw data into different buckets without neces-

sarily knowing how to do it or having the labelled data available; and Reinforcement learning is

often applied in control systems. This work will primarily focus on Supervised Learning, since

our proposed project uses Object Detection and is trained based on labeled data samples.

As for the learning algorithms used for training Neural Networks, the standard algorithm is

the Stochastic Gradient Descent (SGD). Alike other gradient descent algorithms, the SGD aims

to minimize the loss function of a given Neural Network iteratively. In simple terms, it consists of

an iterative optimization algorithm defined by an objective function to minimize the error.

The key feature of the SGD is that it does that very efficiently by initializing the weights

and biases randomly and then fine tuning it during training by trying to find the higher descents

(or the higher derivatives of the error function), reducing the number of necessary iterations,

which is particularly important considering that the amount of data that is used to train AI models

has increased considerably over the last few years (PRICE et al., 2020).
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Finally, in terms of the way how the SGD is computed in Neural Networks, a widely

adopted approach for Supervised Learning is Backpropagation. Backpropagation computes the

gradients of the final layers of a Neural Network first, and the gradients of the first layers at

last, and it reuses partial computations of the gradient from a layer to the other to compute

each layer’s gradient, making it more efficient than calculating each layer’s gradient separately

(MCGONAGLE et al., 2022).

2.2 Deep Learning

Deep Learning defines a group of AI algorithms that use advanced learning techniques

on the top of ANNs to train models that allow systems to forecast and clusterize data efficiently

(IBM, 2020a). Deep Learning algorithms use Neural Networks that have three types of layers:

Input Layer, Hidden Layer and Output Layer, shown in Figure 15.

Figure 15 – Three Layered Neural Network

Source: Araki e Omatu (2015).

The Input Layer takes the input data that will be fed into the model for training, 𝑥𝑖, and

produces the weighting coefficients 𝑤𝑗𝑖. Input Layers typically have the role of encoding the input

data into a structure that can be processed by the subsequent hidden layers (PARANJAPE;

DUBEY; GOPALAN, 2020).

The 𝑤𝑗𝑖 coefficients are then used to feed the Hidden Layer of the network, which pro-

duces the weighting coefficients 𝑤𝑘𝑗 . The Hidden Layers of a Deep Learning Neural Network are

used for the heavy processing of the encoded input data by applying a series of mathematical

operations that ultimately makes it possible to break down the most important features of the

data and to produce comprehensive outputs to the decisional layers of the network (DEEPAI,

2022).
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2.2.1 Transfer Learning

Another key technique applied by developers when training Deep Learning models is

Transfer Learning. It consists of reusing pre-trained networks, which were tuned in other datasets

– usually big and somehow related to the one that you are going to run your inferences on – for

training custom models.

Transfer Learning works by freezing the weights and biases present in specific layers of

a pre-trained Network – usually being the hidden layers, which are the feature extractors – when

training customized models. This way, only some layers of the Network – usually the last layers,

which are the deciders – effectively have to be tuned.

The biggest advantages of Transfer Learning are that, because it allows for training only

specific layers of an architecture to get a custom model, the training process is much faster than

it would be if the whole network had to be retrained; and additionally less training data is required

for achieving a good performing model, since you reuse the work done on the previous training

(LI, 2022).

2.3 Object Detection

Images can be processed as number matrices by computers, where each number repre-

sents a pixel’s color level and each index points to a position in the image; therefore, we can use

collections of images as an input to train Deep Learning algorithms and perform classification

and object detection tasks on them.

Image Classification is a field of studies that is focused on labeling images as a whole;

Object Detection, on the other hand, focuses not only in classifying them, but also in identifying

the individual label’s coordinates within each image. For the purpose of our project and consid-

ering our proposed product’s specifications, we will focus on Object Detection, as it needs to be

able to recognize multiple objects within an image.

To feed supervised Deep Learning algorithms to detect multiple objects in an image, we

need to provide our AI Models with images that have one or more labels, the specification on

what labels are there, and their coordinates. To specify the coordinates of an object within an

image, we use Bounding Boxes, shown in Figure 16. The Bounding Box also describes the width

and height of the object.



30

Figure 16 – Bounding Boxes

Source: Amazon (2022a).

For our models to perform feature extraction and ultimately be able to classify each label

in an image and tell their positions, an important mathematical operation comes to play: the

Convolution. Deep Learning algorithms that use Convolutions in their backbones are typically

called Convolutional Neural Networks (CNN). These algorithms typically start by creating grid

cells, which are delimiters for groups of pixels, around the raw images for determining regions of

interest and breaking down concise representations of what are the elements within the image.

Convolutions are then applied from the original image against those grids to filter and reduce the

dimensionality of the original image and create feature maps (ZHAO et al., 2019).

These feature maps then typically go through the final convolutional stages to calculate

Kernels that allows for creating activation functions around the grid cells that contain each of the

objects within the pictures (JORDAN, 2018); and those activation functions allow us to determine

the Bounding Box coordinates, the confidence score of the inference and the labels of the image

themselves.

An example of that process is shown in Figure 17.
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Figure 17 – Activation Functions in Object Detection

Source: Jordan (2018).

Finally, a technique known as the Non-Maximum Suppression (NMS) is commonly used

to filter the regions of interest with the highest probability scores and ultimately get to a single

bounding box for each prediction. An example of the technique is shown in Figure 18.

In this sense, two important metrics used for evaluating Object Detection models are

the Intersection over Union (IoU), which measures the overlap between the predicted bounding

box and the actual bounding box, as shown in Equation 1; and the Average Precision (AP),

which measures the percentage of correct predictions made by the object detection model, as

shown in Equation 2, where True Positives indicates the number of correct predictions and

False Positives measures the number of incorrect predictions made by the model.

𝐼𝑜𝑈 =
Area of Overlap
Area of Union

= (1)

𝐴𝑃 =
True Positives

True Positives + False Positives
(2)
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Figure 18 – NMS Applied to Object Detection

Source: Jordan (2018).

