

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

LUAN GABRIEL DOS SANTOS AYRES

DEVELOPMENT AND SIMULATION OF AN AUTONOMOUS PARKING

SYSTEM USING A LOW-COST LIDAR SENSOR AND ULTRASONIC SENSORS

PONTA GROSSA

2023

4.0 Internacional

Esta licença permite remixe, adaptação e criação a partir do trabalho,
para fins não comerciais, desde que sejam atribuídos créditos ao(s)
autor(es) e que licenciem as novas criações sob termos idênticos.
Conteúdos elaborados por terceiros, citados e referenciados nesta obra
não são cobertos pela licença.

LUAN GABRIEL DOS SANTOS AYRES

DEVELOPMENT AND SIMULATION OF AN AUTONOMOUS PARKING

SYSTEM USING A LOW-COST LIDAR SENSOR AND ULTRASONIC SENSORS

Desenvolvimento e simulação de um sistema de estacionamento autônomo

utilizando um sensor lidar de baixo custo e sensores ultrassônicos

Dissertação apresentada como requisito para
obtenção do título de Mestre em Engenharia elétrica
no Programa de Pós-Graduação em Engenharia
Elétrica da Universidade Tecnológica Federal do
Paraná (UTFPR).
Orientador: Prof. Max Mauro Dias Santos, Ph.D.
Co-orientador: Prof. Rui Tadashi Yoshino, Ph.D.

PONTA GROSSA

2023

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.pt_BR

Ministério da Educação

Universidade Tecnológica Federal do Paraná

Campus Ponta Grossa

LUAN GABRIEL DOS SANTOS AYRES

DEVELOPMENT AND SIMULATION OF AN AUTONOMOUS PARKING
SYSTEM USING A LOW-COST LIDAR SENSOR AND ULTRASONIC SENSORS

Trabalho de pesquisa de mestrado apresentado como
requisito para obtenção do título de Mestre Em Engenharia
Elétrica da Universidade Tecnológica Federal do Paraná
(UTFPR). Área de concentração: Controle E Processamento
De Energia.

Data de aprovação: 28 de Agosto de 2023

Dr. Evandro Leonardo Silva Teixeira, Doutorado - Universidade de Brasília (Unb)

Dr. Joao Francisco Justo Filho, Doutorado - Usp-Universidade de São Paulo

Dr. Mauricio Dos Santos Kaster, Doutorado - Universidade Tecnológica Federal do Paraná

Dr. Rui Tadashi Yoshino, Doutorado - Universidade Tecnológica Federal do Paraná

Documento gerado pelo Sistema Acadêmico da UTFPR a partir dos dados da Ata de Defesa em 28/11/2023.

ACKNOWLEDGMENTS

I would like to express my gratitude to several individuals and institutions that

were crucial for the completion of this work.

I extend my thanks to my mother, Ana, for her unconditional love, support, and

encouragement throughout all stages of my life. I am grateful to my girlfriend,

Giovanna, for her understanding, affection, support, and love in every moment.

I cannot overlook expressing my gratitude to my academic advisor, Prof. Max

Mauro Dias Santos, for guidance, and to Prof. Rui Tadashi Yoshino for co-supervision,

teachings, and patience throughout the entire research and writing process. Their

advice was invaluable and significantly contributed to the quality of this work.

I also want to thank my colleagues at the GSA laboratory, who were always

willing to assist and share knowledge, creating a pleasant and stimulating work

environment.

Special thanks to Renault for the funding and support that made this research

possible. The UTFPR university also deserves acknowledgment for providing the

necessary infrastructure for the development of this project.

I want to express my gratitude to everyone who, in any way, contributed to the

completion of this work, whether through moral support, encouragement, knowledge,

or resources.

I also extend my gratitude to the National Council for Scientific and

Technological Development (CNPq), Araucária Foundation and the Foundation for

Support of Education, Research, and Scientific and Technological Development of the

Federal Technological University of Paraná (FUNTEF-PR) for financial support in

partnership with Renault do Brasil, through the notice CP 16/2020 - PROGRAMA DE

BOLSAS FUNDAÇÃO ARAUCÁRIA & RENAULT DO BRASIL.

Thank you very much!

ABSTRACT

The automotive industry is constantly transforming, driven by the increasing demand

for modern cars with exclusive features. A major challenge for drivers is the difficulty

of parking, and the industry seeks solutions through parking assistance. In this context,

this work proposes the development of an autonomous parking system, using a low-

cost one-dimensional LiDAR sensor for the detection, measurement and classification

of the parking space. For this purpose, a detailed bibliographic research was carried

out, analyzing the possible paths and possibilities for the implementation of the system,

with special focus on the detection of the parking space. After analysis, the RRT*

motion planning algorithm was selected for performing simulations in MATLAB

software, due to the ease of implementation and the fast-processing speed of the

algorithm. In addition, a small-scale prototype of the autonomous parking system was

developed and tested. Achieving good results in identifying, measuring and classifying

parallel and perpendicular parking spaces. In future work, the aim is to implement the

motion planning algorithm in the small-scale prototype, as well as to implement the

complete system in a real-scale test vehicle to evaluate the performance and

effectiveness of the system under real conditions.

Keywords: autonomous parking system, LiDAR sensor, parking space detection,
motion planning algorithm, RRT*, MATLAB simulation.

RESUMO

A indústria automotiva está em constante transformação, impulsionada pela crescente
demanda por carros modernos com recursos exclusivos. Um grande desafio para os
motoristas é a dificuldade de estacionar, e a indústria busca soluções por meio de
assistência ao estacionamento. Nesse contexto, este trabalho propõe o
desenvolvimento de um sistema autônomo de estacionamento, utilizando um sensor
LiDAR unidimensional de baixo custo para a detecção, medição e classificação da
vaga de estacionamento. Para isso, foi realizada uma pesquisa bibliográfica
detalhada, analisando os caminhos possíveis e as possibilidades para a
implementação do sistema, com foco especial na detecção da vaga de
estacionamento. Após análise, o algoritmo de planejamento de movimento RRT* foi
selecionado para realizar simulações no software MATLAB, devido à facilidade de
implementação e à velocidade de processamento rápida do algoritmo. Além disso, um
protótipo em pequena escala do sistema autônomo de estacionamento foi
desenvolvido e testado. Obtendo bons resultados na identificação, medição e
classificação de vagas de estacionamento paralelas e perpendiculares. Em trabalhos
futuros, pretende-se implementar o algoritmo de planejamento de movimento no
protótipo em pequena escala, bem como implementar o sistema completo em um
veículo de teste em escala real visando avaliar o desempenho e a eficácia do sistema
em condições reais.

Palavras-chave: sistema de estacionamento autônomo, sensor LiDAR, detecção de
espaço de estacionamento, algoritmo de planejamento de movimento, RRT*,
simulação MATLAB.

LIST OF FIGURES

Figure 1 - Travel speeds of production automobiles ... 21

Figure 2 - Types of parking spaces ... 24
Figure 3 - Operation of a lidar sensor .. 25
Figure 4 - Range and field of view of different radar sensors 29
Figure 5 - Car with ultrasonic sensors and their positions 32
Figure 6 - GPS triangulation process .. 34

Figure 7 - Types of movements measure by inertial sensors 36
Figure 8 - Incremental encoder .. 37
Figure 9 - ADAS functions and sensors .. 44

Figure 10 - Driving Scenario Designer with a project running 48
Figure 11 - Code generated from a driving scenario in MATLAB 49
Figure 12 - Example of a DYNA4 Simulation ... 50
Figure 13 - Algorithm RRT* ... 56

Figure 14 - SAE vehicle axis system ... 58
Figure 15 - ISO vehicle axis system ... 58

Figure 16 - Vehicle in an Earth Fixed Coordinate System 59
Figure 17 - Instantaneous center of rotation ... 59

Figure 18 - Two-wheel representation of a four-wheel system 60
Figure 19 - Kinematic bicycle model with the rear axle reference point............. 61
Figure 20 - Inputs and outputs of the kinematic bicycle model 62

Figure 21 - Steering angle in bicycle model .. 63
Figure 22 - An example of a control architecture ... 64

Figure 23 - Cruise control schematic .. 68
Figure 24 - Equation to find the desired acceleration of a cruise control 68

Figure 25 - Typical engine map .. 69
Figure 26 - Path following with pure pursuit controller 70

Figure 27 - Pure pursuit controller with cross track error e 71
Figure 28 - PRISMA flow diagram .. 74
Figure 29 - Creation of a driving scenario with two cars parked 77

Figure 30 - Base scenario for parking space detection 78
Figure 31 - Error in identifying the real size of the parking space 79

Figure 32 - Generated cost map ... 80
Figure 33 - Top view from the road of the parallel parking simulation 81
Figure 34 - Top view with the waypoints generated for perpendicular parking . 82

Figure 35 - Angle parking in bird's-eye plot .. 83

Figure 36 - Schematic with L298N ... 85
Figure 37 - Schematic with HC-SR04 ultrasonic sensors 86
Figure 38 - Schematic with the TF Mini Plus LIDAR sensor 87

Figure 39 - Schematic with the Arduino uno and an encoder 88
Figure 40 - Schematic with OLED display ... 89
Figure 41 - Tkinter example .. 94
Figure 42 - Parking spot detection ... 95
Figure 43 - Measurement of parking spot size .. 96

Figure 44 - Angle φ in the three types of parking ... 97
Figure 45 - Relevant measurements in the calculation of an angled parking
space .. 98
Figure 46 - Parallel parking space plot using real data 100

Figure 47 - Publications per year ... 102
Figure 48 - Portfolio Keywords .. 103
Figure 49 - Author Analysis .. 104
Figure 50 - Diagram of the APS simulation process .. 105
Figure 51 - Sensor data with longitudinal movement of the ego vehicle 105

Figure 52 - Trajectory generated for parking a vehicle in parallel 106
Figure 53 - System block diagram ... 108
Figure 54 - Circuit with the LM317T voltage regulator 112
Figure 55 - Acquisition of a parallel parking spot performed by the ultrasonic
sensor and LiDAR ... 114

Figure 56 - Test 1 comparing LiDAR and ultrasonic sensors in a parallel
parking space .. 116

Figure 57 - Test 5 comparing LiDAR and ultrasonic sensors in a perpendicular
parking space .. 117
Figure 58 - Test 5 comparing LiDAR and ultrasonic sensors in a perpendicular
parking space .. 119
Figure 59 - Parking assistant program home screen ... 120

Figure 60 - Initial screen of the parking assistant program 121

Figure 61 - Detected parking space after pressing the simulation button 121
Figure 62 - Raw data from test 5 with the perpendicular parking space 125
Figure 63 - Raw data from test 4 with the angle parking space showing two
outliers ... 126
Figure 64 - Raw data from test 4 with the angle parking space 127

LIST OF PHOTOGRAPHS

Photograph 1 - Steam tractor developed by Joseph Cugnot. 20

Photograph 2 - Miura X8, an iconic brazilian super sport car 23
Photograph 3 - TFmini Plus LiDAR Sensor ... 27
Photograph 4 - ParkNet, a deep neural network developed to detect parking
spaces using images .. 32
Photograph 5 - Ultrasonic sensor HC-SR04 .. 33

Photograph 6 - Rotary encoder LPD3806 .. 38
Photograph 7 - Double H-bridges L-298N ... 40
Photograph 8 - Arduino UNO ... 42

Photograph 9 - Types of parking spaces in the testing scenario 90
Photograph 10 - The initial arrangement of components in the small-scale
prototype .. 91
Photograph 11 - Final prototype view ... 92

Photograph 12 - Voltages at the 5V output of the Arduino 111
Photograph 13 - Voltage at the output of the circuit with the devices
disconnected ... 113
Photograph 14 - Voltage at the output of the circuit with the sensors and
modules connected ... 113
Photograph 15 - Representation of the prototype's position at a small scale at
the beginning and end of the tests .. 123

LIST OF TABLES

Table 1 - Technical specifications of the TFmini Plus sensor 27

Table 2 - Specification of Benewake lidar sensors .. 28
Table 3 - Technical specification of the Arduino UNO ... 43
Table 4 - Classification table of parking space types .. 99
Table 5 - Comparative tests of LiDAR and ultrasonic sensors in parallel parking
 .. 115

Table 6 - Comparative tests of LiDAR and ultrasonic sensors in perpendicular
parking ... 117
Table 7 - Comparative tests of LiDAR and ultrasonic sensors in angle parking
 .. 118
Table 8 - Tests of classification and measurement of parallel parking spaces
 .. 123
Table 9 - Tests of classification and measurement of perpendicular parking
spaces .. 124
Table 10 - Tests of classification and measurement of angle parking spaces 125

LIST OF FRAMES

Frame 1 - Other ADAS systems ... 46

Frame 2 - Changes in gains of the PID controller and their potential effects by
properly tuning the PID gains .. 67
Frame 3 - Research Protocol .. 74

ABBREVIATIONS AND ACRONYMS LIST

ABNT Associação Brasileira de Normas Técnicas
ACC Adaptive Cruise Control
ACW All-round Collision Warning
ADAS Advanced Driver Assistence System
AEB Advanced Emergency Braking System
AI Artificial Intelligence
APA Advanced Parking Assist
APC Active Park Assist
APS Autonomous Parking System
BSD Blind Spot Detection
FOV Field of View
LDW Lane Departure Warning
LKA Lane Keeping Assist
MATLAB Matrix Laboratory
RCTA Rear Cross Traffic Alert
RRT* Rapidly-exploring Random Tree Star
UTFPR Universidade Tecnológica Federal do Paraná

SUMMARY

1 INTRODUCTION ..16

1.1 Objectives ...17

1.1.1 General Objetive ...17

1.1.2 Specific Objectives ...17

1.2 Justification ..18

1.3 Work structure ..18

2 THEORICAL REFERENCE ...19

2.1 History of automobiles ...19

2.2 Types of parking space ..24

2.2.1 Parallel ...24

2.2.2 Perpendicular ...24

2.2.3 Angle ..24

2.3 Sensors and components ..25

2.3.1 Lidar ...25

2.3.1.1 TFmini Plus ..26

2.3.2 Radar ..29

2.3.3 Cameras ...31

2.3.4 Ultrasonic Sensors ...32

2.3.4.1 HC-SR04 ..33

2.3.5 GPS (Global Positioning System) ...34

2.3.6 Inertial Sensors...36

2.3.7 Electro-mechanical encoder ...37

2.3.7.1 Rotary encoder LPD3806 ...38

2.3.8 H-bridge ..39

2.3.8.1 Double H-bridges L-298N ...40

2.3.9 Microcontrollers ..41

2.3.9.1 Arduino UNO ..42

2.4 Advanced Driver Assistence System ...43

2.4.1 Advanced Emergency Braking ...44

2.4.2 All-round Collision Warning ..44

2.4.3 Adaptive Cruise Control ..45

2.4.4 Active Park Assist ...45

2.4.5 Autonomous Parking System ...45

2.4.6 Other systems ..46

2.5 Simulation Software ...47

2.5.1 MATLAB and Driving Scenario ...47

2.5.1.1 Introduction to driving scenario designer ..48

2.5.2 Vector’s DYNA4..50

2.6 Motion Planning ..51

2.6.1 Classical Approaches ...52

2.6.2 Graph Search Approaches ...53

2.6.2.1 A* algorithm ..54

2.6.2.2 RRT* ...55

2.6.3 Cost Map ..56

2.7 Vehicle Dynamics ...57

2.7.1 Coordinate Systems ...57

2.7.1.1 Vehicle-fixed coordinate systems ...57

2.7.1.2 Earth fixed coordinate system ..58

2.7.2 Instantaneous center of rotation (ICR) ..59

2.7.3 Kinematic Bicycle Model ...60

2.8 Control Strategies ..63

2.8.1 Transfer Function ...64

2.8.2 Logitudinal Control ..65

2.8.2.1 Proportional–integral–derivative (PID) control ..65

2.8.2.1.1 Cruize control ...67

2.8.3 Lateral Control ..69

2.8.3.1 Pure Pursuit ..69

2.9 Chapter’s considerations ..72

3 METHODOLOGY ...73

3.1 Bibliography Analysis and Literature Review73

3.2 Simulation ...75

3.2.1 Software selection for simulation ..76

3.2.2 Scenario creation ..76

3.2.3 Identification of the parking space ..77

3.2.4 Maneuver of entering and exiting the parking space79

3.2.5 Developing a method to create a cost map from the driving scenario80

3.2.6 Path planning ...81

3.2.7 Parallel parking ...81

3.2.8 Perpendicular parking ...82

3.2.9 Angled parking..82

3.3 Small scale prototype ..83

3.3.1 Hardware ..83

3.3.1.1 Arduino Uno ...84

3.3.1.2 Motor’s driver ..84

3.3.1.3 Ultrasonic sensors ..85

3.3.1.4 LiDAR sensor ...86

3.3.1.5 Rotary encoder ...87

3.3.1.6 OLED display..88

3.3.1.7 Arduino code ..89

3.3.1.8 Testing scenario ...90

3.3.1.9 Components positioning ...91

3.3.2 PC software ..93

3.3.2.1 Interface ...93

3.3.2.2 Data reception ..94

3.3.2.3 Parking spot detection ..95

3.3.2.4 Parking spot measurement ...96

3.3.2.5 Parking spot classification ..99

3.3.2.6 Plotting the data..99

3.3.2.7 Saving the data...100

3.4 Chapter’s considerations ..101

4 RESULTS ...102

4.1 Bibliography Analysis and Literature Review102

4.1.1 Publications per year analysis ..102

4.1.2 Keywords analysis ..103

4.1.3 Analysis of Authors ...103

4.2 Simulation ...104

4.2.1 Parking spot identification ...105

4.2.2 Path planning ...106

4.2.3 Parallel parking ...107

4.2.4 Perpendicular parking ...107

4.2.5 Angled parking..108

4.3 Small scale prototype ..108

4.3.1 Hardware ..108

4.3.1.1 Electric motors ..109

4.3.1.2 Ultrasonic sensors ..109

4.3.1.3 TFmini Plus LiDAR sensor ...109

4.3.1.4 LPD3806 rotary encoder ..110

4.3.1.5 Measurement Error ...110

4.3.1.6 Sensor’s comparison ..114

4.3.1.6.1 Parallel parking spot ...115

4.3.1.6.2 Perpendicular parking spot ...116

4.3.1.6.3 Angle parking spot ..118

4.3.1.6.4 Tests interpretation ...119

4.3.2 Software ...120

4.3.2.1 Interface ...120

4.3.2.2 Data reception ..122

4.3.2.3 Parking spot detection ..122

4.3.2.4 Parking spot measurement and classification ..122

4.3.2.4.1 Parallel parking spot ...123

4.3.2.4.2 Perpendicular parking spot ...124

4.3.2.4.3 Angle parking spot ..125

4.4 Chapter’s considerations ..127

5 CONCLUSION ...129

REFERENCES ..131

16

1 INTRODUCTION

The history of cars can be traced back to the late 19th century, when German

inventor Karl Benz built the first gasoline-powered car in 1885. This was followed by

other early pioneers such as Gottlieb Daimler and Henry Ford. In the early 20th

century, cars became more widely available and affordable to the general public, with

the Model T by Ford becoming one of the most popular and iconic cars of the time

(ULRICH, 2011). Over the next few years, increasingly luxurious and exclusive cars

were produced, with the second world war being the driving force behind this trend.

This trend would only return from the 1970s, which was a period of prosperity,

especially for the Brazilian automotive industry, with Brazilian car brands achieving

record sales (ALMEIDA, 2016; DIETSCHE; KUHLGATZ, 2014).

Currently, the industry's focus is once again on personalization and catering to

customer desires, as well as a strong trend towards vehicle safety. In this context, the

ADAS (Advanced driver-assistance system) has emerged, which are systems

developed with a focus on the driver and their safety and comfort.

Among the many skills necessary for the safe driving of a car, parking is a

reason for stress and anxiety and is considered one of the biggest challenges for the

driver. According to G1 (2016), more than 70% of failures in the exam to obtain the

national driver's license (CNH) are caused by the driver's failure to park at the

designated location. IBM (2011) shows that more than half of the drivers in 16 of the

20 cities surveyed admitted to getting so frustrated when looking for vacancies that

they end up giving up.

This is a problem that has become worse over time, as shown by the data,

according to Rodrigue (2020), the number of cars registered in the world exceeded

one billion in 2017, which is double the number of cars in the year 2000 and four times

the number of cars in the world in 1990.

Indicators such as these demonstrate the importance of developing

technologies that help the driver to park in different conditions, small spaces, the

presence of intense vehicle traffic, poorly signposted spaces, among others. In this

way, one can understand the importance of efficiently using parking spaces,

performing maneuvers quickly and safely.

As a result, the development of ADAS has significantly increased, and various

new jobs focused on assisting the driver have been developed. In this way, systems

17

such as the APS (autonomous parking system) are in the spotlight. This is a system

that aims to park a car completely autonomously in the three main types of parking:

parallel, perpendicular, and angle. Developing an APS requires the use of multiple

sensors because they are how data from the car's surroundings can be obtained, such

as lidar sensors, radar, ultrasonic, cameras, GPS, and inertial sensors, as well as the

use of motion planning methods and longitudinal and lateral control.

This work aims to contribute to the literature with the development of an APS

system capable of performing parking in the three different types of spaces, with the

main focus being on the simulation carried out in MATLAB software.

1.1 Objectives

This section aims to present the general objective and some specific objectives

of the work, which are detailed in sections 1.1.1 and 1.1.2. The general objective seeks

to guide the research, and it will be fulfilled at the end of the work through the execution

of the proposed specific objectives.

1.1.1 General Objetive

• Develop an autonomous parking system using LiDAR sensor.

1.1.2 Specific Objectives

• Identify the types of systems used in the development of autonomous and

automatic parking systems through a literature review;

• Develop an algorithm for parking space detection;

• Cost map generation system;

• Adapt a motion planning algorithm for the parking process;

• Design and develop a small-scale prototype of the APS;

• Evaluate the performance of the APS through tests in a controlled environment,

analyzing aspects such as accuracy, reliability, and system efficiency;

• Identify challenges and opportunities to improve the performance and

functionality of the APS, proposing enhancements and recommendations for

future work.

18

1.2 Justification

The APS is an automatic parking system that uses robotics and artificial

intelligence technologies to perform parking maneuvers safely and efficiently, without

the need of human intervention. It can be a solution to parking problems in large cities,

where parking space is rare and the demand for parking spots is high. Additionally, the

system can help reduce the time spent on parking maneuvers and minimize the

possibility of accidents caused by human errors (ZIEBINSKI et al., 2017).

The objective of developing an Autonomous Parking System is to design, develop

and test an efficient and safe automatic parking system, capable of recognizing and

adapting to different types of vehicles, parking spot sizes, and parking conditions. The

development of the APS involves the use of technologies such as data processing,

control algorithms, and sensors to capture information about the environment and the

vehicle. The system should be designed to operate autonomously and ensure the

safety of passengers and other parking users. Upon completing the development of

the Autonomous Parking System, the following contributions are expected:

• Academic Contribution: Present a systematic study of the main themes

present in the topic;

• Economic Contribution: Provide an innovative and effective solution to

parking problems;

• Social Contribution: Improve people's quality of life by making the parking

process easier, faster, and safer.

1.3 Work structure

Chapter 2 deals with the theoretical background, introducing the history of

automobiles, types of parking spaces, commonly used sensors and components in

automotive systems. Then, a brief introduction to the software used in simulations and

motion planning algorithms is given, followed by an explanation of vehicle dynamics

and longitudinal and lateral control systems. Lastly, the concept of ADAS and some of

the most important systems in the present are introduced. In Chapter 3, the

methodologies used are demonstrated and described. Chapter 4 presents the tests

and obtained results. Chapter 5 presents the conclusions and future work.

19

2 THEORICAL REFERENCE

This section is the theoretical framework that underpins the methodological

choices in this work, which will be divided into eight sections. Section 2.1 will provide

a contextualization of the history of the automobile, followed by the types of parking in

section 2.2. Section 2.3 will detail the functioning and types of sensors and components

relevant to the work. Section 2.4 will introduce the concept of Advanced driver-

assistance system (ADAS) and the different levels of vehicle automation. Simulation,

Motion Planning, and Vehicle Dynamics topics are being addressed in sections 2.5,

2.6, and 2.7, respectively. In the section 2.8 an introduction to control strategies is

given. Finally, section 2.9 will present the final considerations on the chapter.

2.1 History of automobiles

Since ancient times, mobility has always been an important characteristic in

human evolution. Throughout history, there have been several efforts to transport

people over long distances in increasingly shorter periods of time (DIETSCHE;

KUHLGATZ, 2014).

The first wheeled vehicles, such as carriages, were created and improved with

the addition of steering, suspension, and springs (DIETSCHE; KUHLGATZ, 2014). In

the 13th and 15th centuries, writings by Roger Bacon and Leonardo da Vinci presented

ideas about self-propelled vehicles. With the evolution of modern industrial society,

particularly in Western Europe and the United States, there was a growth in the

development of motor vehicles (FLINK, 1990).

