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ABSTRACT 

The automotive industry is constantly transforming, driven by the increasing demand 

for modern cars with exclusive features. A major challenge for drivers is the difficulty 

of parking, and the industry seeks solutions through parking assistance. In this context, 

this work proposes the development of an autonomous parking system, using a low-

cost one-dimensional LiDAR sensor for the detection, measurement and classification 

of the parking space. For this purpose, a detailed bibliographic research was carried 

out, analyzing the possible paths and possibilities for the implementation of the system, 

with special focus on the detection of the parking space. After analysis, the RRT* 

motion planning algorithm was selected for performing simulations in MATLAB 

software, due to the ease of implementation and the fast-processing speed of the 

algorithm. In addition, a small-scale prototype of the autonomous parking system was 

developed and tested. Achieving good results in identifying, measuring and classifying 

parallel and perpendicular parking spaces. In future work, the aim is to implement the 

motion planning algorithm in the small-scale prototype, as well as to implement the 

complete system in a real-scale test vehicle to evaluate the performance and 

effectiveness of the system under real conditions. 

 
Keywords: autonomous parking system, LiDAR sensor, parking space detection, 
motion planning algorithm, RRT*, MATLAB simulation. 
  



   

 

 

RESUMO 

A indústria automotiva está em constante transformação, impulsionada pela crescente 
demanda por carros modernos com recursos exclusivos. Um grande desafio para os 
motoristas é a dificuldade de estacionar, e a indústria busca soluções por meio de 
assistência ao estacionamento. Nesse contexto, este trabalho propõe o 
desenvolvimento de um sistema autônomo de estacionamento, utilizando um sensor 
LiDAR unidimensional de baixo custo para a detecção, medição e classificação da 
vaga de estacionamento. Para isso, foi realizada uma pesquisa bibliográfica 
detalhada, analisando os caminhos possíveis e as possibilidades para a 
implementação do sistema, com foco especial na detecção da vaga de 
estacionamento. Após análise, o algoritmo de planejamento de movimento RRT* foi 
selecionado para realizar simulações no software MATLAB, devido à facilidade de 
implementação e à velocidade de processamento rápida do algoritmo. Além disso, um 
protótipo em pequena escala do sistema autônomo de estacionamento foi 
desenvolvido e testado. Obtendo bons resultados na identificação, medição e 
classificação de vagas de estacionamento paralelas e perpendiculares. Em trabalhos 
futuros, pretende-se implementar o algoritmo de planejamento de movimento no 
protótipo em pequena escala, bem como implementar o sistema completo em um 
veículo de teste em escala real visando avaliar o desempenho e a eficácia do sistema 
em condições reais. 

Palavras-chave: sistema de estacionamento autônomo, sensor LiDAR, detecção de 
espaço de estacionamento, algoritmo de planejamento de movimento, RRT*, 
simulação MATLAB. 
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1 INTRODUCTION 

The history of cars can be traced back to the late 19th century, when German 

inventor Karl Benz built the first gasoline-powered car in 1885. This was followed by 

other early pioneers such as Gottlieb Daimler and Henry Ford. In the early 20th 

century, cars became more widely available and affordable to the general public, with 

the Model T by Ford becoming one of the most popular and iconic cars of the time 

(ULRICH, 2011). Over the next few years, increasingly luxurious and exclusive cars 

were produced, with the second world war being the driving force behind this trend. 

This trend would only return from the 1970s, which was a period of prosperity, 

especially for the Brazilian automotive industry, with Brazilian car brands achieving 

record sales (ALMEIDA, 2016; DIETSCHE; KUHLGATZ, 2014). 

Currently, the industry's focus is once again on personalization and catering to 

customer desires, as well as a strong trend towards vehicle safety. In this context, the 

ADAS (Advanced driver-assistance system) has emerged, which are systems 

developed with a focus on the driver and their safety and comfort. 

Among the many skills necessary for the safe driving of a car, parking is a 

reason for stress and anxiety and is considered one of the biggest challenges for the 

driver. According to G1 (2016), more than 70% of failures in the exam to obtain the 

national driver's license (CNH) are caused by the driver's failure to park at the 

designated location. IBM (2011) shows that more than half of the drivers in 16 of the 

20 cities surveyed admitted to getting so frustrated when looking for vacancies that 

they end up giving up. 

This is a problem that has become worse over time, as shown by the data, 

according to Rodrigue (2020), the number of cars registered in the world exceeded 

one billion in 2017, which is double the number of cars in the year 2000 and four times 

the number of cars in the world in 1990. 

Indicators such as these demonstrate the importance of developing 

technologies that help the driver to park in different conditions, small spaces, the 

presence of intense vehicle traffic, poorly signposted spaces, among others. In this 

way, one can understand the importance of efficiently using parking spaces, 

performing maneuvers quickly and safely.  

As a result, the development of ADAS has significantly increased, and various 

new jobs focused on assisting the driver have been developed. In this way, systems 
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such as the APS (autonomous parking system) are in the spotlight. This is a system 

that aims to park a car completely autonomously in the three main types of parking: 

parallel, perpendicular, and angle. Developing an APS requires the use of multiple 

sensors because they are how data from the car's surroundings can be obtained, such 

as lidar sensors, radar, ultrasonic, cameras, GPS, and inertial sensors, as well as the 

use of motion planning methods and longitudinal and lateral control. 

This work aims to contribute to the literature with the development of an APS 

system capable of performing parking in the three different types of spaces, with the 

main focus being on the simulation carried out in MATLAB software. 

1.1 Objectives 

This section aims to present the general objective and some specific objectives 

of the work, which are detailed in sections 1.1.1 and 1.1.2. The general objective seeks 

to guide the research, and it will be fulfilled at the end of the work through the execution 

of the proposed specific objectives. 

1.1.1 General Objetive 

• Develop an autonomous parking system using LiDAR sensor. 

1.1.2 Specific Objectives 

• Identify the types of systems used in the development of autonomous and 

automatic parking systems through a literature review; 

• Develop an algorithm for parking space detection; 

• Cost map generation system; 

• Adapt a motion planning algorithm for the parking process; 

• Design and develop a small-scale prototype of the APS; 

• Evaluate the performance of the APS through tests in a controlled environment, 

analyzing aspects such as accuracy, reliability, and system efficiency; 

• Identify challenges and opportunities to improve the performance and 

functionality of the APS, proposing enhancements and recommendations for 

future work. 
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1.2 Justification 

The APS is an automatic parking system that uses robotics and artificial 

intelligence technologies to perform parking maneuvers safely and efficiently, without 

the need of human intervention. It can be a solution to parking problems in large cities, 

where parking space is rare and the demand for parking spots is high. Additionally, the 

system can help reduce the time spent on parking maneuvers and minimize the 

possibility of accidents caused by human errors (ZIEBINSKI et al., 2017). 

The objective of developing an Autonomous Parking System is to design, develop 

and test an efficient and safe automatic parking system, capable of recognizing and 

adapting to different types of vehicles, parking spot sizes, and parking conditions. The 

development of the APS involves the use of technologies such as data processing, 

control algorithms, and sensors to capture information about the environment and the 

vehicle. The system should be designed to operate autonomously and ensure the 

safety of passengers and other parking users. Upon completing the development of 

the Autonomous Parking System, the following contributions are expected: 

• Academic Contribution: Present a systematic study of the main themes 

present in the topic; 

• Economic Contribution: Provide an innovative and effective solution to 

parking problems; 

• Social Contribution: Improve people's quality of life by making the parking 

process easier, faster, and safer. 

1.3 Work structure 

Chapter 2 deals with the theoretical background, introducing the history of 

automobiles, types of parking spaces, commonly used sensors and components in 

automotive systems. Then, a brief introduction to the software used in simulations and 

motion planning algorithms is given, followed by an explanation of vehicle dynamics 

and longitudinal and lateral control systems. Lastly, the concept of ADAS and some of 

the most important systems in the present are introduced. In Chapter 3, the 

methodologies used are demonstrated and described. Chapter 4 presents the tests 

and obtained results. Chapter 5 presents the conclusions and future work. 
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2 THEORICAL REFERENCE 

This section is the theoretical framework that underpins the methodological 

choices in this work, which will be divided into eight sections. Section 2.1 will provide 

a contextualization of the history of the automobile, followed by the types of parking in 

section 2.2. Section 2.3 will detail the functioning and types of sensors and components 

relevant to the work. Section 2.4 will introduce the concept of Advanced driver-

assistance system (ADAS) and the different levels of vehicle automation. Simulation, 

Motion Planning, and Vehicle Dynamics topics are being addressed in sections 2.5, 

2.6, and 2.7, respectively. In the section 2.8 an introduction to control strategies is 

given. Finally, section 2.9 will present the final considerations on the chapter. 

2.1 History of automobiles 

Since ancient times, mobility has always been an important characteristic in 

human evolution. Throughout history, there have been several efforts to transport 

people over long distances in increasingly shorter periods of time (DIETSCHE; 

KUHLGATZ, 2014).  

The first wheeled vehicles, such as carriages, were created and improved with 

the addition of steering, suspension, and springs (DIETSCHE; KUHLGATZ, 2014). In 

the 13th and 15th centuries, writings by Roger Bacon and Leonardo da Vinci presented 

ideas about self-propelled vehicles. With the evolution of modern industrial society, 

particularly in Western Europe and the United States, there was a growth in the 

development of motor vehicles (FLINK, 1990). 

In the 17th, 18th, and 19th centuries, European inventors attempted to create 

self-propelled machines. In 1748, in Paris, the inventor Jacques de Vaucanson 

demonstrated a carriage driven by a large clockwork motor. At the beginning of the 

19th century, Isaac de Rivas developed a hydrogen-powered engine in Paris with 

manually operated valves and ignition, but there were problems with the motor's 

synchronization (PURDY; FOSTER, 2023). Various experiments with steam were 

carried out in the 18th and 19th centuries, including the steam tractor developed by 

Joseph Cugnot in 1770 with the support of France to pull cannons (FLINK, 1990). The 

photograph 1 shows Cugnot’s tractor. 
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Photograph 1 - Steam tractor developed by Joseph Cugnot. 

 
Source: Purdy and Foster (2023) 

From 1801 to 1803, Richard Trevithick was one of the first to develop high-

pressure steam-powered vehicles, and his vehicle was able to reach speeds of about 

19 km/h. Oliver Evans, also experimented with a steam-powered dredge in 1805, 

which reached 6 km/h. However, both Trevithick and Evans encountered difficulties in 

obtaining funding due to competition with steam trains, which were more reliable and 

accessible due to the conditions of the roads and the size of the steam engines at the 

time (FLINK, 1990). 

According to ULRICH (2011), in 1886, Carl Benz filed a patent application for 

his motor-powered tricycle. This action marked the beginning of the accelerated growth 

of the automotive industry that used internal combustion engines (DIETSCHE; 

KUHLGATZ, 2014). The Otto engine patent had already been registered in 1876, while 

in 1892, Rudolf Diesel filed his patent application for a more efficient version of the 

engine in Berlin (ULRICH, 2011). 

At first, few entrepreneurs saw the potential of automobiles as a viable 

business option. However, the Frenchmen Panhard and Levassor contributed to the 

development of the automobile, with Panhard being one of the pioneers in the 

construction of elements such as the tilted steering wheel, the steering column, the 

clutch pedal, and the tube-shaped radiator. However, several obstacles arose, 

including the negative public perception of the pollution and noise caused by the 

engines. In addition, there was a complete lack of infrastructure for vehicles, such as 

paved roads, spare parts, and gas stations (DIETSCHE; KUHLGATZ, 2014). 

At the turn of the 19th to the 20th century, electric cars were considered the 

most promising, given that in 1901 an electric car set the speed record, reaching 100 

km/h. In 1900, in the United States, 75 manufacturers produced 4192 motor vehicles, 
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of which 1688 were steam-powered, 1575 were electric, and only 929 were gasoline-

powered (FLINK, 1990; ULRICH, 2011). Figure 1 shows the automobiles with the 

record for highest top speed over the years. 

Figure 1 - Travel speeds of production automobiles 

 

Source: Gillespie (2021) 

It was in the 1920s that the gasoline engine gained strength as the preferred 

solution, thanks to its better efficiency and autonomy compared to electric vehicles, as 

well as the availability of petroleum-derived fuel at affordable prices at the time 

(ULRICH, 2011). In the following years, the automobile industry experienced the 

emergence of many companies, including Peugeot, Citroën, Renault, Fiat, Ford, and 

many others. The market began to realize the importance of the automobile for society 

(DIETSCHE; KUHLGATZ, 2014). 

Initially, each vehicle was unique, built entirely by manual laborers 

(DIETSCHE; KUHLGATZ, 2014). However, with the arrival of the Model T in 1908 and 

the implementation of Henry Ford's assembly line in 1913, everything changed 

(ULRICH, 2011). The Model T revolutionized the American automotive industry, being 

a car with fewer luxuries and produced in large quantities, making automobiles 

accessible to the American public (DIETSCHE; KUHLGATZ, 2014). 
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Henry Ford vision was to permit that any worker could buy your own 

automobile and enjoy free time, establishing the bases to the modern consumer 

society (ULRICH, 2011). Through the automakers Citroën and Opel, Henry Ford’s idea 

was taken to Europe, but will only gain the market acceptance in the early 20’s 

(DIETSCHE; KUHLGATZ, 2014).  

At the same time, the adoption of cars in Brazil faced challenges due to poor 

infrastructure and technical problems related to the operation of vehicles, such as 

mechanical and electrical issues. In 1919, Ford Motor Company became the first 

company to establish a factory in the country, located in downtown São Paulo. At the 

time, the company was facing financial difficulties and saw the Brazilian market as an 

opportunity to produce and sell its popular Ford T model (ALMEIDA, 2016). 

Subsequently, several manufacturers set up their factories in Brazil, such as 

General Motors in 1925, International Harvester in 1926, and FIAT in 1928. These 

companies were almost exclusively American due to the impact of World War I and the 

weakening of the European industry, which allowed Americans to consolidate their 

position in the Brazilian market (ALMEIDA, 2016). 

Manufacturers soon discovered that to stand out in a competitive market, they 

needed to meet consumers' demands. Thus, victories in races were used as a form of 

advertising, with drivers proudly displaying their cars' brands. This resulted in an 

increase in the production of unique and luxurious vehicles, especially during the 

interwar period, which was marked by some of the most exclusive cars of all time, such 

as the Mercedes-Benz 500K, the Rolls-Royce Phantom III, and the Bugatti Royale 

(DIETSCHE; KUHLGATZ, 2014). 