2.4 Tensor Processing Unit

With the increased adoption of Deep Neural Networks (DNN) in various workloads and

their specialized and heavy compute nature, Google started the development of a domain spe-

cific architecture Domain Specific Architecture (DSA) which resulted in a first generation custom

chip, named Tensor Processing Unit Tensor Processing Unit (TPU), deployed to their data cen-

ters since 2015 (JOUPPI et al., 2018). The developed TPU had the target of improving the

inference phase of DNNs and achieved a performance improvement of 15-30 times when com-

pared to contemporary hardware of paired or reduced power consumption. A block diagram of

the TPU architecture is shown in Figure 19.
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Figure 19 – TPU block diagram. The main computation, matrix multiplication, is done by the yellow
units.

Source: Jouppi et al. (2018).

Since the first generation TPU described in Jouppi et al. (2018), Google has released the

TPU into commercials products made available to third parties. Most notably, the Google Coral1

initiative offers ready-to-use development boards that embedded TPU chips, allowing developers

to leverage the improved DNN performance in their applications.

The Coral Dev Board Micro, an example of those ready-to-use boards is shown in Figure

20.

Figure 20 – Coral Dev Board Micro. It includes a microphone, camera and the Coral Edge TPU in a
single board package.

Source: Coral.ai (2022).

2.5 Strain Gauge

For measuring weight, one of the most common transducers used is the strain gauge.

A strain gauge is a device whose measured electrical resistance varies with changes in its ap-

1 https://coral.ai
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plied force, as a consequence of the mechanical deformation (ŞTEFăNESCU, 2011). A typical

construction is shown in Figure 21.

Figure 21 – Typical Strain Gauge construction

Source: Corporation (2020).

In practice, however, the resistance variations observed after applying a mechanical

strain are minute and can be difficult to measure. To solve that issue, and to also provide a

signal which can be later used as the input of an Analog-to-Digital Converter, the Wheatstone

Bridge circuit, shown in Figure 22, can be used (CORPORATION, 2020).

Figure 22 – Wheatstone Bridge circuit using four strain gauges

Source: Corporation (2020).

When no load is applied, the bridge is balanced and the output voltage 𝑉𝑜𝑢𝑡 should be

zero. If any strain is applied to the gauges, the bridge will become unbalanced, and therefore will

result in a non-zero output voltage. Since the voltage variation tends to be small, in the order of

millivolts, signal amplification is usually required for pairing the bridge with commercially available

ADCs (HOROWITZ; HILL, 2015).

It can be shown that the relation between 𝑉𝑜𝑢𝑡 and 𝑉𝑖𝑛, 𝑆, shown on Figure 22, can be

calculated as (ŞTEFăNESCU, 2011):
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𝑆 =
𝑉𝑜𝑢𝑡

𝑉𝑖𝑛

= 𝑘
∆𝑙

𝑙
(3)

where 𝑘 is known as the gauge factor, related to the physical construction and materials of the

strain gauge, and Δ𝑙
𝑙

is the relative variation of length or strain.

With that, Equation 3 indicates that the output voltage 𝑉𝑜𝑢𝑡 will be linearly proportional to

the amount of strain applied, providing the desired sensing capability.

2.6 Load Cell

Using strain gauges directly can be difficult since a proper mechanical structure and

arrangement is crucial for the sensors to function properly. For that, commercially available Load

Cells offer ready to use mechanical packages that embed the strain gauges for weight sensing

using electronic circuits.

In general, they consist of a spring element onto which the gauges are placed. When

load is applied to the cell, the strain gauges will be stressed and therefore provide the desired

sensing (HBM, 2022).

An example of a commercial Load Cell is shown in Figure 23

Figure 23 – HBM Z6 commercial load cell

Source: HBM (2022).
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3 DEVELOPMENT

In this section, we describe the development of the zCart smart cart prototype. All the

source code related to the prototype is available at a GitHub repository1

3.1 Design

As a first step in developing our prototype, a set of high level goals was defined to guide

the initial technical design:

1. Handle user interactions and give visual feedback

2. Store the current set of products present in the cart and their respective information

3. Recognize the addition or removal of products, including quantities.

With those goals in mind, the high level architecture of the prototype was designed and

is shown in Figure 24.

For each goal, a dedicated software application will be used and those applications will

communicate using Transmission Control Protocol (TCP) network sockets (KUROSE; ROSS,

2013) with industry standard application protocols such as Hypertext Transfer Protocol (HTTP),

first defined in Request For Comments (RFC) 1945, and WebSocket, defined in RFC 6455. Most

of the HTTP communication will follow the widespread REST pattern (FIELDING, 2000).

1 https://github.com/fsmiamoto/zcart
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Figure 24 – High level architecture of zCart

Source: Own work (2022).

For handling the first goal, the User App will request data from other applications and

will display the information to end users and allow them to interact with the cart using a touch

enabled LCD display.

The Cart Service will be in charge of the second goal, handling requests from the User

App, which asks for data on the products that are detected and notifies the completion of a

purchase order when the user completes the checkout. The Cart Service uses a relational

database (SILBERSCHATZ; FORTH; SUDARSHAN, 2010) as its primary database. Namely

SQLite, considered to be the world’s most deployed database due to its massive adoption on

mobile devices2. The simplicity of SQLite, the entire database is contained within a single file,

great library support on common programming languages and the use of the familiar relational

modeling, including Structured Query Language (SQL) (NIELD, 2016), were key factors in choos-

ing it.

In order to provide real time updates to the User App, the Cart Service has a WebSocket

API endpoint that allows the User App to listen to updates such as a product addition and then

display a notification to the end user.

For the third goal, the Product Recognizer application will be responsible for processing

a camera feed and weight sensor data to be able to tell if any products were added of removed

from the cart. Any detected changes will be communicated to the Cart Service, which will be

responsible for persisting those changes on the database.

2 https://www.sqlite.org/mostdeployed.html
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All three applications will execute under a Linux (TANENBAUM; BOS, 2015) based envi-

ronment on a Raspberry Pi3 4 Single Board Computer (SBC) - a complete computer built on a

single circuit board with a microprocessor, memory and input/output devices.

The advantages of using a Linux environment for the development are many, but being

able to leverage its concurrency capabilities, having built-in drivers for readily available hardware

and leveraging open source projects are some worth mentioning.

An End-to-End sequence diagram of an example action is shown in Figure 25.

Figure 25 – End-to-end sequence diagram for a product addition

Source: Own work (2022).