In the 17th, 18th, and 19th centuries, European inventors attempted to create

self-propelled machines. In 1748, in Paris, the inventor Jacques de Vaucanson

demonstrated a carriage driven by a large clockwork motor. At the beginning of the

19th century, Isaac de Rivas developed a hydrogen-powered engine in Paris with

manually operated valves and ignition, but there were problems with the motor's

synchronization (PURDY; FOSTER, 2023). Various experiments with steam were

carried out in the 18th and 19th centuries, including the steam tractor developed by

Joseph Cugnot in 1770 with the support of France to pull cannons (FLINK, 1990). The

photograph 1 shows Cugnot’s tractor.

20

Photograph 1 - Steam tractor developed by Joseph Cugnot.

Source: Purdy and Foster (2023)

From 1801 to 1803, Richard Trevithick was one of the first to develop high-

pressure steam-powered vehicles, and his vehicle was able to reach speeds of about

19 km/h. Oliver Evans, also experimented with a steam-powered dredge in 1805,

which reached 6 km/h. However, both Trevithick and Evans encountered difficulties in

obtaining funding due to competition with steam trains, which were more reliable and

accessible due to the conditions of the roads and the size of the steam engines at the

time (FLINK, 1990).

According to ULRICH (2011), in 1886, Carl Benz filed a patent application for

his motor-powered tricycle. This action marked the beginning of the accelerated growth

of the automotive industry that used internal combustion engines (DIETSCHE;

KUHLGATZ, 2014). The Otto engine patent had already been registered in 1876, while

in 1892, Rudolf Diesel filed his patent application for a more efficient version of the

engine in Berlin (ULRICH, 2011).

At first, few entrepreneurs saw the potential of automobiles as a viable

business option. However, the Frenchmen Panhard and Levassor contributed to the

development of the automobile, with Panhard being one of the pioneers in the

construction of elements such as the tilted steering wheel, the steering column, the

clutch pedal, and the tube-shaped radiator. However, several obstacles arose,

including the negative public perception of the pollution and noise caused by the

engines. In addition, there was a complete lack of infrastructure for vehicles, such as

paved roads, spare parts, and gas stations (DIETSCHE; KUHLGATZ, 2014).

At the turn of the 19th to the 20th century, electric cars were considered the

most promising, given that in 1901 an electric car set the speed record, reaching 100

km/h. In 1900, in the United States, 75 manufacturers produced 4192 motor vehicles,

21

of which 1688 were steam-powered, 1575 were electric, and only 929 were gasoline-

powered (FLINK, 1990; ULRICH, 2011). Figure 1 shows the automobiles with the

record for highest top speed over the years.

Figure 1 - Travel speeds of production automobiles

Source: Gillespie (2021)

It was in the 1920s that the gasoline engine gained strength as the preferred

solution, thanks to its better efficiency and autonomy compared to electric vehicles, as

well as the availability of petroleum-derived fuel at affordable prices at the time

(ULRICH, 2011). In the following years, the automobile industry experienced the

emergence of many companies, including Peugeot, Citroën, Renault, Fiat, Ford, and

many others. The market began to realize the importance of the automobile for society

(DIETSCHE; KUHLGATZ, 2014).

Initially, each vehicle was unique, built entirely by manual laborers

(DIETSCHE; KUHLGATZ, 2014). However, with the arrival of the Model T in 1908 and

the implementation of Henry Ford's assembly line in 1913, everything changed

(ULRICH, 2011). The Model T revolutionized the American automotive industry, being

a car with fewer luxuries and produced in large quantities, making automobiles

accessible to the American public (DIETSCHE; KUHLGATZ, 2014).

22

Henry Ford vision was to permit that any worker could buy your own

automobile and enjoy free time, establishing the bases to the modern consumer

society (ULRICH, 2011). Through the automakers Citroën and Opel, Henry Ford’s idea

was taken to Europe, but will only gain the market acceptance in the early 20’s

(DIETSCHE; KUHLGATZ, 2014).

At the same time, the adoption of cars in Brazil faced challenges due to poor

infrastructure and technical problems related to the operation of vehicles, such as

mechanical and electrical issues. In 1919, Ford Motor Company became the first

company to establish a factory in the country, located in downtown São Paulo. At the

time, the company was facing financial difficulties and saw the Brazilian market as an

opportunity to produce and sell its popular Ford T model (ALMEIDA, 2016).

Subsequently, several manufacturers set up their factories in Brazil, such as

General Motors in 1925, International Harvester in 1926, and FIAT in 1928. These

companies were almost exclusively American due to the impact of World War I and the

weakening of the European industry, which allowed Americans to consolidate their

position in the Brazilian market (ALMEIDA, 2016).

Manufacturers soon discovered that to stand out in a competitive market, they

needed to meet consumers' demands. Thus, victories in races were used as a form of

advertising, with drivers proudly displaying their cars' brands. This resulted in an

increase in the production of unique and luxurious vehicles, especially during the

interwar period, which was marked by some of the most exclusive cars of all time, such

as the Mercedes-Benz 500K, the Rolls-Royce Phantom III, and the Bugatti Royale

(DIETSCHE; KUHLGATZ, 2014).

The production of more affordable and popular cars was only resumed after

the end of World War II. At this time, there was a need for small and cheap vehicles,

and that was when the Volkswagen Beetle was designed by Ferdinand Porsche

(DIETSCHE; KUHLGATZ, 2014). Its official name was Käfer, with a four-cylinder air-

cooled engine and a rear-mounted "boxer" configuration. In 1972, production

surpassed 15 million units, becoming the world's most produced vehicle, surpassing

the previous record holder, the Ford T (ULRICH, 2011).

The automotive industry responded to the demands of the time with the

creation of other models, such as the Citroën 2CV, the Goliath GP 700 and the Fiat

500 C. New standards were developed, considering the incorporation of advanced

23

accessories and technology, while seeking to maintain a good cost-benefit ratio

(DIETSCHE; KUHLGATZ, 2014).

During the 1960s, 1970s, and 1980s, the national car industry prospered with

brands such as Puma, VEMAC, Gurgel, and Gobbi having prominence. Puma, with its

sports car popular among young people, saw its sales grow between 1964 and 1979.

However, most manufacturers suffered a decline after this period. In 1987, one of the

last moments of a fully national automotive industry resurgence, the Miura X8

emerged, an innovative and advanced car with its iconic "gullwing" doors (ALMEIDA,

2016). It can be seen in photograph 2.

Photograph 2 - Miura X8, an iconic brazilian super sport car

Source: Noal (2015)

During the 90s, the national automotive sector faced a series of challenges,

including competition with foreign companies and lack of government support. As a

result, many national companies could not survive and the market was dominated by

foreign companies (ALMEIDA, 2016).

Today, the priority is to ensure the safety of vehicles, especially in the face of

increased speed and traffic. To meet this need, advanced systems have been

developed, such as airbags, ABS, TCS, intelligent sensors, among others (DIETSCHE;

KUHLGATZ, 2014). More recent vehicle models feature some types of safety and

driver assistance systems, known as ADAS. These systems can help prevent

accidents and protect vehicle occupants. Some examples are AEB (Advanced

Emergency Braking System), ACW (Around View Monitor), ACC (Adaptive Cruise

Control), and APS (Advanced Parking System), which will be further detailed in section

2.4.

24

2.2 Types of parking space

There are several different types of parking spaces that a vehicle may

encounter in a parking lot or on the street. Some common types of parking spaces

include parallel, perpendicular and angle parking, these are shown in figure 2.

Figure 2 - Types of parking spaces

Source: Leremy (2017)

2.2.1 Parallel

Parallel parking spots are spaces in which a vehicle is parked alongside the

curb or edge of the road. This type of parking is typically used on streets and requires

the driver to maneuver the vehicle into the space by backing into it. To park in a parallel

parking space, the driver typically stops the vehicle alongside the space and signals to

indicate that they are planning to park. The driver then puts the vehicle in reverse and

carefully backs into the space, using the rearview and side mirrors to guide them

(MORENCY, CATHERINE; TRÉPANIER, 2008) .

2.2.2 Perpendicular

Perpendicular parking spots are spaces in which a vehicle is parked at a 90-

degree angle to the curb or edge of the road. This type of parking is typically used in

parking lots and is the most common type of parking space. To park in a perpendicular

parking space, the driver typically drives the vehicle into the space and stops when the

rear bumper is aligned with the painted lines marking the space. The vehicle is then

placed in park and the driver exits the vehicle (MORENCY, CATHERINE;

TRÉPANIER, 2008).

2.2.3 Angle

Angle parking spaces are a delimitation on a street at an angle of 45-degrees

with the curb, with the right-hand side of the vehicle nearest the curb and the right-front

25

wheel approximately 30 cm from the curb. In figure 4 the type of parking space

mentioned above can be observed (MORENCY, CATHERINE; TRÉPANIER, 2008).

2.3 Sensors and components

Sensors are essential components of an autonomous parking system, as they

provide the vehicle with information about its surroundings and enable it to navigate

and operate safely and efficiently. There are several types of sensors that are

commonly used, each with its own specific characteristics and capabilities. Some

examples of sensors used in autonomous parking systems are: Lidar (Light Detection

and Ranging), Radar (Radio Detection and Ranging), Cameras, Ultrasonic and GPS

(Global Positioning System). The use of sensors is crucial for enabling the vehicle to

perceive and understand its surroundings, and to make decisions and take actions

accordingly (PALLAS-ARENY, RAMON; WEBSTER, 2012). By combining the data

from multiple sensors, the vehicle can create a comprehensive and accurate model of

its environment and navigate safely and efficiently.

2.3.1 Lidar

Light Detection and Ranging, also known as LiDAR, is a technology that uses

lasers to measure distances. It works by sending out a beam of light and measuring

how long it takes for the light to bounce back after it hits an object, as can be seen in

figure 3, which was obtained from Synopsys, Inc. This information is then used to

calculate the distance to the objects and to create a map of the environment. LiDAR is

commonly used in autonomous vehicles to help them sense their surroundings and

navigate. Many companies are working on developing smaller, more affordable LiDAR

systems for use in autonomous vehicles and advanced driver assistance systems.

Figure 3 - Operation of a lidar sensor

Source: Synopsys (2023)

26

LiDAR (Light Detection and Ranging) sensors are a key component of

autonomous parking systems, as they provide the vehicle with a 3D map of its

surroundings and enable it to navigate and park safely and efficiently. Advantages of

lidar sensors in the context of autonomous parking systems include:

1) Wide range of operation: LiDAR sensors can operate in a wide range of

lighting conditions, including complete darkness, making them well-suited

for use in parking garages and other enclosed spaces;

2) High accuracy and resolution: They can detect objects with high accuracy

and resolution, allowing the vehicle to identify and avoid obstacles and

navigate with precision;

3) Resistant to interference: LiDAR sensors are resistant to interference from

external sources, such as sunlight or radio waves, and can provide reliable

data even in challenging environments;

4) Reliability in different weather conditions: High resistance to interference

from rain and extreme weather conditions (Filgueira et al., 2017; Goodin et

al., 2019).

5) High data rate: Can provide a high data rate, allowing the vehicle to process

and analyze a large amount of information in real-time.

However, there are also some disadvantages of lidar sensors:

1) Cost: Can be really expensive in comparison with other types of sensors,

which may be a limiting factor;

2) Size and weight: Are typically larger and heavier than other types of

sensors, which may be a concern for some vehicle designs;

3) Hard to operate: In comparison with other types of sensors, it requires a

larger set of skills.

Overall, lidar sensors could be a component of autonomous parking systems, as

they enable the vehicle to perceive and understand its surroundings. However, the

high costs and the difficulty to operate the system can be really challenging to make

practical and competitive solutions (LI; AL., 2022).

2.3.1.1 TFmini Plus

The TFmini Plus sensor is a short-range, single-point LiDAR sensor that utilizes

the Time-of-Flight (ToF) principle to measure the distance to an object. It is based on

the TFmini sensor but incorporates several improvements in various aspects, including

27

measurement frequency, blind zone, accuracy, and stability. It features an IP65

protection rating, which makes it resistant to water and dust (BENEWAKE, [s. d.]). The

TFmini Plus sensor finds applications in robotics, drones, intelligent vehicles, security,

and industrial control, among others. Photograph 3 presents the sensor.

Photograph 3 - TFmini Plus LiDAR Sensor

Source: Mouser (2023)

The table 1 presents the key specifications of the TF Mini Plus sensor.

Table 1 - Technical specifications of the TFmini Plus sensor

Characteristic Value

Operating Range 0.1 m ~ 12 m

Accuracy ±5 cm@(0.1-6 m) ±1%@(6 m-12 m)

Distance Resolution 5 mm

Frame Rate 1-1000 Hz (adjustable)

Light Source LED 850 nm

Field of View (FOV) 3.6°

Supply Voltage 5 V ± 0.5 V

Average Current ≤110 mA

Peak Current 500 mA

Power Consumption 550 mW

Communication Level LVTTL (3.3 V)

Protection Level IP65

Source: Benewake (2023)

28

These features make the TFmini Plus lidar sensor suitable for various

applications and scenarios, such as robotics, drones, autonomous vehicles, security,

industrial measurement, and level control.

It has the features necessary to the task of measuring a parking space. It also

has a superior precision when compared to an ultrasonic sensor, the commonly used

sensor in industry for this task. The descriptions of the modules could be seen in table

2, and it is important to note that the enclosure of the sensor offers protection IP67 to

the environment, a necessary feature since the sensor in this application is designed

to be put outside the vehicle.

Table 2 - Specification of Benewake lidar sensors

Parameter TF02 TFmini TFmini Plus TF03

Picture

Status Mass Production Mass Production Mass Production Mass Production

Ranging Indoor 0.4 - 22 m 0.3 - 12 m 0.1 - 12 m 0.1 - 180 m

Ranging
Outdoor

0.4 - 10 m 0.3 - 5 m 0.1 - 7 m 0.1 - 70 m

FOV 3° 2.3° 3.6° 0.25°

Precision CM CM CM CM

Communication
Interface

UART/CAN UART/I2C UART/I2C
TTL/CAN

(RS232/485)

Light Sensitivity
<100k Lux,

Sunlight
<70k Lux, Sunlight

<70k Lux,
Sunlight

<100k Lux,
Sunlight

Weight 52 g 5 g 11 g 77 g

Input Voltage 4.5 V - 6 V 5 V 5 V 5 V

Photobiological
Safety

PASS PASS PASS PASS

Protection IP65 / IP65 IP67

Dimension 62*39*26 mm 42*15*16 mm 35*28*19 mm 44*42*29 mm

Source: Liu (2019)

29

Overall, the TF Mini Plus is a versatile and reliable LiDAR sensor that offers high

performance and ease of use. Its small size, low power consumption, and accurate

measurements make it ideal for a wide range of applications, from robotics and drones

to smart cities and industrial automation.

2.3.2 Radar

Radar (Radio Detection and Ranging) is a technology that uses radio waves

to detect and measure the distance, speed, and other characteristics of objects. In an

autonomous parking context, radar is used to detect the presence and position of

objects around the vehicle, such as other vehicles, pedestrians, and objects in the

parking environment. Radar works by emitting a radio frequency signal and then

measuring the time it takes for the signal to bounce back after it hits an object. The

system uses this information to determine the distance, speed, and other

characteristics of the object (PALLAS-ARENY, RAMON; WEBSTER, 2012).

It can be used to detect the presence and position of other vehicles,

pedestrians, and other objects in the parking environment. This information can be

used by the autonomous vehicle's control system to navigate safely through the

parking environment and find a suitable parking spot. The radar can also be used to

detect any obstacles or hazards that might be in the vehicle's path, such as pedestrians

or other vehicles. Therefore, the system can take appropriate action to avoid them.

There are three types of radar sensors used in vehicles: short-range radar (SRR),

medium-range radar (MRR) and long-range radar (LRR) (PALLAS-ARENY, RAMON;

WEBSTER, 2012). The differences in range can be seen in the figure 4. For parking

the best option is the SRR, since the range in parking scenarios is short, not

trespassing a few meters.

Figure 4 - Range and field of view of different radar sensors

Source: Vazquez (2022)

30

Advantages of using radar sensors in an autonomous parking system:

1) High accuracy: Can provide highly accurate measurements of distance,

speed, and other parameters, which is important for navigating and parking

safely in confined spaces;

2) Long range: Can detect objects at long distances, making them suitable for

detecting obstacles in the surrounding environment;

3) All-weather performance: Are not affected by weather conditions such as

rain or fog, making them suitable for use in outdoor parking environments;

4) High resolution: Can provide high-resolution images of the objects they

detect, making them useful for detecting and avoiding obstacles.

Some disadvantages find in the use of radar sensors:

1) Cost: Can be expensive, especially those with high accuracy and long

range;

2) Interference: Can be affected by other sources of radio frequency

interference, such as cell phone towers or other radar systems, which can

affect their accuracy;

3) Limited imaging capabilities: While radar sensors can provide high-

resolution images, they are generally not as detailed as those produced by

other types of sensors, such as cameras;

4) Limited penetration: Radar signals do not penetrate certain materials, such

as metal or concrete, which can limit their effectiveness in certain

environments;

5) Target classification: due to the reflectivity, shape and size and other

factors, the radar sensors need complex algorithms to correctly distinguish

between different types of objects.

It is understood that radar sensors have multiple advantages in their use in an

autonomous parking system, such as high resolution in object detection and high

reliability in adverse weather conditions. However, it is a costly type of sensor, and

several modules would be needed for its use in an autonomous parking system, greatly

increasing the cost of the project. If cheaper acquisition options are found that perform

well at short distances, this sensor may become crucial in the data acquisition process.

31

2.3.3 Cameras

Camera sensors can be used in autonomous parking systems to help vehicles

navigate and park in confined spaces. They are able to capture images of the

surrounding environment and provide the vehicle with visual information about its

surroundings (PALLAS-ARENY, RAMON; WEBSTER, 2012). There are several

advantages to using camera sensors in autonomous parking systems:

1) High resolution: Camera sensors can provide high-resolution images of the

surrounding environment, allowing the vehicle to detect and avoid obstacles

with greater accuracy;

2) Wide field of view: Can have a wide field of view, allowing the detection of

a large area around it and detect potential obstacles in its path;

3) Good performance in low light: Some camera sensors are able to perform

well in low light conditions, making them suitable for use in poorly lit parking

garages or at night.

However, there are also some limitations to using camera in parking

applications:

1) Limited range: Camera sensors generally have a shorter range than radar

sensors, making them less suitable for detecting obstacles at long

distances;

2) Sensitivity to weather: Can be affected by weather conditions such as rain

or fog, which can reduce their accuracy and reliability;

3) Dependence on external lighting: May require external lighting to function

properly, which may not be available in all parking environments.

In summary, camera sensors can be a useful tool for autonomous parking

systems, many bibliographical works use cameras and neural networks to identify

suitable parking spaces to the vehicle, in photograph 4 it is possible to see an example.

However, the advantages of using cameras may not be sufficient on their own and may

need to be used in combination with other types of sensors to provide a complete

picture of the surrounding environment (PALLAS-ARENY, RAMON; WEBSTER,

2012).

32

Photograph 4 - ParkNet, a deep neural network developed to detect parking spaces using
images

Source: Cvijetic (2019)

2.3.4 Ultrasonic Sensors

Ultrasonic sensors are devices that use high-frequency sound waves to

measure distance or detect objects. In the context of an autonomous parking system,

ultrasonic sensors can be used to detect the presence of other vehicles or obstacles

in the parking environment. One of the main advantages is that they can operate in a

variety of lighting conditions, including low light or darkness. This makes them a useful

tool for navigating through parking garages, which may not always be well lit. Ultrasonic

sensors are also relatively inexpensive and easy to install. They can be mounted on

the front, rear, and sides of the vehicle to provide 360-degree coverage and help the

vehicle navigate safely through a parking garage for example (PALLAS-ARENY,

RAMON; WEBSTER, 2012). The figure 5 shows an example of a car with 8 ultrasonic

sensors mounted in the front and back of the vehicle and one in the lateral side.

Figure 5 - Car with ultrasonic sensors and their positions

Source: Intellias Mobility (2018)

However, there are also some limitations to using these sensors in an

autonomous parking system. One of the main disadvantages is that they may not be

33

as accurate as other types of sensors, such as laser sensors, in certain situations.

They may also have difficulty detecting objects that are too close or too far away.

Another limitation is that they may not be able to detect certain types of objects, such

as those that are transparent or highly reflective. This can make it difficult for the

autonomous parking system to navigate safely (CARULLO et al., 2001).

Overall, ultrasonic sensors are a useful tool, as they can provide valuable

information about the environment and help the vehicle navigate safely through the

parking garage. Even so, they should be used in conjunction with other types of

sensors to provide a complete picture of the parking environment and ensure the safety

of the autonomous vehicle (PALLAS-ARENY, RAMON; WEBSTER, 2012).

2.3.4.1 HC-SR04

The HC-SR04 is an inexpensive and widely used ultrasonic sensor module

that measures distance by sending out ultrasonic waves and receiving their echoes.

The sensor is easy to use and can be interfaced with microcontrollers like Arduino,

Raspberry Pi, and other embedded systems. The photograph 5 show the sensor.

Photograph 5 - Ultrasonic sensor HC-SR04

Source: Piborg (2023)

It works on the principle of sonar, which is similar to the echolocation system

used by bats and dolphins to navigate and locate prey. It has a transducer that sends

out a high-frequency sound pulse, typically at 40 kHz, which travels through the air

until it hits an object. The pulse then bounces back from the object and is detected by

the receiver on the sensor module. The time taken for the pulse to travel to the object

and back is proportional to the distance between the sensor and the object. The

distance can be calculated by measuring the time delay between the transmitted and

received pulse.

34

 The HC-SR04 sensor has the following technical specifications:

● Operating Voltage: 5V DC

● Operating Current: 15mA

● Operating Frequency: 40kHz

● Measurement Range: 2cm to 400cm

● Measurement Accuracy: ±0.3cm

● Trigger Pulse Width: 10μs

● Echo Pulse Output: TTL level signal output proportional to the distance

● Dimensions: 45mm x 20mm x 15mm

2.3.5 GPS (Global Positioning System)

GPS is a satellite-based navigation system that uses a network of satellites

orbiting the Earth to determine the location, speed, and direction of an object on the

Earth's surface. It is widely used for navigation and tracking purposes, including in car

navigation systems, smartphones, and other devices. The GPS sensor works by

receiving signals from a network of satellites orbiting the Earth. Each satellite transmits

a radio signal that includes the satellite's current position and the time the signal was

transmitted. The sensor receives these signals and uses them to calculate the distance

between the satellite and the device. By measuring the distance between the device

and at least three satellites, the GPS sensor can determine the device's position on

the Earth's surface using a process called trilateration or triangulation (PALLAS-

ARENY, RAMON; WEBSTER, 2012). This process is shown in figure 6.

Figure 6 - GPS triangulation process

Source: Gunther (2022)

35

In addition to determining the location, the GPS sensor can also be used to

determine the speed and direction of the device. By continuously tracking the location

of the device over time, the GPS sensor can determine the speed at which the device

is moving and the direction it is headed. This information can be used in applications

such as tracking the movement of a vehicle or providing turn-by-turn navigation

instructions. In the context of an autonomous parking system, the GPS sensor is used

to determine the location of the vehicle as it moves through the parking lot. This

information is used to guide the vehicle to an available parking space and to navigate

to the desired parking location within the space (PALLAS-ARENY, RAMON;

WEBSTER, 2012). Advantages of using a GPS sensor:

1) High accuracy: GPS sensors can provide very accurate location information

in ideal conditions, which is important for precise navigation and

maneuvering in a parking lot;

2) Wide coverage: Can be received almost anywhere, making it possible to

use these sensors in a variety of environments, including outdoor parking

lots;

3) Cost-effective: GPS sensors are relatively inexpensive compared to other

types of sensors, such as LIDAR or radar;

4) Easy to integrate: It’s a type of sensor that are readily available and easy to

integrate into existing systems.

Some disadvantages:

1) Dependence on satellite signals: GPS sensors rely on satellite signals to

function, which can be disrupted by certain environmental conditions such

as heavy cloud cover or tall buildings;

2) Limited accuracy in certain conditions: Accuracy can be affected by factors

such as atmospheric conditions and the presence of buildings or other

structures, which can affect the quality of the satellite signals received by

the sensor;

3) Potential for hacking: GPS signals can be vulnerable to hacking, which

could potentially compromise the accuracy and reliability of the sensor;

4) Limited range: They have a limited range, which may not be sufficient for

certain applications, such as indoor parking garages or multi-level parking

lots.

36

GPS sensors play a fundamental role in autonomous vehicles as they not only

provide the vehicle's positioning but can also assist in calculating the speed and

direction of movement. They are a powerful tool when used in conjunction with other

sensors to obtain accurate location through sensor fusion (PALLAS-ARENY, RAMON;

WEBSTER, 2012).

2.3.6 Inertial Sensors

Inertial sensors could measure acceleration, orientation, and angular velocity.