The production of more affordable and popular cars was only resumed after 

the end of World War II. At this time, there was a need for small and cheap vehicles, 

and that was when the Volkswagen Beetle was designed by Ferdinand Porsche 

(DIETSCHE; KUHLGATZ, 2014). Its official name was Käfer, with a four-cylinder air-

cooled engine and a rear-mounted "boxer" configuration. In 1972, production 

surpassed 15 million units, becoming the world's most produced vehicle, surpassing 

the previous record holder, the Ford T (ULRICH, 2011). 

The automotive industry responded to the demands of the time with the 

creation of other models, such as the Citroën 2CV, the Goliath GP 700 and the Fiat 

500 C. New standards were developed, considering the incorporation of advanced 
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accessories and technology, while seeking to maintain a good cost-benefit ratio 

(DIETSCHE; KUHLGATZ, 2014). 

During the 1960s, 1970s, and 1980s, the national car industry prospered with 

brands such as Puma, VEMAC, Gurgel, and Gobbi having prominence. Puma, with its 

sports car popular among young people, saw its sales grow between 1964 and 1979. 

However, most manufacturers suffered a decline after this period. In 1987, one of the 

last moments of a fully national automotive industry resurgence, the Miura X8 

emerged, an innovative and advanced car with its iconic "gullwing" doors (ALMEIDA, 

2016). It can be seen in photograph 2. 

Photograph 2 - Miura X8, an iconic brazilian super sport car 

 

Source: Noal (2015) 

During the 90s, the national automotive sector faced a series of challenges, 

including competition with foreign companies and lack of government support. As a 

result, many national companies could not survive and the market was dominated by 

foreign companies (ALMEIDA, 2016). 

Today, the priority is to ensure the safety of vehicles, especially in the face of 

increased speed and traffic. To meet this need, advanced systems have been 

developed, such as airbags, ABS, TCS, intelligent sensors, among others (DIETSCHE; 

KUHLGATZ, 2014). More recent vehicle models feature some types of safety and 

driver assistance systems, known as ADAS. These systems can help prevent 

accidents and protect vehicle occupants. Some examples are AEB (Advanced 

Emergency Braking System), ACW (Around View Monitor), ACC (Adaptive Cruise 

Control), and APS (Advanced Parking System), which will be further detailed in section 

2.4. 
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2.2 Types of parking space 

There are several different types of parking spaces that a vehicle may 

encounter in a parking lot or on the street. Some common types of parking spaces 

include parallel, perpendicular and angle parking, these are shown in figure 2. 

Figure 2 - Types of parking spaces 

 

Source: Leremy (2017) 

2.2.1 Parallel 

Parallel parking spots are spaces in which a vehicle is parked alongside the 

curb or edge of the road. This type of parking is typically used on streets and requires 

the driver to maneuver the vehicle into the space by backing into it. To park in a parallel 

parking space, the driver typically stops the vehicle alongside the space and signals to 

indicate that they are planning to park. The driver then puts the vehicle in reverse and 

carefully backs into the space, using the rearview and side mirrors to guide them 

(MORENCY, CATHERINE; TRÉPANIER, 2008) . 

2.2.2 Perpendicular 

Perpendicular parking spots are spaces in which a vehicle is parked at a 90-

degree angle to the curb or edge of the road. This type of parking is typically used in 

parking lots and is the most common type of parking space. To park in a perpendicular 

parking space, the driver typically drives the vehicle into the space and stops when the 

rear bumper is aligned with the painted lines marking the space. The vehicle is then 

placed in park and the driver exits the vehicle (MORENCY, CATHERINE; 

TRÉPANIER, 2008). 

2.2.3 Angle 

Angle parking spaces are a delimitation on a street at an angle of 45-degrees 

with the curb, with the right-hand side of the vehicle nearest the curb and the right-front 
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wheel approximately 30 cm from the curb. In figure 4 the type of parking space 

mentioned above can be observed (MORENCY, CATHERINE; TRÉPANIER, 2008). 

2.3 Sensors and components 

Sensors are essential components of an autonomous parking system, as they 

provide the vehicle with information about its surroundings and enable it to navigate 

and operate safely and efficiently. There are several types of sensors that are 

commonly used, each with its own specific characteristics and capabilities. Some 

examples of sensors used in autonomous parking systems are: Lidar (Light Detection 

and Ranging), Radar (Radio Detection and Ranging), Cameras, Ultrasonic and GPS 

(Global Positioning System). The use of sensors is crucial for enabling the vehicle to 

perceive and understand its surroundings, and to make decisions and take actions 

accordingly (PALLAS-ARENY, RAMON; WEBSTER, 2012). By combining the data 

from multiple sensors, the vehicle can create a comprehensive and accurate model of 

its environment and navigate safely and efficiently. 

2.3.1  Lidar 

Light Detection and Ranging, also known as LiDAR, is a technology that uses 

lasers to measure distances. It works by sending out a beam of light and measuring 

how long it takes for the light to bounce back after it hits an object, as can be seen in 

figure 3, which was obtained from Synopsys, Inc. This information is then used to 

calculate the distance to the objects and to create a map of the environment. LiDAR is 

commonly used in autonomous vehicles to help them sense their surroundings and 

navigate. Many companies are working on developing smaller, more affordable LiDAR 

systems for use in autonomous vehicles and advanced driver assistance systems. 

Figure 3 - Operation of a lidar sensor 

 

Source: Synopsys (2023) 
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LiDAR (Light Detection and Ranging) sensors are a key component of 

autonomous parking systems, as they provide the vehicle with a 3D map of its 

surroundings and enable it to navigate and park safely and efficiently. Advantages of 

lidar sensors in the context of autonomous parking systems include: 

1) Wide range of operation: LiDAR sensors can operate in a wide range of 

lighting conditions, including complete darkness, making them well-suited 

for use in parking garages and other enclosed spaces; 

2) High accuracy and resolution: They can detect objects with high accuracy 

and resolution, allowing the vehicle to identify and avoid obstacles and 

navigate with precision; 

3) Resistant to interference: LiDAR sensors are resistant to interference from 

external sources, such as sunlight or radio waves, and can provide reliable 

data even in challenging environments; 

4) Reliability in different weather conditions: High resistance to interference 

from rain and extreme weather conditions (Filgueira et al., 2017; Goodin et 

al., 2019). 

5) High data rate: Can provide a high data rate, allowing the vehicle to process 

and analyze a large amount of information in real-time. 

However, there are also some disadvantages of lidar sensors: 

1) Cost: Can be really expensive in comparison with other types of sensors, 

which may be a limiting factor; 

2) Size and weight: Are typically larger and heavier than other types of 

sensors, which may be a concern for some vehicle designs; 

3) Hard to operate: In comparison with other types of sensors, it requires a 

larger set of skills. 

Overall, lidar sensors could be a component of autonomous parking systems, as 

they enable the vehicle to perceive and understand its surroundings. However, the 

high costs and the difficulty to operate the system can be really challenging to make 

practical and competitive solutions (LI; AL., 2022). 

2.3.1.1 TFmini Plus  

The TFmini Plus sensor is a short-range, single-point LiDAR sensor that utilizes 

the Time-of-Flight (ToF) principle to measure the distance to an object. It is based on 

the TFmini sensor but incorporates several improvements in various aspects, including 
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measurement frequency, blind zone, accuracy, and stability. It features an IP65 

protection rating, which makes it resistant to water and dust (BENEWAKE, [s. d.]). The 

TFmini Plus sensor finds applications in robotics, drones, intelligent vehicles, security, 

and industrial control, among others. Photograph 3 presents the sensor. 

Photograph 3 - TFmini Plus LiDAR Sensor 

 

Source: Mouser (2023) 

The table 1 presents the key specifications of the TF Mini Plus sensor. 

Table 1 - Technical specifications of the TFmini Plus sensor 

Characteristic Value 

Operating Range 0.1 m ~ 12 m 

Accuracy ±5 cm@(0.1-6 m) ±1%@(6 m-12 m) 

Distance Resolution 5 mm 

Frame Rate 1-1000 Hz (adjustable) 

Light Source LED 850 nm 

Field of View (FOV) 3.6° 

Supply Voltage 5 V ± 0.5 V 

Average Current ≤110 mA 

Peak Current 500 mA 

Power Consumption 550 mW 

Communication Level LVTTL (3.3 V) 

Protection Level IP65 

Source: Benewake (2023) 
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These features make the TFmini Plus lidar sensor suitable for various 

applications and scenarios, such as robotics, drones, autonomous vehicles, security, 

industrial measurement, and level control. 

It has the features necessary to the task of measuring a parking space. It also 

has a superior precision when compared to an ultrasonic sensor, the commonly used 

sensor in industry for this task. The descriptions of the modules could be seen in table 

2, and it is important to note that the enclosure of the sensor offers protection IP67 to 

the environment, a necessary feature since the sensor in this application is designed 

to be put outside the vehicle. 

Table 2 - Specification of Benewake lidar sensors 

Parameter TF02 TFmini TFmini Plus TF03 

Picture 

    

Status Mass Production Mass Production Mass Production Mass Production 

Ranging Indoor 0.4 - 22 m 0.3 - 12 m 0.1 - 12 m 0.1 - 180 m 

Ranging 
Outdoor 

0.4 - 10 m 0.3 - 5 m 0.1 - 7 m 0.1 - 70 m 

FOV 3° 2.3° 3.6° 0.25° 

Precision CM CM CM CM 

Communication 
Interface 

UART/CAN UART/I2C UART/I2C 
TTL/CAN 

(RS232/485) 

Light Sensitivity 
<100k Lux, 

Sunlight 
<70k Lux, Sunlight 

<70k Lux, 
Sunlight 

<100k Lux, 
Sunlight 

Weight 52 g 5 g 11 g 77 g 

Input Voltage 4.5 V - 6 V 5 V 5 V 5 V 

Photobiological 
Safety 

PASS PASS PASS PASS 

Protection IP65 / IP65 IP67 

Dimension 62*39*26 mm 42*15*16 mm 35*28*19 mm 44*42*29 mm 

Source: Liu (2019) 
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Overall, the TF Mini Plus is a versatile and reliable LiDAR sensor that offers high 

performance and ease of use. Its small size, low power consumption, and accurate 

measurements make it ideal for a wide range of applications, from robotics and drones 

to smart cities and industrial automation. 

2.3.2 Radar 

Radar (Radio Detection and Ranging) is a technology that uses radio waves 

to detect and measure the distance, speed, and other characteristics of objects. In an 

autonomous parking context, radar is used to detect the presence and position of 

objects around the vehicle, such as other vehicles, pedestrians, and objects in the 

parking environment. Radar works by emitting a radio frequency signal and then 

measuring the time it takes for the signal to bounce back after it hits an object. The 

system uses this information to determine the distance, speed, and other 

characteristics of the object (PALLAS-ARENY, RAMON; WEBSTER, 2012). 

It can be used to detect the presence and position of other vehicles, 

pedestrians, and other objects in the parking environment. This information can be 

used by the autonomous vehicle's control system to navigate safely through the 

parking environment and find a suitable parking spot. The radar can also be used to 

detect any obstacles or hazards that might be in the vehicle's path, such as pedestrians 

or other vehicles. Therefore, the system can take appropriate action to avoid them. 

There are three types of radar sensors used in vehicles: short-range radar (SRR), 

medium-range radar (MRR) and long-range radar (LRR) (PALLAS-ARENY, RAMON; 

WEBSTER, 2012). The differences in range can be seen in the figure 4. For parking 

the best option is the SRR, since the range in parking scenarios is short, not 

trespassing a few meters. 

Figure 4 - Range and field of view of different radar sensors 

 

Source: Vazquez (2022) 



30 

 
 

 

Advantages of using radar sensors in an autonomous parking system: 

1) High accuracy: Can provide highly accurate measurements of distance, 

speed, and other parameters, which is important for navigating and parking 

safely in confined spaces; 

2) Long range: Can detect objects at long distances, making them suitable for 

detecting obstacles in the surrounding environment; 

3) All-weather performance: Are not affected by weather conditions such as 

rain or fog, making them suitable for use in outdoor parking environments; 

4) High resolution: Can provide high-resolution images of the objects they 

detect, making them useful for detecting and avoiding obstacles. 

Some disadvantages find in the use of radar sensors: 

1) Cost: Can be expensive, especially those with high accuracy and long 

range; 

2) Interference: Can be affected by other sources of radio frequency 

interference, such as cell phone towers or other radar systems, which can 

affect their accuracy; 

3) Limited imaging capabilities: While radar sensors can provide high-

resolution images, they are generally not as detailed as those produced by 

other types of sensors, such as cameras; 

4) Limited penetration: Radar signals do not penetrate certain materials, such 

as metal or concrete, which can limit their effectiveness in certain 

environments; 

5) Target classification: due to the reflectivity, shape and size and other 

factors, the radar sensors need complex algorithms to correctly distinguish 

between different types of objects. 

It is understood that radar sensors have multiple advantages in their use in an 

autonomous parking system, such as high resolution in object detection and high 

reliability in adverse weather conditions. However, it is a costly type of sensor, and 

several modules would be needed for its use in an autonomous parking system, greatly 

increasing the cost of the project. If cheaper acquisition options are found that perform 

well at short distances, this sensor may become crucial in the data acquisition process. 
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2.3.3 Cameras 

Camera sensors can be used in autonomous parking systems to help vehicles 

navigate and park in confined spaces. They are able to capture images of the 

surrounding environment and provide the vehicle with visual information about its 

surroundings (PALLAS-ARENY, RAMON; WEBSTER, 2012). There are several 

advantages to using camera sensors in autonomous parking systems: 

1) High resolution: Camera sensors can provide high-resolution images of the 

surrounding environment, allowing the vehicle to detect and avoid obstacles 

with greater accuracy; 

2) Wide field of view: Can have a wide field of view, allowing the detection of 

a large area around it and detect potential obstacles in its path; 

3) Good performance in low light: Some camera sensors are able to perform 

well in low light conditions, making them suitable for use in poorly lit parking 

garages or at night. 

However, there are also some limitations to using camera in parking 

applications: 

1) Limited range: Camera sensors generally have a shorter range than radar 

sensors, making them less suitable for detecting obstacles at long 

distances; 

2) Sensitivity to weather: Can be affected by weather conditions such as rain 

or fog, which can reduce their accuracy and reliability; 

3) Dependence on external lighting: May require external lighting to function 

properly, which may not be available in all parking environments. 

In summary, camera sensors can be a useful tool for autonomous parking 

systems, many bibliographical works use cameras and neural networks to identify 

suitable parking spaces to the vehicle, in photograph 4 it is possible to see an example. 