3.1.1 Architectural Guidelines

In creating the zCart architecture, the following guidelines were followed:

• Create a separate software application for each goal domain

• Use well defined standards for communication between applications.

• All databases should be owned by a single application.

• Any interaction that requires an update to a given database that is not owned by an

application should be done through an API and not directly on the database.

• Decouple the user interface from how the data displayed is stored and transmitted

3 https://www.raspberrypi.com
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These guideline are based on known best practices from the software development in-

dustry including API-first design and segregation of responsibilities (NEWMAN, 2021; KONG,

2022), which are key for future architectural evolution.

In the next sections, each application will be discussed in further detail.

3.2 User App

For developing the User App, we have used web technologies such as HTML, CSS

(DUCKETT, 2011) and JavaScript (FLANAGAN, 2020) using the React4 framework.

Using web-based technologies allows the User App to be displayed on any device capa-

ble of running a web browser; and having mature tooling for development, testing and debugging

are important factors that influenced our decision.

As an alternative, developing Linux native graphical applications through toolkits such as

GTK5 and Qt6 might have yielded better performance but our unfamiliarity with those would be a

challenge.

Figure 26 – User App Interface displaying a single product

Source: Own work (2022).

As shown in Figure 26, the main objective of the User App is to provide a visual feedback

mechanism for end users of the zCart. It displays the current products added to the cart, their

amounts and also the price for each item. The subtotal price for all products added to the cart

is calculated and also displayed on the interface. Notifications are also displayed when the user

adds or removes a product from the cart.

Finally, the User App provides a Checkout button to simulate the payment process and

act as a Proof-of-Concept (PoC), since a functional implementation of a payment mechanism is

out of scope for our prototype.
4 htps://reactjs.org
5 https://gtk.org
6 https://qt.io
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More screenshots showing the user experience are available in Appendix A.

In terms of the data flow, the User App requests all data from the Cart Service, which

exposes API endpoints for getting the list of products of a given cart, establishing a WebSocket

connection for notifications and performing the PoC checkout. Figure 27 displays the endpoints

of the Cart Service used by User App.

Figure 27 – User App and Cart Service interactions

Source: Own work (2022).

3.3 Cart Service

As described in Section 3.1, the Cart Service will act as a centralized storage of the

overall state of the cart.

For that, it will responsible for managing the SQLite database and exposing API endpoints

for the required state changes e.g. adding a product, as shown in Figure 28.

Figure 28 – Cart Service architecture. The database is contained withing the Cart Service bound-
ary and it is not exposed in the public APIs

Source: Own work (2022).
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Source Code 1 – Example response for the GET /cart/:cartId endpoint using JSON

1 {
2 " i d " : " 1 " ,
3 " products " : [
4 {
5 " c a r t _ i d " : " 1 " ,
6 " produc t_ id " : " 1 " ,
7 " q u a n t i t y " : 11 ,
8 " product " : {
9 " i d " : " 1 " ,

10 "name " : "Coca Cola " ,
11 " d e s c r i p t i o n " : n u l l ,
12 " p r i ce " : 5 .99 ,
13 " image_ur l " : " h t t ps : / / zcar t − tes t −images . s3 . amazonaws . com/ coca2l . png "
14 }
15 } ,
16 ]
17 }

Source: Own work (2022).

For the HTTP endpoints, the application uses the REST (FIELDING, 2000) pattern with

JavaScript Object Notation (JSON)7 as the data-interchange format, both being widely employed

in the software industry. Table 1 displays all the API endpoints created.

Table 1 – Cart Service API Endpoints.
HTTP Method URI Description

GET /cart/:cartId Get the cart data with the product listing
POST /cart/:cartId/products Add or remove a product from the cart
POST /cart/:cartId/checkout Perform checkout, emptying the cart

Source: Own work (2022).

An example response of the GET /cart/:cartId endpoint is shown in Source Code

1.

For implementing the Cart Service, the Go8 programming language was used alongside

the Fiber9 framework, which provides great support for the creation of a HTTP Server and also

handling the WebSocket connections.

One of the advantages of the Go language is the use of statically compiled native bi-

naries, which allows running the application without the need to install any additional operating

system libraries on the Linux environment.

7 https://json.org
8 https://go.dev
9 https://gofiber.io/
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3.4 Product Recognizer

At the core of the zCart prototype is the Product Recognizer application, responsible for

the product detection based on computer vision and weight sensing.

For achieving its goal, the Product Recognizer has three main components, as shown in

Figure 29.

Figure 29 – Product Recognizer Components. Detected events will be communicated to the Cart
Service for persistence

Source: Own work (2022).

Each of these components will be described in more detail in the next subsections.

3.4.1 Weight Sensor

For the Weight Sensor, we’ve used two main hardware components, shown on Figure

31:

• A 10 Kilogram Load Cell

• HX711 Integrated Circuit

The HX711 is a 24-bit Analog-to-Digital Converter (ADC) capable of outputting data in a

serial interface (AVIA, 2022).

It has two channels for analog input with channel A having programmable gains of 128 or

64 and can function using both 3.3V and 5V standard digital voltage levels. The pinout is shown

in Figure 30.

One of its advantages is is that there’s no need to program internal registers, all controls

to the chip are through its pins. Additionally, it consumes only 1,5 mA under normal operation

and has an on-chip power supply for the connected load cell, making it a great choice for our

prototype.
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Figure 30 – HX711 Pinout for the SOP-16L package

Source: Avia (2022).

Figure 31 – HX711 breakout board and load cell

Source: Own work (2022).

The HX711 integrated circuit comes in a breakout board, shown in Figure 31, that con-

tains the necessary passive components and includes the pin headers for connecting with other

boards. The typical application circuit of the HX711 integrated circuit is shown in Figure 32.
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Figure 32 – Typical HX711 circuit

Source: Ross, Baji e Barnett (2019).

The Raspberry Pi board was connected to the HX711 through its GPIO pins, allowing it

to obtain the sensor readings through the serial interface. The protocol used does not follow any

known standard and can be described as a Non-I2C compliant two-wire protocol10.

An open-source driver implementation was used11, which included all the necessary fea-

tures for the prototype.

As shown on Figure 33, the load cell requires a minimal mechanical assembly to be

tested properly, and for that two small wood plates were used to secure the load cell and breakout

board during development.