They are typically used in applications where precise measurement of these quantities

is required, such as in inertial navigation systems, aircraft and missile guidance

systems, and virtual reality headsets. There are several types of inertial sensors,

including accelerometers, gyroscopes, and magnetometers. Accelerometers measure

acceleration, which is the rate of change of velocity over time. Gyroscopes measure

angular velocity, which is the rate of change of orientation over time. Magnetometers

measure the strength and direction of the magnetic field. In the figure 7 it is possible

to observe the types of movements that can be measured.

Figure 7 - Types of movements measure by inertial sensors

Source: Electronic Products (2011)

Inertial sensors work by using physical principles such as Newton's laws of

motion and the conservation of angular momentum. For example, an accelerometer

may use a mass suspended on a spring that is displaced when the accelerometer is

subjected to acceleration. The displacement of the mass is then measured and used

to calculate the acceleration. In ADAS, inertial sensors are used in conjunction with

37

other sensors such as cameras, lasers, and radar to provide a complete picture of the

surrounding environment. This information is used by the autonomous parking system

to navigate the vehicle safely and accurately through the parking lot and into a parking

space (PALLAS-ARENY, RAMON; WEBSTER, 2012). To summarize, the use of

inertial sensors in an autonomous parking system allows the vehicle to move smoothly

and precisely, ensuring a safe and efficient parking experience.

2.3.7 Electro-mechanical encoder

Electro-mechanical encoders are devices used to convert rotational or linear

motion into electrical signals, allowing measurement and control of position, velocity,

and rotational direction of an axis or mechanical system. There are different types of

electro-mechanical encoders, including incremental, absolute, and magnetic

encoders, each with its own specific features and applications.

Incremental encoders generate electrical pulses in response to mechanical

motion, providing information about the velocity and direction of axis rotation. They are

often used in applications requiring real-time position and velocity control, such as

CNC machines, industrial robotics, printers, among others (DIGI-KEY ELECTRONICS,

2020). In figure 8 is possible to see an example.

Figure 8 - Incremental encoder

Source: Digi-Key Electronics (2020)

Absolute encoders provide precise information about the angular or linear

position without the need for an initial reference position. These encoders are widely

used in applications requiring high precision and reliability in measurement, such as

motion control systems in aircraft, satellites, telescopes, and other high-precision

equipment (DIGI-KEY ELECTRONICS, 2020).

38

Magnetic encoders, on the other hand, use magnetic sensor technology to

detect the axis position and are commonly used in harsh industrial environments where

dust, humidity, or vibrations may affect the reliability of other types of encoders.

(PALLAS-ARENY, RAMON; WEBSTER, 2012).

There are various types of encoders used in different domains and

applications. One common type is the digital encoder, which converts analog signals

into digital representations, enabling their processing and manipulation within digital

systems. Another widely used type is the audio/video encoder, which converts analog

audio or video signals into compressed digital formats suitable for transmission or

storage (PALLAS-ARENY, RAMON; WEBSTER, 2012).

2.3.7.1 Rotary encoder LPD3806

The LPD3806 rotary encoder is a high-precision sensor that can be used to

measure the position and speed of rotating shafts in a wide range of applications. The

LPD3806 encoder is widely used in robotics, automation, and machine control systems

due to its high accuracy, resolution, and durability. The encoder works by using an

optical sensor to detect the rotation of a disc with evenly spaced slots. As the disc

rotates, the slots pass through the optical sensor, which detects the changes in the

amount of light passing through the slots. The encoder then converts the changes in

light into electrical signals, which are used to measure the position and speed of the

rotating shaft (OGUNTOSIN; AKINDELE, 2019). The photograph 6 show the actuator.

Photograph 6 - Rotary encoder LPD3806

Source: Doublehero (2023)

The LPD3806 rotary encoder has the following technical specifications:

39

● Operating Voltage: 5V DC;

● Output Signal: A, B, and Z phase signals;

● Maximum Speed: 6000 RPM;

● Maximum Resolution: 600 PPR (pulses per revolution);

● Operating Temperature: -10°C to 70°C;

● Protection Class: IP65 (dust-proof and water-resistant);

● Dimensions: 38mm x 38mm x 28mm.

2.3.8 H-bridge

An H-bridge is an essential electronic circuit configuration commonly employed

in power electronics and motor control applications. It consists of four switching

elements arranged in the shape of an "H," from which it derives its name. The purpose

of the H-bridge circuit is to facilitate bidirectional control over current flow through a

load, such as a motor or an actuator, by enabling or disabling the switching elements

in a specific pattern (IMAN-EINI et al., 2009).

The primary function of an H-bridge is to provide a means of controlling the

direction and magnitude of current flowing through the load. By appropriately activating

the switching elements in the H-bridge, the voltage polarity and magnitude applied to

the load can be manipulated, resulting in forward or reverse motor rotation, for instance

(IMAN-EINI et al., 2009). This bidirectional control capability makes H-bridges

particularly valuable in applications that necessitate precise speed and direction

control, including robotics, electric vehicles, and industrial automation.

Typically, the four switching elements in an H-bridge are solid-state devices,

such as transistors or MOSFETs, capable of handling high currents and voltages. Two

of these switches, known as high-side switches, are connected to the positive supply

voltage, while the other two, called low-side switches, are connected to the ground or

negative supply voltage. By selectively turning on and off the appropriate combination

of switches, the H-bridge can effectively reverse the voltage polarity across the load,

allowing for bidirectional current flow (IMAN-EINI et al., 2009).

To ensure proper operation and prevent short circuits, H-bridges often

incorporate additional control circuitry. This circuitry includes gate drivers, which

provide the necessary signals to drive the switching elements and protect against

shoot-through, a condition in which both high-side and low-side switches are

momentarily activated simultaneously. Furthermore, H-bridges may feature braking

40

and freewheeling diodes to suppress voltage spikes and safeguard the switches from

reverse current flow during switching transitions (IMAN-EINI et al., 2009).

The control of an H-bridge is typically achieved through a microcontroller or a

dedicated motor control circuit. By supplying appropriate signals to the gate drivers,

the microcontroller can control the timing and sequence of switching events, enabling

precise speed and direction control of the load. Moreover, advanced designs may

incorporate additional features like pulse width modulation (PWM) for smooth speed

control or current sensing for monitoring and protection purposes (IMAN-EINI et al.,

2009).

In summary, the H-bridge is a critical circuit configuration widely utilized for

bidirectional current control in power electronics and motor control applications. By

selectively activating the switching elements, the H-bridge facilitates precise control

over voltage polarity and magnitude across a load (IMAN-EINI et al., 2009). Its

versatility and effectiveness make it an indispensable component in numerous systems

requiring reversible motor control and precise manipulation of power flows.

2.3.8.1 Double H-bridges L-298N

The L298N is a popular motor driver IC that can be used to control the speed

and direction of DC motors and stepper motors. The L298N IC is widely used in

robotics and automation projects due to its ease of use and reliability. It works by using

two H-bridges to control the flow of current through the motor. Each H-bridge consists

of four MOSFETs, which can be switched on and off to change the direction of current

flow through the motor. By changing the state of the MOSFETs, the L298N can control

the speed and direction of the motor. A picture of it is shown in photograph 7.

Photograph 7 - Double H-bridges L-298N

Source: Instituto Digital (2023)

41

 The L298N motor driver IC has the following technical specifications:

● Operating Voltage: 5V to 35V DC;

● Maximum Output Current: 2A per channel (with heat sink);

● Peak Output Current: 3A per channel;

● Logic Voltage: 5V DC;

● Number of H-bridges: 2;

● Maximum Power Dissipation: 25W;

● Dimensions: 20mm x 58mm x 15mm.

2.3.9 Microcontrollers

Microcontrollers are integrated electronic devices that combine a

microprocessor, memory, and peripherals on a single chip. They are widely used in

various applications due to their processing capabilities, ease of programming, and low

power consumption (MAZIDI; MCKINLAY; CAUSEY, 2008). These devices provide an

efficient solution for real-time control and system monitoring, enabling process

automation and interaction with the external environment.

The architecture of microcontrollers varies, with Harvard and Von Neumann

architectures being common. The Harvard architecture separates the program memory

from data memory, allowing simultaneous access to instructions and data. On the other

hand, the Von Neumann architecture uses a single memory to store both instructions

and data (AYALA, 1996). Additionally, microcontrollers feature integrated peripherals

such as input/output ports, analog-to-digital converters, timers, and communication

interfaces, enabling interaction with the external environment.

Programming is typically carried out using high-level programming languages

such as C or C++, which are compiled into machine code compatible with the target

microcontroller. Integrated Development Environments (IDEs), such as Arduino IDE

and MPLAB X, provide tools and libraries to facilitate the programming process

(PREDKO, 2008). Microcontroller programming involves defining input/output pins,

configuring peripherals, and implementing control algorithms.

Microcontrollers have been rapidly evolving, driven by advancements in

semiconductor technology. Recent advances include increased processing power,

enhanced peripheral integration, reduced power consumption, and support for short-

range wireless communications such as Bluetooth and Wi-Fi. Additionally, the

42

development of open-source platforms like Arduino and Raspberry Pi has

democratized access to microcontrollers, enabling more people to explore their

applications and create innovative projects (BANZI, 2008).

2.3.9.1 Arduino UNO

The Arduino UNO is a widely adopted microcontroller board that is based on

the ATmega328P microcontroller, belonging to the Atmel AVR microcontroller family

(ARDUINO, 2023). This board is recognized as one of the most popular and well-

documented in the Arduino platform, which encompasses a comprehensive set of

hardware and software tools for the development of interactive electronic projects.

Developed to offer ease of use to both beginners and professionals, the

Arduino UNO enables rapid prototyping and integration with various sensors,

actuators, and communication modules. For programming, it is possible to use a

language based on C/C++ and an Integrated Development Environment (IDE)

compatible with different operating systems such as Windows, Linux, and Mac OS X.

Additionally, the board can be programmed through a web interface or via command

line. Photograph 8 presents the Arduino UNO module.

Photograph 8 - Arduino UNO

Source: Maker Hero (2023)

Below is presented table 3 specifying the characteristics of the Arduino UNO

module.

43

Table 3 - Technical specification of the Arduino UNO

Characteristics Value

Microcontroller ATmega328P

Digital Input/Output Pins 14 (of which 6 can be used as PWM
outputs)

Analog Input Pins 6

Crystal oscillator 16 Mhz

Input Voltage (nominal) 7-12 V

Output Voltage 5V

Maximum Current per I/O Pin 20 mA

Maximum Current 200 mA

Clock Speed 16 MHz

Memory 2KB SRAM, 32KB FLASH, 1KB EEPROM

Source: Arduino (2023)

2.4 Advanced Driver Assistence System

With the aim of improving safety and efficiency in driving, the automotive

industry has been investing more and more in ADAS technologies. These systems use

sensors, cameras, radars, and software to collect information about the vehicle's

environment and help the driver make informed decisions to avoid accidents

(RAJAMANI, 2011). With the increasing number of traffic accidents worldwide, ADAS

systems have become an important tool to reduce collisions and save lives. In this

perspective, it is essential to understand how these systems work and their importance

in the current context of the automotive industry. Figure 9 presents various ADAS

applications and their respective sensors. According to Synopysis (2023), some of

these applications are essential for safety and include:

• Pedestrian detection and avoidance;

• Departure warning/correction;

• Recognition of traffic signs;

• Automatic emergency braking;

• Blind spot detection.

44

Figure 9 - ADAS functions and sensors

Source: Texa (2023)

These systems are the key to the success of ADAS applications. They

incorporate the latest interface standard models and use multiple vision-based

algorithms to support real-time multimedia, vision co-processing, and sensor fusion

subsystems. The modernization of ADAS applications is the first step towards

understanding autonomous vehicles (RAJAMANI, 2011).

2.4.1 Advanced Emergency Braking

Also known as AEB aims to brake the vehicle or alert the driver in order to

avoid potential collisions. The system can use various types of sensors, such as vision,

radar, and Lidar (ZIEBINSKI et al., 2017), that monitor the distance between the vehicle

and other objects or vehicles on the road, thus having the potential to save lives and

reduce serious injuries.

2.4.2 All-round Collision Warning

All-round Collision Warning stands for ACW, also known as a collision warning

system in all directions. ACW is an automotive safety technology that uses sensors,

such as radar or cameras, to monitor the area around the vehicle and alert the driver

to possible collision risks, including vehicles, objects, and pedestrians approaching the

vehicle from any direction. This technology is particularly useful in parking maneuvers

as it helps to avoid collisions with other vehicles or objects that may be outside the

driver's field of view (RAJAMANI, 2011).

45

2.4.3 Adaptive Cruise Control

Adaptive Cruise Control, or ACC, is a vehicle safety feature that uses radar or

camera technology to maintain a safe distance between the user's vehicle and the

vehicle in front, automatically adjusting the speed of the vehicle according to traffic

flow. ACC is an extension of traditional cruise control, which allows the driver to set a

constant speed for the vehicle. However, this system is able to monitor the distance

and speed of the vehicle in front and adjust the speed of the user's vehicle accordingly,

in order to maintain a safe distance and prevent collisions. ACC is an important ADAS

technology that can help improve road safety, reduce accidents, and driver fatigue

(ZIEBINSKI et al., 2017).

2.4.4 Active Park Assist

In the automotive context, APC stands for "Active Park Assist", which is a

safety feature that uses ultrasound sensors and cameras to help the driver park the

vehicle more easily and accurately. When activated, the APC system can detect

available parking spaces around the vehicle and then guide the driver through visual

and audible instructions to park the vehicle in the space. The APC can also

automatically control the vehicle's steering wheel during the parking maneuver,

allowing the driver to focus on controlling the accelerator, brake, and transmission. The

APC is a useful technology for drivers who have difficulty parking in tight spaces or to

avoid collisions during parking maneuvers, and it is a common feature in newer

vehicles and is often included as part of an ADAS feature package (RAJAMANI, 2011).

2.4.5 Autonomous Parking System

Also knows as APS, is a car safety feature that uses sensors, cameras, and

software to help the driver park the vehicle more easily and accurately. APS includes

various features, such as "Automatic Parking Assistant" (or Park Assist), which allows

the vehicle to park automatically in a spot identified by the system. Park Assist typically

uses ultrasonic sensors to detect the size of the spot. Another feature of APS is the

"Exit Parking Assistant" (or Exit Assist), which alerts the driver about the presence of

pedestrians, cyclists, or other vehicles when leaving a parking spot. Exit Assist can

also monitor approaching traffic and alert the driver about possible collisions during the

exit from the parking spot.

46

2.4.6 Other systems

In addition to the systems mentioned in the subsections of section 2.4, there are

also several others that are discussed in the literature. Some examples are present in

the works of (Choi et al., 2016; Kiencke & Nielsen, 2005; Rajamani, 2011; Synopysis,

2023; Ziebinski et al., 2017), these are presented in the works listed in frame 1:

Frame 1 - Other ADAS systems

System Acronym Description

Lane Departure Warning LDW This system uses sensors to detect the lane

marking lines on the road, and if the vehicle

deviates from its lane, the system issues an

audible or visual warning to alert the driver.

Lane Keeping Assist LKA This system works in conjunction with the

LDW to correct the vehicle's deviation from

the lane by applying a small torque to the

steering wheel to keep the vehicle in the

correct position.

Blind Spot Detection BSD This system uses sensors to detect the

presence of other vehicles in the driver's blind

spot. The system issues an audible or visual

warning to alert the driver to the presence of

the vehicle in the blind spot.

Rear Cross Traffic Alert RCTA This system uses sensors to detect vehicles

approaching the car when it is backing out of

a parking spot. The system issues an audible

or visual alert to warn the driver about the

approaching vehicle.

Advanced Parking Assist APA This system helps the driver to park the

vehicle more easily and accurately, using

sensors to detect the size of the parking

space and guide the driver through visual and

auditory instructions to park the vehicle

properly.

Source: Adapted from Choi et al. (2016), Kiencke & Nielsen (2005), Rajamani (2011), Synopysis,
(2023) and Ziebinski et al. (2017)

These are just a few examples of the types of ADAS systems that exist, and

new technologies are constantly being developed to help improve safety on the roads.

47

2.5 Simulation Software

Software plays a crucial role in the simulation of autonomous parking systems.

It is used to create and run the virtual environment in which the simulation takes place,

as well as to control the behavior and movements of the simulated autonomous

vehicle. There are several types of software that may be used in the simulation of

autonomous parking systems. One type is computer-aided design (CAD) software,

which is used to create a virtual model of the parking lot or garage in which the

simulation will take place. This may include the layout of the space, the location of

parking spaces, and the presence of any obstacles or hazards.

Another type of software that may be used is simulation software, which is

used to run the simulation itself. This software typically includes algorithms and logic

to control the movements of the simulated autonomous vehicle, as well as sensors and

other data inputs to help the vehicle navigate and avoid obstacles. Finally, analysis

software may be used to review the results of the simulation and identify any areas for

improvement. This may include analyzing data on the vehicle's speed, accuracy of

parking, and other performance metrics. Overall, the use of software in the simulation

of autonomous parking systems allows for the testing and optimization of these

systems in a controlled and safe environment before they are deployed in real-world

scenarios.

2.5.1 MATLAB and Driving Scenario

MATLAB (MATrix LABoratory) is a high-level programming language and

computing environment developed by MathWorks. It is widely used in the field of

engineering and scientific computing, particularly in areas such as image and signal

processing, control systems design, and data analysis. The software includes a wide

range of tools and functions that can be used to perform various tasks such as data

visualization, numerical computation, and model-based design. It also provides a

flexible and interactive programming environment with features such as debugging,

code highlighting, and interactive graphics.

In the context of a driving scenario, MATLAB can be used to analyze and

simulate various aspects of the scenario, such as vehicle dynamics, traffic flow, and

sensor data. For example, it can be used to model and analyze the behavior of vehicles

and pedestrians in a traffic environment, or to design and test control systems for

48

autonomous vehicles. This is possible using the driving scenario module in MATLAB,

a toolbox that provides a set of functions and tools for modeling and simulating driving

scenarios. The figure 10 exemplifies its use showing a car, represented in blue, which

contains a vision sensor and a radar, capable of identifying objects in front of the car.

Figure 10 - Driving Scenario Designer with a project running

Source: Mathworks (2023)

It includes a library of vehicle, road and traffic models that can be used to

create and simulate a variety of driving scenarios. The module also provides tools for

visualizing and analyzing the results of the simulation, such as plotting vehicle

trajectories and generating performance metrics. On this car the multiPlus identification

points of the sensors are shown. These signals are very useful bases for the

development of autonomous automotive systems, considering the easy modeling

obtained from often complex systems. Overall, the driving scenario module in MATLAB

is a useful tool for researchers and engineers working on the development and analysis

of driving systems and technologies. It can be used to design, test, and optimize the

performance of control systems, sensors, and other components of a driving system,

and to evaluate the behavior and performance of a vehicle in various driving scenarios.

2.5.1.1 Introduction to driving scenario designer

Driving Scenario Designer is a powerful and versatile tool in the field of

autonomous vehicle simulation and development. It is a specialized add-on for the

49

widely-used Matlab software, developed by MathWorks, that enables engineers,

researchers, and developers to create realistic driving scenarios for a variety of

applications.

In the pursuit of safer and more efficient autonomous driving systems,

simulations play a crucial role in testing and validating algorithms and control

strategies. The Driving Scenario Designer empowers users to design complex and

dynamic driving scenarios that mimic real-world conditions, providing a safe and

controlled environment to assess the performance of autonomous vehicles.

This tool offers a user-friendly graphical interface that allows users to define

various elements of a driving scenario, such as roads, vehicles, pedestrians, traffic

signs, and traffic signals, among others. Users can customize the behavior and motion

of each element, allowing for the simulation of diverse traffic scenarios, urban

environments, highways, and more.

With the Driving Scenario Designer, users can explore different traffic

scenarios, test the performance of autonomous systems under various conditions, and

evaluate the robustness of control algorithms. Additionally, the software facilitates the

integration of simulated scenarios with control algorithms and vehicle models, creating

a comprehensive simulation environment for testing and development.

It is also possible to understand the operation of the created scenario through

the code, optimizing the development of scenarios and allowing the use of

programmable logic to perform actions directly in the scenario. Figure 11 represents

the respective code generated by exporting the scenario.

Figure 11 - Code generated from a driving scenario in MATLAB

Source: Own authorship (2023)

50

There are the settings related to the road and the actors (cars, trucks, cyclists,

pedestrians, or barriers). Sensors can also be added to the ego vehicle, the vehicle

used for testing, allowing the positioning, angle of vision, range, and other attributes to

be adjusted. In figure 11 it is possible to identify that there are comments delimiting the

different implementations, such as the specification of the road segments and the

added vehicles. There is an ego vehicle and other non-ego vehicles.

2.5.2 Vector’s DYNA4

Vector's DYNA4 software is a simulation tool used to design and test dynamic

systems, including automotive systems such as autonomous parking systems. It is

based on the multi-body dynamics (MBD) approach, which allows for the simulation of

complex interactions between multiple moving bodies and their environments. One key

feature of DYNA4 is its ability to simulate the motion of bodies using both kinematic

and kinetic analyses. This means that it can model both the position and velocity of

bodies as well as the forces acting on them, allowing for a more accurate and detailed

simulation of their behavior. An example of a simulation can be seen in figure 12.

Figure 12 - Example of a DYNA4 Simulation

Source: Own authorship (2023)

DYNA4 also includes a range of tools for model development and analysis,

including tools for creating and editing models, visualizing simulation results, and

performing parametric studies. It also includes interfaces for data exchange with other

software tools and the ability to generate reports and documentation. In summary,

Vector's DYNA4 software is a comprehensive and powerful tool for simulating the

51

behavior of dynamic systems, including autonomous parking systems. Its use of the

MBD approach and wide range of analysis and model development tools make it a

valuable resource for designers and engineers working in this field.

2.6 Motion Planning

While humans can easily move from one place to another, this is a major

challenge for robots. Path planning is a central problem in autonomous robotics, where

the goal is to find a safe and efficient path for a robot to navigate from a starting position

to a desired goal position. This problem is relevant for a wide range of robotic

applications, including vacuum cleaning robots, robotic arms, and even flying objects.

The problem typically involves finding a path that avoids obstacles and satisfies various

constraints on the robot's motion, such as its maximum speed or acceleration. The

literature offers multiple approaches to address this problem, which depend on various

factors such as the environment model, the type of robot, and the specific application

(KOUBAA et al., 2018).

Motion planning commonly involves generating a sequence of valid

movements for a robot in a 2D or 3D world that may contain obstacles, where the robot

may represent an actual robot or any other collection of moving bodies. The goal is to

determine the appropriate motions for the robot to navigate to a desired goal state

without colliding with obstacles. These algorithms typically take into account the

geometry of the robot and its surroundings, as well as any constraints on the robot's

movement, such as maximum speed or acceleration limits. The goal of motion planning

is to generate a collision-free path for the robot to follow while minimizing the time and

energy required to complete the task (LAVALLE, 2006).

To solve a navigation problem, a typical robot needs to know its location, where

it should go, and how to get there. For this there are three stages, the location, mapping

and path planning or motion planning.

Localization: sensors are usually used to identify the environment around the

robot, such as ultrasonics, cameras, GPS, laser rangefinder. Location can be

expressed locally (e.g., right side of a room), topologically (e.g., in Room 13), or

absolutely (e.g., latitude, longitude, altitude) (LAVALLE, 2006).

Mapping: For a robot to effectively navigate in its environment, it needs to have

a map that allows it to keep track of its location and the directions it has traveled. This

map can be created manually and stored in the robot's memory in the form of a graph

52

or matrix representation, or it can be built incrementally as the robot explores new

areas. By having an accurate and up-to-date map of its environment, a robot can more

efficiently plan its movements and avoid collisions with obstacles (LLUVIA; LAZKANO;

ANSUATEGI, 2021).

Motion planning or path planning: To enable a mobile robot to find a path from

its current location to a target position, the robot must have prior knowledge of the

target location. An effective way to provide this information to the robot is through an

addressing scheme that the robot can interpret and follow. This addressing scheme

specifies the destination relative to the robot's initial position, allowing it to understand

where it needs to go. For example, in a parking lot, the robot can navigate to the

destination only with the number of the space it must find. In other scenarios, the

addressing scheme may use absolute or relative coordinates to indicate the target

location. By utilizing an appropriate addressing scheme, the robot can navigate

efficiently to the desired location while avoiding collisions with obstacles and

minimizing the risk of getting lost. The addressing scheme is an essential element of

the path planning process, helping the robot to accurately interpret its surroundings

and successfully navigate to the target position (LAVALLE, 2006). Next the main

solutions will be explained.

2.6.1 Classical Approaches

Classical path planning methods aim to either find a solution or prove that no

solution exists. However, these methods have some drawbacks, including their high

computational complexity and their inability to handle uncertainty, which makes them

less suitable for real-world applications. This is due to the unpredictable and uncertain

nature of many real-world scenarios. Classical path planning methods, such as Cell

Decomposition (CD), Potential Field (PF) and Road Map fall into this category of

methods (ATYABI, 2013).