However, the advantages of using cameras may not be sufficient on their own and may 

need to be used in combination with other types of sensors to provide a complete 

picture of the surrounding environment (PALLAS-ARENY, RAMON; WEBSTER, 

2012). 
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Photograph 4 - ParkNet, a deep neural network developed to detect parking spaces using 
images 

 

Source: Cvijetic (2019) 

2.3.4 Ultrasonic Sensors 

Ultrasonic sensors are devices that use high-frequency sound waves to 

measure distance or detect objects. In the context of an autonomous parking system, 

ultrasonic sensors can be used to detect the presence of other vehicles or obstacles 

in the parking environment. One of the main advantages is that they can operate in a 

variety of lighting conditions, including low light or darkness. This makes them a useful 

tool for navigating through parking garages, which may not always be well lit. Ultrasonic 

sensors are also relatively inexpensive and easy to install. They can be mounted on 

the front, rear, and sides of the vehicle to provide 360-degree coverage and help the 

vehicle navigate safely through a parking garage for example (PALLAS-ARENY, 

RAMON; WEBSTER, 2012). The figure 5 shows an example of a car with 8 ultrasonic 

sensors mounted in the front and back of the vehicle and one in the lateral side. 

Figure 5 - Car with ultrasonic sensors and their positions 

 

Source: Intellias Mobility (2018) 

However, there are also some limitations to using these sensors in an 

autonomous parking system. One of the main disadvantages is that they may not be 
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as accurate as other types of sensors, such as laser sensors, in certain situations. 

They may also have difficulty detecting objects that are too close or too far away. 

Another limitation is that they may not be able to detect certain types of objects, such 

as those that are transparent or highly reflective. This can make it difficult for the 

autonomous parking system to navigate safely (CARULLO et al., 2001).  

Overall, ultrasonic sensors are a useful tool, as they can provide valuable 

information about the environment and help the vehicle navigate safely through the 

parking garage. Even so, they should be used in conjunction with other types of 

sensors to provide a complete picture of the parking environment and ensure the safety 

of the autonomous vehicle (PALLAS-ARENY, RAMON; WEBSTER, 2012). 

2.3.4.1 HC-SR04 

The HC-SR04 is an inexpensive and widely used ultrasonic sensor module 

that measures distance by sending out ultrasonic waves and receiving their echoes. 

The sensor is easy to use and can be interfaced with microcontrollers like Arduino, 

Raspberry Pi, and other embedded systems. The photograph 5 show the sensor. 

Photograph 5 - Ultrasonic sensor HC-SR04 

 

Source: Piborg (2023) 

It works on the principle of sonar, which is similar to the echolocation system 

used by bats and dolphins to navigate and locate prey. It has a transducer that sends 

out a high-frequency sound pulse, typically at 40 kHz, which travels through the air 

until it hits an object. The pulse then bounces back from the object and is detected by 

the receiver on the sensor module. The time taken for the pulse to travel to the object 

and back is proportional to the distance between the sensor and the object. The 

distance can be calculated by measuring the time delay between the transmitted and 

received pulse. 
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 The HC-SR04 sensor has the following technical specifications: 

● Operating Voltage: 5V DC 

● Operating Current: 15mA 

● Operating Frequency: 40kHz 

● Measurement Range: 2cm to 400cm 

● Measurement Accuracy: ±0.3cm 

● Trigger Pulse Width: 10μs 

● Echo Pulse Output: TTL level signal output proportional to the distance 

● Dimensions: 45mm x 20mm x 15mm  

2.3.5 GPS (Global Positioning System) 

GPS is a satellite-based navigation system that uses a network of satellites 

orbiting the Earth to determine the location, speed, and direction of an object on the 

Earth's surface. It is widely used for navigation and tracking purposes, including in car 

navigation systems, smartphones, and other devices. The GPS sensor works by 

receiving signals from a network of satellites orbiting the Earth. Each satellite transmits 

a radio signal that includes the satellite's current position and the time the signal was 

transmitted. The sensor receives these signals and uses them to calculate the distance 

between the satellite and the device. By measuring the distance between the device 

and at least three satellites, the GPS sensor can determine the device's position on 

the Earth's surface using a process called trilateration or triangulation (PALLAS-

ARENY, RAMON; WEBSTER, 2012). This process is shown in figure 6. 

Figure 6 - GPS triangulation process 

 

Source: Gunther (2022) 
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In addition to determining the location, the GPS sensor can also be used to 

determine the speed and direction of the device. By continuously tracking the location 

of the device over time, the GPS sensor can determine the speed at which the device 

is moving and the direction it is headed. This information can be used in applications 

such as tracking the movement of a vehicle or providing turn-by-turn navigation 

instructions. In the context of an autonomous parking system, the GPS sensor is used 

to determine the location of the vehicle as it moves through the parking lot. This 

information is used to guide the vehicle to an available parking space and to navigate 

to the desired parking location within the space (PALLAS-ARENY, RAMON; 

WEBSTER, 2012). Advantages of using a GPS sensor: 

1) High accuracy: GPS sensors can provide very accurate location information 

in ideal conditions, which is important for precise navigation and 

maneuvering in a parking lot; 

2) Wide coverage: Can be received almost anywhere, making it possible to 

use these sensors in a variety of environments, including outdoor parking 

lots; 

3) Cost-effective: GPS sensors are relatively inexpensive compared to other 

types of sensors, such as LIDAR or radar; 

4) Easy to integrate: It’s a type of sensor that are readily available and easy to 

integrate into existing systems. 

Some disadvantages: 

1) Dependence on satellite signals: GPS sensors rely on satellite signals to 

function, which can be disrupted by certain environmental conditions such 

as heavy cloud cover or tall buildings; 

2) Limited accuracy in certain conditions: Accuracy can be affected by factors 

such as atmospheric conditions and the presence of buildings or other 

structures, which can affect the quality of the satellite signals received by 

the sensor; 

3) Potential for hacking: GPS signals can be vulnerable to hacking, which 

could potentially compromise the accuracy and reliability of the sensor; 

4) Limited range: They have a limited range, which may not be sufficient for 

certain applications, such as indoor parking garages or multi-level parking 

lots. 
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GPS sensors play a fundamental role in autonomous vehicles as they not only 

provide the vehicle's positioning but can also assist in calculating the speed and 

direction of movement. They are a powerful tool when used in conjunction with other 

sensors to obtain accurate location through sensor fusion (PALLAS-ARENY, RAMON; 

WEBSTER, 2012). 

2.3.6 Inertial Sensors 

Inertial sensors could measure acceleration, orientation, and angular velocity. 

They are typically used in applications where precise measurement of these quantities 

is required, such as in inertial navigation systems, aircraft and missile guidance 

systems, and virtual reality headsets. There are several types of inertial sensors, 

including accelerometers, gyroscopes, and magnetometers. Accelerometers measure 

acceleration, which is the rate of change of velocity over time. Gyroscopes measure 

angular velocity, which is the rate of change of orientation over time. Magnetometers 

measure the strength and direction of the magnetic field. In the figure 7 it is possible 

to observe the types of movements that can be measured. 

Figure 7 - Types of movements measure by inertial sensors 

 

Source: Electronic Products (2011) 

Inertial sensors work by using physical principles such as Newton's laws of 

motion and the conservation of angular momentum. For example, an accelerometer 

may use a mass suspended on a spring that is displaced when the accelerometer is 

subjected to acceleration. The displacement of the mass is then measured and used 

to calculate the acceleration. In ADAS, inertial sensors are used in conjunction with 
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other sensors such as cameras, lasers, and radar to provide a complete picture of the 

surrounding environment. This information is used by the autonomous parking system 

to navigate the vehicle safely and accurately through the parking lot and into a parking 

space (PALLAS-ARENY, RAMON; WEBSTER, 2012). To summarize, the use of 

inertial sensors in an autonomous parking system allows the vehicle to move smoothly 

and precisely, ensuring a safe and efficient parking experience. 

2.3.7 Electro-mechanical encoder 

Electro-mechanical encoders are devices used to convert rotational or linear 

motion into electrical signals, allowing measurement and control of position, velocity, 

and rotational direction of an axis or mechanical system. There are different types of 

electro-mechanical encoders, including incremental, absolute, and magnetic 

encoders, each with its own specific features and applications. 

Incremental encoders generate electrical pulses in response to mechanical 

motion, providing information about the velocity and direction of axis rotation. They are 

often used in applications requiring real-time position and velocity control, such as 

CNC machines, industrial robotics, printers, among others (DIGI-KEY ELECTRONICS, 

2020). In figure 8 is possible to see an example. 

Figure 8 - Incremental encoder 

 

Source: Digi-Key Electronics (2020) 

Absolute encoders provide precise information about the angular or linear 

position without the need for an initial reference position. These encoders are widely 

used in applications requiring high precision and reliability in measurement, such as 

motion control systems in aircraft, satellites, telescopes, and other high-precision 

equipment (DIGI-KEY ELECTRONICS, 2020). 
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Magnetic encoders, on the other hand, use magnetic sensor technology to 

detect the axis position and are commonly used in harsh industrial environments where 

dust, humidity, or vibrations may affect the reliability of other types of encoders. 

(PALLAS-ARENY, RAMON; WEBSTER, 2012). 

There are various types of encoders used in different domains and 

applications. One common type is the digital encoder, which converts analog signals 

into digital representations, enabling their processing and manipulation within digital 

systems. Another widely used type is the audio/video encoder, which converts analog 

audio or video signals into compressed digital formats suitable for transmission or 

storage (PALLAS-ARENY, RAMON; WEBSTER, 2012). 

2.3.7.1 Rotary encoder LPD3806 

The LPD3806 rotary encoder is a high-precision sensor that can be used to 

measure the position and speed of rotating shafts in a wide range of applications. The 

LPD3806 encoder is widely used in robotics, automation, and machine control systems 

due to its high accuracy, resolution, and durability. The encoder works by using an 

optical sensor to detect the rotation of a disc with evenly spaced slots. As the disc 

rotates, the slots pass through the optical sensor, which detects the changes in the 

amount of light passing through the slots. The encoder then converts the changes in 

light into electrical signals, which are used to measure the position and speed of the 

rotating shaft (OGUNTOSIN; AKINDELE, 2019). The photograph 6 show the actuator. 

Photograph 6 - Rotary encoder LPD3806 

 

Source: Doublehero (2023) 

The LPD3806 rotary encoder has the following technical specifications: 
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● Operating Voltage: 5V DC; 

● Output Signal: A, B, and Z phase signals; 

● Maximum Speed: 6000 RPM; 

● Maximum Resolution: 600 PPR (pulses per revolution); 

● Operating Temperature: -10°C to 70°C; 

● Protection Class: IP65 (dust-proof and water-resistant); 

● Dimensions: 38mm x 38mm x 28mm. 

2.3.8 H-bridge 

An H-bridge is an essential electronic circuit configuration commonly employed 

in power electronics and motor control applications. It consists of four switching 

elements arranged in the shape of an "H," from which it derives its name. The purpose 

of the H-bridge circuit is to facilitate bidirectional control over current flow through a 

load, such as a motor or an actuator, by enabling or disabling the switching elements 

in a specific pattern (IMAN-EINI et al., 2009). 

The primary function of an H-bridge is to provide a means of controlling the 

direction and magnitude of current flowing through the load. By appropriately activating 

the switching elements in the H-bridge, the voltage polarity and magnitude applied to 

the load can be manipulated, resulting in forward or reverse motor rotation, for instance 

(IMAN-EINI et al., 2009). This bidirectional control capability makes H-bridges 

particularly valuable in applications that necessitate precise speed and direction 

control, including robotics, electric vehicles, and industrial automation. 

Typically, the four switching elements in an H-bridge are solid-state devices, 

such as transistors or MOSFETs, capable of handling high currents and voltages. Two 

of these switches, known as high-side switches, are connected to the positive supply 

voltage, while the other two, called low-side switches, are connected to the ground or 

negative supply voltage. By selectively turning on and off the appropriate combination 

of switches, the H-bridge can effectively reverse the voltage polarity across the load, 

allowing for bidirectional current flow (IMAN-EINI et al., 2009). 

To ensure proper operation and prevent short circuits, H-bridges often 

incorporate additional control circuitry. This circuitry includes gate drivers, which 

provide the necessary signals to drive the switching elements and protect against 

shoot-through, a condition in which both high-side and low-side switches are 

momentarily activated simultaneously. Furthermore, H-bridges may feature braking 
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and freewheeling diodes to suppress voltage spikes and safeguard the switches from 

reverse current flow during switching transitions (IMAN-EINI et al., 2009). 

The control of an H-bridge is typically achieved through a microcontroller or a 

dedicated motor control circuit. By supplying appropriate signals to the gate drivers, 

the microcontroller can control the timing and sequence of switching events, enabling 

precise speed and direction control of the load. Moreover, advanced designs may 

incorporate additional features like pulse width modulation (PWM) for smooth speed 

control or current sensing for monitoring and protection purposes (IMAN-EINI et al., 

2009). 

In summary, the H-bridge is a critical circuit configuration widely utilized for 

bidirectional current control in power electronics and motor control applications. By 

selectively activating the switching elements, the H-bridge facilitates precise control 

over voltage polarity and magnitude across a load (IMAN-EINI et al., 2009). Its 

versatility and effectiveness make it an indispensable component in numerous systems 

requiring reversible motor control and precise manipulation of power flows. 

2.3.8.1 Double H-bridges L-298N 

The L298N is a popular motor driver IC that can be used to control the speed 

and direction of DC motors and stepper motors. The L298N IC is widely used in 

robotics and automation projects due to its ease of use and reliability. It works by using 

two H-bridges to control the flow of current through the motor. Each H-bridge consists 

of four MOSFETs, which can be switched on and off to change the direction of current 

flow through the motor. By changing the state of the MOSFETs, the L298N can control 

the speed and direction of the motor. A picture of it is shown in photograph 7.  

Photograph 7 - Double H-bridges L-298N 

 

Source: Instituto Digital (2023) 
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 The L298N motor driver IC has the following technical specifications: 

● Operating Voltage: 5V to 35V DC; 

● Maximum Output Current: 2A per channel (with heat sink); 

● Peak Output Current: 3A per channel; 

● Logic Voltage: 5V DC; 

● Number of H-bridges: 2; 

● Maximum Power Dissipation: 25W; 

● Dimensions: 20mm x 58mm x 15mm. 