10 https://github.com/queuetue/Q2-HX711-Arduino-Library
11 https://github.com/tatobari/hx711py
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Figure 33 – Assembly used during development, including the Raspberry Pi, HX711 and load cell
assembly

Source: Own work (2022).

3.4.2 Camera

In order to obtain a video feed to run object detection on, a camera system was required.

For that, a standard consumer webcam was used for its reduced cost and good operating system

driver support.

The webcam used was a Microsoft LifeCam Cinema12, shown in Figure 34, capable of

capturing video in 720p up to 30 Frames Per Second (FPS), more than enough for our prototyp-

ing requirements.

Figure 34 – Microsoft LifeCam Cinema Webcam used

Source: Own work (2022).

12 https://www.microsoft.com/pt-BR/accessories/products/webcams/lifecam-cinema
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3.4.3 Application

Developed in the Python13 programming language, the Product Recognizer application

will provide the compute capabilities to apply our business logic for processing the video feed

provided by the camera and the readings from the weight sensor.

The Python language was chosen for its vast tooling for working with computer vision,

sensors and interacting with the Raspberry Pi’s built-in devices. The language has also became

a lingua franca in the Machine Learning and Data Science community as shown by volume of

publications using it in the last decade (MCKINNEY, 2017; GRUS, 2019; MUELLER; GUIDO,

2016).

The Product Recognizer application also uses a multi-threaded design to allow concur-

rent processing, an important factor when considering the amount Input/Output (I/O) operations

performed.

Since Python’s threading implementation does not allow for multiple threads to execute

in parallel – i.e. at the same time – a multi-process design could take better advantage of the

four available processing cores in the Raspberry Pi CPU but that path was not explored and will

be left for future iterations.

The three threads created are described below:

• Frame Reader Thread: Responsible for reading frames from the Camera and making

them available to the Main Thread.

• Main Thread: Responsible for bootstraping the application - including creating the other

threads - and executing the main loop of object detection.

• Product Recognizer Thread: Responsible for applying the business logic using the ob-

jects detected and the weight sensor readings.

These threads communicate in synchronous and asynchronous means to achieve the

overall goal of processing video and sensor data, as shown on Figure 35.

13 https://python.org



47

Source Code 2 – Loop of the Main Thread. Some details were ommitted for the sake of brevity

1 while True :
2 t ry :
3 # Get frame from camera , prov ided by Frame Reader thread
4 frame = stream . read_frame ( )
5
6 # Preprocess and run ob jec t de tec t i on
7 input = preprocessor . process ( frame )
8 de tec to r . i n f e r ( input )
9

10 # F i l t e r ob jec ts by t h e i r c lass and conf idence th resho ld
11 ob jec ts = de tec to r . ge t_ob jec ts ( )
12 f i l t e r e d _ o b j e c t s = o b j e c t _ f i l t e r . f i l t e r ( ob jec ts )
13
14 # Add f i l t e r e d ob jec ts to the queue
15 frame_objects_queue . put ( f i l t e r e d _ o b j e c t s )

Source: Own work (2022).

Figure 35 – Thread communication for the Product Recognizer Application

Source: Own work (2022).

As shown on Source Code 2 and in Figure 35, the Main thread will do the computational

work to fetch the frames from the camera that were read by the Frame Reader thread, pre-

process and run the object detection model in it. The objects are then filtered and then added

to a message queue that will be used by the Product Recognizer thread to apply our product

detection rules.

3.4.4 Product Recognizer Thread

The Product Recognizer Thread is responsible for applying the main business logic of

detecting the addition and removal of products by leveraging the objects detected in the frame

and the readings provided by the weight sensor.
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The thread will execute an infinite loop to constantly observe the objects detected in the

frame and the weight readings to detect product additions and removals.

It uses two main variables to keep track of the current state:

• A dictionary of which products are present in the cart and their count.

• The weight associated with the products present in the cart.

The first important step in the thread’s logic is the Frame Diff. This step calculates the

difference in terms of the objects detected in the current and previous frames (e.g. whether

objects were added, removed, or remain the same) and store it in a dictionary data structure14,

by comparing the stored product dictionary and the received list of frame objects from the Main

Thread.

Figure 36 – Illustration of the frame diff’ing scheme. A can was added on frame 𝑛+1 and therefore
will generate a diff of one can. If the reading from the weight sensor matches the
expected one, the product will be added to the cart.

Source: Own work (2022).

Given the frame object diff, it is then possible to calculate an expected weight change

based on the weight of each item - and their quantity - contained in the diff. The expected weight

difference is then compared to the actual one obtained from the weight sensor, considering a

configurable tolerance.

In this scenario, the weight readings are used as a filter and act as a commit step for

differences detected in the frame objects. This way, objects are not added or removed from the

cart simply by appearing or disappearing from the frame.

In the example show in Figure 36, if the illustrated can weights an expected 400 grams,

the weight difference expected should be close to 400 grams. If the weight difference does not

match the expected one, the object will not be considered for addition or removal.

14 https://docs.python.org/3/tutorial/datastructures.html#dictionaries
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A more detailed activity diagram of the logic executed in the Product Recognizer thread

loop is shown in Figure 37.

Figure 37 – Activity diagram for the Product Recognizer thread

Source: Own work (2022).

3.4.5 Object Detection Model

The code used to train our Object Detection models was made available in GitHub, in our

Project’s Repository 15. It can be used for reference and for performing a further deep dive into

this section.