Cell decomposition: is a classical method of path planning that involves

dividing the free space of a robot's configuration into smaller regions called cells to

generate a connectivity graph. This graph represents the adjacency between each cell,

allowing for a continuous path to be determined by following adjacent free cells from

the initial point to the goal point. The free space is decomposed into trapezoidal and

triangular cells by drawing parallel line segments from each vertex of each interior

polygon in the configuration space to the exterior boundary. Each cell is numbered and

53

represented as a node in the connectivity graph, with adjacent nodes linked in the

graph. Finally, a free path is constructed by connecting the initial and goal

configurations through the midpoints of the intersections of the adjacent cells. The cell

decomposition method has several variants, including exact and approximate cell

decomposition and the wave front planner (LAVALLE, 2006).

Potential Field: is a method that models a robot as a particle moving under the

influence of a potential field. This field is determined by the obstacles and the target

destination, where obstacles are assigned repulsive forces and the goal is assigned

an attractive force. This approach allows the robot to move toward the target while

avoiding obstacles. Different variants of PFM have been proposed to improve path

planning, such as an improved PFM and genetic algorithm. In unknown environments,

a new formula for repelling potential is used to reduce oscillations and conflicts when

obstacles are near the target. In addition, a framework based on PFM is proposed to

escape from a local minimum location of a robot path that may occur under narrow

passages or similar scenarios (KOUBAA et al., 2018).

Road map: also known as the Retraction, Skeleton or Highway approach,

involves constructing a network of collision-free paths for motion planning. Path

planning is then achieved by finding the shortest path between possible paths from the

starting position to the goal position using the roadmap network. The two popular

methods for developing road-maps are visibility and Voronoi graphs. Visibility graphs

are graphs whose vertices consist of the start, target, and vertices of polygonal

obstacles, with edges joining all pairs of vertices that can see each other. While the

resulting path is usually the minimum-length solution, a disadvantage is that the

shortest paths can touch obstacles at vertices or edges, making them unsafe. Voronoi

diagrams address this issue by producing collision-free paths by dividing the free

space around obstacles into regions (ATYABI, 2013).

2.6.2 Graph Search Approaches

Graph search approaches are a class of motion planning algorithms that

represent the robot's environment as a graph of nodes and edges. The goal is to find

a path from the initial position to the goal position on the graph while avoiding collisions

with obstacles. Graph search approaches are typically categorized into two groups:

search-based and sampling-based (LAVALLE, 2006).

54

2.6.2.1 A* algorithm

A* (pronounced "A star") is a widely used graph search algorithm in the field

of artificial intelligence and robotics. It is an extension of the more basic Dijkstra's

algorithm, with the addition of a heuristic function that guides the search towards the

goal node and makes it more efficient. The A* algorithm is a search-based approach,

meaning it explores the graph in a systematic way to find the shortest path. The search

algorithm typically uses heuristics to guide the search and avoid exploring areas of the

graph that are unlikely to lead to a solution. These algorithms are often used in

situations where the environment is relatively simple and the computational resources

are sufficient to explore the entire state space (GARCÍA, 2022).

To search for the shortest path each cell is evaluated according to equation 1.

Where g(n) is the accumulated cost of reaching the current cell n from the start position

S, h(n) is the estimated cost of the missing path to reach the goal, called heuristic. This

can be defined as the Euclidean distance from the current cell to the target. For the

algorithm to work faster, the Tie-breaking factor is used, which multiplies the value

h(n). This factor, when used, favors one direction over another in the event of a tie (LIN

et al., 2022). It’s shown in the equation 2.

 𝑓(𝑛) = ℎ(𝑛) + 𝑔(𝑛)

𝑔(𝑛) = {
𝑔(𝑆) = 0

𝑔(𝑝𝑎𝑟𝑒𝑛𝑡(𝑛)) + 𝑑𝑖𝑠𝑡(𝑝𝑎𝑟𝑒𝑛𝑡(𝑛), 𝑛)
}

(1)

𝑡𝐵𝑟𝑒𝑎𝑘 = 1 +

1

(𝑙𝑒𝑛𝑔𝑡ℎ(𝐺𝑟𝑖𝑑) + 𝑤𝑖𝑑𝑡ℎ(𝐺𝑟𝑖𝑑))
 (2)

It maintains two lists: the open list, which contains nodes that have been visited

but not yet fully explored, and the closed list, which contains nodes that have already

been fully explored. The algorithm continues to expand nodes on the open list until the

goal node is reached or the open list is empty. Each cell saved in the list has five

attributes: ID, parentCell, g_Cost, h_Cost and f_Cost.

The algorithm starts by expanding the neighbor cells of the starting position.

The neighbor cell with the lowest f_cost is chosen from the open list, added to the

closed list, and then expanded in each iteration. However, the algorithm verifies some

conditions before exploring the neighbor cells of the current cell. The conditions include

ignoring cells that already exist in the closed list and comparing the g_cost of this path

55

to the neighbor cell and the g_cost of the old path to the neighbor cell if it already exists

in the open list. If the g_cost of the new path is lower, the parent cell of the neighbor

cell is changed to the current cell, and the g, h, and f costs of the neighbor cell are

recalculated. This process is repeated until the algorithm reaches the goal position.

Finally, the algorithm works backward from the goal cell, going from each cell to its

parent cell until it reaches the starting cell to find the shortest path in the grid map

(KOUBAA et al., 2018).

A* is a popular and effective algorithm due to its optimality and completeness.

It returns the optimal path if one exists, and it is guaranteed to find a path if one exists.

However, the effectiveness of the algorithm can depend on the quality of the heuristic

function used, which must be both admissible and consistent.

2.6.2.2 RRT*

RRT* (Rapidly-exploring Random Trees) is a sampling-based motion planning

algorithm that can generate a probabilistically complete roadmap of the free

configuration space of a robot. The algorithm incrementally grows a tree rooted at the

starting configuration of the robot by randomly sampling new configurations and

attempting to connect them to the tree. In RRT*, each node represents a configuration

of the robot, and the edges of the tree represent feasible paths between these

configurations. Each configuration is associated with a cost-to-come, which is the cost

of the shortest path from the start configuration to that configuration (XINYU et al.,

2019).

The algorithm uses a cost function that assigns a cost to each edge in the tree,

aiming to assess the quality of connections between the nodes. The cost of an edge is

the Euclidean distance between the two configurations that it connects. The cost-to-

come of a node is updated by finding the lowest-cost edge that can be used to reach

the node. At each iteration, a new configuration is sampled randomly from the free

space, and the nearest node in the tree is found. A new configuration is then added to

the tree by connecting it to the nearest node. The algorithm then re-wires the tree by

checking if any of the existing nodes can be reached from the new node by a path with

a lower cost. If so, the tree is reconnected to reduce the overall cost of the tree

(LAVALLE, 2006).

The algorithm continues to iteratively sample new configurations and add them

to the tree until a path from the start configuration to the goal configuration is found.

56

RRT* is an asymptotically optimal algorithm, meaning that as the number of iterations

approaches infinity, the algorithm is guaranteed to find the optimal path between the

start and goal configurations, given certain assumptions about the cost function

(LAVALLE, 2006). The figure 13 denotes the functioning of the algorithm.

Figure 13 - Algorithm RRT*

Source: Xinyu et al. (2019)

2.6.3 Cost Map

In path planning, a cost map is a grid-based representation of the environment

where each cell is assigned a cost based on its characteristics such as traversability,

distance to obstacles, or other factors that affect the robot's movement. The cost map

is a useful tool for path planning algorithms as it provides a way to represent the

environment and determine the optimal path through it (SUH; OH, 2012).

The cost map is typically generated by processing sensory data from sensors

such as cameras, LiDAR, or sonar, and assigning a cost to each cell based on the

data. For example, cells that are occupied by obstacles are assigned a high cost, while

cells that are free of obstacles are assigned a low cost. The cost map can be updated

in real-time as the robot moves through the environment and new sensory data

becomes available (FERGUSON; LIKHACHEV, 2008).

Cost maps can be used in both search-based and sampling-based algorithms

to determine the optimal path through the environment. In search-based algorithms,

57

the cost map is used to guide the search process and determine the optimal path, while

in sampling-based algorithms, the cost map is used to bias the sampling process

towards areas of low cost, which can improve the efficiency of the algorithm

(FERGUSON; LIKHACHEV, 2008).

2.7 Vehicle Dynamics

The concept of vehicle dynamics corresponds to the description of the

movement of vehicles, which can be automobiles, trucks, buses, and other special

types of vehicles. It is interesting to identify and describe them to then obtain the

movements of interest, such as acceleration and braking, ride, and turning

(GILLESPIE, 2021). This concept can be considered in a rigid body, using the

principles of Newton and Euler equations, describing force and moment (JAZAR,

2009).

2.7.1 Coordinate Systems

Firstly, it is necessary to describe the coordinates used by the system to

describe the vehicle. There are two models that are commonly used: vehicle-fixed

coordinate system and earth-fixed coordinate system. Both are important to describe

in vehicle dynamics.

2.7.1.1 Vehicle-fixed coordinate systems

At vehicle-fixed coordinate systems exists two standards commonly used of

the SAE and the ISO, in both the systems the coordinates originate at the center of

gravity (C.G.) and travels with the vehicle (GILLESPIE, 2021). The SAE convention

utilizes a right-hand orthogonal coordinate system, seen in the figure 14, and describe

as follows:

x – Forward and on the longitudinal plane of symmetry

y – Lateral out the right side of the vehicle

z – Downward with respect to the vehicle

p – Roll velocity about the x-axis

q – Pitch velocity about the y-axis

r – Yaw velocity about the z-axis

58

Figure 14 - SAE vehicle axis system

Source: Gillespie (2021)

Otherwise, the ISO standard defines the coordinate system differently, where

the z-axis points up from the ground and the y-axis points to the left of the car, in the

figure 15 the system is shown.

Figure 15 - ISO vehicle axis system

Source: Kissai et al. (2019)

2.7.1.2 Earth fixed coordinate system

It is important to define the earth fixed coordinate system, because this

coordinate system is used to know the car position related to the world and it provides

a reference frame for navigation and localization systems. Therefore, the applications

like vehicle control and autonomous driving could be accomplish.

The standard is the use of a right-hand orthogonal axis system fixed on the

earth. Commonly the axis is positioned at the start point of a maneuver and

consequently coincide with the vehicle fixed coordinate system. The convention of the

axis is shown in the figure 16, and the description is as follow:

X – Forward movement;

59

Y – Lateral movement (to the right is positive);

Z – Vertical movement;

ψ – Heading angle (angle between x and X in the ground plane);

ν – Course angle (angle between the vehicle’s velocity vector and X axis);

β – Sideslip angle (angle between x axis and the vehicle velocity vector).

Figure 16 - Vehicle in an Earth Fixed Coordinate System

Source: Gillespie (2021)

2.7.2 Instantaneous center of rotation (ICR)

Given a rigid body, the instant velocity of any point of the body could be

expressed as a result of a rotation about an axis perpendicular to the plane (JAZAR,

2009). Where the lines of the given points intercept are known as the instantaneous

center of rotation or ICR, in the figure 17 could be seen the lines originate from the

front and rear wheel instant velocity and from the center of mass instant velocity.

Figure 17 - Instantaneous center of rotation

Source: Michael (2020)

60

2.7.3 Kinematic Bicycle Model

The kinematic bicycle model is a simplified mathematical representation of a

bicycle that is used to analyze its dynamic behavior. The model could represent a car

as a rigid body with two wheels and a steer. This is a classic model that does very well

at capturing vehicle motion in normal driving conditions (DING, 2021). The model

simplifies the vehicle dynamics combining the two front wheels and the two rear wheels

into one front and one rear wheel respectively. This combination forms the two-

wheeled model or most commonly named bicycle model. Therefore instead of two

steering angle, the system only have one (MICHAEL, 2020). The figure 18 describe

the model and show the steering angles.

Figure 18 - Two-wheel representation of a four-wheel system

Source: Michael (2020)

Using the ICR model is possible to derive practical formulas for the kinematic

bicycle model (THEERS; SINGH, 2023). The objective of the modeling is to find the

equation to describe the behavior. Therefore, these parameters can feed a control

system.

Utilizing the rear-axle as reference point, the direction of the vehicle’s velocity

is the same as the angle of the rear wheel, named θ, with respect to the x axis. The

figure 19 denotes that.

61

Figure 19 - Kinematic bicycle model with the rear axle reference point

Source: Michael (2020)

It’s necessary to find the velocity into components of x and y. Where 𝑥�̇� are the

𝑣𝑥, the velocity in the x axis and 𝑦�̇� are the 𝑣𝑦, the velocity in the y axis, the equation 3

denotes that, using trigonometrical relations:

 𝑥�̇� = 𝑣 ∗ cos(𝜃)

𝑦�̇� = 𝑣 ∗ sin(𝜃)
(3)

Next is important to define the angular velocity 𝜔, this show how the model is

changing his heading. Using the linear velocity (𝑣) and the radius to the IC point (𝑅),

the angular velocity could be obtained (YOUNG; FREEDMAN; FORD, 2012). In

equation 4 could be seen the relation.

 �̇� = 𝜔 =
𝑣

𝑅
 (4)

It’s possible to obtain 𝑅 using trigonometry, to do that is necessary find the

angle x shown in the figure 21. It’s known that the angle a and c is equal to 90°,

therefore using the principle that: the internal sum of the angles of a triangle must be

equal to 180º, it’s obtained the equations 5 and 6. And subtracting equation 6 from 5

we get equation 7.

62

 𝑎 + 𝑏 + 𝜁 = 180°

𝑥 + 𝑏 + 𝑐 = 180°

𝑥 = 𝜁

(5)

(6)

(7)

Knowing that the angle 𝑥 has the same value as the angle 𝜁, referring to the

steering of the model, it is possible to deduce equation 8. Then it is only necessary to

isolate R.

tan(𝜁) =

𝐿

𝑅
 (8)

𝑅 =

𝐿

tan(𝜁)
 (9)

It is then possible to obtain the final equations shown in 10. And the figure 20

summarizes the model, showing the inputs and outputs.

 𝑥�̇� = 𝑣 ∗ cos(𝜃)

𝑦�̇� = 𝑣 ∗ sin(𝜃)

�̇� = 𝜔 = 𝑣 ∗
tan(𝜁)

𝐿

(10)

Figure 20 - Inputs and outputs of the kinematic bicycle model

Source: Michael (2020)

To bring this model closer to its use in practice, the discretized model is shown

with the equations in 11. The use of the rate of change of steering angle instead of the

steering angle can be noticed, this is used considering that the vehicle cannot turn the

steering wheel instantly.

63

 𝑥(𝑡 + 1) = 𝑥(𝑡) + �̇� ∗ 𝛥𝑡

𝑦(𝑡 + 1) = 𝑦(𝑡) + �̇� ∗ 𝛥𝑡

𝜃(𝑡 + 1) = 𝜃(𝑡) + �̇� ∗ 𝛥𝑡

𝜁(𝑡 + 1) = 𝜁(𝑡) + 𝜁̇ ∗ 𝛥𝑡

(11)

In this way, the x and y positions, vehicle heading θ, and steering angle ζ are

obtained, as can be observed in figure 21, with inputs being the vehicle speed v and

the rate of change of the steering angle Φ.

Figure 21 - Steering angle in bicycle model

Source: Adapted from Theers and Singh (2023)

2.8 Control Strategies

Automotive control involves the use of control theory and engineering to

improve the performance and safety of automobiles. Control systems are used to

regulate and optimize various aspects of vehicle behavior, including acceleration,

braking, steering, and stability. The goal of automotive control is to develop control

systems that can improve vehicle performance, enhance driver safety, and reduce fuel

consumption and emissions (KIENCKE; NIELSEN, 2005).

Recent advances in automotive control have been driven by the increasing use

of electronic and computer-based systems in modern vehicles. These systems allow

for more precise and efficient control of vehicle behavior, and have enabled the

development of advanced driver assistance systems (ADAS) and autonomous driving

64

technologies (CHOI et al., 2016). The figure 22 shows an example of an automotive

control architecture.

Figure 22 - An example of a control architecture

Source: Waslander (2018c)

2.8.1 Transfer Function

The transfer function is a fundamental concept in control theory that describes

the relationship between the input and output of a control system in the frequency

domain. The transfer function of a control system is a mathematical representation of

how the system responds to different inputs and disturbances (OGATA, 2009-).

The transfer function is usually expressed in terms of Laplace transforms,

which are a mathematical tool used to analyze linear time-invariant systems. The

transfer function is defined as the ratio of the Laplace transform of the output to the

Laplace transform of the input, assuming zero initial conditions. In other words, it gives

the relationship between the input and output signals in the Laplace domain (NISE,

2017).

The transfer function is typically denoted by G(s), where “s” is the Laplace

variable. The transfer function can be derived from the differential equations that

describe the system dynamics, using techniques such as Laplace transforms and

partial fraction expansion (OGATA, 2009-). A transfer function represented in the

Laplace domain is shown in the equation 12, where G is the ratio between input U and

output Y. The “s” variable is defined in equation 13 according to the laplace

transformation.

65

 𝑌(𝑠) = 𝐺(𝑠)𝑈(𝑠)

𝑠 = 𝜎 + 𝑗𝜔

(12)

(13)

The Laplace transform is a great tool for analyzing the input-output relationship

and for a better understanding of the performance of the control system. As well as the

roots of the numerator and denominator which provide insight into a system's response

to input functions, zeros being the roots of the numerator and the poles roots of the

denominator (WASLANDER, 2018c).

2.8.2 Logitudinal Control

When it comes to controlling the vehicle's longitudinal motion, which includes

its longitudinal velocity, acceleration, or distance from another preceding vehicle in the

same lane on the highway, the phrase "longitudinal controller" is commonly used. The

actuators responsible for carrying out longitudinal control are the throttle and brakes

(RAJAMANI, 2011).

According to vehicle modeling, the acceleration a is responsible for the change

in speed v. The relationship between v and a is typically represented as �̇� = 𝑎, which

is modeled using an integrator in control theory. This integrator can be controlled with

a PID controller. However, since the acceleration of the vehicle is often constrained

due to mechanical limitations and passenger comfort, it is important to design the

longitudinal controller with an input saturation (OLSSON, 2015).

A commonly known example of longitudinal control is demonstrated by the

cruise control system that is present in most vehicles. The driver sets a constant

desired speed for the vehicle, and the cruise control system automatically adjusts the

throttle to maintain that speed. Nevertheless, the driver must ensure that the vehicle

can safely travel at that speed on the highway. If a slower preceding vehicle appears

on the highway or if the ego vehicle gets too close, the driver must apply the brakes, if

necessary, which disengages the cruise control system and returns control of the

throttle to the driver (RAJAMANI, 2011).

2.8.2.1 Proportional–integral–derivative (PID) control

PID control is a type of feedback control that is commonly used in engineering

and industrial applications to regulate a process. PID stands for Proportional-Integral-

66

Derivative, which are the three types of control actions that the controller can use to

adjust the process output. The proportional action is proportional to the current error,

the integral action is proportional to the cumulative error over time, and the derivative

action is proportional to the rate of change of the error. By combining these three

actions, the PID controller can quickly respond to changes in the process input and

maintain a stable output. PID control is used in a wide range of applications, including

temperature control, motion control, and industrial process control. It is a widely used

and well-understood control technique, and it has been the subject of extensive

research and development over the years (NISE, 2017). Mathematically the PID

control can be represented in the time domain, as shown in equation 14, or more

commonly it can be represented in the s domain shown in equation 15.

𝑢(𝑡) = 𝐾𝑃𝑒(𝑡) + 𝐾𝐼 ∫ 𝑒(𝑡)𝑑𝑡

𝑡

0

+ 𝐾𝐷�̇�(𝑡)

𝑈(𝑠) = 𝐺𝐶(𝑠)𝐸(𝑠) = (𝐾𝑃 +
𝐾𝐼

𝑠
+ 𝐾𝐷𝑠) 𝐸(𝑠) = (

𝐾𝐷𝑠2 + 𝐾𝑃𝑠 + 𝐾𝐼

𝑠
) 𝐸(𝑠)

(14)

(15)

Where u(t) is the control input at time t, e(t) is the error between the setpoint

and the process output at time t, and KP, KI, and KD are the proportional, integral, and

derivative gains, respectively. The function in the laplace domain have the same

principles. It is possible to select the positioning of the zeros by selecting the KP, KI and

KD gains, in the case of the equation 16 the pole is at the origin.

𝐺𝐶(𝑠) =

𝐾𝐷𝑠2 + 𝐾𝑃𝑠 + 𝐾𝐼

𝑠
 (16)

The proportional term KP is a constant gain that determines the strength of the

correction applied to the control input based on the current error E(s). A larger value

of KP leads to a more aggressive correction, while a smaller value leads to a more

gradual correction. The integral term KI is a constant gain that determines the strength

of the correction applied based on the accumulated error over time. The integral term

sums up the error over a specified time interval (usually from the start of the control

process to the present time), and multiplies it by the constant gain KI. This helps to

correct for any steady-state errors that may be present. The derivative term KD is a

67

constant gain that determines the strength of the correction based on the rate of

change of the error. The derivative term takes the rate of change of the error over time

into account, and multiplies it by the constant gain KD. This helps to prevent

overshooting and oscillations in the control process (OGATA, 2009-). The frame 2

summarizes the concept.

Frame 2 - Changes in gains of the PID controller and their potential effects by properly tuning
the PID gains

Closed Loop

Response

Rise Time Overshoot Settling Time Steady State

Error

Increase 𝑲𝑷 Decrease Increase Small change Decrease

Increase 𝑲𝑰 Decrease Increase Increase Eliminate

Increase 𝑲𝑫 Small change Decrease Decrease Small change

Source: Waslander (2018a)

The transfer function of the plant being controlled is typically represented by

G(s). The closed-loop transfer function of the system with PID control is given by the

equation 17.

 𝐶(𝑠)

𝑅(𝑠)
=

𝐺𝐶(𝑠)𝐺(𝑠)

1 + 𝐺𝐶(𝑠)𝐺(𝑠)
 (17)

Where C(s) is the output of the controller, R(s) is the reference signal or

setpoint, G(s) is the transfer function of the plant and Gc(s) is the PID transfer function.

The closed-loop transfer function can be analyzed to determine the stability, steady-

state error, and response characteristics of the system. The gains KP, KI and KD must

be tuned to optimize the control performance for a given system. This can be done

through manual trial-and-error, or using more advanced methods such as Ziegler-

Nichols or Cohen-Coon tuning methods.

2.8.2.1.1 Cruize control

One of the main examples of using a PID controller is in the making of a cruise

control, in which the speed of the car is controlled through the accelerator and brake

to stay within the established reference speed. The controller could be split in two level,

a high-level controller and a low-level controller. The high-level controller receives the

reference velocity and the actual velocity of the car, and computes a desired

68

acceleration to the low-level controller, that outputs a throttle and brake commands. In

the figure 23 is possible to see an example of controllers to make this system.

Figure 23 - Cruise control schematic

Source: Waslander (2018c)

The desired acceleration can be found using the PID controller shown in

figure 24.

Figure 24 - Equation to find the desired acceleration of a cruise control

Source: Waslander (2018c)

In the dynamics of mechanical systems, equation 18 describes the relationship

between the engine torque (𝑇𝐸𝑛𝑔𝑖𝑛𝑒), the system's moment of inertia (𝐽𝑒), the distance

from the rotation axis (𝑟𝑒𝑓𝑓), angular acceleration (𝐺𝑅), and linear acceleration (�̈�𝑑𝑒𝑠).

Using the kinematic bicycle model and the engine torque equations with the engine

maps is possible to design a control to output the throttle and brake angle. In cruise

control normally the output is only the throttle angle. With this assumption, considering

the torque converter locked (gear 3+) and with the tire slip small (gentle longitudinal

maneuvers) is possible to find the torque engine using the equation 18 with the desired

acceleration, knowing that the other variables are constants in this system.

𝑇𝐸𝑛𝑔𝑖𝑛𝑒 =

𝐽𝑒

(𝑟𝑒𝑓𝑓)(𝐺𝑅)
�̈�𝑑𝑒𝑠 + 𝑇𝐿𝑜𝑎𝑑 (18)

69

With the engine map in figure 25 the throttle could be find using the torque

engine.

Figure 25 - Typical engine map

Source: Waslander (2018c)

2.8.3 Lateral Control

Vehicle lateral control refers to the process of maintaining a vehicle's lateral

position or trajectory relative to a specific reference point while in motion. This involves

controlling the vehicle's lateral movement, which is primarily achieved through the

steering system (SOUDBAKHSH; ESKANDARIAN, 2012).

Lateral vehicle control, can be mathematically described as the process of

regulating the lateral position of a vehicle with respect to a predefined reference

trajectory or point, typically in the context of time.

The goal of lateral control is to minimize this lateral error, by making steering

adjustments to the vehicle's direction, which is achieved primarily through the steering

angle applied to the front wheels. A common mathematical model used in lateral

control is the bicycle model, where the lateral motion of the vehicle is typically

represented using a combination of differential equations and control algorithms.