2.3.9 Microcontrollers 

Microcontrollers are integrated electronic devices that combine a 

microprocessor, memory, and peripherals on a single chip. They are widely used in 

various applications due to their processing capabilities, ease of programming, and low 

power consumption (MAZIDI; MCKINLAY; CAUSEY, 2008). These devices provide an 

efficient solution for real-time control and system monitoring, enabling process 

automation and interaction with the external environment. 

The architecture of microcontrollers varies, with Harvard and Von Neumann 

architectures being common. The Harvard architecture separates the program memory 

from data memory, allowing simultaneous access to instructions and data. On the other 

hand, the Von Neumann architecture uses a single memory to store both instructions 

and data (AYALA, 1996). Additionally, microcontrollers feature integrated peripherals 

such as input/output ports, analog-to-digital converters, timers, and communication 

interfaces, enabling interaction with the external environment. 

Programming is typically carried out using high-level programming languages 

such as C or C++, which are compiled into machine code compatible with the target 

microcontroller. Integrated Development Environments (IDEs), such as Arduino IDE 

and MPLAB X, provide tools and libraries to facilitate the programming process 

(PREDKO, 2008). Microcontroller programming involves defining input/output pins, 

configuring peripherals, and implementing control algorithms. 

Microcontrollers have been rapidly evolving, driven by advancements in 

semiconductor technology. Recent advances include increased processing power, 

enhanced peripheral integration, reduced power consumption, and support for short-

range wireless communications such as Bluetooth and Wi-Fi. Additionally, the 
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development of open-source platforms like Arduino and Raspberry Pi has 

democratized access to microcontrollers, enabling more people to explore their 

applications and create innovative projects (BANZI, 2008). 

2.3.9.1 Arduino UNO 

The Arduino UNO is a widely adopted microcontroller board that is based on 

the ATmega328P microcontroller, belonging to the Atmel AVR microcontroller family 

(ARDUINO, 2023). This board is recognized as one of the most popular and well-

documented in the Arduino platform, which encompasses a comprehensive set of 

hardware and software tools for the development of interactive electronic projects. 

Developed to offer ease of use to both beginners and professionals, the 

Arduino UNO enables rapid prototyping and integration with various sensors, 

actuators, and communication modules. For programming, it is possible to use a 

language based on C/C++ and an Integrated Development Environment (IDE) 

compatible with different operating systems such as Windows, Linux, and Mac OS X. 

Additionally, the board can be programmed through a web interface or via command 

line. Photograph 8 presents the Arduino UNO module. 

Photograph 8 - Arduino UNO 

 

Source: Maker Hero (2023) 

Below is presented table 3 specifying the characteristics of the Arduino UNO 

module. 
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Table 3 - Technical specification of the Arduino UNO 

Characteristics Value 

Microcontroller ATmega328P 

Digital Input/Output Pins 14 (of which 6 can be used as PWM 
outputs) 

Analog Input Pins 6 

Crystal oscillator 16 Mhz 

Input Voltage (nominal) 7-12 V 

Output Voltage 5V 

Maximum Current per I/O Pin 20 mA 

Maximum Current 200 mA 

Clock Speed 16 MHz 

Memory 2KB SRAM, 32KB FLASH, 1KB EEPROM 

Source: Arduino (2023) 

2.4 Advanced Driver Assistence System  

With the aim of improving safety and efficiency in driving, the automotive 

industry has been investing more and more in ADAS technologies. These systems use 

sensors, cameras, radars, and software to collect information about the vehicle's 

environment and help the driver make informed decisions to avoid accidents 

(RAJAMANI, 2011). With the increasing number of traffic accidents worldwide, ADAS 

systems have become an important tool to reduce collisions and save lives. In this 

perspective, it is essential to understand how these systems work and their importance 

in the current context of the automotive industry. Figure 9 presents various ADAS 

applications and their respective sensors. According to Synopysis (2023), some of 

these applications are essential for safety and include: 

• Pedestrian detection and avoidance; 

• Departure warning/correction; 

• Recognition of traffic signs; 

• Automatic emergency braking; 

• Blind spot detection. 
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Figure 9 - ADAS functions and sensors 

 

Source: Texa (2023) 

These systems are the key to the success of ADAS applications. They 

incorporate the latest interface standard models and use multiple vision-based 

algorithms to support real-time multimedia, vision co-processing, and sensor fusion 

subsystems. The modernization of ADAS applications is the first step towards 

understanding autonomous vehicles (RAJAMANI, 2011). 

2.4.1 Advanced Emergency Braking 

Also known as AEB aims to brake the vehicle or alert the driver in order to 

avoid potential collisions. The system can use various types of sensors, such as vision, 

radar, and Lidar (ZIEBINSKI et al., 2017), that monitor the distance between the vehicle 

and other objects or vehicles on the road, thus having the potential to save lives and 

reduce serious injuries. 

2.4.2 All-round Collision Warning 

All-round Collision Warning stands for ACW, also known as a collision warning 

system in all directions. ACW is an automotive safety technology that uses sensors, 

such as radar or cameras, to monitor the area around the vehicle and alert the driver 

to possible collision risks, including vehicles, objects, and pedestrians approaching the 

vehicle from any direction. This technology is particularly useful in parking maneuvers 

as it helps to avoid collisions with other vehicles or objects that may be outside the 

driver's field of view (RAJAMANI, 2011). 
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2.4.3 Adaptive Cruise Control 

Adaptive Cruise Control, or ACC, is a vehicle safety feature that uses radar or 

camera technology to maintain a safe distance between the user's vehicle and the 

vehicle in front, automatically adjusting the speed of the vehicle according to traffic 

flow. ACC is an extension of traditional cruise control, which allows the driver to set a 

constant speed for the vehicle. However, this system is able to monitor the distance 

and speed of the vehicle in front and adjust the speed of the user's vehicle accordingly, 

in order to maintain a safe distance and prevent collisions. ACC is an important ADAS 

technology that can help improve road safety, reduce accidents, and driver fatigue 

(ZIEBINSKI et al., 2017). 

2.4.4 Active Park Assist 

In the automotive context, APC stands for "Active Park Assist", which is a 

safety feature that uses ultrasound sensors and cameras to help the driver park the 

vehicle more easily and accurately. When activated, the APC system can detect 

available parking spaces around the vehicle and then guide the driver through visual 

and audible instructions to park the vehicle in the space. The APC can also 

automatically control the vehicle's steering wheel during the parking maneuver, 

allowing the driver to focus on controlling the accelerator, brake, and transmission. The 

APC is a useful technology for drivers who have difficulty parking in tight spaces or to 

avoid collisions during parking maneuvers, and it is a common feature in newer 

vehicles and is often included as part of an ADAS feature package (RAJAMANI, 2011). 

2.4.5 Autonomous Parking System 

Also knows as APS, is a car safety feature that uses sensors, cameras, and 

software to help the driver park the vehicle more easily and accurately. APS includes 

various features, such as "Automatic Parking Assistant" (or Park Assist), which allows 

the vehicle to park automatically in a spot identified by the system. Park Assist typically 

uses ultrasonic sensors to detect the size of the spot. Another feature of APS is the 

"Exit Parking Assistant" (or Exit Assist), which alerts the driver about the presence of 

pedestrians, cyclists, or other vehicles when leaving a parking spot. Exit Assist can 

also monitor approaching traffic and alert the driver about possible collisions during the 

exit from the parking spot. 
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2.4.6 Other systems 

In addition to the systems mentioned in the subsections of section 2.4, there are 

also several others that are discussed in the literature. Some examples are present in 

the works of (Choi et al., 2016; Kiencke & Nielsen, 2005; Rajamani, 2011; Synopysis, 

2023; Ziebinski et al., 2017), these are presented in the works listed in frame 1: 

Frame 1 - Other ADAS systems 

System  Acronym Description 

Lane Departure Warning LDW This system uses sensors to detect the lane 

marking lines on the road, and if the vehicle 

deviates from its lane, the system issues an 

audible or visual warning to alert the driver. 

Lane Keeping Assist LKA This system works in conjunction with the 

LDW to correct the vehicle's deviation from 

the lane by applying a small torque to the 

steering wheel to keep the vehicle in the 

correct position.  

Blind Spot Detection BSD This system uses sensors to detect the 

presence of other vehicles in the driver's blind 

spot. The system issues an audible or visual 

warning to alert the driver to the presence of 

the vehicle in the blind spot. 

Rear Cross Traffic Alert RCTA This system uses sensors to detect vehicles 

approaching the car when it is backing out of 

a parking spot. The system issues an audible 

or visual alert to warn the driver about the 

approaching vehicle. 

Advanced Parking Assist APA This system helps the driver to park the 

vehicle more easily and accurately, using 

sensors to detect the size of the parking 

space and guide the driver through visual and 

auditory instructions to park the vehicle 

properly. 

Source: Adapted from Choi et al. (2016), Kiencke & Nielsen (2005), Rajamani (2011), Synopysis, 
(2023) and Ziebinski et al. (2017)  

These are just a few examples of the types of ADAS systems that exist, and 

new technologies are constantly being developed to help improve safety on the roads. 
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2.5 Simulation Software 

Software plays a crucial role in the simulation of autonomous parking systems. 

It is used to create and run the virtual environment in which the simulation takes place, 

as well as to control the behavior and movements of the simulated autonomous 

vehicle. There are several types of software that may be used in the simulation of 

autonomous parking systems. One type is computer-aided design (CAD) software, 

which is used to create a virtual model of the parking lot or garage in which the 

simulation will take place. This may include the layout of the space, the location of 

parking spaces, and the presence of any obstacles or hazards. 

Another type of software that may be used is simulation software, which is 

used to run the simulation itself. This software typically includes algorithms and logic 

to control the movements of the simulated autonomous vehicle, as well as sensors and 

other data inputs to help the vehicle navigate and avoid obstacles. Finally, analysis 

software may be used to review the results of the simulation and identify any areas for 

improvement. This may include analyzing data on the vehicle's speed, accuracy of 

parking, and other performance metrics. Overall, the use of software in the simulation 

of autonomous parking systems allows for the testing and optimization of these 

systems in a controlled and safe environment before they are deployed in real-world 

scenarios. 

2.5.1 MATLAB and Driving Scenario 

MATLAB (MATrix LABoratory) is a high-level programming language and 

computing environment developed by MathWorks. It is widely used in the field of 

engineering and scientific computing, particularly in areas such as image and signal 

processing, control systems design, and data analysis. The software includes a wide 

range of tools and functions that can be used to perform various tasks such as data 

visualization, numerical computation, and model-based design. It also provides a 

flexible and interactive programming environment with features such as debugging, 

code highlighting, and interactive graphics.  

In the context of a driving scenario, MATLAB can be used to analyze and 

simulate various aspects of the scenario, such as vehicle dynamics, traffic flow, and 

sensor data. For example, it can be used to model and analyze the behavior of vehicles 

and pedestrians in a traffic environment, or to design and test control systems for 
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autonomous vehicles. This is possible using the driving scenario module in MATLAB, 

a toolbox that provides a set of functions and tools for modeling and simulating driving 

scenarios. The figure 10 exemplifies its use showing a car, represented in blue, which 

contains a vision sensor and a radar, capable of identifying objects in front of the car. 

Figure 10 - Driving Scenario Designer with a project running 

 

Source: Mathworks (2023) 

It includes a library of vehicle, road and traffic models that can be used to 

create and simulate a variety of driving scenarios. The module also provides tools for 

visualizing and analyzing the results of the simulation, such as plotting vehicle 

trajectories and generating performance metrics. On this car the multiPlus identification 

points of the sensors are shown. These signals are very useful bases for the 

development of autonomous automotive systems, considering the easy modeling 

obtained from often complex systems. Overall, the driving scenario module in MATLAB 

is a useful tool for researchers and engineers working on the development and analysis 

of driving systems and technologies. It can be used to design, test, and optimize the 

performance of control systems, sensors, and other components of a driving system, 

and to evaluate the behavior and performance of a vehicle in various driving scenarios. 

2.5.1.1 Introduction to driving scenario designer 

Driving Scenario Designer is a powerful and versatile tool in the field of 

autonomous vehicle simulation and development. It is a specialized add-on for the 
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widely-used Matlab software, developed by MathWorks, that enables engineers, 

researchers, and developers to create realistic driving scenarios for a variety of 

applications. 

In the pursuit of safer and more efficient autonomous driving systems, 

simulations play a crucial role in testing and validating algorithms and control 

strategies. The Driving Scenario Designer empowers users to design complex and 

dynamic driving scenarios that mimic real-world conditions, providing a safe and 

controlled environment to assess the performance of autonomous vehicles. 

This tool offers a user-friendly graphical interface that allows users to define 

various elements of a driving scenario, such as roads, vehicles, pedestrians, traffic 

signs, and traffic signals, among others. Users can customize the behavior and motion 

of each element, allowing for the simulation of diverse traffic scenarios, urban 

environments, highways, and more. 

With the Driving Scenario Designer, users can explore different traffic 

scenarios, test the performance of autonomous systems under various conditions, and 

evaluate the robustness of control algorithms. Additionally, the software facilitates the 

integration of simulated scenarios with control algorithms and vehicle models, creating 

a comprehensive simulation environment for testing and development. 

It is also possible to understand the operation of the created scenario through 

the code, optimizing the development of scenarios and allowing the use of 

programmable logic to perform actions directly in the scenario. Figure 11 represents 

the respective code generated by exporting the scenario. 

Figure 11 - Code generated from a driving scenario in MATLAB 

 

Source: Own authorship (2023) 



50 

 
 

 

There are the settings related to the road and the actors (cars, trucks, cyclists, 

pedestrians, or barriers). Sensors can also be added to the ego vehicle, the vehicle 

used for testing, allowing the positioning, angle of vision, range, and other attributes to 

be adjusted. In figure 11 it is possible to identify that there are comments delimiting the 

different implementations, such as the specification of the road segments and the 

added vehicles. There is an ego vehicle and other non-ego vehicles. 

2.5.2 Vector’s DYNA4 

Vector's DYNA4 software is a simulation tool used to design and test dynamic 

systems, including automotive systems such as autonomous parking systems. It is 

based on the multi-body dynamics (MBD) approach, which allows for the simulation of 

complex interactions between multiple moving bodies and their environments. One key 

feature of DYNA4 is its ability to simulate the motion of bodies using both kinematic 

and kinetic analyses. This means that it can model both the position and velocity of 

bodies as well as the forces acting on them, allowing for a more accurate and detailed 

simulation of their behavior. An example of a simulation can be seen in figure 12. 