Five products were chosen for the purpose of setting up and demonstrating the Object

Recognition capability of our product: a Blue Pens Packet; a Card Deck; a Coke Can; a Guarana

Soda Can; and a Post It Pack. The data used for training our custom Object Detection model

was collected and labelled by us using Edge Impulse16, a development platform for Machine
15 https://github.com/fsmiamoto/zcart/blob/master/product_recognizer/model/notebooks/
16 https://www.edgeimpulse.com/
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Source Code 3 – Product Recognizer thread logic

1 ob jec ts = s e l f . queue . get_nowai t ( )
2
3 # Preprocessing step j u s t to format data
4 cur ren t_ f rame_ob jec ts = s e l f . _ _ b u i l d _ o b j e c t _ d i c t ( ob jec ts )
5
6 # Ca lcu la te the frame d i f f using the l a s t and cu r ren t frame ob jec ts
7 f r a m e _ d i f f = s e l f . __ge t_ f rame_d i f f (
8 cur rent_ f rame_objec ts , s e l f . l as t_ f rame_ob jec ts
9 )

10
11 i f len ( f r a m e _ d i f f ) == 0:
12 s e l f . log . i n f o ( " empty d i f f " )
13 continue
14
15 # Get cu r ren t weight reading
16 weight_reading = s e l f . weight_sensor . get_reading ( samples =5)
17
18 for l abe l , count in f r a m e _ d i f f . i tems ( ) :
19 i f not s e l f . __va l i d_we igh t_d i f f e rence ( labe l , count , weight_reading ) :
20 s e l f . log . i n f o ( " ignor ing , not v a l i d weight d i f f e r e n c e " )
21 continue
22
23 # Send request to c a r t se rv i ce
24 s e l f . _ _ c a l l _ c a r t _ s e r v i c e ( labe l , count )
25
26 # Update s tored s ta te
27 s e l f . l as t_we igh t_ read ing = weight_reading
28 s e l f . l as t_ f rame_ob jec ts [ l a b e l ] = cur ren t_ f rame_ob jec ts [ l a b e l ]
29 i f s e l f . l as t_ f rame_ob jec ts [ l a b e l ] == 0:
30 del s e l f . l as t_ f rame_ob jec ts [ l a b e l ]

Source: Own work (2022).

Learning on Edge devices. A total of 1000 photos were taken using the Data Collection feature

of the Edge Impulse Studio, shown in Figure 38, using the same webcam that is used for the

inference in our final product. Our photos included images showing each one of the products in

different scenarios and positions, and also images where more than one product was present.
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Figure 38 – Collecting Data in Edge Impulse

Source: Edge Impulse (2022).

The pictures were then were labeled using the Labeling Queue17 feature of Edge Impulse,

which allowed us to draw Bounding Boxes around the desired objects for detection, as shown in

Figure 39.

Figure 39 – Labeling Queue in Edge Impulse

Source: Edge Impulse (2022).

The raw pictures and bounding boxes were then exported from Edge Impulse such that

we could pre-process the data and model our custom object detection algorithm using the Python

programming language. The pictures were exported in their raw JPEG18 file format, comprised

17 https://docs.edgeimpulse.com/docs/edge-impulse-studio/data-acquisition/labeling-queue
18 Defined in ISO/IEC 10918
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Source Code 4 – Bounding boxes coordinates file exported from Edge Impulse

1 {
2 " vers ion " : 1 ,
3 " type " : " bounding −box− l a b e l s " ,
4 " boundingBoxes " : {
5 " im1 . jpg " : [
6 {
7 " l a b e l " : " blue_pens " ,
8 " x " : 120 ,
9 " y " : 265 ,

10 " width " : 172 ,
11 " he igh t " : 207
12 } ,
13 {
14 " l a b e l " : " card_deck " ,
15 " x " : 285 ,
16 " y " : 120 ,
17 " width " : 136 ,
18 " he igh t " : 247
19 }
20 ] ,
21 " im2 . jpg " : [
22 ( . . . )
23 ]
24 }
25 }

Source: Own work (2022).

in a ZIP folder. The bounding boxes were exported in the format of a JSON file containing the

coordinates for the boundaries and the metrics for each picture, allowing us to easily reconstruct

the bounding boxes for each object in each image using programming instructions. The files

were then loaded to a Cloud Object Storage Bucket in AWS 19, making it easier for us to access

the data by importing it from the web using any programming language.

Source Code 4 shows a section of an example JSON file containing the bounding boxes.

The development environment used for writing the code for training our custom model

was Google Colab20, and the programming language of choice was Python. Google Colab con-

sists on a web-based interface, shown in Figure 40, that allows developers to use Google’s

infrastructure (with GPUs and TPUs) for writing and executing code.

19 https://aws.amazon.com/
20 https://colab.research.google.com/
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Figure 40 – Google Colab - Overview of Colaboratory Features

Source: Google21 (2022).

The Edge Impulse files were loaded from our cloud object storage bucket, and then

manipulated in Python from Google Collab such that we could utilize the images and bounding

box coordinates for training our model.

We decided to use Google’s TensorFlow22 framework to train our models, as it is one of

the most popular frameworks employed in the Industry for training AI models and also because it

features a lightweight library called TensorFlow Lite23, which is appropriate for creating efficient

edge and mobile AI models considering the typical hardware constraints from these types of

devices.

To train our model, we used the TensorFlow Lite’s ModelMaker API24 for Object Detection,

which simplifies the process of training our models by breaking down the most complex concepts

of deep learning into parameterized objects and methods, allowing us to spend more time on the

pre-processing steps and on experimenting with different network configurations to improve the

model’s accuracy.

As of writing this work, the ModelMaker API only has compatibility with the EfficientDet

family of architectures (TAN; PANG; LE, 2020) for training Deep Learning models for Object

Detection. The EfficientDet family is efficient for object recognition in edge devices, altough con-

temporany architectures, such as the YOLOv5 and its successors, can have better performance,

as shown in Figure 41.

22 https://www.tensorflow.org/
23 https://www.tensorflow.org/lite
24 https://www.tensorflow.org/lite/models/modify/model_maker
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Figure 41 – YOLOv5 vs EfficientDet - Performance Comparison

Source: YOLOv5 Release Notes25 (2022).

Our initial plan was to use the YOLOv5 architecture, but since its implementation is not

native to TensorFlow Lite, it would require us to create additional wrappers around the outputs

of the YOLOv5 network to get it working as expected. Even thought it is possible to convert

the models from their original PyTorch26 format to a TensorFlow Lite format, the conversion

does not cover some of the features from the original implementation27, which limits its direct

functionality. Similar compatibility issues happen with the latest YOLO implementations, such

as the YOLOv728. Thus, we have decided to proceed with the TensorFlow Lite’s Model Maker

API compatible architectures – namely the EfficientDet family – since it would have taken a

considerable time to troubleshoot conversion defects from the YOLO architecture and all that

work would not bring any additional value to our prototype.