2.8.3.1 Pure Pursuit

One of the most commonly used techniques for path tracking in mobile robots

is the pure pursuit method and its variations. This method involves calculating the

curvature of a circular arc that connects the rear axle position to a goal point on the

70

path ahead of the robot. The goal point is determined by a look-ahead distance ld from

the current rear axle position to the desired path represented by the coordinates (gx,

gy), as shown in figure 26. By utilizing the location of the goal point and the angle α

between the vehicle's heading and the look-ahead vector, the steering angle ζ of the

robot can be calculated (SNIDER, 2009).

Figure 26 - Path following with pure pursuit controller

Source: Waslander (2018b)

In a Pure Pursuit control system, the variables play a fundamental role in

guiding a vehicle toward a target point along a planned trajectory. The first variable, 𝑙𝑑,

represents the distance from the vehicle to the target point along the reference path,

determining when the vehicle should make steering adjustments. The angle α denotes

the orientation angle that the vehicle needs to follow to align itself with the target point.

Lastly, R signifies the radius of curvature of the reference path at the vehicle's current

position, influencing the curvature of the path the vehicle must follow to reach the target

point. The law of sines can be applied to figure 26 to derive the relationship in the

equations 19.

 𝑙𝑑

sin (2𝛼)
=

𝑅

sin (
𝜋
2 − 𝛼)

𝑙𝑑

2 sin(𝛼) cos(𝛼)
=

𝑅

cos(𝛼)

𝑙𝑑

sin(𝛼)
= 2𝑅

(19)

71

 In other terms the answer can be expressed as path curvature κ, using

equation 9 of the bicycle model, the relationship shown in equation 20 can be obtained

to find the steering angle ζ, defining the pure pursuit control law.

𝜅 =

1

R
=

2 sin(𝛼)

𝑙𝑑

𝜁 = 𝑡𝑎𝑛−1(𝜅𝐿)

𝜁 = 𝑡𝑎𝑛−1 (
2𝐿 𝑠𝑖𝑛(𝛼)

𝑙𝑑
)

(20)

The error of this controller is called the cross-track error e and is defined as

the lateral distance between the heading vector and the target point, as could be seen

in figure 27.

Figure 27 - Pure pursuit controller with cross track error e

Source: Waslander (2018b)

In the equation 21 the cross-track error is calculated.

 sin(𝛼) =
𝑒

𝑙𝑑

𝜅 =
2 sin(𝛼)

𝑙𝑑
=

2

𝑙𝑑
2 𝑒

(21)

This controller is proportional and can vary according to vehicle speed, for this

reason the variable ld can be associated with vehicle speed as shown in equation 22.

72

 𝑙𝑑 = 𝐾𝑑𝑑𝑣𝑓

𝜁 = 𝑡𝑎𝑛−1 (
2𝐿 𝑠𝑖𝑛(𝛼)

𝐾𝑑𝑑𝑣𝑓
)

(22)

2.9 Chapter’s considerations

In this chapter, fundamental concepts for understanding parking systems and

ADAS systems were introduced. Within the fundamentals, it was found that parking

systems are typically developed using ultrasonic sensors because they provide

essential advantages for this type of system, such as reduced cost, short-range

detection, commercial availability, and fast data processing. Regarding motion

planning methods, RRT* was found to be the most interesting, as it provides a quick

response, generates faster and more reliable routes than other methods, such as A*.

It was also demonstrated that the MATLAB software is an appropriate platform for

developing an all-in-one solution incorporating the main requirements for parking

systems. Additionally, control systems used in the automotive industry, which are good

pathways for the initial implementation of the system, were discussed.

73

3 METHODOLOGY

The methodology section of this report outlines the process used to design and

simulate autonomous parking systems. It covers the use of a driving scenario designer,

the identification of parking spaces, the maneuvering of the vehicle into and out of

parking spaces, and the simulation of both perpendicular and oblique parking.

3.1 Bibliography Analysis and Literature Review

Seeking to acquire the necessary bibliographic portfolio for research

development, the PRISMA methodology was used. The PRISMA methodology

(Preferred Reporting Items for Systematic Reviews and Meta-Analyses) is a guide for

the development of systematic reviews and meta-analyses, which is a method used to

synthesize and summarize the available evidence on a specific research question. Its

objective is to help authors conduct a systematic review and meta-analysis

transparently and standardized, providing a checklist for reporting these studies. The

methodology consists of a set of guidelines for the stages of study selection, data

extraction, study quality evaluation, and data synthesis, which are:

• Identification: Search of selected databases according to the research axes

and/or search terms defined in the research protocol;

• Selection: Filtering of articles following the reading criteria of title, abstract, and

keywords proposed by the methodology, seeking to verify the alignment of the

article proposal with the researched topic;

• Eligibility: Complete reading of pre-selected articles to assign the final

research portfolio. If incompatibility with the topic is verified, the article is

excluded;

• Inclusion: Phase of including other studies by qualitative analysis to compose

the final research portfolio.

First, it was necessary to identify the keywords on the topic and define the

search criteria in the selected databases. The search terms were defined according to

the different synonyms of the concept of APS, using the Boolean operator "OR". The

parameters used are listed in frame 3.

74

Frame 3 - Research Protocol

Topic Autonomous Parking

Method Prisma

Type All

Language English

Axis
("Motion Planning" OR "path tracking" OR "path-planning") AND
("Automatic parking system" OR "parallel parking" OR "Parking
scenarios" OR "perpendicular parking")

Source: Own autorship (2023)

The PRISMA includes a flowchart that clearly describes the study selection

process, and a checklist that helps ensure that all critical elements of the systematic

review and meta-analysis are reported adequately and transparently. The

methodology development flowchart can be viewed in figure 28.

Figure 28 - PRISMA flow diagram

Source: adapted from the PRISMA Statement (2023)

75

A final portfolio of 88 studies was obtained, which were submitted to

bibliometric analysis. Using VOSVIEWER and Microsoft Excel software, it was

possible to understand the network of relationships present in the categories:

• Keywords;

• Publications per year;

• Authors.

VOSviewer is a tool for visualizing and analyzing bibliometric networks and

maps, which is used to analyze and visualize bibliographic data such as scientific

articles, journals, authors, and other academic publications. It allows the analysis of

large volumes of data, such as bibliographic references collected in a systematic

review or meta-analysis, and the identification of patterns and trends in the data.

VOSviewer was developed at Leiden University in the Netherlands and is a free and

open-source tool that can be used to create visualizations of networks, maps, and

bibliographic co-citation, co-authorship, and co-citation graphs. It is very useful for

researchers who wish to analyze scientific production in a particular area of research

or in several related areas.

3.2 Simulation

In this section, we will present the methodologies used to develop the

simulation of the proposed APS (Automated Parking System). Simulation plays a

crucial role in the APS development process, allowing for a thorough analysis of its

capabilities, efficiency, and safety in a controlled environment. The objective of this

simulation is to evaluate the performance of the APS in different parking scenarios,

taking into consideration factors such as spot detection, route planning, and parking

maneuvers. Through simulation, valuable insights are gained about the system's

behavior, identifying potential areas for improvement.

By utilizing a virtual environment, a wide variety of scenarios can be created,

ranging from simple parking lots to tight spaces with additional challenges. With

simulation, the APS's success rate in autonomously finding and parking in spots can

be evaluated, as well as the time required to complete the entire process. It is also

possible to analyze the system's efficiency in utilizing available space, aiming to

optimize spot occupancy by minimizing wasted space and maximizing parking

capacity.

76

3.2.1 Software selection for simulation

Initially, a literature review was conducted to situate oneself on the theme and

begin planning the simulation with a focus on finding autonomous parking methods

and programs to realize the simulation. During the research, it was identified that in a

large part of the work, simulation is carried out on unspecified software. There were

also works using Mathworks software such as Simulink and Matlab with the add-on

driving scenario designer. There was also the possibility of using the DYNA4 software

from Vector for the simulation, which has great advantages in relation to creating high-

fidelity simulations with reality. However, due to the complexity of the software and the

lack of tutorials and guides for its use, it was decided that Matlab would be the best

solution, as it provides various libraries of content that can be used to take the first

steps in new topics, which can otherwise become complex.

3.2.2 Scenario creation

In order to enhance the efficiency of simulation development, a deliberate

decision was made to employ the driving scenario add-on within the Matlab software.

This strategic choice was motivated by the desire to optimize resources and time,

thereby enabling a more focused approach to refining the core aspects of the research

study.

Testing the driving scenario simulation began to better understand its

operation. Mathworks' first steps documentation, explanatory videos, and examples

from their website were used for reference. This validation process provided valuable

insights into the add-on's capabilities and facilitated accurate simulation outcomes.

Then, the scenario for parallel parking simulation was created, using the following

logic:

1) Develop scenario in the driving scenario designer add-on;

2) Export as "MATLAB Function";

3) Open the generated file with MATLAB.

 In figure 29, it is possible to identify the creation of a scenario with two parked

cars on a street.

77

Figure 29 - Creation of a driving scenario with two cars parked

Source: Own authorship (2023)

3.2.3 Identification of the parking space

The first step to achieving the goal of autonomous parking is the identification

of the parking space. In this projects, ultrasonic and vision sensors are used. Ultrasonic

sensors have desirable characteristics such as low acquisition cost, ease of use, and

operation independent of lighting conditions, factors that make them ideal for use in

parking assist systems and automated parking systems. Vision sensors have good

performance when used with ultrasonic sensors in the parking space identification

phase and obstacle identification.

As the use of machine learning and sensor fusion makes it possible to obtain

accurate data on the size of the measured spaces and detected obstacles. Initially, a

scenario was created as demonstrated in section 3.2.2 with three cars and one parking

space between the second and third, with the ego vehicle placed in the center of the

central lane with an ultrasonic sensor in the front front of it, in the perpendicular

direction, with the aim of measuring whether the space between the cars is sufficient

for parking. The scenario can be seen in figure 30.

78

Figure 30 - Base scenario for parking space detection

Source: Own authorship (2023)

To identify the parking space, the following logic is used: when there is no more

signal, a possible parking space is identified for parking, and the size of the space is

then counted by incrementing the variable "lengthVaga" (Lv), adding itself to the result

of dividing the current speed of the ego vehicle by the sensor's update rate. Equation

23 represents this operation.

 𝐿𝑣2 = 𝐿𝑣1 +
𝑉𝑒

𝐹𝑠
 (23)

It is important to mention a problem inherent to ultrasonic sensors in the

identification and measurement of a possible parking space. The operation of this type

of sensor only allows the identification that there is an obstruction of it at a certain

distance, being possible to calculate it using time of flight concepts. Figure 31

demonstrates this problem, the detected object can be in any position parallel to the

car within the light blue band. The size of this area depends on the FOV of the

ultrasonic sensor. Thus, in the measurement of the parking space, an error occurs,

marked in the figure with the letter e, the size of the parking space is calculated smaller

than the real size.

79

Figure 31 - Error in identifying the real size of the parking space

Source: Own authorship (2023)

Some solutions to this problem are:

1) Use of an ultrasonic sensor with a small field of view;

2) Development of software to mitigate the error calculated through the use of

secondary and tertiary echoes received;

3) Use of more ultrasonic sensors and with the help of an algorithm to more

accurately identify the transition points;

4) Use of sensor fusion with other sensors, such as cameras, radar, lidar,

among others.

3.2.4 Maneuver of entering and exiting the parking space

With the correct identification of parking spaces, the next step was to conduct

a literature review in order to find methods for the car to maneuver into and then out of

a parking space, performing the parking and exit from the space with a continuous

movement and in a fast, efficient and safe way. Some of the main methods were

identified in the literature, one of which was mathematical, as in the work of Paromtchik

and Laugier (1996), which presents geometric relationships for parking in a specified

parking space. Another method is the use of path planning algorithms such as A*,

RRT*, Bi-RRT*, among others, which is the most chosen approach in recent works

because, despite its higher computational cost, it has an advantage in the

generalization of the parking place. The use of Bi-RRT* can be observed in the work

of Jhang and Lian (2020), where good results were obtained in a real test environment,

as the algorithm finding free paths with human-like movements.

It is interesting to mention the series of videos titled "matlab tech talks" within

the category "autonomous navigation," which provides a good theoretical basis for

entering the world of autonomous vehicles and provide an important foundation for

understanding and implementing path planning algorithms. Due to reliability,

80

processing time, and ease of implementation, the model chosen to perform the

simulation was the RRT* algorithm, which has an implementation for vehicles within

the "automated driving toolbox" of MATLAB. The function "pathPlannerRRT" is used

for this purpose. It was decided that for parallel and perpendicular parking, the car

should enter with the rear, as this allows the parking space to be identified with the

sensors as it passes through it. In oblique parking, however, this is not possible, as the

only way to park is frontally.

3.2.5 Developing a method to create a cost map from the driving scenario

For the path planning algorithm to work, a cost map is needed, so that the

algorithm can know the occupied spaces on the map, places where the calculated

trajectory cannot pass through. As the parking space detection had already been

carried out by the code developed in the work, there was work to identify the necessary

data, already collected by the sensor, to generate the cost map. It was identified that

it would be necessary to have values in the form of two-dimensional coordinates (x, y),

in addition to the transposition of the map from the driving scenario add-on to the

automated driving toolbox.

Initially, a blank cost map was created, and then a logic was developed that

transposed the objects detected by the sensor, using the ego vehicle's location and

the sensor's position as a base. In this way, positions were obtained in relation to the

cost map, and with them it was possible to create the positions where objects detected

by the sensor were located, as can be seen in figure 32, created by transforming points

from the ego vehicle's coordinates to the coordinates of the automated driving toolbox.

Figure 32 - Generated cost map

Source: Own authorship (2023)

81

3.2.6 Path planning

After creating the cost map, it was tested in a scenario with several parked

cars on the right lane, in an environment for the parallel parking test. For simplicity, the

car's initial trajectory was defined to stop right after the parking space, and the path

planning objective was calculated when the parking space had the minimum viable

size for parking. From the sensor data and the car's position, the coordinates for

parking the car in the center of the parking space are obtained. Then the path planning

for parking is performed, the cost map, the vehicle's initial position, and the parking

position are passed. After a few seconds, the trajectory that the car should follow is

calculated and stored in a variable called waypoints that must be passed.

These waypoints contain coordinates (x, y, z) and the corresponding angle of

the car. Then the data from this variable is transformed into the ego vehicle's

coordinate base and then passed back to the simulation through the "trajectory"

command. The inverse trajectory is also passed so that the car can exit the parking

space in sequence.

3.2.7 Parallel parking

With the development of the cost map and the adaptation of the path planning,

a parallel parking scenario was created to test the system. A street and some parked

cars were created using the driving scenario. With this scenario, code was generated

automatically, allowing for modifications in specific parameters of the scenario. After

that, a path was programmed for the ego vehicle to follow, as shown in figure 33.

During the course, the ego vehicle collected data with its sensors, which were

processed in other classes to perform the parking maneuver.

Figure 33 - Top view from the road of the parallel parking simulation

Source: Own authorship (2023)

82

3.2.8 Perpendicular parking

For the simulation in a perpendicular parking lot, it was necessary to create a

new map using the parkingLot function to quickly and automatically create the parking

spaces, then several cars were added to populate the parking lot. Parameters were

modified such as the positioning of the car and its initial trajectory. The size of the

sought parking space was also modified, instead of using the length of the car to

compare with the parking space, the width was used, as this is the limiting factor in this

type of parking. In figure 34, the result can be identified.

Figure 34 - Top view with the waypoints generated for perpendicular parking

Source: Own authorship (2023)

3.2.9 Angled parking

At the beginning, a map was created with 60º angled parking spaces using the

parkingLot function. The map was then populated with cars and the ego vehicle was

positioned. To perform the simulation with the goal of performing angled parking, it is

necessary to rethink the logic of identifying and parking spaces, as it is not feasible to

identify them using ultrasonic sensors. This type of parking space needs to be identified

beforehand, before the car passes through it, in order to perform the parking maneuver

frontally. In the simulation, a camera was used for identification, however, a machine

learning system was not implemented, using the measurements and tracking carried

out automatically by the driving scenario instead. These measurements return

coordinates (x, y) that can be used to create the cost map. The cost map was created

through a build in function on matlab.

With the cost map created, it was then necessary to rethink the logic of

movement and the waypoints passed to the trajectory function. The other parkings

83

occurred in the opposite direction, with the car in reverse, however this car needs to

enter the space frontally. The driving scenario reverses the angles depending on the

direction of movement, so the waypoints, angles, and speeds passed to the trajectory

function were modified. It was possible to perform the parking and exit from the space,

figure 35 shows the vehicle entering a space.

Figure 35 - Angle parking in bird's-eye plot

Source: Own authorship (2023)

3.3 Small scale prototype

The small-scale prototype was designed to be a testing and validation platform

with the aim of empirically testing the simulations and codes developed for the APS.

3.3.1 Hardware

This section outlines the process used to design and prototype autonomous

parking systems. It covers the plan, design and implementation of a small-scale

prototype, as well as the programming of the prototype side and computer side design

to filter and use the data acquired. The small-scale prototype was designed to be a

testing and validation platform with the aim of empirically testing the simulations and

codes developed for the APS.

84

3.3.1.1 Arduino Uno

To connect the sensors and actuators, a microcontroller is required. In this

case, an Arduino Uno was used due to its availability and the option to validate the

system on a low-cost platform with limited processing capabilities. To operate the

system, the Arduino was connected to a computer via USB, which provides power and

data connection. Information is transferred via the USB port using the Serial protocol.

Therefore, a program had to be developed to receive, filter, and process the data on

the computer.

The Arduino Uno acts as an interface between the sensors and actuators,

allowing for real-time data collection and transmission. Sensors such as cameras and

ultrasonic sensors are connected to the Arduino's analog and digital inputs, while

actuators like steering control motors are connected to the outputs. The microcontroller

is responsible for reading the sensor signals, processing them, and sending

appropriate commands to the actuators.

3.3.1.2 Motor’s driver

The prototype of the autonomous parking system was constructed using a

remote-control car equipped with two motors, one for rear-wheel drive and another for

steering. This choice was motivated by the availability of the car in the laboratory,

making it a cost-effective solution for the initial development stages. The car had been

previously used in other projects, and its reuse allowed for efficient utilization of

resources.

To evaluate the performance of the traction and steering motors, they were

initially connected to a dual H-bridge L298N module. This module enabled the testing

of motor control capabilities and ensured the motors could operate within their

specified parameters. An external 12V power source was employed to supply power

to the motors, preventing any potential overload on the Arduino.

Subsequently, a C code was developed for the Arduino microcontroller. This

code facilitated the control of both motors by setting the minimum achievable speed

for the traction motor, which had inherent limitations due to its quality. The Arduino's

PWM (Pulse Width Modulation) pins were utilized to regulate the power supplied to the

motors, with pin 9 assigned to the traction motor and pin 10 dedicated to the steering

85

motor. Figure 36 depicts the interconnections between the two motors, the L298N

module, the Arduino Uno, and the 12V power source.

Figure 36 - Schematic with L298N

Source: Own authorship (2023)

In the project, the PWM values were configured within a range of 0 to 255,

where 0 represented 0% power and 255 represented 100% power. To alter the

direction of both the traction and steering motors, the digital output activation pins, mla

and mlb, were alternated accordingly. The schematic illustrated in figure 37 remained

unchanged throughout the subsequent stages of the project. Tests were performed to

determine the minimum PWM signal required for the proper functioning of the traction

and steering motors. Incremental values were added, starting from 0, until the car

exhibited uniform and stable motion.

3.3.1.3 Ultrasonic sensors

The initial phase of the research involved the utilization of two ultrasonic

sensors (HC-SR04) connected to the Arduino board, as illustrated in figure 37. These

sensors are popular due to their low cost and good performance in short-range

applications. The system was planned with two sensors to facilitate the utilization of

multiple ultrasonic sensors simultaneously in future steps of the project, allowing for

system validation.

The utilization of ultrasonic sensors enables a comparative analysis with the

LiDAR sensor. By acquiring data from both sensors and conducting a thorough

86

analytical comparison, it is possible to evaluate the performance of the LiDAR sensor.

The schematic in the figure 37 illustrate the idea. This comparative analysis assesses

the accuracy, precision, and reliability of the LiDAR sensor in detecting and measuring

distances, particularly in comparison to the measurements obtained from the ultrasonic

sensors. Such a validation process aids in determining the suitability of the LiDAR

sensor for the specific requirements and objectives of the autonomous parking system,

which are precise parking spot detection, measurement, and classification.

Figure 37 - Schematic with HC-SR04 ultrasonic sensors

Source: Own authorship (2023)

To ensure the proper utilization of the sensor, a code was developed to enable

interrupt-driven functionality specifically designed for the ultrasonic sensors. This was

achieved by utilizing the NewPing library, which provides a convenient and efficient

way to handle the ultrasonic data. The code implementation allows for timely and

accurate measurements, optimizing the overall performance of the ultrasonic sensors

in the system. It is important to note that, in subsequent sections of this document, the

disconnection of the ultrasonic sensor 2 after the initial tests, as well as the connection

of an encoder to the same pins, will be further discussed.

3.3.1.4 LiDAR sensor

The LIDAR sensor used is the TF Mini Plus model manufactured by Benewake.

It was specifically selected for its ability to provide highly accurate distance readings of

87

up to 12 meters and its IP67-rated enclosure. The IP67 rating is particularly beneficial

for the project, as it ensures the sensor's protection against dust and water ingress,

making it suitable for testing and implementation in real-world vehicle scenarios.

Figure 38 - Schematic with the TF Mini Plus LIDAR sensor

Source: Own authorship (2023)

 Figure 38 showcases the schematic representation of the TF Mini Plus LIDAR

sensor's connection configuration. In this setup, the sensor operates in serial

communication mode, with the green and white output wires connected to pins 12 and

13, respectively, of the Arduino Uno. Another method of connecting the TF Mini Plus

LIDAR sensor is by directly linking it to the computer using a TTL to serial converter

board connected to the USB-A port. This connection setup allows for seamless

communication between the sensor and the computer, facilitating the use of

Benewake's software for testing, configuration, and validation of the sensor.

3.3.1.5 Rotary encoder

The LPD3806 encoder plays a crucial role in measuring the rotation of the

vehicle's wheels. It is responsible for providing precise information about the angular

velocity of the wheels, enabling the system to calculate the distance traveled and,

consequently, determine the size of the parking space.

The connection of the LPD3806 encoder to the Arduino is simple and direct.

The phase A of the encoder is connected to pin 2 of the Arduino, while phase B remains

disconnected. In this specific context, there is no need to identify the direction of

movement, and therefore, phase B is not used. The identification of the direction of

88

movement can be performed later, if necessary, using the information from phases A

and B. The encoder can be powered by the Arduino, considering its operating range

of 5-24V.

Figure 39 illustrates the wiring diagram of the LPD3806 encoder to the Arduino,

providing a clear visual reference for cable positioning and the correct connection to

pin 2 of the Arduino, which should be set to pull-up in the code.

Figure 39 - Schematic with the Arduino uno and an encoder

Source: Own authorship (2023)

This simplified configuration of the encoder in the prototype is suitable for the

current needs of the developing APS. The rotation of the wheels is measured by the

encoder through phase A, which generates electrical pulses proportional to the

rotational movement. These pulses can be counted and processed by the Arduino to

determine the distance traveled and adjust the vehicle's maneuvers.

3.3.1.6 OLED display

To facilitate real-time visualization and easy comparison of the measured

distances, an OLED 128x32 display was integrated into the system. The display

provides a convenient way to visually monitor the sensor readings. For this purpose,

the Adafruit_SSD1306 and Adafruit_GFX libraries were employed. The OLED display

utilizes the I2C connection protocol, ensuring efficient and reliable communication. The

connection scheme between the display and the Arduino Uno is illustrated in figure 40,

providing a clear reference for the correct wiring configuration.

89

Figure 40 - Schematic with OLED display

Source: Own authorship (2023)

3.3.1.7 Arduino code

The Arduino code was developed in a Arduino variant of C++, integrating the

modules previously. The code contains detailed comments explaining the purpose and

operation of each section. It defines the necessary variables and allows for the

customization of parameters such as traction motor speed, activation time, and sensor

acquisition time through adjustable predefined values.

Within the main loop of the code, there is a movement function that activates the

traction motor. An interrupt-driven approach was implemented to obtain data from the

ultrasonic and LiDAR sensors, ensuring data acquisition occurs at a frequency

preconfigured within the code. This frequency can be adjusted to suit the specific

requirements of the system. It is important to note that the code handles the number

of ultrasonic sensors used as a parameter to avoid cross-interference between

devices.

The default frequency used in the code was set to 20 Hz. This frequency provides

a sufficient amount of information from the sensors to perform the required functions,

considering that the prototype operates at low speeds during parking maneuvers. The

choice of this frequency was also influenced by the Arduino Uno microcontroller's

capability to acquire data at much higher frequencies consistently, allowing for

potential scalability in future developments.