Figure 12 - Example of a DYNA4 Simulation 

 

Source: Own authorship (2023) 

DYNA4 also includes a range of tools for model development and analysis, 

including tools for creating and editing models, visualizing simulation results, and 

performing parametric studies. It also includes interfaces for data exchange with other 

software tools and the ability to generate reports and documentation. In summary, 

Vector's DYNA4 software is a comprehensive and powerful tool for simulating the 



51 

 
 

 

behavior of dynamic systems, including autonomous parking systems. Its use of the 

MBD approach and wide range of analysis and model development tools make it a 

valuable resource for designers and engineers working in this field. 

2.6 Motion Planning 

While humans can easily move from one place to another, this is a major 

challenge for robots. Path planning is a central problem in autonomous robotics, where 

the goal is to find a safe and efficient path for a robot to navigate from a starting position 

to a desired goal position. This problem is relevant for a wide range of robotic 

applications, including vacuum cleaning robots, robotic arms, and even flying objects. 

The problem typically involves finding a path that avoids obstacles and satisfies various 

constraints on the robot's motion, such as its maximum speed or acceleration. The 

literature offers multiple approaches to address this problem, which depend on various 

factors such as the environment model, the type of robot, and the specific application 

(KOUBAA et al., 2018). 

Motion planning commonly involves generating a sequence of valid 

movements for a robot in a 2D or 3D world that may contain obstacles, where the robot 

may represent an actual robot or any other collection of moving bodies. The goal is to 

determine the appropriate motions for the robot to navigate to a desired goal state 

without colliding with obstacles. These algorithms typically take into account the 

geometry of the robot and its surroundings, as well as any constraints on the robot's 

movement, such as maximum speed or acceleration limits. The goal of motion planning 

is to generate a collision-free path for the robot to follow while minimizing the time and 

energy required to complete the task (LAVALLE, 2006). 

To solve a navigation problem, a typical robot needs to know its location, where 

it should go, and how to get there. For this there are three stages, the location, mapping 

and path planning or motion planning. 

Localization: sensors are usually used to identify the environment around the 

robot, such as ultrasonics, cameras, GPS, laser rangefinder. Location can be 

expressed locally (e.g., right side of a room), topologically (e.g., in Room 13), or 

absolutely (e.g., latitude, longitude, altitude) (LAVALLE, 2006). 

Mapping: For a robot to effectively navigate in its environment, it needs to have 

a map that allows it to keep track of its location and the directions it has traveled. This 

map can be created manually and stored in the robot's memory in the form of a graph 



52 

 
 

 

or matrix representation, or it can be built incrementally as the robot explores new 

areas. By having an accurate and up-to-date map of its environment, a robot can more 

efficiently plan its movements and avoid collisions with obstacles (LLUVIA; LAZKANO; 

ANSUATEGI, 2021). 

Motion planning or path planning: To enable a mobile robot to find a path from 

its current location to a target position, the robot must have prior knowledge of the 

target location. An effective way to provide this information to the robot is through an 

addressing scheme that the robot can interpret and follow. This addressing scheme 

specifies the destination relative to the robot's initial position, allowing it to understand 

where it needs to go. For example, in a parking lot, the robot can navigate to the 

destination only with the number of the space it must find. In other scenarios, the 

addressing scheme may use absolute or relative coordinates to indicate the target 

location. By utilizing an appropriate addressing scheme, the robot can navigate 

efficiently to the desired location while avoiding collisions with obstacles and 

minimizing the risk of getting lost. The addressing scheme is an essential element of 

the path planning process, helping the robot to accurately interpret its surroundings 

and successfully navigate to the target position (LAVALLE, 2006). Next the main 

solutions will be explained. 

2.6.1 Classical Approaches 

Classical path planning methods aim to either find a solution or prove that no 

solution exists. However, these methods have some drawbacks, including their high 

computational complexity and their inability to handle uncertainty, which makes them 

less suitable for real-world applications. This is due to the unpredictable and uncertain 

nature of many real-world scenarios. Classical path planning methods, such as Cell 

Decomposition (CD), Potential Field (PF) and Road Map fall into this category of 

methods (ATYABI, 2013). 

Cell decomposition: is a classical method of path planning that involves 

dividing the free space of a robot's configuration into smaller regions called cells to 

generate a connectivity graph. This graph represents the adjacency between each cell, 

allowing for a continuous path to be determined by following adjacent free cells from 

the initial point to the goal point. The free space is decomposed into trapezoidal and 

triangular cells by drawing parallel line segments from each vertex of each interior 

polygon in the configuration space to the exterior boundary. Each cell is numbered and 
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represented as a node in the connectivity graph, with adjacent nodes linked in the 

graph. Finally, a free path is constructed by connecting the initial and goal 

configurations through the midpoints of the intersections of the adjacent cells. The cell 

decomposition method has several variants, including exact and approximate cell 

decomposition and the wave front planner (LAVALLE, 2006). 

Potential Field: is a method that models a robot as a particle moving under the 

influence of a potential field. This field is determined by the obstacles and the target 

destination, where obstacles are assigned repulsive forces and the goal is assigned 

an attractive force. This approach allows the robot to move toward the target while 

avoiding obstacles. Different variants of PFM have been proposed to improve path 

planning, such as an improved PFM and genetic algorithm. In unknown environments, 

a new formula for repelling potential is used to reduce oscillations and conflicts when 

obstacles are near the target. In addition, a framework based on PFM is proposed to 

escape from a local minimum location of a robot path that may occur under narrow 

passages or similar scenarios (KOUBAA et al., 2018). 

Road map: also known as the Retraction, Skeleton or Highway approach, 

involves constructing a network of collision-free paths for motion planning. Path 

planning is then achieved by finding the shortest path between possible paths from the 

starting position to the goal position using the roadmap network. The two popular 

methods for developing road-maps are visibility and Voronoi graphs. Visibility graphs 

are graphs whose vertices consist of the start, target, and vertices of polygonal 

obstacles, with edges joining all pairs of vertices that can see each other. While the 

resulting path is usually the minimum-length solution, a disadvantage is that the 

shortest paths can touch obstacles at vertices or edges, making them unsafe. Voronoi 

diagrams address this issue by producing collision-free paths by dividing the free 

space around obstacles into regions (ATYABI, 2013). 

2.6.2 Graph Search Approaches 

Graph search approaches are a class of motion planning algorithms that 

represent the robot's environment as a graph of nodes and edges. The goal is to find 

a path from the initial position to the goal position on the graph while avoiding collisions 

with obstacles. Graph search approaches are typically categorized into two groups: 

search-based and sampling-based (LAVALLE, 2006). 
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2.6.2.1  A* algorithm 

A* (pronounced "A star") is a widely used graph search algorithm in the field 

of artificial intelligence and robotics. It is an extension of the more basic Dijkstra's 

algorithm, with the addition of a heuristic function that guides the search towards the 

goal node and makes it more efficient. The A* algorithm is a search-based approach, 

meaning it explores the graph in a systematic way to find the shortest path. The search 

algorithm typically uses heuristics to guide the search and avoid exploring areas of the 

graph that are unlikely to lead to a solution. These algorithms are often used in 

situations where the environment is relatively simple and the computational resources 

are sufficient to explore the entire state space (GARCÍA, 2022). 

To search for the shortest path each cell is evaluated according to equation 1. 

Where g(n) is the accumulated cost of reaching the current cell n from the start position 

S, h(n) is the estimated cost of the missing path to reach the goal, called heuristic. This 

can be defined as the Euclidean distance from the current cell to the target. For the 

algorithm to work faster, the Tie-breaking factor is used, which multiplies the value 

h(n). This factor, when used, favors one direction over another in the event of a tie (LIN 

et al., 2022). It’s shown in the equation 2. 

 

 𝑓(𝑛) = ℎ(𝑛) + 𝑔(𝑛) 

𝑔(𝑛) =  {
𝑔(𝑆) = 0

𝑔(𝑝𝑎𝑟𝑒𝑛𝑡(𝑛)) + 𝑑𝑖𝑠𝑡(𝑝𝑎𝑟𝑒𝑛𝑡(𝑛), 𝑛)
} 

(1) 

 
𝑡𝐵𝑟𝑒𝑎𝑘 = 1 +

1

(𝑙𝑒𝑛𝑔𝑡ℎ(𝐺𝑟𝑖𝑑) + 𝑤𝑖𝑑𝑡ℎ(𝐺𝑟𝑖𝑑))
 (2) 

   

It maintains two lists: the open list, which contains nodes that have been visited 

but not yet fully explored, and the closed list, which contains nodes that have already 

been fully explored. The algorithm continues to expand nodes on the open list until the 

goal node is reached or the open list is empty. Each cell saved in the list has five 

attributes: ID, parentCell, g_Cost, h_Cost and f_Cost. 

The algorithm starts by expanding the neighbor cells of the starting position. 

The neighbor cell with the lowest f_cost is chosen from the open list, added to the 

closed list, and then expanded in each iteration. However, the algorithm verifies some 

conditions before exploring the neighbor cells of the current cell. The conditions include 

ignoring cells that already exist in the closed list and comparing the g_cost of this path 
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to the neighbor cell and the g_cost of the old path to the neighbor cell if it already exists 

in the open list. If the g_cost of the new path is lower, the parent cell of the neighbor 

cell is changed to the current cell, and the g, h, and f costs of the neighbor cell are 

recalculated. This process is repeated until the algorithm reaches the goal position. 

Finally, the algorithm works backward from the goal cell, going from each cell to its 

parent cell until it reaches the starting cell to find the shortest path in the grid map 

(KOUBAA et al., 2018). 

A* is a popular and effective algorithm due to its optimality and completeness. 

It returns the optimal path if one exists, and it is guaranteed to find a path if one exists. 

However, the effectiveness of the algorithm can depend on the quality of the heuristic 

function used, which must be both admissible and consistent. 

2.6.2.2 RRT* 

RRT* (Rapidly-exploring Random Trees) is a sampling-based motion planning 

algorithm that can generate a probabilistically complete roadmap of the free 

configuration space of a robot. The algorithm incrementally grows a tree rooted at the 

starting configuration of the robot by randomly sampling new configurations and 

attempting to connect them to the tree. In RRT*, each node represents a configuration 

of the robot, and the edges of the tree represent feasible paths between these 

configurations. Each configuration is associated with a cost-to-come, which is the cost 

of the shortest path from the start configuration to that configuration (XINYU et al., 

2019). 

The algorithm uses a cost function that assigns a cost to each edge in the tree, 

aiming to assess the quality of connections between the nodes. The cost of an edge is 

the Euclidean distance between the two configurations that it connects. The cost-to-

come of a node is updated by finding the lowest-cost edge that can be used to reach 

the node. At each iteration, a new configuration is sampled randomly from the free 

space, and the nearest node in the tree is found. A new configuration is then added to 

the tree by connecting it to the nearest node. The algorithm then re-wires the tree by 

checking if any of the existing nodes can be reached from the new node by a path with 

a lower cost. If so, the tree is reconnected to reduce the overall cost of the tree 

(LAVALLE, 2006). 

The algorithm continues to iteratively sample new configurations and add them 

to the tree until a path from the start configuration to the goal configuration is found. 
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RRT* is an asymptotically optimal algorithm, meaning that as the number of iterations 

approaches infinity, the algorithm is guaranteed to find the optimal path between the 

start and goal configurations, given certain assumptions about the cost function 

(LAVALLE, 2006). The figure 13 denotes the functioning of the algorithm. 

 

Figure 13 - Algorithm RRT* 

 

Source: Xinyu et al. (2019) 

2.6.3 Cost Map 

In path planning, a cost map is a grid-based representation of the environment 

where each cell is assigned a cost based on its characteristics such as traversability, 

distance to obstacles, or other factors that affect the robot's movement. The cost map 

is a useful tool for path planning algorithms as it provides a way to represent the 

environment and determine the optimal path through it (SUH; OH, 2012). 

The cost map is typically generated by processing sensory data from sensors 

such as cameras, LiDAR, or sonar, and assigning a cost to each cell based on the 

data. For example, cells that are occupied by obstacles are assigned a high cost, while 

cells that are free of obstacles are assigned a low cost. The cost map can be updated 

in real-time as the robot moves through the environment and new sensory data 

becomes available (FERGUSON; LIKHACHEV, 2008). 

Cost maps can be used in both search-based and sampling-based algorithms 

to determine the optimal path through the environment. In search-based algorithms, 
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the cost map is used to guide the search process and determine the optimal path, while 

in sampling-based algorithms, the cost map is used to bias the sampling process 

towards areas of low cost, which can improve the efficiency of the algorithm 

(FERGUSON; LIKHACHEV, 2008). 

2.7 Vehicle Dynamics 

The concept of vehicle dynamics corresponds to the description of the 

movement of vehicles, which can be automobiles, trucks, buses, and other special 

types of vehicles. It is interesting to identify and describe them to then obtain the 

movements of interest, such as acceleration and braking, ride, and turning 

(GILLESPIE, 2021). This concept can be considered in a rigid body, using the 

principles of Newton and Euler equations, describing force and moment (JAZAR, 

2009). 

2.7.1 Coordinate Systems 

Firstly, it is necessary to describe the coordinates used by the system to 

describe the vehicle. There are two models that are commonly used: vehicle-fixed 

coordinate system and earth-fixed coordinate system. Both are important to describe 

in vehicle dynamics. 

2.7.1.1 Vehicle-fixed coordinate systems 

At vehicle-fixed coordinate systems exists two standards commonly used of 

the SAE and the ISO, in both the systems the coordinates originate at the center of 

gravity (C.G.) and travels with the vehicle (GILLESPIE, 2021). The SAE convention 

utilizes a right-hand orthogonal coordinate system, seen in the figure 14, and describe 

as follows: 

x – Forward and on the longitudinal plane of symmetry 

y – Lateral out the right side of the vehicle 

z – Downward with respect to the vehicle 

p – Roll velocity about the x-axis 

q – Pitch velocity about the y-axis 

r – Yaw velocity about the z-axis 
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Figure 14 - SAE vehicle axis system 

 

Source: Gillespie (2021) 

Otherwise, the ISO standard defines the coordinate system differently, where 

the z-axis points up from the ground and the y-axis points to the left of the car, in the 

figure 15 the system is shown. 

Figure 15 - ISO vehicle axis system 

 

Source: Kissai et al. (2019) 

2.7.1.2 Earth fixed coordinate system 

It is important to define the earth fixed coordinate system, because this 

coordinate system is used to know the car position related to the world and it provides 

a reference frame for navigation and localization systems. Therefore, the applications 

like vehicle control and autonomous driving could be accomplish. 