Since our original images were saved in the 640x480 resolution and the expected input

of the EfficientDet network is of 320x320 px, two pre-processing approaches were tried out

for the training dataset: resizing and cropping the images. The bounding box coordinates and

dimensions were also adjusted accordingly such that the data integrity was preserved. Figure 42

illustrates both of the approaches used.

26 https://pytorch.org/
27 https://github.com/ultralytics/yolov5/issues/1981
28 https://medium.com/geekculture/journey-putting-yolo-v7-model-into-tensorflow-lite-object-detection-

api-model-running-on-android-e3f746a02fc4
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Source Code 5 – CSV format for specifying the Train, Test and Validation image sets for training
models using the TensorFlow’s Model Maker API for Object Detection

1 Template :
2 set , path , labe l , x_min , y_min , , , x_max , y_max , ,
3 set , path , labe l , x_min , y_min , x_max , y_min , x_max , y_max , x_min , y_max
4
5 Examples :
6 TEST , . / images_path / im3 . png , 0 . 5 , 0 . 6 , , , 0 . 2 , 0 . 9 , ,
7 VALIDATION , . / images_path / im4 . png , coke_soda , 0 . 3 , 0 . 4 , , , 0 . 4 , 0 . 8 , ,
8 TRAIN , . / images_path / im5 . png , guarana_soda , 0 . 3 , 0 . 3 , 0 . 8 , 0 . 8 , 1 . 0 , 0 . 9 , 0 . 1 , 1 . 0
9 TRAIN , . / images_path / im5 . png , p os t _ i t , 0 . 3 , 0 . 1 , , , 0 . 3 , 0 . 4 , ,

Source: Own work (2022).

Figure 42 – Image Preprocessing Strategies

Source: Own work (2022).

Once the images and bounding boxes were pre-processed, the images were split into

Train, Validation and Test sets; and saved in the standardized format required by the TensorFlow

Lite’s Model Maker for Object Detection API for training, which consists of a Comma Separated

Values Comma Separated Values (CSV) file with the structure shown in Source Code 5.

Approximately 70% of the photos shot were moved to the Train set, which is the set used

for effectively tuning the weights and biases of the custom models; About 21% were moved to

the Validation set, being used to understand our model’s performance under different training

scenarios and steps; and the rest was used for testing the custom model after it was trained,

which allowed us to get unbiased metrics on how it would approximately perform in real life

(WILBER; WERNESS, 2022).
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Table 2 describes the data sets created for training and evaluation in greater detail.

Table 2 – Image Sets Created for Training, Validation and Testing
Class Number of Pictures Pictures in the Train Set Pictures in the Validation Set Pictures in the Test Set

Blue Pens Packet 293 206 61 26
Card Deck 306 215 64 27
Coke Can 276 194 58 24

Guarana Soda Can 283 199 59 25
Post It Pack 273 192 57 24

Source: Own work (2022).

Finally, we defined a programming loop to train different models using the EfficientDet-

D0, EfficientDet-D1, EfficientDet-D2, EfficientDet-D3 and EfficientDet-D4 architectures; both by

applying Transfer Learning on the top of pre-trained weights from training with the COCO-2017

dataset 29 and by training the entire networks based in our custom data.

We ran this entire loop using the cropped images first; and then executed it using resized

images with the EfficientDet-D0, EfficientDet-D1 and EfficientDet-D2 architectures too, as they

were the ones who offered better performance balance considering our hardware constraints.

With that, we came to have 16 distinct custom models for experimenting, as shown in Table 3.

Table 3 – Models Trained
Model Image Pre-Processing Strategy Architecture Whole Trained/Transfer Learning

1 Cropping EfficientDet-D0 Whole Trained
2 Cropping EfficientDet-D1 Whole Trained
3 Cropping EfficientDet-D2 Whole Trained
4 Cropping EfficientDet-D3 Whole Trained
5 Cropping EfficientDet-D4 Whole Trained
6 Cropping EfficientDet-D0 Transfer Learning on COCO-2017
7 Cropping EfficientDet-D1 Transfer Learning on COCO-2017
8 Cropping EfficientDet-D2 Transfer Learning on COCO-2017
9 Cropping EfficientDet-D3 Transfer Learning on COCO-2017

10 Cropping EfficientDet-D4 Transfer Learning on COCO-2017
11 Cropping EfficientDet-D0 Whole Trained
12 Cropping EfficientDet-D1 Whole Trained
13 Resizing EfficientDet-D2 Whole Trained
14 Resizing EfficientDet-D0 Transfer Learning on COCO-2017
15 Resizing EfficientDet-D1 Transfer Learning on COCO-2017
16 Resizing EfficientDet-D2 Transfer Learning on COCO-2017

Source: Own work (2022).

3.5 Mechanical Assembly

A foldable utility cart was selected as a core component with two additional wood plates,

used for creating a false bottom shown in Figure 45. Between the plates, the load cell and

Raspberry Pi board were secured in place using bolts, screws and velcro.
29 https://cocodataset.org/#home
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Figures 43 and 44 show an overview of the structure built.

Figure 43 – Overall mechanical assembly including the LCD and Camera

Source: Own work (2022).

Figure 44 – Top view of the assembly showing the false bottom

Source: Own work (2022).
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Considering the objectives of the prototype, the shape of the mechanical housing was

not considered to be of great relevance and using a real supermarket cart would have been

impractical considering its size and cost. Still, we wanted to keep a shape that would represent

the overall idea of a smart cart.

Figure 45 – False bottom structure with the load cell and Raspberry Pi board in between

Source: Own work (2022).

Additional photos of the prototype can be seen on Appendix B.
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4 RESULTS

4.1 Model Accuracy

The most lightweight models were the preferred ones considering our edge device capa-

bilities, as they offer better inference time performance. However, we were also looking for the

most optimal accuracy and loss metrics, therefore the models were evaluated with test images,

which were never introduced to the models during training, to make sure that they were efficient

on the what they are ultimately supposed to do, which is to detect products.

Figures 46, 47, 48 and 49 show examples of Single and Multi label classification.

Figure 46 – Single-Label Classification Example 1

Source: Own work (2022).

Figure 47 – Single-Label Classification Example 2

Source: Own work (2022).
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Figure 48 – Multi-Label Classification Example 1

Source: Own work (2022).

Figure 49 – Multi-Label Classification Example 2

Source: Own work (2022).