To activate the motors, the appropriate output variable (mla or mlb) is set to a

high logic level, with the direction defined accordingly. It is ensured that only one of

90

these variables is set to high at a time to prevent conflicts. A function is responsible for

verifying the reception of the return signal by the ultrasonic sensors and calculating the

distance to the detected object in centimeters.

Another function consolidates the relevant variables for serial transmission at a

predefined interval determined by a variable. Additionally, a condition is included to

send the "END" signal after a specified duration. This allows the computer program to

identify the completion of the data acquisition transmission.

3.3.1.8 Testing scenario

A testing scenario was carefully designed to evaluate the prototype's capability

to detect and measure three types of parking spaces: parallel, perpendicular, and

angled. Photograph 9 illustrates the test environment that was specifically created for

this purpose. The primary objective of this testing was to assess the prototype's

performance in accurately identifying these parking spaces on a small-scale basis and

accurately measuring their length. By conducting these tests, valuable insights were

gained regarding the prototype's effectiveness and its potential for real-world

applications.

In addition, the testing scenario was also created to validate the parking space

classification process. By detecting and accurately classifying the different types of

parking spaces, the prototype's ability to differentiate between parallel, perpendicular,

and angled parking spots was assessed. This validation step was crucial in ensuring

that the autonomous parking system could correctly identify and categorize parking

spaces in real-world scenarios. It provided valuable data and feedback to refine and

improve the classification algorithm, ultimately enhancing the overall performance and

reliability of the system.

Photograph 9 - Types of parking spaces in the testing scenario

Source: Own authorship (2023)

91

3.3.1.9 Components positioning

The positioning and installation of components in the prototype were carefully

considered to ensure optimal performance and functionality. Each component was

strategically placed to fulfill its designated role in the autonomous parking system.

Starting with the ultrasonic sensors, they were initially positioned as shown in

photograph 10, one at the front of the vehicle, simulating an obstacle detection sensor,

and another at the front right, simulating a parking space detection sensor. This

configuration allowed for simultaneous testing of both functionalities.

Photograph 10 - The initial arrangement of components in the small-scale prototype

Source: Own authorship (2023)

The LiDAR sensor, known for its high-precision distance measurement

capabilities, was strategically positioned on the front right side of the prototype. This

specific placement was carefully chosen to ensure optimal data acquisition for

detecting parking spots. By being situated in this position, the LiDAR sensor effectively

scanned the surrounding environment, capturing detailed information that played a

critical role in the autonomous parking system. This data was utilized to create a cost

map and generate a virtual representation of the environment, both of which were

essential for the subsequent stages of the project.

The encoder was meticulously positioned on the left rear wheel of the

prototype, utilizing a custom-designed 3D-printed plastic adapter. This adapter served

the dual purpose of securely mounting the encoder and facilitating precise

measurement of wheel rotation. The choice to install the encoder on the rear wheel

was primarily based on its ease of attachment and stability. This location ensured that

the encoder accurately captured the rotation of the wheels, providing essential

92

feedback for the autonomous parking system's navigation and motion control

algorithms. It should be noted that due to the limited number of digital ports available

on the Arduino Uno, it was necessary to disconnect and remove one of the ultrasonic

sensors in order to accommodate the connection of the encoder. This trade-off was

made to ensure the successful integration of all components within the system's

hardware constraints.

The Arduino was placed in a convenient and accessible location, ensuring

ease of programming and monitoring during the development and testing stages. This

positioning enhanced the efficiency and flexibility of the system, allowing for efficient

debugging, adjustments, and improvements as needed. Additionally other essential

electronic components were strategically positioned on the central plate of the vehicle.

This placement allowed easy access to all the components, facilitating quick

architectural modifications if necessary. Careful attention was given to establishing

proper electrical connections to enable smooth communication between the

components and the control system.

Furthermore, the OLED display, which provided real-time distance

visualization, was strategically positioned next to the sensors, ensuring clear line of

sight. This placement facilitated easy monitoring and debugging of the detected

distances from the sensors. By having the display in close proximity to the sensors, it

allowed for convenient observation of the real-time data, ensuring accurate

assessment of the system's performance.

All the mentioned components can be seen in photograph 11 in their final

positioning.

Photograph 11 - Final prototype view

Source: Own authorship (2023)

93

3.3.2 PC software

Aiming to process data obtained from sensors, perform parking detection,

measurement, and classification, as well as path planning and all necessary logic, a

software written in Python has been developed. This software offers an intuitive

approach for testing, allowing for analysis and saving of captured data for later

examination. With the purpose of optimizing the performance of the parking assistance

system, the software becomes a fundamental component for extracting valuable

information from the sensors. By processing data efficiently and reliably, it enables

accurate parking spot detection, precise measurement of their dimensions, and

appropriate classification of available parking types.

Written in Python, a widely-used programming language, the software

provides an intuitive interface that facilitates testing and experimentation. This intuitive

approach allows for easier interaction with the system, enabling users to conduct tests,

capture data, and analyze it later. Additionally, the ability to save captured data is an

important functionality of the software. This allows for detailed and in-depth analysis of

the data at a later time, aiding in system refinement and obtaining valuable insights for

future improvements.

With the development of this software, the aim is to provide an efficient and

flexible tool for data processing, parking spot detection, and path planning. It becomes

an essential component to enhance the accuracy and efficiency of the parking

assistance system, enabling a more intuitive and reliable experience for users.

In the following sections, we will delve deeper into the functionalities and

benefits of this Python-written software, highlighting how it contributes to intuitive

testing, data capture and analysis, as well as its fundamental role in the processing

and logic of the parking assistance system.

3.3.2.1 Interface

The interface is an essential part of many software applications, and in the

current program, it was developed to facilitate data acquisition, representation, and

saving, as well as to simplify the testing process with the prototype. The tkinter library

was used for developing the interface, which allows for easy addition of buttons,

checkboxes, text boxes, and other elements, and subsequently associating functions

with each element. An example could be seen in the figure 41.

94

Figure 41 - Tkinter example

Source: Adapted from Stack Overflow (2021)

The main class of the program is the "Interface" class, which serves as a

central point from where all other program functions are called. Texts were instantiated

to provide information, and buttons were created to trigger essential functions, such as

reading data through the serial port. An option menu was also included to enable the

selection of the serial port from which the information will be received.

To allow for the selection of sensor data to be collected, there are two

checkboxes, one for selecting data from the ultrasonic sensor and another for selecting

data from the LiDAR sensor. Additionally, to display the results of parking space

detection, measurement, and classification, a table element was implemented. This

table is used to represent the calculated values.

3.3.2.2 Data reception

One of the fundamental steps of the program is data reception. Through these

classes, the data acquired by the prototype is received and organized into variables

within the program, to be subsequently used by other classes and functions. The data

reception process is divided into two classes: real-time data reception from the

prototype, triggered by the "Read Data" button, and the reading of previously acquired

data from a CSV file, triggered by the "Read CSV" button.

Firstly, the real-time data reception class establishes a connection with the

Arduino UNO through the computer's USB port, utilizing the selected serial port

specified by the user through the program's interface. The buffer is then cleared, and

95

data reception begins. A function searches for arrow symbols "<>" since these symbols

were defined in the Arduino code to encapsulate the messages, ensuring the reading

of a complete message during each iteration.

Upon receiving a complete message, it is parsed and separated into variables

using semicolons as delimiters. The received message includes the acquisition time in

milliseconds, distance traveled in meters, distance detected by the LiDAR sensor in

meters, and distance detected by the ultrasonic sensor in meters.

When it is desired to open a previously acquired file, the program reads the

data from a CSV spreadsheet, separating it into variables in a similar manner to the

real-time data acquisition class. Both classes enable the reception of data, either in

real-time or from pre-acquired files, ensuring that the acquired information is properly

organized and available for further processing and analysis within the program.

3.3.2.3 Parking spot detection

With the data stored in the software's memory, they are used as parameters

for the parking detection class, which performs the detection using the logic of

analyzing the acquired points. The first step is to identify the reference distance, which

is defined as the initial distance from the car to the first obstacles, as shown in figure

42 as dR.

Figure 42 - Parking spot detection

Source: Own authorship (2023)

96

This distance is then used for comparison to check the condition of equation

23. If the vehicle width, reference distance, and safety distance are greater than the

detected distance, a parking space is identified.

 𝑑𝑃𝑆 > 𝑑𝑅 + 𝑑𝐶𝑊 + 𝑑𝑆 (23)

3.3.2.4 Parking spot measurement

After identifying a parking space, its components are measured both

longitudinally and laterally, obtaining the values of x and y for the parking space. Figure

43 represents the values to be found.

Figure 43 - Measurement of parking spot size

Source: Own authorship (2023)

The lateral distance xi, is calculated by averaging the internal distance values

within the parking space measured by the sensor, values between the indices ib e ie.

To measure the longitudinal distance yi, it is calculated using encoder data by

subtracting the displacement value at index ie from the displacement value measured

at index ib. Equations 24 and 25 demonstrate the calculations.

𝑥𝑖 = ∑
𝑥

𝑖𝑒 − 𝑖𝑏

𝑖𝑒

𝑖𝑏

 (24)

 𝑦𝑖 = 𝑦𝑖𝑒 − 𝑦𝑖𝑏 (25)

97

 After obtaining the calculated measurements, a preliminary

classification is necessary because the parking space size calculation is divided into

two methodologies: one for parallel and perpendicular parking spaces and another for

angled parking spaces. To select the appropriate methodology, the angle of the

parking space distance data is calculated, as shown in figure 44. This angle is referred

to as φ (phi).

Figure 44 - Angle φ in the three types of parking

Source: Own authorship (2023)

The angle φ is calculated using the trigonometric relationship between the

measurements xi e yi the arctangent function is applied, as shown in equation 26. When

φ falls within the range of 20° to 70°, the parking space is classified as angled. When

the angle is outside this range, the parking space proceeds to the next classification

stage, which aims to identify whether it is parallel or perpendicular.

 φ = 𝑎𝑟𝑐 𝑡𝑔 (
𝑥𝑖

𝑦𝑖
) (26)

When the parking space is classified as parallel or perpendicular, the

parameters xi e yi represent the size of the space. However, when the parking space

is classified as angled, additional calculations need to be performed to determine the

size of the space. These calculations are illustrated in figure 45, where the variables L

(length) and W (width) are introduced.

98

Figure 45 - Relevant measurements in the calculation of an angled parking space

Source: Own authorship (2023)

Equation 27 was used to find the relationship between φ and the angle α.

Subsequently, by substituting α into the trigonometric relationship in equation 28, it is

shown that the angles θ and φ are equal. Thus, by using the sine and cosine of the

angle φ it is possible to obtain the measurements L and W as shown in equations 29

and 30.

 φ + α + 90 = 180

α = 180 − 90 − φ = 90 − φ
(27)

 θ + α = 90

θ = 90 − α

θ = 90 − 90 + φ

θ = φ

(28)

 sin φ =
𝑥𝑖

𝐿

𝐿 =
𝑥𝑖

sin φ

(29)

cos φ =

𝑊

𝑥𝑖

𝑊 = 𝑥𝑖 cos φ

(30)

99

3.3.2.5 Parking spot classification

The classification of the parking space takes into account the obtained

measurements xi, yi e φ. When the calculated angle φ is outside the range of 20° to

70°, the parking space can be parallel or perpendicular, as in these cases the angle φ

would be 90°. Thus, the parking spaces are classified based on the relationship

between xi e yi. When the ratio is less than 1, the parking space is classified as parallel,

and when the ratio is greater than 1, the parking space is classified as perpendicular.

Table 4 summarizes this idea.

Table 4 - Classification table of parking space types

Type of parking spot Mathematical relation

Parallel (φ < 20 or φ > 70) 𝑎𝑛𝑑
𝑥𝑖

𝑦𝑖

< 1

Perpendicular (φ < 20 or φ > 70) 𝑎𝑛𝑑
𝑥𝑖

𝑦𝑖

> 1

Angled 20 < φ < 70

Source: Own authorship (2023)

After the classification, calculations can be performed to determine whether

the detected parking space has sufficient size for safe parking. The size of the parking

space is compared with the size of the car, considering a safety coefficient. By adding

the necessary safety margin to the measurements, the suitability of the parking space

can be evaluated.

3.3.2.6 Plotting the data

To analyze the data, a plotting function was created using the matplotlib library.

The class was designed to enable real-time plotting or plotting from previously saved

data. The data is structured with the x-component representing distance

measurements obtained from the distance detection sensors. It is possible to plot data

from either the ultrasonic sensor, the LiDAR sensor, or both simultaneously. Two

checkboxes in the interface are used for this selection.

100

When the "simulation" button on the interface is pressed, the preloaded data

is plotted as points using the scatter function. Additionally, a custom function is called

to visually represent parallel and perpendicular parking spaces by drawing rectangles

with dimensions corresponding to the identified parking space. Figure 46 provides an

example of a parallel parking space graphically represented by the simulation function

of the program.

Figure 46 - Parallel parking space plot using real data

Source: Own authorship (2023)

3.3.2.7 Saving the data

One of the needs encountered during the project's development was to store

the data acquired by the sensors for later analysis. The "save" class of the program

serves this purpose by saving the data in a CSV file format, which is widely accepted

by various programs, thus facilitating data analysis. The data is saved with the file

name being the current date and time obtained from the computer system on which

the software is being executed.

101

3.4 Chapter’s considerations

Chapter 3.1 described the Bibliography Analysis and Literature Review

methodology using the PRISMA (Preferred Reporting Items for Systematic Reviews

and Meta-Analyses) methodology to obtain a relevant bibliographic portfolio for the

research. The stages of identification, selection, eligibility, and inclusion of studies

were conducted, resulting in a total of 88 studies. These studies underwent bibliometric

analysis, revealing publication trends over the years. The most frequent keywords

were identified, as well as the key authors in the field. These findings provide valuable

insights for future research related to the topic of autonomous parking.

Chapter 3.2 discussed the simulation of the proposed APS. Simulation plays

a crucial role in the development of the APS, allowing for a thorough analysis of its

capabilities, efficiency, and safety in a controlled environment. The chapter covers

software selection, parking space identification, maneuvering in and out of parking

spaces, creating a cost map, and path planning for different parking scenarios.

Chapter 3.3 presented the small-scale prototype, showcasing the hardware

and software requirements. It demonstrates the development methodology of a testing

platform, explaining how each component of the prototype was planned. Additionally,

the methodology for developing the parking calculation software is exposed, which was

implemented in Python. The software aims to provide identification, measurement, and

classification of parking spaces, as well as display them in the interface and save the

relevant data.

102

4 RESULTS

In this section, the results obtained by applying the mentioned methodology

will be presented, considering all the stages of the APS.

4.1 Bibliography Analysis and Literature Review

Through a meticulous bibliography analysis, the researcher identifies and

selects key works that have played a pivotal role in shaping the research field. These

sources serve as the foundation for building the theoretical framework and

contextualizing the research within the existing body of knowledge.

The literature review aims to critically assess the findings, methodologies, and

theoretical perspectives presented in the selected sources. It involves synthesizing the

information from various studies and identifying common themes, patterns, and gaps

in the literature. By doing so, the researcher establishes the basis for the current study,

highlighting its significance and contribution to the field.

4.1.1 Publications per year analysis

Using Microsoft Excel software, it was possible to map the development of the

theme over the years. Figure 47 represents this analysis. It is possible to perceive that

the topic has taken on a greater proportion from 2020. The more recent articles have

an approach more related to the use of Artificial Intelligence (AI), Motion Planning, and

Algorithms such as RRT*, while the older ones aimed at classical methods,

mathematical and geometric approaches to path planning.

Figure 47 - Publications per year

Source: Own authorship (2023)

103

4.1.2 Keywords analysis

The keyword analysis is represented in figure 48 and was generated with the

help of the VOSVIEWER software.

Figure 48 - Portfolio Keywords

Source: Own authorship (2023)

The figure 48 is a keyword analysis generated with the VOSVIEWER software,

and it is useful to check the suitability of the portfolio of works with the researched

topic. Furthermore, it provides a better view of the most frequent keywords present in

the literature, which can be used in future works. The most recent keywords are

represented in yellow, while the older ones are in blue. Some of the most commented

keywords include "Path Planning", "Vehicles", "Wheels", "Trajectory" and "Planning".

4.1.3 Analysis of Authors

The author analysis is represented by figure 49, which was generated using

VOSVIEWER software. It can be observed that the main authors in the researched

topic are "Zhang, P", "Zhang, Y", "Chen, H", and "Xiong, L". All of these authors have

a large number of citations and are involved in relevant research in the field of path

planning and mobile robotics. There are two main research axes that are loosely

related, as represented in the figure.

104

Figure 49 - Author Analysis

Source: Own authorship (2023)

4.2 Simulation

The comprehensive simulation of the complete system allows for a thorough

analysis of the performance and effectiveness of the APS in different scenarios and

conditions. By analyzing the results obtained from the simulation, a clear

understanding of the APS performance can be gained, enabling the identification of

strengths and areas that require improvement. This information is valuable for the

continuous development of the system, ensuring its efficiency, reliability, and safety.

Figure 50 presents a state diagram that illustrates the simulation process of an

APS. The diagram consists of a series of states, represented by nodes, connected by

transitions, represented by directional arrows. Each state represents a specific step in

the autonomous parking process, while the transitions indicate the state changes that

occur as the system progresses.

105

Figure 50 - Diagram of the APS simulation process

Source: Own authorship (2023)

4.2.1 Parking spot identification

As a result of the scenario created in section 3.2.2, data regarding the distance

measured with the simulated ultrasonic sensor were obtained. In this way, the distance

between the side of the ego car and the nearest object to the right is obtained. In figure

51, the waveform generated by the sensor when passing through the first two cars, the

parking space, and then another car can be observed. The X-axis represents the

number of samples and the Y-axis represents how many meters the sensor identified

an obstruction.

Figure 51 - Sensor data with longitudinal movement of the ego vehicle

Source: Own authorship (2023)

In figure 51, the first plateaus in the signals can be observed, separated by a

peak. These are then classified by the code as the first two parked cars. Then there is

106

a new peak in the detection and then a large drop, showing the value zero. This signal

represents that the sensor is not identifying any objects and is therefore classified as

a parking space. After the parking space, there is a peak and another higher plateau,

close to 2 meters, which is the third parked car. A problem was identified with the

sensor, because in short, the non-identification of obstruction implies that the variable

is not returned, which is then defined as zero by the code. In this way, it is not possible

to identify whether the sensor is detecting an empty space or if it is experiencing

problems, not returning any variable.

4.2.2 Path planning

During and after the development of the merge algorithm between the native

path planning system of MATLAB and the simulation in the driving scenario, tests were

carried out. It was identified that sometimes the trajectory was too complex to follow,

with no natural movement. This problem was solved by increasing the minimum and

maximum number of attempts of the path planning algorithm, as this allows more

trajectories to be found, and through the internal optimization of the algorithm, human-

like trajectories are generated. The result can be seen in figure 52, with the trajectory

to a parallel parking space.

Figure 52 - Trajectory generated for parking a vehicle in parallel

Source: Own authorship (2023)

Thus, the parking occurred as expected, and after a few seconds, the car left

the parking space. However, various bugs and lack of optimization hindered this step

107

in particular. The "trajectory" command has several problems, and a programming

logic was implemented to avoid values that caused error for no apparent reason during

execution.

4.2.3 Parallel parking

Through previous tests, concise results could be identified in the utilization of

the described data acquisition and path planning methods to identify, measure, and

classify a parallel parking space, as well as to perform the parking using path planning.

Some of the identified problems consist of incorrect measurement of the parking space

size due to the considerably high FOV of the ultrasonic sensor. In addition, erratic

execution of path planning paths was observed.

Such problems can be resolved by selecting a sensor with a smaller FOV for

the measurement of the parking space size. For path planning, other configurations

were experimented with, which reduced the variations in the generated paths.

4.2.4 Perpendicular parking

In the perpendicular parking test, it is understood that choosing the parameter

of the car's width, that the measurement error will make up a significantly larger portion

of the measure. As the measured space parallel to the car is smaller, the error remains

proportional. Solutions found in the literature for this problem are as follows:

1) Use of cameras and radars to perform sensor fusion and reduce

measurement error;

2) Replacement of the ultrasonic sensor used for parking space measurement

with a lidar sensor.

Due to the possibility of a very low viewing angle of some lidar sensors, this

characteristic theoretically allows almost complete elimination of the error in measuring

parking space size, as sensors of this type with a field of view of less than two degrees

can be found, which compared to the fifteen degrees of ultrasonics represents a

significant improvement.

These solutions are also effective against the problems encountered in parallel

parking tests, as these problems are the same.

108

4.2.5 Angled parking

For the angled parking scenario, it was necessary to adapt the simulation

model as shown in section 3.2.9 of the methodology. The ultrasonic parking detection

sensor was replaced with a vision sensor. However, using the vision sensor of the

driving scenario, a cohesive identification of the space was not obtained, as the

software sends few points of the position of the identified cars, and there is no

configuration to change this behavior. Therefore, it would be necessary to use another

sensor in the simulation, such as radar or lidar. This falls outside the scope determined

for the identification of the space, being a software problem.

4.3 Small scale prototype

Conducting tests and obtaining results in a small-scale prototype is of utmost

importance, both in terms of hardware and software. These tests allow for the

evaluation of system performance and effectiveness in a controlled environment,

identifying potential issues and enabling improvements before large-scale

implementation.

4.3.1 Hardware

By integrating the sensors and actuators separately, it was possible to perform

the necessary tests to validate each component of the prototype, as well as the codes

for the Arduino microcontroller. Figure 53 illustrates the entire system in a block

diagram format.

Figure 53 - System block diagram

Source: Own authorship (2023)

109

4.3.1.1 Electric motors

In order to ensure the proper functioning of the prototype, tests were conducted

to evaluate the traction and steering motors. For the traction motor, the objective was

to determine the minimum PWM value required to achieve a consistent and uniform

movement of the car. Through the tests, it was discovered that a PWM value of 40,

equivalent to 15.69% of the total motor force, represented the minimum activation

speed at which the car would start moving.

A similar test was carried out with the steering motor. However, it was found

that only the maximum PWM activation value of 255 was capable of achieving the

desired result of effectively steering the front axle.

4.3.1.2 Ultrasonic sensors

With the aim of validating the minimum and maximum detection distances with

ultrasonic sensors, tests were conducted. It was possible to identify that there is high

precision in identifying distances from 10 cm to 2 m, with data becoming increasingly

uncertain beyond two meters, with inconsistent readings.

Thus, it is understood that ultrasonic sensors may have lower limits than those

found in datasheets, since the HC-SR04 ultrasonic sensor has a maximum measuring

distance of 4 meters. Through tests, it was found that this information does not

correspond to reality. This is due to the quality of the sensors, as there is no renowned

manufacturer that produces this model of ultrasonic sensor.

Tests were conducted using two ultrasonic sensors at the same time and data

was obtained that corresponds to their correct operation.

4.3.1.3 TFmini Plus LiDAR sensor

The sensor's functionality was evaluated by connecting it to a computer via a

serial conversion board and utilizing the manufacturer's dedicated software,

Benewake. This software provides the capability to test the ultrasonic sensor under its

factory conditions and offers the flexibility to adjust various settings, including frame

rate (ranging from 1 to 1000 Hz), trigger detection, output format, baud rate, and more.

The conducted tests were performed using the sensor's default settings.

110

4.3.1.4 LPD3806 rotary encoder

Tests were conducted with the LPD3806 encoder to validate the developed

code. Initially, the goal was to test if the encoder's rotation count was accurate. To do

this, the prototype's tire was marked with paint, allowing manual rotations to be

performed and the code's output to be verified. It was found that the Arduino's output

in relation to the rotations was correct.

Next, the calculated distance traveled by the Arduino code was tested and

compared to the physically measured distance. It was observed that the error was

below 3%, indicating acceptable values for further calculations.

4.3.1.5 Measurement Error

When connecting the LiDAR sensor TFmini Plus to the Arduino UNO,

measurement errors were encountered during tests. These errors occurred when

attempting to measure the distance to an object with a matte black surface. This type

of object is known to be one of the most challenging to measure accurately with a

LiDAR sensor, as the reflectivity of the black paint can be below 5% (CASTRO et al.,

2008).

The values obtained from the sensor differed from the actual measurement by

more than 30%, which is not an expected result according to the product datasheet.

Therefore, hardware and software checks were conducted to identify the cause of the

incorrect measurements. It was discovered that there was a problem with the output

voltage of the Arduino, which powers the TFmini Plus sensor. The voltage was below

the minimum recommended for the sensor's operation, as the current required by the

sensor exceeds the maximum current of the Arduino UNO.

It was observed that the voltage on the Arduino's 5V output was significantly

lower than expected. Photograph 12 depicts a) the voltage with all devices connected,

b) the voltage with only the TFmini Plus sensor connected, and c) the voltage

measured when no devices were connected to the Arduino's 5V output.