The standard is the use of a right-hand orthogonal axis system fixed on the 

earth. Commonly the axis is positioned at the start point of a maneuver and 

consequently coincide with the vehicle fixed coordinate system. The convention of the 

axis is shown in the figure 16, and the description is as follow: 

X – Forward movement; 



59 

 
 

 

Y – Lateral movement (to the right is positive); 

Z – Vertical movement; 

ψ – Heading angle (angle between x and X in the ground plane); 

ν – Course angle (angle between the vehicle’s velocity vector and X axis); 

β – Sideslip angle (angle between x axis and the vehicle velocity vector). 

Figure 16 - Vehicle in an Earth Fixed Coordinate System 

 

Source: Gillespie (2021) 

2.7.2 Instantaneous center of rotation (ICR) 

Given a rigid body, the instant velocity of any point of the body could be 

expressed as a result of a rotation about an axis perpendicular to the plane (JAZAR, 

2009). Where the lines of the given points intercept are known as the instantaneous 

center of rotation or ICR, in the figure 17 could be seen the lines originate from the 

front and rear wheel instant velocity and from the center of mass instant velocity. 

Figure 17 - Instantaneous center of rotation 

 

Source: Michael (2020) 
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2.7.3 Kinematic Bicycle Model 

The kinematic bicycle model is a simplified mathematical representation of a 

bicycle that is used to analyze its dynamic behavior. The model could represent a car 

as a rigid body with two wheels and a steer. This is a classic model that does very well 

at capturing vehicle motion in normal driving conditions (DING, 2021). The model 

simplifies the vehicle dynamics combining the two front wheels and the two rear wheels 

into one front and one rear wheel respectively. This combination forms the two-

wheeled model or most commonly named bicycle model. Therefore instead of two 

steering angle, the system only have one (MICHAEL, 2020). The figure 18 describe 

the model and show the steering angles. 

Figure 18 - Two-wheel representation of a four-wheel system 

 

Source: Michael (2020) 

Using the ICR model is possible to derive practical formulas for the kinematic 

bicycle model (THEERS; SINGH, 2023). The objective of the modeling is to find the 

equation to describe the behavior. Therefore, these parameters can feed a control 

system. 

Utilizing the rear-axle as reference point, the direction of the vehicle’s velocity 

is the same as the angle of the rear wheel, named θ, with respect to the x axis. The 

figure 19 denotes that. 
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Figure 19 - Kinematic bicycle model with the rear axle reference point 

 

Source: Michael (2020) 

It’s necessary to find the velocity into components of x and y. Where 𝑥�̇� are the 

𝑣𝑥, the velocity in the x axis and 𝑦�̇� are the 𝑣𝑦, the velocity in the y axis, the equation 3 

denotes that, using trigonometrical relations: 

 

 𝑥�̇� = 𝑣 ∗ cos(𝜃) 

𝑦�̇� = 𝑣 ∗ sin(𝜃) 
(3) 

 

Next is important to define the angular velocity 𝜔, this show how the model is 

changing his heading. Using the linear velocity (𝑣) and the radius to the IC point (𝑅), 

the angular velocity could be obtained (YOUNG; FREEDMAN; FORD, 2012). In 

equation 4 could be seen the relation.  

 

 �̇� = 𝜔 =  
𝑣

𝑅
 (4) 

 

It’s possible to obtain 𝑅 using trigonometry, to do that is necessary find the 

angle x shown in the figure 21. It’s known that the angle a and c is equal to 90°, 

therefore using the principle that: the internal sum of the angles of a triangle must be 

equal to 180º, it’s obtained the equations 5 and 6. And subtracting equation 6 from 5 

we get equation 7. 
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 𝑎 + 𝑏 + 𝜁 = 180° 

𝑥 + 𝑏 + 𝑐 = 180° 

𝑥 = 𝜁 

(5) 

(6) 

(7) 

 

Knowing that the angle 𝑥 has the same value as the angle 𝜁, referring to the 

steering of the model, it is possible to deduce equation 8. Then it is only necessary to 

isolate R. 

 

 
tan(𝜁) =  

𝐿

𝑅
 (8) 

 
𝑅 =  

𝐿

tan(𝜁)
 (9) 

It is then possible to obtain the final equations shown in 10. And the figure 20 

summarizes the model, showing the inputs and outputs.  

 

 𝑥�̇� = 𝑣 ∗ cos(𝜃) 

𝑦�̇� = 𝑣 ∗ sin(𝜃) 

�̇� = 𝜔 = 𝑣 ∗ 
tan(𝜁)

𝐿
 

(10) 

 

Figure 20 - Inputs and outputs of the kinematic bicycle model 

 

Source: Michael (2020) 

To bring this model closer to its use in practice, the discretized model is shown 

with the equations in 11. The use of the rate of change of steering angle instead of the 

steering angle can be noticed, this is used considering that the vehicle cannot turn the 

steering wheel instantly. 
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 𝑥(𝑡 + 1) = 𝑥(𝑡) + �̇� ∗ 𝛥𝑡 

𝑦(𝑡 + 1) = 𝑦(𝑡) + �̇� ∗ 𝛥𝑡 

𝜃(𝑡 + 1) = 𝜃(𝑡) + �̇� ∗ 𝛥𝑡 

𝜁(𝑡 + 1) = 𝜁(𝑡) + 𝜁̇ ∗ 𝛥𝑡 

(11) 

 

In this way, the x and y positions, vehicle heading θ, and steering angle ζ are 

obtained, as can be observed in figure 21, with inputs being the vehicle speed v and 

the rate of change of the steering angle Φ. 

Figure 21 - Steering angle in bicycle model 

 

Source: Adapted from Theers and Singh (2023) 

2.8 Control Strategies 

Automotive control involves the use of control theory and engineering to 

improve the performance and safety of automobiles. Control systems are used to 

regulate and optimize various aspects of vehicle behavior, including acceleration, 

braking, steering, and stability. The goal of automotive control is to develop control 

systems that can improve vehicle performance, enhance driver safety, and reduce fuel 

consumption and emissions (KIENCKE; NIELSEN, 2005). 

Recent advances in automotive control have been driven by the increasing use 

of electronic and computer-based systems in modern vehicles. These systems allow 

for more precise and efficient control of vehicle behavior, and have enabled the 

development of advanced driver assistance systems (ADAS) and autonomous driving 
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technologies (CHOI et al., 2016). The figure 22 shows an example of an automotive 

control architecture. 

Figure 22 - An example of a control architecture 

 

Source: Waslander (2018c) 

2.8.1 Transfer Function 

The transfer function is a fundamental concept in control theory that describes 

the relationship between the input and output of a control system in the frequency 

domain. The transfer function of a control system is a mathematical representation of 

how the system responds to different inputs and disturbances (OGATA, 2009-). 

The transfer function is usually expressed in terms of Laplace transforms, 

which are a mathematical tool used to analyze linear time-invariant systems. The 

transfer function is defined as the ratio of the Laplace transform of the output to the 

Laplace transform of the input, assuming zero initial conditions. In other words, it gives 

the relationship between the input and output signals in the Laplace domain (NISE, 

2017).  

The transfer function is typically denoted by G(s), where “s” is the Laplace 

variable. The transfer function can be derived from the differential equations that 

describe the system dynamics, using techniques such as Laplace transforms and 

partial fraction expansion (OGATA, 2009-). A transfer function represented in the 

Laplace domain is shown in the equation 12, where G is the ratio between input U and 

output Y. The “s” variable is defined in equation 13 according to the laplace 

transformation. 
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 𝑌(𝑠) = 𝐺(𝑠)𝑈(𝑠) 

𝑠 = 𝜎 + 𝑗𝜔 

(12) 

(13) 

  

The Laplace transform is a great tool for analyzing the input-output relationship 

and for a better understanding of the performance of the control system. As well as the 

roots of the numerator and denominator which provide insight into a system's response 

to input functions, zeros being the roots of the numerator and the poles roots of the 

denominator (WASLANDER, 2018c).  

2.8.2 Logitudinal Control  

When it comes to controlling the vehicle's longitudinal motion, which includes 

its longitudinal velocity, acceleration, or distance from another preceding vehicle in the 

same lane on the highway, the phrase "longitudinal controller" is commonly used. The 

actuators responsible for carrying out longitudinal control are the throttle and brakes 

(RAJAMANI, 2011). 

According to vehicle modeling, the acceleration a is responsible for the change 

in speed v. The relationship between v and a is typically represented as �̇� = 𝑎, which 

is modeled using an integrator in control theory. This integrator can be controlled with 

a PID controller. However, since the acceleration of the vehicle is often constrained 

due to mechanical limitations and passenger comfort, it is important to design the 

longitudinal controller with an input saturation (OLSSON, 2015). 

A commonly known example of longitudinal control is demonstrated by the 

cruise control system that is present in most vehicles. The driver sets a constant 

desired speed for the vehicle, and the cruise control system automatically adjusts the 

throttle to maintain that speed. Nevertheless, the driver must ensure that the vehicle 

can safely travel at that speed on the highway. If a slower preceding vehicle appears 

on the highway or if the ego vehicle gets too close, the driver must apply the brakes, if 

necessary, which disengages the cruise control system and returns control of the 

throttle to the driver (RAJAMANI, 2011). 

2.8.2.1 Proportional–integral–derivative (PID) control 

PID control is a type of feedback control that is commonly used in engineering 

and industrial applications to regulate a process. PID stands for Proportional-Integral-
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Derivative, which are the three types of control actions that the controller can use to 

adjust the process output. The proportional action is proportional to the current error, 

the integral action is proportional to the cumulative error over time, and the derivative 

action is proportional to the rate of change of the error. By combining these three 

actions, the PID controller can quickly respond to changes in the process input and 

maintain a stable output. PID control is used in a wide range of applications, including 

temperature control, motion control, and industrial process control. It is a widely used 

and well-understood control technique, and it has been the subject of extensive 

research and development over the years (NISE, 2017). Mathematically the PID 

control can be represented in the time domain, as shown in equation 14, or more 

commonly it can be represented in the s domain shown in equation 15. 

 

 
𝑢(𝑡) = 𝐾𝑃𝑒(𝑡) +  𝐾𝐼 ∫ 𝑒(𝑡)𝑑𝑡

𝑡

0

+ 𝐾𝐷�̇�(𝑡) 

𝑈(𝑠) =  𝐺𝐶(𝑠)𝐸(𝑠) = (𝐾𝑃 +
𝐾𝐼

𝑠
+ 𝐾𝐷𝑠) 𝐸(𝑠) = (

𝐾𝐷𝑠2 + 𝐾𝑃𝑠 + 𝐾𝐼

𝑠
) 𝐸(𝑠) 

(14) 

 

(15) 

 

Where u(t) is the control input at time t, e(t) is the error between the setpoint 

and the process output at time t, and KP, KI, and KD are the proportional, integral, and 

derivative gains, respectively. The function in the laplace domain have the same 

principles. It is possible to select the positioning of the zeros by selecting the KP, KI and 

KD gains, in the case of the equation 16 the pole is at the origin. 

 

 
𝐺𝐶(𝑠) =

𝐾𝐷𝑠2 + 𝐾𝑃𝑠 + 𝐾𝐼

𝑠
 (16) 

 

The proportional term KP is a constant gain that determines the strength of the 

correction applied to the control input based on the current error E(s). A larger value 

of KP leads to a more aggressive correction, while a smaller value leads to a more 

gradual correction. The integral term KI is a constant gain that determines the strength 

of the correction applied based on the accumulated error over time. The integral term 

sums up the error over a specified time interval (usually from the start of the control 

process to the present time), and multiplies it by the constant gain KI. This helps to 

correct for any steady-state errors that may be present. The derivative term KD is a 
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constant gain that determines the strength of the correction based on the rate of 

change of the error. The derivative term takes the rate of change of the error over time 

into account, and multiplies it by the constant gain KD. This helps to prevent 

overshooting and oscillations in the control process (OGATA, 2009-). The frame 2 

summarizes the concept. 

Frame 2 - Changes in gains of the PID controller and their potential effects by properly tuning 
the PID gains 

Closed Loop 

Response 

Rise Time Overshoot Settling Time Steady State 

Error 

Increase 𝑲𝑷 Decrease Increase Small change Decrease 

Increase 𝑲𝑰 Decrease Increase Increase Eliminate 

Increase 𝑲𝑫 Small change Decrease Decrease Small change 

Source: Waslander (2018a) 

The transfer function of the plant being controlled is typically represented by 

G(s). The closed-loop transfer function of the system with PID control is given by the 

equation 17. 

 

 𝐶(𝑠)

𝑅(𝑠)
=

𝐺𝐶(𝑠)𝐺(𝑠)

1 + 𝐺𝐶(𝑠)𝐺(𝑠)
 (17) 

 

Where C(s) is the output of the controller, R(s) is the reference signal or 

setpoint, G(s) is the transfer function of the plant and Gc(s) is the PID transfer function. 

The closed-loop transfer function can be analyzed to determine the stability, steady-

state error, and response characteristics of the system. The gains KP, KI and KD must 

be tuned to optimize the control performance for a given system. This can be done 

through manual trial-and-error, or using more advanced methods such as Ziegler-

Nichols or Cohen-Coon tuning methods. 

2.8.2.1.1 Cruize control 

One of the main examples of using a PID controller is in the making of a cruise 

control, in which the speed of the car is controlled through the accelerator and brake 

to stay within the established reference speed. The controller could be split in two level, 

a high-level controller and a low-level controller. The high-level controller receives the 

reference velocity and the actual velocity of the car, and computes a desired 
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acceleration to the low-level controller, that outputs a throttle and brake commands. In 

the figure 23 is possible to see an example of controllers to make this system. 

 

Figure 23 - Cruise control schematic 

 

Source: Waslander (2018c) 

The desired acceleration can be found using the PID controller shown in 

figure 24. 

Figure 24 - Equation to find the desired acceleration of a cruise control 

 

Source: Waslander (2018c) 

In the dynamics of mechanical systems, equation 18 describes the relationship 

between the engine torque (𝑇𝐸𝑛𝑔𝑖𝑛𝑒), the system's moment of inertia (𝐽𝑒), the distance 

from the rotation axis (𝑟𝑒𝑓𝑓), angular acceleration (𝐺𝑅), and linear acceleration (�̈�𝑑𝑒𝑠). 

Using the kinematic bicycle model and the engine torque equations with the engine 

maps is possible to design a control to output the throttle and brake angle. In cruise 

control normally the output is only the throttle angle. With this assumption, considering 

the torque converter locked (gear 3+) and with the tire slip small (gentle longitudinal 

maneuvers) is possible to find the torque engine using the equation 18 with the desired 

acceleration, knowing that the other variables are constants in this system. 