The accuracy metrics were also inferred in our Test data set by using the TensorFlow

Lite’s Object Detector evaluate method1 for all different model configurations that were applied.

The main evaluation metrics for the models considered for our product, which were the ones

based in the EfficientDet-D0, D1 and D2 architectures – as the D3 and D4 architectures were

too computationally expensive for our device – are listed in Table 4.

The numbers exhibited in the table consist of the classification AP , which measures the

percentage of correctly labeled predictions amongst all predictions; the AP with an IoU of 50%,

which means that there is at least 50% of overlap between the predicted and the actual bounding

1 https://www.tensorflow.org/lite/api_docs/python/tflite_model_maker/object_detector/ObjectDetec-
tor#evaluate
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boxes; the AP with an IoU of 75%; and the individual classification APs for each label that was

forecasted.

Table 4 – Test Evaluation Metrics for the Different Strategies and Models Applied for Inference
Architecture Preprocessing Strategy Training Strategy AP AP 50 IoU AP 75 IoU AP (post_it) AP (guarana) AP (coke) AP (card_deck) AP (blue_pens)
EfficientdetD0 Resizing Transfer Learning 0.527 0.700 0.644 0.521 0.443 0.685 0.490 0.497
EfficientdetD1 Resizing Transfer Learning 0.623 0.786 0.740 0.409 0.639 0.812 0.670 0.588
EfficientdetD2 Resizing Transfer Learning 0.653 0.799 0.774 0.587 0.659 0.825 0.669 0.524
EfficientdetD0 Resizing Whole 0.813 0.978 0.906 0.752 0.765 0.891 0.921 0.736
EfficientdetD1 Resizing Whole 0.802 0.939 0.875 0.719 0.675 0.903 0.928 0.785
EfficientdetD2 Resizing Whole 0.826 0.967 0.922 0.763 0.776 0.910 0.895 0.784
EfficientdetD0 Cropping Transfer Learning 0.490 0.668 0.592 0.357 0.422 0.595 0.633 0.443
EfficientdetD1 Cropping Transfer Learning 0.580 0.730 0.686 0.312 0.605 0.716 0.736 0.531
EfficientdetD2 Cropping Transfer Learning 0.562 0.722 0.699 0.463 0.569 0.576 0.661 0.539
EfficientdetD0 Cropping Whole 0.832 0.954 0.934 0.869 0.854 0.717 0.922 0.800
EfficientdetD1 Cropping Whole 0.792 0.897 0.880 0.823 0.763 0.586 0.933 0.852
EfficientdetD2 Cropping Whole 0.803 0.923 0.893 0.795 0.808 0.631 0.941 0.840

Source: Own work (2022).

We could clearly see that, while the Transfer Learning models were much faster to train,

in our particular case, the Whole-trained models outperformed them. This could be due to the

fact that our pictures and objects are different from the ones that are present in the COCO-2017

dataset; or because a custom feature extractor- with custom hidden layer weights and biases-

could have better performance with our pictures. In terms of the architectures, as expected, the

D2 architecture offered more robust results, specially amongst the models that applied resizing

as a preprocessing strategy.

We could not see much superior metrics for the models that used cropping for the images

preprocessing, and that might be because most of the bounding boxes ended up being cropped

as well and, with that, we lost a portion of valuable label data. Altough the EfficientDet-D0 model

that was Whole-Trained with Cropped images had a comparable performance in our Test Data

evaluation, considering the end-to-end usability tests that we executed with the assembled pro-

totype and the overall better performance presented by the D2 architecture, as shown in figure

41, we selected the EfficientDet-D2 model that was Whole-Trained with Resized images as our

champion model.

The loss (error) metrics during training were also computed for our Train and Validation

sets during the 200 epochs that were used for training our models using batches of 16 images,

for all different settings that were employed to train them. We can clearly state that the model

showed significant improvement as the epochs progressed, and maybe more epochs would even

have brought greater performance, as the weights would have been even more fine-tuned. The

trade-off, though, is that it would have taken more time and computer power to train the models.

In Figures 50, 51 and 52, you can find the Classification Loss chart for our three top mod-

els of choice, which were the EfficientDet-D0, D1 and D2, whole-trained and that used resizing

as a preprocessing strategy.
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Figure 50 – Loss Chart for the EfficientDet-D0 Network

Source: Own work (2022).

Figure 51 – Loss Chart for the EfficientDet-D1 Network

Source: Own work (2022).
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Figure 52 – Loss Chart for the EfficientDet-D2 Network

Source: Own work (2022).

Note that those spikes in the loss values are probably due to the batch size, as it could

be that in specific batches of 16 images the model was not fully prepared to predict the labels in

those images. Using a larger batch would likely solve it, however it would also take more RAM

memory consumption.

Finally, to improve inference time performance, we also compiled our TensorFlow Lite

models for usage with an Edge TPU, which further reduced our inference times.

Table 5 – Inference Performance Metrics with and without the TPU
Model FPS without the TPU FPS using the TPU CPU Ops using the TPU TPU Ops using the TPU

Efficientdet-D0 Whole-Trained on Resized Images 3.69 6.87 3 264
Efficientdet-D1 Whole-Trained on Resized Images 2.09 5.14 131 191
Efficientdet-D2 Whole-Trained on Resized Images 1.36 3.50 131 226

Source: Own work (2022).

Figure 53 displays an example frame from the camera feed displaying the current FPS

count.

Figure 53 – Frame from camera feed with FPS count

Source: Own work (2022).
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The inference speed has thoroughly improved - about 50% on average - resulting in

a greater capability to process more Frames Per Second. When we look at the number of CPU

and TPU Operations, though, what we would expect when using the TPU is that most Operations

happen on the TPU side, however this behavior could only be seen in the EfficientDet-D0 model.

Part of it is because the EfficientDet-D0 model has a simpler architecture, but it could also be

due to the conversion of the model for usage with the TPU or to the limited capacity of the TPU

device that was used. For instance, Google suggests using two TPU cores for the EfficientDet-D2

model2, because the tensors are too large to fit in the chip’s memory.

Overall, after considering the tradeoff between precision and performance, we have de-

cided to use the EfficientDet-D2 model since its performance when paired with the Coral TPU

was more than enough for our purposes (around 4 FPS) and had the best precision, improving

the overall experience of the prototype.