111

Photograph 12 - Voltages at the 5V output of the Arduino

Source: Own authorship (2023)

The measured voltage was approximately 3.458V when all devices were

connected, 3.840V when only the TFmini Plus was connected, and 4.831V at the

Arduino's output when no devices were connected. This test shows a voltage drop of

approximately 1V when connecting the LiDAR sensor. It is understood that there is a

limitation on the Arduino's ability to provide the required power to the systems, as there

was also a voltage drop of approximately 0.4V when connecting the other devices.

The measured voltages are insufficient to properly power the devices.

According to the datasheet, the TFmini Plus sensor requires a power supply of 5V ±

0.5V, and the other devices have similar operating conditions. The main reason for the

voltage drop is that the LiDAR sensor consumes a maximum current of 500mA, which

exceeds the 200mA limit supported by the Arduino UNO. This causes a voltage drop

at the Arduino's output, as it cannot provide the necessary power to the sensor,

resulting in incorrect measurements.

To solve this problem, a circuit with a voltage regulator using the LM317T was

proposed. This regulator can provide an adjustable and stable voltage to the sensor.

The input to the regulator is a 12V source that is already being used in the prototype

to power an H-bridge that drives the two motors of the prototype.

The LM317T regulator has three terminals: input (IN), output (OUT), and

adjustment (ADJ). The output voltage is determined by the equation 23:

𝑉𝑂𝑈𝑇 = 𝑉𝑅𝐸𝐹 (1 +

𝑅2

𝑅1
) + 𝐼𝐴𝐷𝐽𝑅2 (23)

112

Where:

• 𝑉𝑂𝑈𝑇 is the voltage at the regulator's output;

• 𝑉𝑅𝐸𝐹 is the internal reference voltage of the regulator (approximately 1.25V);

• 𝑅1 and 𝑅2 are the resistors in the voltage divider;

• 𝐼𝐴𝐷𝐽 is the current at the ADJ terminal of the regulator (typically 50µA).

To obtain an output voltage of 5V, the values of the resistors can be calculated

using the above formula. The term IADJR2, can be disregarded since the value of 𝐼𝐴𝐷𝐽

s very small. With 𝑅1 = 330 Ω, we have the equation 24:

5 = 1,25 (1 +

𝑅2

330
) (24)

Solving for 𝑅2, we have the value shown in equation 25:

 𝑅2 = 990 Ω (25)

Therefore, a resistor close to this value can be used to obtain an output voltage

close to 5 V. In this case, a commercial resistor of 1 kΩ was used, resulting in an output

voltage of approximately 5.09 V, as shown in the diagram in figure 54.

Figure 54 - Circuit with the LM317T voltage regulator

Source: Own authorship (2023)

113

With this circuit, it was possible to power the TFmini Plus LiDAR sensor with a

suitable and independent voltage from the Arduino's output. Photograph 13 shows the

voltage measured with a digital multimeter when no devices were connected to the

circuit.

Photograph 13 - Voltage at the output of the circuit with the devices disconnected

Source: Own authorship (2023)

It can be observed that the voltage difference between the simulated and actual

designed circuit was approximately 1.32%, with a voltage of 5.023 V being suitable for

the circuit. After this test, the modules and sensors were connected, and photograph

14 shows the obtained values.

Photograph 14 - Voltage at the output of the circuit with the sensors and modules connected

Source: Own authorship (2023)

114

It can be observed in photograph 14 that there was a decrease in voltage from

5.023 V to 4.785 V. However, this is a normal variation due to the current consumption

of the system. The voltage of 4.785 V is within the operating range of the used systems.

4.3.1.6 Sensor’s comparison

The inclusion of the ultrasonic sensors served the purpose of conducting a

comparative analysis with the LiDAR sensor within the context of the autonomous

parking system. The tests conducted allowed for the evaluation of the effectiveness of

each sensor type in obstacle detection during the parking maneuver. The obtained

results provided valuable insights into the performance and limitations of each sensor,

facilitating the selection of the most suitable sensor for the system.

Figure 55 depicts one of the performed tests, where the actual parking space

is shown in dashed lines. The blue dots represent data from the LiDAR sensor, while

the black dots represent data from the ultrasonic sensor. It can be observed from the

figure that the LiDAR sensor displays fewer variations in its data. It is also interesting

to note the gradient displayed at the beginning of the parking space identification,

indicating that the actual boundaries of the space were not straight. At the end of the

space, a dot can be seen, which represents the final boundary of the parking spot that

was not detected by the ultrasonic sensor.

Figure 55 - Acquisition of a parallel parking spot performed by the ultrasonic sensor and LiDAR

Source: Own authorship (2023)

115

According to the conducted tests, the LiDAR sensor exhibited higher precision

and consistency in the acquired data. It is also worth mentioning that ultrasonic sensors

have higher precision in short-range measurements, able to measure up to

approximately 4 meters, while the utilized LiDAR sensor has the capability to measure

up to 12 meters.

As a way to validate the claims of superior performance of the LiDAR sensor

compared to the ultrasonic sensor, comparative tests were conducted in the three

types of parking spaces: parallel, perpendicular, and angled. All tests were conducted

by placing the small-scale prototype a few centimeters before the beginning of the

parking space. The motor of the prototype was then automatically activated, and both

LiDAR and ultrasonic sensors were simultaneously used to acquire data, which was

sent to the computer. The computer performed the necessary filtering and processing

of the data.

4.3.1.6.1 Parallel parking spot

In this series of tests, the performance of the LiDAR and Ultrasonic sensors in

measuring width and length in a parking space was evaluated, the results obtained

have been summarized in the table 5. The real values for width and length were

consistent at 35 cm and 70 cm, respectively.

Table 5 - Comparative tests of LiDAR and ultrasonic sensors in parallel parking

LiDAR Width
(cm)

Ultrasonic Width
(cm)

LiDAR Length
(cm)

Ultrasonic
Length (cm)

Real Value 35 35 70 70

Test 1 34.48 31.44 76.00 1.00

Test 2 35.87 19.78 71.00 1.00

Test 3 34.13 15.22 71.00 3.00

Test 4 33.81 18.47 71.00 38.60

Test 5 31.81 15.69 67.42 36.72

Source: Own authorship (2023)

The data revealed some interesting findings. The LiDAR measurements for

width ranged from 31.44 cm to 35.87 cm, with test 1 showing the closest measurement

to the real width value at 34.48 cm. On the other hand, the Ultrasonic measurements

116

for width varied between 15.22 cm and 31.44 cm, indicating higher variability and

potentially less accuracy.

The length measurements using the LiDAR sensor showed little variation, with

only the measurement of 76 cm in test 1 being an outlier. However, the measurements

obtained from the ultrasonic sensor proved to be unreliable, which can be explained

by the way the parking space measurement logic was developed. The calibration and

design of rules and algorithms took into account the characteristics of the LiDAR

sensor, known for its higher reliability and fewer outliers. Figure 56 illustrates the graph

comparing test 1.

Figure 56 - Test 1 comparing LiDAR and ultrasonic sensors in a parallel parking space

Source: Own authorship (2023)

 It is possible to identify the discrepancy in the data between the sensors in

figure 56, focusing on the edges of the parking spaces. In these positions, there are

many variations in values for the ultrasonic sensor, which appears to identify points

before reaching the actual end of the parking space.

4.3.1.6.2 Perpendicular parking spot

Subsequently, tests were conducted to identify a perpendicular parking space,

and the results can be observed in table 6. The real values for the size of the parking

space are 52 cm in width and 36 cm in length.

117

Table 6 - Comparative tests of LiDAR and ultrasonic sensors in perpendicular parking

LiDAR Width
(cm)

Ultrasonic Width
(cm)

LiDAR Length
(cm)

Ultrasonic
Length (cm)

Real Value 52 52 36 36

Test 1 44.42 18.13 36.00 47.42

Test 2 42.53 14.91 35.00 44.01

Test 3 40.68 18.67 35.00 5.00

Test 4 42.11 5.78 33.00 25.00

Test 5 44.40 42.38 28.00 23.00

Source: Own authorship (2023)

As tests for the parallel parking space, the LiDAR sensor obtained consistent

results, showing values with little variation in each test, both for width and length

calculations, with the exception being seen in the length calculated in test 5, which

presented a higher variation.

On the other hand, the ultrasonic sensor did not achieve consistent results,

obtaining a large percentage of error for both width and length measurements in

several tests. The exception was test 5, where the values were closer to the real values

and also closer to the LiDAR sensor results. However, even in this case, it was possible

to identify that the calculated parking space size was smaller than the real size. This is

likely due to the error caused by the ultrasonic sensor's larger FOV compared to the

LiDAR sensor. Figure 57 shows a side-by-side comparison of performance.

Figure 57 - Test 5 comparing LiDAR and ultrasonic sensors in a perpendicular parking space

Source: Own authorship (2023)

118

 It is possible to identify that in Figure 69, both the LiDAR and ultrasonic sensors

exhibited similar behaviors in reconstructing the parking space. However, it is

noteworthy that the LiDAR sensor's points show more continuity and a reduced number

of outliers. It can be understood that it is possible to identify, measure, and classify a

parking space using only an ultrasonic sensor, as shown in figure 57. However, the

result obtained is less precise and requires more sophisticated algorithms to attempt

to compensate for the lack of consistency in the data obtained.

4.3.1.6.3 Angle parking spot

To assess the capability of LiDAR and ultrasonic sensors in identifying an angled

parking space, the same comparative tests conducted previously for parallel and

perpendicular parking spaces were carried out. The actual values for the width, length

and angle of the angled parking space were provided as reference, measuring 34.4

cm, 62 cm and 55 degrees, respectively.

The results of these tests are of utmost importance as they will provide valuable

insights into the sensors performance in a more complex and realistic parking scenario,

such as the angled parking space. It is expected that the angular geometry of this

parking space will pose additional challenges to the sensors, requiring higher precision

in detecting and measuring the space's dimensions. The results could be seen in table

7.

Table 7 - Comparative tests of LiDAR and ultrasonic sensors in angle parking

LiDAR
Width (cm)

Ultrasonic
Width (cm)

LiDAR
Length
(cm)

Ultrasonic
Length
(cm)

LiDAR
Angle
(degrees)

Ultrasonic
Angle
(degrees)

Real Value 34.4 34.4 62 62 55 55

Test 1 25.74 10.78 51.66 28.00 47.35 70.43

Test 2 25.19 5.44 51.09 32.00 49.76 82.33

Test 3 27.05 49.03 54.56 31.00 48.72 86.82

Test 4 26.05 45.78 52.40 26.00 48.09 76.55

Test 5 25.34 49.80 50.99 28.00 48.18 84.51

Source: Own authorship (2023)

119

The results obtained from the tests indicate that both LiDAR and ultrasonic

sensors face difficulties in accurately measuring the dimensions and angle of the

angled parking space. However, the LiDAR sensor generally provides more consistent

measurements, especially for the angle, where its results closely match the real value.

Therefore, it is understood that improvements can be made to the results obtained by

modifying the algorithm, making it more robust and accurate. On the other hand, the

ultrasonic sensor's measurements display larger variations and inconsistencies,

indicating its limitations in accurately capturing the parking space's dimensions and

angle. Figure 58 presents the results of the sensors side by side.

Figure 58 - Test 5 comparing LiDAR and ultrasonic sensors in a perpendicular parking space

Source: Own authorship (2023)

 It is possible to observe that the LiDAR sensor exhibits a pattern resembling

an angled parking space in its plotted data, while the ultrasonic sensor shows data

without any reference, obtaining erratic values.

4.3.1.6.4 Tests interpretation

With the tests, it was possible to understand the actual difference between the

results obtained by the one-dimensional LiDAR sensor and the ultrasonic sensor. It

was demonstrated that the LiDAR sensor provides greater precision and reliability in

the data, while the ultrasonic sensor produced erratic measurements.

This behavior may be due to the nature of the ultrasonic sensor, which relies

on sound waves to measure distances. Ultrasonic waves can bounce off surfaces,

causing reflections and inaccuracies, especially in situations where the surface is

irregular or has multiple reflective points, such as the edges of the parking space.

120

On the other hand, the LiDAR sensor uses laser beams to measure distances

and is known for its ability to provide more accurate and reliable measurements, even

in complex environments. It can better distinguish individual objects and surfaces,

making it more suitable for precise measurements of the parking space boundaries.

As a result, the data from the ultrasonic sensor may exhibit more variations and

inaccuracies, while the LiDAR sensor provides more consistent and trustworthy

measurements, particularly at the edges of the parking space. This highlights the

advantage of using LiDAR technology in such applications, where precision and

reliability are crucial for parking and navigation systems.

4.3.2 Software

This section presents the tests, results, problems, and potential improvements

related to the Python software developed for an autonomous parking system. It

highlights the objective of the software, discusses the outcomes of the tests conducted,

and analyzes encountered issues. Additionally, it proposes possible enhancements to

optimize the system's performance.

4.3.2.1 Interface

On the initial screen of the interface, it is possible to select the sensor to be

used for data acquisition: ultrasound, LiDAR, or both for result comparison. Initially, the

Serial COM needs to be defined, which represents the serial port through which the

microcontroller sends data to the program. Then, you can press the "Read Data" button

to acquire the data. Another option is to open a pre-recorded CSV file by pressing the

"Read CSV" button. The initial screen is shown in figure 59.

Figure 59 - Parking assistant program home screen

Source: Own authorship (2023)

121

After collecting the data, it is possible to calculate the size of the detected

space by pressing the "Parking Space Calc" button. The value is displayed in the

Parking Space table along with the type, width, and length, as shown in figure 60. If

the data is read using the "Read Data" option, the user is given the option to save the

data in CSV format.

Figure 60 - Initial screen of the parking assistant program

Source: Own authorship (2023)

To demonstrate the size of the space, you can press the "Simulation" button.

Afterward, a graph is plotted with the acquired points, and the parking space is shown

with a rectangle, as depicted in figure 61.

Figure 61 - Detected parking space after pressing the simulation button

Source: Own authorship (2023)

122

If the first option chosen is "Read Data," at the end of the data reception

process, the "Save" option is displayed. This option saves the received data to a CSV

file within the "Save" folder located in the program's project directory.

4.3.2.2 Data reception

In order to validate the data reception process, tests were conducted to

analyze the integrity of the data received through the serial connection. A small-scale

prototype was used as the data emitter for these tests. Errors were identified in the

serial port opening and data reading, particularly with the first data received by the

software. To address these errors, error handling using try-except blocks was

implemented. This ensures that the software does not crash when such errors occur.

To minimize these errors, a function was implemented to clear the serial port

buffer. However, it was observed that these errors are stochastic, meaning they occur

without a concrete pattern. After implementing the error handling function, the impact

of these errors on the software and data collection is minimal. Typically, only one or

two data points at the beginning of the data series are lost. Considering the sampling

frequency of 20 Hz of the prototype's sensors, it is understood that these lost data

points have negligible impact on future data analysis.

4.3.2.3 Parking spot detection

For the detection of parallel and perpendicular parking spaces, no significant

issues were encountered as they exhibit a sharp change in the sensor data, making

the detection algorithm reliable. However, when it comes to the detection of oblique

parking spaces, problems arose due to the small variation in distance registered by the

sensors, especially at the beginning of the space. As a result, the code captures only

a portion of the values corresponding to the parking space. There is a need to improve

the detection logic for this type of space to properly segregate the detected values

belonging to the space, thus achieving a more robust system.

4.3.2.4 Parking spot measurement and classification

To validate the system, it was decided to perform five tests for each type of

parking space. The tests were conducted on the constructed model of parallel,

perpendicular, and oblique parking spaces. The small-scale prototype was positioned

123

just before the beginning of each space, as shown in Error! Reference source not f

ound.. Data was then acquired while the model moved forward until it reached a

position just after the space, as also depicted in photograph 15. A screenshot of the

synchronous plot, i.e., the data being plotted simultaneously with the test, was then

taken. The "simulation" button in the software was pressed to open the plot with the

drawn parking space and the calculated size of the space.

Photograph 15 - Representation of the prototype's position at a small scale at the beginning
and end of the tests

Source: Own authorship (2023)

4.3.2.4.1 Parallel parking spot

The values obtained from the classification and measurement tests in the

parallel parking space are shown in table 8, along with the actual measured value using

a tape measure.

Table 8 - Tests of classification and measurement of parallel parking spaces

 Type Width (cm) Length (cm)

Real Value Parallel 35 70

Test 1 Parallel 38.18 70.00

Test 2 Parallel 38.33 73.00

Test 3 Parallel 36.75 69.00

Test 4 Parallel 39.50 76.00

Test 5 Parallel 37.59 71.00

Source: Own authorship (2023)

124

It can be observed that in all tests, the parking space was correctly classified

as parallel, and the calculated width values showed an average variation of 9.09%,

while the length values showed an average variation of 1.43%. Most of the results

deviate towards larger values than the actual measurements.

4.3.2.4.2 Perpendicular parking spot

Next, tests were conducted with the perpendicular parking space, and the

results are shown in table 9.

Table 9 - Tests of classification and measurement of perpendicular parking spaces

 Type Width (cm) Length (cm)

Real Value Perpendicular 52 36

Test 1 Perpendicular 55.56 33.00

Test 2 Perpendicular 54.32 38.00

Test 3 Perpendicular 53.61 35.00

Test 4 Perpendicular 56.28 34.00

Test 5 Angled 43.69 53.40

Source: Own authorship

Based on the tests conducted on the perpendicular parking space, it can be

observed that the width measurements resulted in values above the actual

measurement, similar to the previous tests with the parallel parking space. The

average error in width measurements is calculated to be 6.85%. However, the length

measurements showed a uniform distribution around the actual value, with an average

error of 5.56%.

It is noteworthy that test 5 yielded an incorrect result from the algorithm, which

classified the parking space as oblique and consequently calculated its size incorrectly.

This error can be explained by analyzing figure 62, which presents the raw data from

the prototype and the processed data from the software. It can be understood that the

algorithm identified an angle smaller than 70 degrees, as indicated in figure 62, leading

to a misclassification of the parking space as oblique.

This highlights the need for further improvement in the algorithm's logic for

detecting oblique parking spaces to ensure accurate classification and measurement.

125

Figure 62 - Raw data from test 5 with the perpendicular parking space

Source: Own authorship (2023)

4.3.2.4.3 Angle parking spot

Then tests were performed with the oblique parking space, and the results are

shown in table 10.

Table 10 - Tests of classification and measurement of angle parking spaces

 Type Width (cm) Length (cm) Angle (degrees)

Real Value Angle 34.40 62.00 55.00

Test 1 Angle 31.95 65.44 51.20

Test 2 Angle 30.28 66.57 57.26

Test 3 Parallel 37.41 49.00 73.99

Test 4 Angle 31.70 64.66 50.65

Test 5 Angle 24.38 53.54 57.20

Source: Own authorship (2023)

It is possible to analyze that in all tests with the oblique parking space, correct

classifications were obtained in tests 1, 2, 4, and 5, while only in test 3 did it obtain the

classification as a parallel parking space, indicating an incorrect measurement of the

126

angle of the parking spot. Figure 63 presents the raw data from the test, and it can be

observed that two outliers were considered for the angle calculation. This fact led to

an incorrect calculation of the angle.

Figure 63 - Raw data from test 4 with the angle parking space showing two outliers

Source: Own authorship (2023)

An average error of 8.43% was found in measuring the width of the parking

space, 7.37% in measuring the length, and 6.91% in measuring the angle. These

measurement errors are greater than the errors obtained from the tests on the parallel

and perpendicular parking spaces, which is likely due to calculations performed on the

measurements that sometimes amplify errors.

This type of parking space proved to be challenging; however, an adequate

level of accuracy was achieved. With further refinements to the system, it is considered

possible to obtain even better data. Figure 64 presents the raw results from test 4,

which had the lowest error count in the series.

127

Figure 64 - Raw data from test 4 with the angle parking space

Source: Own authorship (2023)

 In the data from figure 64, it is possible to identify the classic shape of an

oblique parking space. The presented data has been confirmed to have excellent

average precision when compared to actual measurements of distance and size. There

is an understanding of the need for improvement in the acquisition process to avoid

repeated values, as indicated by the red circle in figure 64. This can be achieved

through configuring the LiDAR sensor and adjusting the microcontroller code. By doing

so, more accurate values can be obtained, thereby impacting the calculations

performed.

4.4 Chapter’s considerations

In chapter 4.1 was presented the results of the applied methodology for the

APS, encompassing the bibliography analysis and literature review. By critically

analyzing key works, the theoretical framework is established, and the significance of

the study is highlighted. The Publications per Year analysis shows an increased focus

on AI and motion planning in recent years. The Keywords Analysis identifies essential

keywords for future research, and the Author Analysis highlights prominent

128

contributors in the field. These insights serve as a solid foundation for shaping the APS

project and advancing knowledge in the area.

In chapter 4.2, the results of applying the proposed methodology in all stages

of the APS simulation were presented. The comprehensive system simulation allowed

for the analysis of the APS performance and effectiveness in different scenarios and

conditions. Ultrasonic sensors were used for parking space identification; however,

some detection and measurement issues were observed during the tests. Adjustments

were made to improve trajectory planning and generate more natural movements.

Parallel, perpendicular, and angled parking tests provided concise results, but also

encountered difficulties such as measurement errors and erratic trajectory execution.

In chapter 4.3, the results of executing tests on the small-scale prototype were

shown, validating the performance of hardware components like electric motors and

sensors. During these tests, limitations in the ultrasonic sensors were identified, as

well as the need for adjustments in the power supply for the LiDAR sensor. When

comparing the sensors, it was observed that LiDAR exhibited greater precision and

consistency in the acquired data. Lastly, the Python-developed software was tested

and yielded satisfactory results, also identifying possible improvements to be

implemented.

129

5 CONCLUSION

The work carried out in this master's thesis has significantly contributed to the

development of an APS by addressing various aspects related to its implementation

and performance evaluation. Through the utilization of simulations and the creation of

a scaled-down prototype, the fundamental components and functionalities of the APS

have been examined and refined. This preliminary testing phase has provided valuable

insights into the system's behavior, allowing for improvements to be made before real-

world implementation. By identifying and rectifying errors, as well as evaluating

potential challenges and opportunities, the APS can be optimized to deliver superior

performance.

One significant challenge encountered during the development process was

the utilization of the LiDAR TFmini Plus sensor in conjunction with the Arduino UNO

microcontroller. The high current consumption of the sensor resulted in a voltage drop

at the Arduino's output, compromising its ability to power the sensor adequately. To

overcome this issue, a circuit with the LM317T voltage regulator was introduced,

enabling the provision of a stable and adjustable voltage supply for the sensor. This

solution ensured the correct operation of the LiDAR sensor and other 5V devices within

the prototype.

Additionally, a comparative analysis was conducted between ultrasonic and

LiDAR sensors for measuring parking spaces. The results indicated that LiDAR

sensors offer advantages over ultrasonic sensors, including improved measurement

precision and a wider range. The developed APS prototype serves as a testing and

validation platform, offering valuable insights into the system's performance and

capabilities. While the prototype demonstrated the feasibility of detecting, measuring,

and classifying parking spaces, further refinement and validation are necessary to

ensure accuracy and reliability in real-world scenarios. Factors such as sensor

calibration, environmental conditions, and trigonometric calculations for oblique

parking spaces must be taken into account for future iterations.

In conclusion, the future advancement of the APS relies on several key areas

of focus to enhance its accuracy, robustness, and adaptability in various parking

scenarios. Exploring alternative sensing techniques, refining data processing

algorithms, and conducting extensive testing on a larger scale prototype will contribute

to a comprehensive evaluation under diverse environmental conditions and parking

130

space configurations. These efforts aim to develop a reliable and efficient autonomous

parking solution that meets the demands of real-world applications.

In the next steps, the implementation of a path planning model based on RRT*

in the small-scale prototype of the APS system will be pursued. With this trajectory

planning model, efficient and safe routes for autonomous vehicle parking will be

enabled by the system. The development of a control system will serve as a bridge

between the path planning algorithm and the sensors and actuators of both the

prototype and the vehicle. This control system will be responsible for orchestrating the

execution of the planned parking trajectory by coordinating the actions of the vehicle's

motors, brakes, and steering mechanism.

The control system will receive inputs from the APS sensors, including

distance measurements, obstacle detection, and environmental conditions. It will

process this information and generate appropriate commands to ensure precise and

smooth execution of the parking maneuver. It will continuously monitor the vehicle's

position and adjust its actions in real-time, responding to any changes or unexpected

obstacles encountered during the parking process.

By seamlessly integrating the path planning algorithm with the sensors and

actuators through the control system, the APS will be able to navigate complex parking

scenarios with accuracy and safety. This integration will enable efficient coordination

between the planned trajectory and the vehicle's physical. After these improvements

are implemented in the prototype and extensive testing is conducted, the next step will

involve the implementation of the system in a real vehicle model. This stage will require

specific adaptations for the vehicle in question, as well as a comprehensive validation

of the system under real operating conditions.

In summary, this master's thesis has made significant contributions to the field

of autonomous parking systems. By integrating simulations, prototype development,

and comprehensive testing, valuable insights have been gained regarding system

performance, sensor integration, and measurement accuracy. The findings and

methodologies presented in this research serve as a foundation for further

advancements in autonomous parking technology, with the goal of improving urban

mobility and addressing parking challenges.