 

 
𝑇𝐸𝑛𝑔𝑖𝑛𝑒 =  

𝐽𝑒

(𝑟𝑒𝑓𝑓)(𝐺𝑅)
�̈�𝑑𝑒𝑠 + 𝑇𝐿𝑜𝑎𝑑 (18) 
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With the engine map in figure 25 the throttle could be find using the torque 

engine. 

Figure 25 - Typical engine map 

 

Source: Waslander (2018c) 

2.8.3 Lateral Control 

Vehicle lateral control refers to the process of maintaining a vehicle's lateral 

position or trajectory relative to a specific reference point while in motion. This involves 

controlling the vehicle's lateral movement, which is primarily achieved through the 

steering system (SOUDBAKHSH; ESKANDARIAN, 2012). 

Lateral vehicle control, can be mathematically described as the process of 

regulating the lateral position of a vehicle with respect to a predefined reference 

trajectory or point, typically in the context of time.  

The goal of lateral control is to minimize this lateral error, by making steering 

adjustments to the vehicle's direction, which is achieved primarily through the steering 

angle applied to the front wheels. A common mathematical model used in lateral 

control is the bicycle model, where the lateral motion of the vehicle is typically 

represented using a combination of differential equations and control algorithms. 

2.8.3.1 Pure Pursuit 

One of the most commonly used techniques for path tracking in mobile robots 

is the pure pursuit method and its variations. This method involves calculating the 

curvature of a circular arc that connects the rear axle position to a goal point on the 
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path ahead of the robot. The goal point is determined by a look-ahead distance ld from 

the current rear axle position to the desired path represented by the coordinates (gx, 

gy), as shown in figure 26. By utilizing the location of the goal point and the angle α 

between the vehicle's heading and the look-ahead vector, the steering angle ζ of the 

robot can be calculated (SNIDER, 2009).  

Figure 26 - Path following with pure pursuit controller 

 

Source: Waslander (2018b) 

In a Pure Pursuit control system, the variables play a fundamental role in 

guiding a vehicle toward a target point along a planned trajectory. The first variable, 𝑙𝑑, 

represents the distance from the vehicle to the target point along the reference path, 

determining when the vehicle should make steering adjustments. The angle α denotes 

the orientation angle that the vehicle needs to follow to align itself with the target point. 

Lastly, R signifies the radius of curvature of the reference path at the vehicle's current 

position, influencing the curvature of the path the vehicle must follow to reach the target 

point. The law of sines can be applied to figure 26 to derive the relationship in the 

equations 19.  

 

 𝑙𝑑

sin (2𝛼)
=  

𝑅

sin (
𝜋
2 − 𝛼)

 

𝑙𝑑

2 sin(𝛼) cos(𝛼)
=  

𝑅

cos(𝛼)
 

𝑙𝑑

sin(𝛼)
=  2𝑅 

(19) 
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 In other terms the answer can be expressed as path curvature κ, using 

equation 9 of the bicycle model, the relationship shown in equation 20 can be obtained 

to find the steering angle ζ, defining the pure pursuit control law. 

 

 
𝜅 =  

1

R
=  

2 sin(𝛼)

𝑙𝑑
 

𝜁 =  𝑡𝑎𝑛−1(𝜅𝐿) 

𝜁 =  𝑡𝑎𝑛−1 (
2𝐿 𝑠𝑖𝑛(𝛼)

𝑙𝑑
) 

(20) 

The error of this controller is called the cross-track error e and is defined as 

the lateral distance between the heading vector and the target point, as could be seen 

in figure 27.  

Figure 27 - Pure pursuit controller with cross track error e 

 

Source: Waslander (2018b) 

In the equation 21 the cross-track error is calculated. 

 

 sin(𝛼) =  
𝑒

𝑙𝑑
 

𝜅 =
2 sin(𝛼)

𝑙𝑑
=  

2

𝑙𝑑
2 𝑒 

(21) 

 

This controller is proportional and can vary according to vehicle speed, for this 

reason the variable ld can be associated with vehicle speed as shown in equation 22. 
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 𝑙𝑑 = 𝐾𝑑𝑑𝑣𝑓 

𝜁 =  𝑡𝑎𝑛−1 (
2𝐿 𝑠𝑖𝑛(𝛼)

𝐾𝑑𝑑𝑣𝑓
) 

(22) 

 

2.9 Chapter’s considerations 

In this chapter, fundamental concepts for understanding parking systems and 

ADAS systems were introduced. Within the fundamentals, it was found that parking 

systems are typically developed using ultrasonic sensors because they provide 

essential advantages for this type of system, such as reduced cost, short-range 

detection, commercial availability, and fast data processing. Regarding motion 

planning methods, RRT* was found to be the most interesting, as it provides a quick 

response, generates faster and more reliable routes than other methods, such as A*. 

It was also demonstrated that the MATLAB software is an appropriate platform for 

developing an all-in-one solution incorporating the main requirements for parking 

systems. Additionally, control systems used in the automotive industry, which are good 

pathways for the initial implementation of the system, were discussed.  
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3 METHODOLOGY 

The methodology section of this report outlines the process used to design and 

simulate autonomous parking systems. It covers the use of a driving scenario designer, 

the identification of parking spaces, the maneuvering of the vehicle into and out of 

parking spaces, and the simulation of both perpendicular and oblique parking. 

3.1 Bibliography Analysis and Literature Review 

Seeking to acquire the necessary bibliographic portfolio for research 

development, the PRISMA methodology was used. The PRISMA methodology 

(Preferred Reporting Items for Systematic Reviews and Meta-Analyses) is a guide for 

the development of systematic reviews and meta-analyses, which is a method used to 

synthesize and summarize the available evidence on a specific research question. Its 

objective is to help authors conduct a systematic review and meta-analysis 

transparently and standardized, providing a checklist for reporting these studies. The 

methodology consists of a set of guidelines for the stages of study selection, data 

extraction, study quality evaluation, and data synthesis, which are: 

• Identification: Search of selected databases according to the research axes 

and/or search terms defined in the research protocol; 

• Selection: Filtering of articles following the reading criteria of title, abstract, and 

keywords proposed by the methodology, seeking to verify the alignment of the 

article proposal with the researched topic; 

• Eligibility: Complete reading of pre-selected articles to assign the final 

research portfolio. If incompatibility with the topic is verified, the article is 

excluded; 

• Inclusion: Phase of including other studies by qualitative analysis to compose 

the final research portfolio. 

First, it was necessary to identify the keywords on the topic and define the 

search criteria in the selected databases. The search terms were defined according to 

the different synonyms of the concept of APS, using the Boolean operator "OR". The 

parameters used are listed in frame 3. 
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Frame 3 - Research Protocol 

Topic Autonomous Parking 

Method Prisma 

Type All 

Language English 

Axis 
("Motion Planning" OR "path tracking" OR "path-planning") AND 
("Automatic parking system" OR "parallel parking" OR "Parking 
scenarios" OR "perpendicular parking") 

Source: Own autorship (2023) 

The PRISMA includes a flowchart that clearly describes the study selection 

process, and a checklist that helps ensure that all critical elements of the systematic 

review and meta-analysis are reported adequately and transparently. The 

methodology development flowchart can be viewed in figure 28. 

Figure 28 - PRISMA flow diagram 

 

Source: adapted from the PRISMA Statement (2023) 
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A final portfolio of 88 studies was obtained, which were submitted to 

bibliometric analysis. Using VOSVIEWER and Microsoft Excel software, it was 

possible to understand the network of relationships present in the categories:  

• Keywords; 

• Publications per year; 

• Authors.  

VOSviewer is a tool for visualizing and analyzing bibliometric networks and 

maps, which is used to analyze and visualize bibliographic data such as scientific 

articles, journals, authors, and other academic publications. It allows the analysis of 

large volumes of data, such as bibliographic references collected in a systematic 

review or meta-analysis, and the identification of patterns and trends in the data. 

VOSviewer was developed at Leiden University in the Netherlands and is a free and 

open-source tool that can be used to create visualizations of networks, maps, and 

bibliographic co-citation, co-authorship, and co-citation graphs. It is very useful for 

researchers who wish to analyze scientific production in a particular area of research 

or in several related areas. 

3.2 Simulation 

In this section, we will present the methodologies used to develop the 

simulation of the proposed APS (Automated Parking System). Simulation plays a 

crucial role in the APS development process, allowing for a thorough analysis of its 

capabilities, efficiency, and safety in a controlled environment. The objective of this 

simulation is to evaluate the performance of the APS in different parking scenarios, 

taking into consideration factors such as spot detection, route planning, and parking 

maneuvers. Through simulation, valuable insights are gained about the system's 

behavior, identifying potential areas for improvement. 

By utilizing a virtual environment, a wide variety of scenarios can be created, 

ranging from simple parking lots to tight spaces with additional challenges. With 

simulation, the APS's success rate in autonomously finding and parking in spots can 

be evaluated, as well as the time required to complete the entire process. It is also 

possible to analyze the system's efficiency in utilizing available space, aiming to 

optimize spot occupancy by minimizing wasted space and maximizing parking 

capacity. 
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3.2.1 Software selection for simulation 

Initially, a literature review was conducted to situate oneself on the theme and 

begin planning the simulation with a focus on finding autonomous parking methods 

and programs to realize the simulation. During the research, it was identified that in a 

large part of the work, simulation is carried out on unspecified software. There were 

also works using Mathworks software such as Simulink and Matlab with the add-on 

driving scenario designer. There was also the possibility of using the DYNA4 software 

from Vector for the simulation, which has great advantages in relation to creating high-

fidelity simulations with reality. However, due to the complexity of the software and the 

lack of tutorials and guides for its use, it was decided that Matlab would be the best 

solution, as it provides various libraries of content that can be used to take the first 

steps in new topics, which can otherwise become complex. 

3.2.2 Scenario creation 

In order to enhance the efficiency of simulation development, a deliberate 

decision was made to employ the driving scenario add-on within the Matlab software. 

This strategic choice was motivated by the desire to optimize resources and time, 

thereby enabling a more focused approach to refining the core aspects of the research 

study. 

Testing the driving scenario simulation began to better understand its 

operation. Mathworks' first steps documentation, explanatory videos, and examples 

from their website were used for reference. This validation process provided valuable 

insights into the add-on's capabilities and facilitated accurate simulation outcomes. 

Then, the scenario for parallel parking simulation was created, using the following 

logic: 

1) Develop scenario in the driving scenario designer add-on; 

2) Export as "MATLAB Function"; 

3) Open the generated file with MATLAB. 

 In figure 29, it is possible to identify the creation of a scenario with two parked 

cars on a street. 
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Figure 29 - Creation of a driving scenario with two cars parked 

 

Source: Own authorship (2023) 

3.2.3 Identification of the parking space 

The first step to achieving the goal of autonomous parking is the identification 

of the parking space. In this projects, ultrasonic and vision sensors are used. Ultrasonic 

sensors have desirable characteristics such as low acquisition cost, ease of use, and 

operation independent of lighting conditions, factors that make them ideal for use in 

parking assist systems and automated parking systems. Vision sensors have good 

performance when used with ultrasonic sensors in the parking space identification 

phase and obstacle identification.  

As the use of machine learning and sensor fusion makes it possible to obtain 

accurate data on the size of the measured spaces and detected obstacles. Initially, a 

scenario was created as demonstrated in section 3.2.2 with three cars and one parking 

space between the second and third, with the ego vehicle placed in the center of the 

central lane with an ultrasonic sensor in the front front of it, in the perpendicular 

direction, with the aim of measuring whether the space between the cars is sufficient 

for parking. The scenario can be seen in figure 30. 
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Figure 30 - Base scenario for parking space detection 

 

Source: Own authorship (2023) 

To identify the parking space, the following logic is used: when there is no more 

signal, a possible parking space is identified for parking, and the size of the space is 

then counted by incrementing the variable "lengthVaga" (Lv), adding itself to the result 

of dividing the current speed of the ego vehicle by the sensor's update rate. Equation 

23 represents this operation. 

 

  𝐿𝑣2 = 𝐿𝑣1 +
𝑉𝑒

𝐹𝑠
 (23) 

It is important to mention a problem inherent to ultrasonic sensors in the 

identification and measurement of a possible parking space. The operation of this type 

of sensor only allows the identification that there is an obstruction of it at a certain 

distance, being possible to calculate it using time of flight concepts. Figure 31 

demonstrates this problem, the detected object can be in any position parallel to the 

car within the light blue band. The size of this area depends on the FOV of the 

ultrasonic sensor. Thus, in the measurement of the parking space, an error occurs, 

marked in the figure with the letter e, the size of the parking space is calculated smaller 

than the real size. 
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Figure 31 - Error in identifying the real size of the parking space 

 

Source: Own authorship (2023) 

Some solutions to this problem are: 

1) Use of an ultrasonic sensor with a small field of view; 

2) Development of software to mitigate the error calculated through the use of 

secondary and tertiary echoes received; 

3) Use of more ultrasonic sensors and with the help of an algorithm to more 

accurately identify the transition points; 

4) Use of sensor fusion with other sensors, such as cameras, radar, lidar, 

among others. 

3.2.4 Maneuver of entering and exiting the parking space 

With the correct identification of parking spaces, the next step was to conduct 

a literature review in order to find methods for the car to maneuver into and then out of 

a parking space, performing the parking and exit from the space with a continuous 

movement and in a fast, efficient and safe way. Some of the main methods were 

identified in the literature, one of which was mathematical, as in the work of Paromtchik 

and Laugier (1996), which presents geometric relationships for parking in a specified 

parking space. Another method is the use of path planning algorithms such as A*, 

RRT*, Bi-RRT*, among others, which is the most chosen approach in recent works 

because, despite its higher computational cost, it has an advantage in the 

generalization of the parking place. The use of Bi-RRT* can be observed in the work 

of Jhang and Lian (2020), where good results were obtained in a real test environment, 

as the algorithm finding free paths with human-like movements. 

It is interesting to mention the series of videos titled "matlab tech talks" within 

the category "autonomous navigation," which provides a good theoretical basis for 

entering the world of autonomous vehicles and provide an important foundation for 

understanding and implementing path planning algorithms. Due to reliability, 
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processing time, and ease of implementation, the model chosen to perform the 

simulation was the RRT* algorithm, which has an implementation for vehicles within 

the "automated driving toolbox" of MATLAB. The function "pathPlannerRRT" is used 

for this purpose. It was decided that for parallel and perpendicular parking, the car 

should enter with the rear, as this allows the parking space to be identified with the 

sensors as it passes through it. In oblique parking, however, this is not possible, as the 

only way to park is frontally. 