4.2 Power Consumption

For estimating the overall power consumption, a commercial wattmeter was used to ob-

serve the total power required by the power adapter used, as shown in Figure 54.

Figure 54 – Power consumption measurement using a wattmeter

Source: Own work (2022).

2 https://www.tensorflow.org/lite/models/modify/model_maker/object_detection
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During our tests, we have observed an average consumption of 10,4W when running the

all the software and hardware components of the prototype through an external power adapter.

The tests were performed on a 220V power line using the following equipment:

• Sinotimer DDS108 Digital Wattmeter

• Baseus Quick Charger GaN 65W

Since both of these products do not have detailed accuracy and efficiency data available,

we estimate an overall 10% margin of error considering their construction (CHEN et al., 2017).

With that, we can assume that the actual power draw is between 9,4W and 11,4W. Con-

sidering a desired battery life of 24 hours, it would require a battery of about 240 Wh, which can

be found commercially and would not impose a insurmountable practical barrier.

4.3 Cost

One of the important aspects when developing a marketable product is its cost.

A more detailed overview of the items and their costs is shown on Table 6.

Table 6 – Items used on the prototype and their retail cost in October 2022
Item Quantity Cost per item (BRL/USD)

Raspberry Pi 4 8GB Board 1 R$ 1072,40 / US$ 201,94
Coral Edge TPU 1 R$ 318,51 / US$ 59,99

HX711 with breakout board 1 R$ 2,55 / US$ 0,48
10Kg Load Cell 1 R$ 6,89 / US$ 1,30

MDF Board 2 R$ 10,00 / US$ 1,89
Mounting hardware (screws, bolts and nuts) 1 R$ 5,00 / US$ 0,94

Foldable utility cart 1 R$ 125,00 / US$ 23,60
Webcam 1 R$ 100,00 / US$ 18,88

Total cost R$ 1650,35 / US$ 310,91

Source: Own work (2022).

Of course, the developed prototype does not include all the necessary hardware and

software structure to deliver a successful product, but still it might show that at a fundamental

level, the cost of such a solution might not reach the costs that current smart carts in the market

sell for3.

Therefore, it might be possible to conclude that most of the retail cost of the existing

smart carts is not composed of the production and infrastructure costs but from the required

repayment of the research and development costs that such a product demand.

3 The Nextop cart shown on the introduction currently retails for R$ 120.000
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4.4 Challenges and future work

As one of the expected outcomes of our work, we have been able to identify several prac-

tical challenges that would need to be worked on for a marketable product and will be discussed

in the next sections.

4.4.1 Extending the model for new products

In a supermarket use case, we expect that products will need to be added or removed

from detection model on a regular basis. That becomes a challenge when we consider the

amount of data necessary to train the model used in the developed prototype.

Considering that, an important next step on the development would be to work on a model

that can be easily extend to support new products without requiring too much computational

power for retraining.

4.4.2 Deploying updates

Considering the compute locality of the detection model used in the prototype, which is

the board embedded in the cart, deploying updates to the model to it might become a challenge.

Changing the compute locality to a Cloud infrastructure (AWS, 2022) might allow for

easier deployment for updates but that comes with a trade off in terms of latency, since networks

calls would be required, and that can become detrimental in such a real-time based product.

Investigating that trade off or even developing a solution for easy deployment of model

updates is another import development to be worked in the future.

4.4.3 Batteries and charging

Another challenge identified for creating a viable product is to develop and energy effi-

cient solution that is capable of running on a reasonable battery for at least an entire day.

As described in the testing section, the prototype is already capable of being deployed

with a reasonable commercial battery but we believe that there are still margin for improvement.

Evidently, it is possible to include a battery with bigger capacity to the product to provide

better battery life but that comes with the trade off of additional weight and cost, undesired

characteristics from the end user and grosser perspective respectively.

Additionally, it would be important to developed a practical mechanism to allow the carts

to be charged such as a docking mechanism or even by wireless charging (TREFFERS, 2015),

reducing the maintenance effort from the grocery’s perspective.
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4.4.4 Loss Prevention

As our research has shown, loss prevention is a key feature of a smart cart, specially in

the Brazilian context (NEXTOP, 2022).

In such scenario, it would be important to work on possible extra features that would give

the grosser the extra confidence to deploy the cart to his/her retail chain.

4.4.5 Improving accuracy and reliability

Related to the subsection above, improving the accuracy and reliability of the overall

system is key not just for loss prevention but to provide a great user experience. We believe

that a sub par experience will eventually lead to disuse and therefore our objective would be to

achieve a transparent experience, where the user might even forget about all the technological

feat that allows the cart to function.
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5 CONCLUSIONS

This work has shown the development of zCart, a functional smart cart prototype using

computer vision and sensor data, the same technological framework used on similar commer-

cial products. The prototype development has successfully reached all of the desired objectives

including the training of a object detection model and developing an interactive user interface.

The real time performance achieved using the selected hardware was sufficient for our

purposes, at around 4 FPS with the EfficientDet-D2 model, which showed an average precision

above 80% during validation.

Additionally, we were able to present some of the challenges and future work discussions

related to the current state of the prototype and also its cost structure.
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APPENDIX A – User App Screenshots
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Figure 55 – Product listing and subtotal

Source: Own work (2022).

Figure 56 – Item addition notification

Source: Own work (2022).
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Figure 57 – Item removal notification

Source: Own work (2022).

Figure 58 – Pre-checkout confirmation popup

Source: Own work (2022).
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Figure 59 – Post checkout screen

Source: Own work (2022).
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APPENDIX B – Prototype Photos
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Figure 60 – Frontal view of the prototype

Source: Own work (2022).

Figure 61 – Top view displaying the products in the cart

Source: Own work (2022).
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Figure 62 – Frontal view of the prototype displaying the video camera feed

Source: Own work (2022).

Figure 63 – Frontal view of the prototype displaying the video camera feed

Source: Own work (2022).
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Figure 64 – Popup confirmation before finishing the purchase

Source: Own work (2022).

Figure 65 – Checkout confirmation screen

Source: Own work (2022).
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Figure 66 – Product addition notification

Source: Own work (2022).

Figure 67 – Product removal notification

Source: Own work (2022).
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