131

REFERENCES

ALMEIDA, M. W. Z. Carro não se constrói, compra-se: o empreendedor
brasileiro na indústria automobilística entre os anos 70 e 90. 2016. Porto Alegre,
2016. Disponível em: <https://repositorio.pucrs.br/dspace/handle/10923/9552>.
Acesso em: 16 fev. 2023

ARDUINO. UNO R3 | Arduino Documentation. [S. l.], 2023. Disponível em:
<https://docs.arduino.cc/hardware/uno-rev3>. Acesso em: 19 jun. 2023.

ATYABI, A. Review of classical and heuristic-based navigation and path
planning approaches. [s. l.], 2013. Disponível em:
<https://www.academia.edu/11873502/Review_of_classical_and_heuristic_based_na
vigation_and_path_planning_approaches>. Acesso em: 15 fev. 2023.

AYALA, K. J. The 8051 microcontroller: architecture, programming, &
applications. [s. l.], p. 367, 1996. Disponível em:
<https://books.google.com/books/about/The_8051_Microcontroller.html?hl=pt-
BR&id=FyamZwEACAAJ>. Acesso em: 19 jun. 2023.

BANZI, M. Getting started with arduino. [S. l.]: O’Reilly Media, Inc, 2008. E-book.
Disponível em: <https://www.oreilly.com/library/view/getting-started-
with/9780596155704/>. Acesso em: 19 jun. 2023.

BENEWAKE. Datasheet: TFmini Plus single-point ranging LiDAR. Electronic
Publication, 2023.

BENEWAKE. TFmini Plus LiDAR module. [S. l.], [s. d.]. Disponível em:
<https://cdn.sparkfun.com/assets/2/b/0/3/8/TFmini_Plus-01-A02-Datasheet_EN.pdf>.
Acesso em: 19 jun. 2023.

CARULLO, A.; et al. An ultrasonic sensor for distance measurement in automotive
applications. IEEE Sensors journal, [s. l.], v. 1, n. 2, p. 143, 2001.

CASTRO, A. P. A. S.; et al. Medidas de refletância de cores de tintas através de
análise espectral. Ambiente Construído, [s. l.], v. 3, n. 2, p. 69–76, 2008. Disponível
em: <https://seer.ufrgs.br/index.php/ambienteconstruido/article/view/3452>. Acesso
em: 19 jun. 2023.

132

CHOI, S.; et al. Advanced driver-assistance systems: challenges and
opportunities ahead. [s. l.], 2016. Disponível em:
<https://www.mckinsey.com.br/industries/semiconductors/our-insights/advanced-
driver-assistance-systems-challenges-and-opportunities-ahead>. Acesso em: 20 fev.
2023.

CVIJETIC, N. Searching for a parking spot? AI got it. [S. l.], 2019. Disponível em:
<https://blogs.nvidia.com/blog/2019/09/11/drive-labs-ai-parking/>. Acesso em: 16 fev.
2023.

DIETSCHE, K; KUHLGATZ, D. History of the automobile. Em: REIF, Konrad (org.).
Fundamentals of Automotive and Engine Technology. Wiesbaden: Springer
Fachmedien Wiesbaden, 2014. p. 1–7. E-book. Disponível em:
<http://link.springer.com/10.1007/978-3-658-03972-1_1>. Acesso em: 16 fev. 2023.

DIGI-KEY ELECTRONICS. Weighing the advantages and tradeoffs of encoder
technologies. [S.I.], 2020. Disponível em:
<https://www.digikey.be/nl/articles/weighing-the-advantages-and-tradeoffs-of-
encoder-technologies>. Acesso em 31 Jul. 2023.

DOUBLEHERO. Amazon.com: DoUBLeHero Rotary Encoder 1pcs Rotary
Encoder LPD3806-600bm G5-24CAB Two Phase 5-24V 600BM 400BM Pulses
Incremental Optical (Color : 600BM) : Industrial & Scientific. [S. l.], [s. d.].
Disponível em: <https://www.amazon.com/DoUBLeHero-Encoder-LPD3806-600bm-
G5-24CAB-Incremental/dp/B0BCDYR73S?source=ps-sl-shoppingads-
lpcontext&ref_=fplfs&psc=1&smid=A2A09IGCZR9TX1>. Acesso em: 19 jun. 2023.

ELECTRONIC PRODUCTS. Improving control with MEMS inertial sensors. [S. l.],
2011. Disponível em: <https://www.electronicproducts.com/improving-control-with-
mems-inertial-sensors/>. Acesso em: 16 fev. 2023.

FERGUSON, D; LIKHACHEV, M. Efficiently using cost maps for planning
complex maneuvers. [s. l.], 2008. Disponível em: Acesso em: 15 fev. 2023.

FILGUEIRA, A.; et al. (2017). Quantifying the influence of rain in LiDAR
performance. Measurement, 95, 143-148. ISSN 0263-2241.

FLINK, J. J. The automobile age. [S. l.: s. n.], 1990. E-book. Disponível em:
<https://quod.lib.umich.edu/cgi/t/text/text-idx?c=acls>. Acesso em: 15 fev. 2023

133

G1. Reprovações por baliza em exame de CNH representam 70% no Sul de MG.
[S. l.], 2016. Disponível em: <https://g1.globo.com/mg/sul-de-
minas/noticia/2016/04/reprovacoes-por-baliza-em-exame-de-cnh-e-sao-70-no-sul-de-
minas.html>. Acesso em: 16 fev. 2023.

GARCÍA, E. A. M. Motion planning. [S. l.]: IntechOpen, 2022. E-book. Disponível
em: <https://www.intechopen.com/books/10655>. Acesso em: 15 fev. 2023.

GILLESPIE, T. Fundamentals of vehicle dynamics. [S. l.]: SAE International, 2021.
E-book. Disponível em: <https://books.google.com.br/books?id=LeybEAAAQBAJ>.
Acesso em: 15 fev. 2023.

GOODIN, C.; et al. (2019). Predicting the Influence of Rain on LIDAR in ADAS.
Electronics, 8(1), 89. MDPI.

GUNTHER, T. Triangulation. [S. l.], 2022. Disponível em:
<https://education.nationalgeographic.org/resource/triangulation-sized/>. Acesso em:
16 fev. 2023.

IBM. IBM Global Parking Survey: Drivers Share Worldwide Parking Woes. [S. l.],
2011. Disponível em: <https://www.prnewswire.com/news-releases/ibm-global-
parking-survey-drivers-share-worldwide-parking-woes-130694428.html>. Acesso em:
16 fev. 2023.

IMAN-EINI, H.; et al. A modular power electronic transformer based on a cascaded
H-bridge multilevel converter. Electric Power Systems Research, [s. l.], v. 79, n. 12,
p. 1625–1637, 2009. Disponível em:
<https://linkinghub.elsevier.com/retrieve/pii/S0378779609001515>. Acesso em: 16
fev. 2023.

INSTITUTO DIGITAL. Driver Motor Ponte H L298N para Arduino - Instituto
Digital. [S. l.], [s. d.]. Disponível em:
<https://www.institutodigital.com.br/produto/driver-motor-ponte-h-l298n/>. Acesso
em: 19 jun. 2023.

INTELLIAS MOBILITY. How Autonomous Vehicles Sensors Fusion Helps Avoid
Deaths. [S. l.], 2018. Disponível em: <https://intellias.com/sensor-fusion-
autonomous-cars-helps-avoid-deaths-road/>. Acesso em: 16 fev. 2023.

134

JAZAR, R. N. Vehicle dynamics: theory and applications. Correcteded. New York,
NY: Springer, 2009. E-book. Disponível em:
<https://geumotorsports.files.wordpress.com/2016/08/vehicle-dynamics-theory-and-
applications.pdf>. Acesso em: 16 fev. 2023.

JHANG, J. H.; LIAN, F. L. An autonomous parking system of optimally integrating
bidirectional rapidly-exploring random trees∗ and parking-oriented model predictive
control. IEEE Access, [s. l.], v. 8, p. 163502–163523, 2020. Disponível em:
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9183957. Acesso em: 16 fev.
2023.

KIENCKE, U.; NIELSEN, LARS. Automotive Control Systems: For Engine,
Driveline, and Vehicle. 2nd ed. eded. Berlin: Springer, 2005. E-book. Disponível
em: <https://www.amazon.com.br/Automotive-Control-Systems-Driveline-
Vehicle/dp/3540231390/ref=tmm_hrd_swatch_0?_encoding=UTF8&qid=&sr=>.
Acesso em: 16 fev. 2023.

KISSAI, M.; et al. Adaptive Robust Vehicle Motion Control for Future Over-Actuated
Vehicles. Machines, [s. l.], v. 7, p. 26, 2019. Disponível em:
<https://www.mdpi.com/2075-1702/7/2/26/pdf?version=1556523658>. Acesso em:
16 fev. 2023.

KOUBAA, A.; et al. Robot Path Planning and Cooperation. Cham: Springer
International Publishing, 2018. (Studies in Computational Intelligence). v. 772 E-
book. Disponível em: <http://link.springer.com/10.1007/978-3-319-77042-0>. Acesso
em: 15 fev. 2023.

LAVALLE, S. M. Planning algorithms. [S. l.]: Cambridge University Press, 2006. E-
book. Disponível em: <https://www.cambridge.org/core/books/planning-
algorithms/FC9CC7E67E851E40E3E45D6FE328B768>. Acesso em: 15 fev. 2023.

LEREMY. Formas E Métodos De Estacionamento De Carro. [S. l.], 2017.
Disponível em: <https://www.istockphoto.com/br/vetor/formas-e-m%C3%A9todos-de-
estacionamento-de-carro-gm817166910-132263807>. Acesso em: 16 fev. 2023.

Li, N.; et al. A Progress Review on Solid‐State LiDAR and Nanophotonics‐Based
LiDAR Sensors. Laser & Photonics Reviews, [s. l.], v. 16.11, n. 2100511, 2022.

LIN, S.; et al. A Review of Path-Planning Approaches for Multiple Mobile Robots.
Machines 2022, Vol. 10, Page 773, [s. l.], v. 10, n. 9, 2022. Disponível em:
<https://www.mdpi.com/2075-1702/10/9/773/htm>. Acesso em: 15 fev. 2023.

135

LIU, S. Benewake TFmini vs.TFmini plus, different sensors? - ArduCopter /
Copter 3.6 - ArduPilot Discourse. [S. l.], 2019. Disponível em:
<https://discuss.ardupilot.org/t/benewake-tfmini-vs-tfmini-plus-different-
sensors/37878/9>. Acesso em: 19 jun. 2023.

LLUVIA, I.; LAZKANO, E.; ANSUATEGI, A. Active Mapping and Robot Exploration: A
Survey. Sensors 2021, Vol. 21, Page 2445, [s. l.], v. 21, n. 7, 2021. Disponível em:
<https://www.mdpi.com/1424-8220/21/7/2445/htm>. Acesso em: 15 fev. 2023.

MAKER HERO. Placa Uno R3 + Cabo USB para Arduino - MakerHero. [S. l.],
2023. Disponível em: <https://www.makerhero.com/produto/placa-uno-r3-cabo-usb-
para-arduino/>. Acesso em: 19 jun. 2023.

MATHWORKS. Design driving scenarios, configure sensors, and generate
synthetic data. [S. l.], 2023. Disponível em:
<https://www.mathworks.com/help/driving/ref/drivingscenariodesigner-app.html>.
Acesso em: 16 fev. 2023.

MAZIDI, M. A.; MCKINLAY, R. D.; CAUSEY, D. PIC microcontroller and
embedded systems: using Assembly and C for PIC18. [s. l.], p. 816, 2008.
Disponível em: <http://www.staroceans.org/kernel-and-
driver/PIC%20Microcontroller%20and%20Embedded%20Systems%20Using%20AS
M%20%26%20C%20for%20PIC18.pdf>. Acesso em: 19 jun. 2023.

MICHAEL. Vehicle Dynamics: The Kinematic Bicycle Model. [S. l.: s. n.],
2020. Disponível em: <https://thef1clan.com/2020/09/21/vehicle-dynamics-the-
kinematic-bicycle-model/>. Acesso em: 19 jun. 2023.

MORENCY, C.; TRÉPANIER, M. Characterizing parking spaces using travel survey
data. Canada: Cirrelt, [s. l.], 2008.

NISE, N. S. Engenharia de Sistemas de Controle. [S. l.: s. n.], 2017. E-book.
Disponível em: <https://www.amazon.com.br/Engenharia-Sistemas-Controle-
Norman-Nise/dp/8521634358/ref=asc_df_8521634358/?tag=googleshopp00-
20&linkCode=df0&hvadid=379685646399&hvpos=&hvnetw=g&hvrand=1265303086
0403483300&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy
=9102098&hvtargid=pla-811998329716&psc=1>. Acesso em: 14 fev. 2023.

NOAL, L. Retrômobilismo#89: O mais tecnológico dos Miura, trio X8, Top Sport
e X11 acabou esquecido com os importados!. [S. l.], 2015. Disponível em:

136

<https://www.conexaoautomotivabr.com/2015/06/retromobilismo89-o-mais-
tecnologico-dos.html>. Acesso em: 16 fev. 2023.

OGATA, K. Modern Control Engineering Fifth Edition. [S. l.: s. n.], 2009-. ISSN
0018-9286.v. 17 Disponível em:
<http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1100013>. Acesso
em: 14 fev. 2023.

OGUNTOSIN, V.; AKINDELE, A. Design of a joint angle measurement system for the
rotary joint of a robotic arm using an Incremental Rotary Encoder. Journal of
Physics: Conference Series, [s. l.], v. 1299, n. 1, 2019. Disponível em:
<https://www.researchgate.net/publication/336309956_Design_of_a_joint_angle_me
asurement_system_for_the_rotary_joint_of_a_robotic_arm_using_an_Incremental_R
otary_Encoder>. Acesso em: 19 jun. 2023.

OLSSON, C. Model Complexity and Coupling of Longitudinal and Lateral
Control in Autonomous Vehicles Using Model Predictive Control. 2015. [s. l.],
2015. Disponível em: <https://www.semanticscholar.org/paper/Model-Complexity-
and-Coupling-of-Longitudinal-and-
Olsson/bd092b7847c6634f572b598c13abce7320274659>. Acesso em: 19 jun. 2023.

PALLAS-ARENY, R.; WEBSTER, J. G. Sensors and signal conditioning. John Wiley
& Sons, [s. l.], 2012.

PAROMTCHIK, I. E.; LAUGIER, C. Motion generation and control for parking an
autonomous vehicle. Proceedings - IEEE International Conference on Robotics
and Automation, [s. l.], v. 4, p. 3117–3122, 1996. Disponível em: Acesso em: 16
fev. 2023.

PIBORG. HC-SR04 Ultrasonic Distance Sensor. [S. l.], [s. d.]. Disponível em:
<https://www.piborg.org/sensors-1136/hc-sr04>. Acesso em: 19 jun. 2023.

PREDKO, M. PROGRAMMING AND CUSTOMIZING THE PIC ®
MICROCONTROLLER. [S. l.: s. n.], 2008. E-book. Disponível em: Acesso em: 19
jun. 2023.

PURDY, K. W.; FOSTER, C. G. Automobile - Other European developments. Em:
BRITANNICA. [S. l.: s. n.], 2023. Disponível em:
<https://www.britannica.com/technology/automobile/Other-European-developments>.
Acesso em: 16 fev. 2023.

137

RAJAMANI, R. Vehicle Dynamics and Control. [S. l.]: Springer Science & Business
Media, 2011. E-book. Disponível em:
<https://books.google.com.br/books?id=eoy19aWAjBgC>. Acesso em: 16 fev. 2023.

RODRIGUE, J.-P. World Automobile Production and Fleet, 1965-2021. The
Geography of Transport Systems, [s. l.], 2020.

SNIDER, J. M. Automatic Steering Methods for Autonomous Automobile Path
Tracking. [s. l.], 2009. Disponível em:
<https://www.ri.cmu.edu/pub_files/2009/2/Automatic_Steering_Methods_for_Autono
mous_Automobile_Path_Tracking.pdf>. Acesso em: 14 fev. 2023.

SOUDBAKHSH, D.; ESKANDARIAN, A. Vehicle lateral and steering control. [S. l.]:
Springer London, 2012. v. 1–2 E-book. Disponível em:
<https://link.springer.com/referenceworkentry/10.1007/978-0-85729-085-4_10>.
Acesso em: 14 fev. 2023.

STACK OVERFLOW. Tkinter Python GUI frame positioning. Disponível em:
<https://stackoverflow.com/questions/68294777/tkinter-python-gui-frame-
positioning>. Acesso em: 25 set. 2023

SUH, J.; OH, S. A cost-aware path planning algorithm for mobile robots. IEEE
International Conference on Intelligent Robots and Systems, [s. l.], 2012.
Disponível em: <https://ieeexplore.ieee.org/document/6386237>. Acesso em: 15 fev.
2023.

SYNOPSYS. WHAT IS ADAS? [S. l.], 2023. Disponível em:
<https://www.synopsys.com/automotive/what-is-adas.html>. Acesso em: 15 fev.
2023.

SYNOPSYS. What is LiDAR and How Does it Work?. [S. l.], [s. d.]. Disponível em:
<https://www.synopsys.com/glossary/what-is-lidar.html>. Acesso em: 16 fev. 2023.

TEXA DO BRASIL. Adas – soluções para sistemas de assistência a condução.
[S. l.: s. n.], [s. d.]. Disponível em: <https://www.texabrasil.com.br/produtos/radar-
camera-calibration-kit>. Acesso em: 16 fev. 2023. Acesso em: 16 fev. 2023

THEERS, M.; SINGH, M. Kinematic Bicycle Model — Algorithms for Automated
Driving. [S. l.: s. n.], 2023. Disponível em: <https://thomasfermi.github.io/Algorithms-
for-Automated-Driving/Control/BicycleModel.html>. Acesso em: 15 fev. 2023.

138

ULRICH, K. Há 125 anos Carl Benz solicitava patente do primeiro automóvel. [S.
l.: s. n.], 2011. Disponível em: <https://www.dw.com/pt-br/há-125-anos-carl-benz-
solicitava-patente-do-primeiro-automóvel/a-14799147>. Acesso em: 15 fev. 2023.

VAZQUEZ, M. M. Radar For Automotive: Why Do We Need Radar?. [S. l.], 2022.
Disponível em: <https://semiengineering.com/radar-for-automotive-why-do-we-need-
radar/>. Acesso em: 16 fev. 2023.

WASLANDER, S. Lesson 1: Proportional-Integral-Derivative (PID) Control. [S. l.:
s. n.], 2018a. Disponível em: <https://www.coursera.org/learn/intro-self-driving-
cars/lecture/QMOMH/lesson-1-proportional-integral-derivative-pid-control>. Acesso
em: 16 fev. 2023.

WASLANDER, S. Lesson 2: Geometric Lateral Control - Pure Pursuit. [S. l.: s. n.],
2018b. Disponível em: <https://www.coursera.org/learn/intro-self-driving-
cars/lecture/44N7x/lesson-2-geometric-lateral-control-pure-pursuit>. Acesso em: 16
fev. 2023.

WASLANDER, S. Lesson 2: Longitudinal Speed Control with PID. [S. l.: s. n.],
2018c. Disponível em: <https://www.coursera.org/lecture/intro-self-driving-
cars/lesson-2-the-kinematic-bicycle-model-Bi8yE>. Acesso em: 16 fev. 2023.

XINYU, W.; et al. Bidirectional Potential Guided RRT∗ for Motion Planning. IEEE
Access, [s. l.], v. 7, 2019. Disponível em:
<https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8763966>. Acesso em: 15
fev. 2023.

YOUNG, H. D.; FREEDMAN, R. A.; FORD, A. L. University Physics with Modern
Physics. [S. l.]: Pearson Education, 2012. E-book. Disponível em:
<https://books.google.com.br/books?id=5fgsAAAAQBAJ>. Acesso em: 15 fev. 2023.

ZIEBINSKI, A.; et al. Review of advanced driver assistance systems (ADAS). 2017.
Anais [...]. [S. l.: s. n.], 2017. p. 120002.

	ACKNOWLEDGMENTS
	ABSTRACT
	Resumo
	LIST of figures
	LIST of PHOTOGRAPHS
	Abbreviations and Acronyms List
	SUMMARY
	1 INTRODUCTION
	1.1 Objectives
	1.1.1 General Objetive
	1.1.2 Specific Objectives

	1.2 Justification
	1.3 Work structure

	2 THEORICAL REFERENCE
	2.1 History of automobiles
	2.2 Types of parking space
	2.2.1 Parallel
	2.2.2 Perpendicular
	2.2.3 Angle

	2.3 Sensors and components
	2.3.1 Lidar
	2.3.1.1 TFmini Plus

	2.3.2 Radar
	2.3.3 Cameras
	2.3.4 Ultrasonic Sensors
	2.3.4.1 HC-SR04

	2.3.5 GPS (Global Positioning System)
	2.3.6 Inertial Sensors
	2.3.7 Electro-mechanical encoder
	2.3.7.1 Rotary encoder LPD3806

	2.3.8 H-bridge
	2.3.8.1 Double H-bridges L-298N

	2.3.9 Microcontrollers
	2.3.9.1 Arduino UNO

	2.4 Advanced Driver Assistence System
	2.4.1 Advanced Emergency Braking
	2.4.2 All-round Collision Warning
	2.4.3 Adaptive Cruise Control
	2.4.4 Active Park Assist
	2.4.5 Autonomous Parking System
	2.4.6 Other systems

	2.5 Simulation Software
	2.5.1 MATLAB and Driving Scenario
	2.5.1.1 Introduction to driving scenario designer

	2.5.2 Vector’s DYNA4

	2.6 Motion Planning
	2.6.1 Classical Approaches
	2.6.2 Graph Search Approaches
	2.6.2.1 A* algorithm
	2.6.2.2 RRT*

	2.6.3 Cost Map

	2.7 Vehicle Dynamics
	2.7.1 Coordinate Systems
	2.7.1.1 Vehicle-fixed coordinate systems
	2.7.1.2 Earth fixed coordinate system

	2.7.2 Instantaneous center of rotation (ICR)
	2.7.3 Kinematic Bicycle Model

	2.8 Control Strategies
	2.8.1 Transfer Function
	2.8.2 Logitudinal Control
	2.8.2.1 Proportional–integral–derivative (PID) control
	2.8.2.1.1 Cruize control

	2.8.3 Lateral Control
	2.8.3.1 Pure Pursuit

	2.9 Chapter’s considerations

	3 METHODOLOGY
	3.1 Bibliography Analysis and Literature Review
	3.2 Simulation
	3.2.1 Software selection for simulation
	3.2.2 Scenario creation
	3.2.3 Identification of the parking space
	3.2.4 Maneuver of entering and exiting the parking space
	3.2.5 Developing a method to create a cost map from the driving scenario
	3.2.6 Path planning
	3.2.7 Parallel parking
	3.2.8 Perpendicular parking
	3.2.9 Angled parking

	3.3 Small scale prototype
	3.3.1 Hardware
	3.3.1.1 Arduino Uno
	3.3.1.2 Motor’s driver
	3.3.1.3 Ultrasonic sensors
	3.3.1.4 LiDAR sensor
	3.3.1.5 Rotary encoder
	3.3.1.6 OLED display
	3.3.1.7 Arduino code
	3.3.1.8 Testing scenario
	3.3.1.9 Components positioning

	3.3.2 PC software
	3.3.2.1 Interface
	3.3.2.2 Data reception
	3.3.2.3 Parking spot detection
	3.3.2.4 Parking spot measurement
	3.3.2.5 Parking spot classification
	3.3.2.6 Plotting the data
	3.3.2.7 Saving the data

	3.4 Chapter’s considerations

	4 RESULTS
	4.1 Bibliography Analysis and Literature Review
	4.1.1 Publications per year analysis
	4.1.2 Keywords analysis
	4.1.3 Analysis of Authors

	4.2 Simulation
	4.2.1 Parking spot identification
	4.2.2 Path planning
	4.2.3 Parallel parking
	4.2.4 Perpendicular parking
	4.2.5 Angled parking

	4.3 Small scale prototype
	4.3.1 Hardware
	4.3.1.1 Electric motors
	4.3.1.2 Ultrasonic sensors
	4.3.1.3 TFmini Plus LiDAR sensor
	4.3.1.4 LPD3806 rotary encoder
	4.3.1.5 Measurement Error
	4.3.1.6 Sensor’s comparison
	4.3.1.6.1 Parallel parking spot
	4.3.1.6.2 Perpendicular parking spot
	4.3.1.6.3 Angle parking spot
	4.3.1.6.4 Tests interpretation

	4.3.2 Software
	4.3.2.1 Interface
	4.3.2.2 Data reception
	4.3.2.3 Parking spot detection
	4.3.2.4 Parking spot measurement and classification
	4.3.2.4.1 Parallel parking spot
	4.3.2.4.2 Perpendicular parking spot
	4.3.2.4.3 Angle parking spot

	4.4 Chapter’s considerations

	5 CONCLUSION
	References