3.2.5 Developing a method to create a cost map from the driving scenario 

For the path planning algorithm to work, a cost map is needed, so that the 

algorithm can know the occupied spaces on the map, places where the calculated 

trajectory cannot pass through. As the parking space detection had already been 

carried out by the code developed in the work, there was work to identify the necessary 

data, already collected by the sensor, to generate the cost map. It was identified that 

it would be necessary to have values in the form of two-dimensional coordinates (x, y), 

in addition to the transposition of the map from the driving scenario add-on to the 

automated driving toolbox. 

Initially, a blank cost map was created, and then a logic was developed that 

transposed the objects detected by the sensor, using the ego vehicle's location and 

the sensor's position as a base. In this way, positions were obtained in relation to the 

cost map, and with them it was possible to create the positions where objects detected 

by the sensor were located, as can be seen in figure 32, created by transforming points 

from the ego vehicle's coordinates to the coordinates of the automated driving toolbox. 

Figure 32 - Generated cost map 

 

Source: Own authorship (2023) 
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3.2.6 Path planning 

After creating the cost map, it was tested in a scenario with several parked 

cars on the right lane, in an environment for the parallel parking test. For simplicity, the 

car's initial trajectory was defined to stop right after the parking space, and the path 

planning objective was calculated when the parking space had the minimum viable 

size for parking. From the sensor data and the car's position, the coordinates for 

parking the car in the center of the parking space are obtained. Then the path planning 

for parking is performed, the cost map, the vehicle's initial position, and the parking 

position are passed. After a few seconds, the trajectory that the car should follow is 

calculated and stored in a variable called waypoints that must be passed.  

These waypoints contain coordinates (x, y, z) and the corresponding angle of 

the car. Then the data from this variable is transformed into the ego vehicle's 

coordinate base and then passed back to the simulation through the "trajectory" 

command. The inverse trajectory is also passed so that the car can exit the parking 

space in sequence.  

3.2.7 Parallel parking 

With the development of the cost map and the adaptation of the path planning, 

a parallel parking scenario was created to test the system. A street and some parked 

cars were created using the driving scenario. With this scenario, code was generated 

automatically, allowing for modifications in specific parameters of the scenario. After 

that, a path was programmed for the ego vehicle to follow, as shown in figure 33. 

During the course, the ego vehicle collected data with its sensors, which were 

processed in other classes to perform the parking maneuver. 

Figure 33 - Top view from the road of the parallel parking simulation 

 

Source: Own authorship (2023) 
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3.2.8 Perpendicular parking 

For the simulation in a perpendicular parking lot, it was necessary to create a 

new map using the parkingLot function to quickly and automatically create the parking 

spaces, then several cars were added to populate the parking lot. Parameters were 

modified such as the positioning of the car and its initial trajectory. The size of the 

sought parking space was also modified, instead of using the length of the car to 

compare with the parking space, the width was used, as this is the limiting factor in this 

type of parking. In figure 34, the result can be identified. 

Figure 34 - Top view with the waypoints generated for perpendicular parking 

 

Source: Own authorship (2023) 

3.2.9 Angled parking 

At the beginning, a map was created with 60º angled parking spaces using the 

parkingLot function. The map was then populated with cars and the ego vehicle was 

positioned. To perform the simulation with the goal of performing angled parking, it is 

necessary to rethink the logic of identifying and parking spaces, as it is not feasible to 

identify them using ultrasonic sensors. This type of parking space needs to be identified 

beforehand, before the car passes through it, in order to perform the parking maneuver 

frontally. In the simulation, a camera was used for identification, however, a machine 

learning system was not implemented, using the measurements and tracking carried 

out automatically by the driving scenario instead. These measurements return 

coordinates (x, y) that can be used to create the cost map. The cost map was created 

through a build in function on matlab. 

With the cost map created, it was then necessary to rethink the logic of 

movement and the waypoints passed to the trajectory function. The other parkings 
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occurred in the opposite direction, with the car in reverse, however this car needs to 

enter the space frontally. The driving scenario reverses the angles depending on the 

direction of movement, so the waypoints, angles, and speeds passed to the trajectory 

function were modified. It was possible to perform the parking and exit from the space, 

figure 35 shows the vehicle entering a space. 

Figure 35 - Angle parking in bird's-eye plot 

 

Source: Own authorship (2023) 

3.3 Small scale prototype 

The small-scale prototype was designed to be a testing and validation platform 

with the aim of empirically testing the simulations and codes developed for the APS. 

3.3.1 Hardware 

This section outlines the process used to design and prototype autonomous 

parking systems. It covers the plan, design and implementation of a small-scale 

prototype, as well as the programming of the prototype side and computer side design 

to filter and use the data acquired. The small-scale prototype was designed to be a 

testing and validation platform with the aim of empirically testing the simulations and 

codes developed for the APS. 
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3.3.1.1 Arduino Uno 

To connect the sensors and actuators, a microcontroller is required. In this 

case, an Arduino Uno was used due to its availability and the option to validate the 

system on a low-cost platform with limited processing capabilities. To operate the 

system, the Arduino was connected to a computer via USB, which provides power and 

data connection. Information is transferred via the USB port using the Serial protocol. 

Therefore, a program had to be developed to receive, filter, and process the data on 

the computer. 

The Arduino Uno acts as an interface between the sensors and actuators, 

allowing for real-time data collection and transmission. Sensors such as cameras and 

ultrasonic sensors are connected to the Arduino's analog and digital inputs, while 

actuators like steering control motors are connected to the outputs. The microcontroller 

is responsible for reading the sensor signals, processing them, and sending 

appropriate commands to the actuators. 

3.3.1.2 Motor’s driver 

The prototype of the autonomous parking system was constructed using a 

remote-control car equipped with two motors, one for rear-wheel drive and another for 

steering. This choice was motivated by the availability of the car in the laboratory, 

making it a cost-effective solution for the initial development stages. The car had been 

previously used in other projects, and its reuse allowed for efficient utilization of 

resources. 

To evaluate the performance of the traction and steering motors, they were 

initially connected to a dual H-bridge L298N module. This module enabled the testing 

of motor control capabilities and ensured the motors could operate within their 

specified parameters. An external 12V power source was employed to supply power 

to the motors, preventing any potential overload on the Arduino. 

Subsequently, a C code was developed for the Arduino microcontroller. This 

code facilitated the control of both motors by setting the minimum achievable speed 

for the traction motor, which had inherent limitations due to its quality. The Arduino's 

PWM (Pulse Width Modulation) pins were utilized to regulate the power supplied to the 

motors, with pin 9 assigned to the traction motor and pin 10 dedicated to the steering 
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motor. Figure 36 depicts the interconnections between the two motors, the L298N 

module, the Arduino Uno, and the 12V power source. 

Figure 36 - Schematic with L298N 

 

Source: Own authorship (2023) 

In the project, the PWM values were configured within a range of 0 to 255, 

where 0 represented 0% power and 255 represented 100% power. To alter the 

direction of both the traction and steering motors, the digital output activation pins, mla 

and mlb, were alternated accordingly. The schematic illustrated in figure 37 remained 

unchanged throughout the subsequent stages of the project. Tests were performed to 

determine the minimum PWM signal required for the proper functioning of the traction 

and steering motors. Incremental values were added, starting from 0, until the car 

exhibited uniform and stable motion. 

3.3.1.3 Ultrasonic sensors 

The initial phase of the research involved the utilization of two ultrasonic 

sensors (HC-SR04) connected to the Arduino board, as illustrated in figure 37. These 

sensors are popular due to their low cost and good performance in short-range 

applications. The system was planned with two sensors to facilitate the utilization of 

multiple ultrasonic sensors simultaneously in future steps of the project, allowing for 

system validation.  

The utilization of ultrasonic sensors enables a comparative analysis with the 

LiDAR sensor. By acquiring data from both sensors and conducting a thorough 
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analytical comparison, it is possible to evaluate the performance of the LiDAR sensor. 

The schematic in the figure 37 illustrate the idea. This comparative analysis assesses 

the accuracy, precision, and reliability of the LiDAR sensor in detecting and measuring 

distances, particularly in comparison to the measurements obtained from the ultrasonic 

sensors. Such a validation process aids in determining the suitability of the LiDAR 

sensor for the specific requirements and objectives of the autonomous parking system, 

which are precise parking spot detection, measurement, and classification. 

Figure 37 - Schematic with HC-SR04 ultrasonic sensors 

 

Source: Own authorship (2023) 

To ensure the proper utilization of the sensor, a code was developed to enable 

interrupt-driven functionality specifically designed for the ultrasonic sensors. This was 

achieved by utilizing the NewPing library, which provides a convenient and efficient 

way to handle the ultrasonic data. The code implementation allows for timely and 

accurate measurements, optimizing the overall performance of the ultrasonic sensors 

in the system. It is important to note that, in subsequent sections of this document, the 

disconnection of the ultrasonic sensor 2 after the initial tests, as well as the connection 

of an encoder to the same pins, will be further discussed. 

3.3.1.4 LiDAR sensor 

The LIDAR sensor used is the TF Mini Plus model manufactured by Benewake. 

It was specifically selected for its ability to provide highly accurate distance readings of 



87 

 
 

 

up to 12 meters and its IP67-rated enclosure. The IP67 rating is particularly beneficial 

for the project, as it ensures the sensor's protection against dust and water ingress, 

making it suitable for testing and implementation in real-world vehicle scenarios. 

Figure 38 - Schematic with the TF Mini Plus LIDAR sensor 

 

Source: Own authorship (2023) 

 Figure 38 showcases the schematic representation of the TF Mini Plus LIDAR 

sensor's connection configuration. In this setup, the sensor operates in serial 

communication mode, with the green and white output wires connected to pins 12 and 

13, respectively, of the Arduino Uno. Another method of connecting the TF Mini Plus 

LIDAR sensor is by directly linking it to the computer using a TTL to serial converter 

board connected to the USB-A port. This connection setup allows for seamless 

communication between the sensor and the computer, facilitating the use of 

Benewake's software for testing, configuration, and validation of the sensor. 

3.3.1.5 Rotary encoder 

The LPD3806 encoder plays a crucial role in measuring the rotation of the 

vehicle's wheels. It is responsible for providing precise information about the angular 

velocity of the wheels, enabling the system to calculate the distance traveled and, 

consequently, determine the size of the parking space. 

The connection of the LPD3806 encoder to the Arduino is simple and direct. 

The phase A of the encoder is connected to pin 2 of the Arduino, while phase B remains 

disconnected. In this specific context, there is no need to identify the direction of 

movement, and therefore, phase B is not used. The identification of the direction of 
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movement can be performed later, if necessary, using the information from phases A 

and B. The encoder can be powered by the Arduino, considering its operating range 

of 5-24V. 

Figure 39 illustrates the wiring diagram of the LPD3806 encoder to the Arduino, 

providing a clear visual reference for cable positioning and the correct connection to 

pin 2 of the Arduino, which should be set to pull-up in the code. 

Figure 39 - Schematic with the Arduino uno and an encoder 

 

Source: Own authorship (2023) 

This simplified configuration of the encoder in the prototype is suitable for the 

current needs of the developing APS. The rotation of the wheels is measured by the 

encoder through phase A, which generates electrical pulses proportional to the 

rotational movement. These pulses can be counted and processed by the Arduino to 

determine the distance traveled and adjust the vehicle's maneuvers. 

3.3.1.6 OLED display 

To facilitate real-time visualization and easy comparison of the measured 

distances, an OLED 128x32 display was integrated into the system. The display 

provides a convenient way to visually monitor the sensor readings. For this purpose, 

the Adafruit_SSD1306 and Adafruit_GFX libraries were employed. The OLED display 

utilizes the I2C connection protocol, ensuring efficient and reliable communication. The 

connection scheme between the display and the Arduino Uno is illustrated in figure 40, 

providing a clear reference for the correct wiring configuration. 
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Figure 40 - Schematic with OLED display 

 

Source: Own authorship (2023) 

3.3.1.7 Arduino code 

The Arduino code was developed in a Arduino variant of C++, integrating the 

modules previously. The code contains detailed comments explaining the purpose and 

operation of each section. It defines the necessary variables and allows for the 

customization of parameters such as traction motor speed, activation time, and sensor 

acquisition time through adjustable predefined values. 

Within the main loop of the code, there is a movement function that activates the 

traction motor. An interrupt-driven approach was implemented to obtain data from the 

ultrasonic and LiDAR sensors, ensuring data acquisition occurs at a frequency 

preconfigured within the code. This frequency can be adjusted to suit the specific 

requirements of the system. It is important to note that the code handles the number 

of ultrasonic sensors used as a parameter to avoid cross-interference between 

devices. 

The default frequency used in the code was set to 20 Hz. This frequency provides 

a sufficient amount of information from the sensors to perform the required functions, 

considering that the prototype operates at low speeds during parking maneuvers. The 

choice of this frequency was also influenced by the Arduino Uno microcontroller's 

capability to acquire data at much higher frequencies consistently, allowing for 

potential scalability in future developments. 

To activate the motors, the appropriate output variable (mla or mlb) is set to a 

high logic level, with the direction defined accordingly. It is ensured that only one of 
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these variables is set to high at a time to prevent conflicts. A function is responsible for 

verifying the reception of the return signal by the ultrasonic sensors and calculating the 

distance to the detected object in centimeters. 

Another function consolidates the relevant variables for serial transmission at a 

predefined interval determined by a variable. Additionally, a condition is included to 

send the "END" signal after a specified duration. This allows the computer program to 

identify the completion of the data acquisition transmission. 

3.3.1.8 Testing scenario 

A testing scenario was carefully designed to evaluate the prototype's capability 

to detect and measure three types of parking spaces: parallel, perpendicular, and 

angled. Photograph 9 illustrates the test environment that was specifically created for 

this purpose. The primary objective of this testing was to assess the prototype's 

performance in accurately identifying these parking spaces on a small-scale basis and 

accurately measuring their length. By conducting these tests, valuable insights were 

gained regarding the prototype's effectiveness and its potential for real-world 

applications. 

In addition, the testing scenario was also created to validate the parking space 

classification process. By detecting and accurately classifying the different types of 

parking spaces, the prototype's ability to differentiate between parallel, perpendicular, 

and angled parking spots was assessed. This validation step was crucial in ensuring 

that the autonomous parking system could correctly identify and categorize parking 

spaces in real-world scenarios. It provided valuable data and feedback to refine and 

improve the classification algorithm, ultimately enhancing the overall performance and 

reliability of the system.  

Photograph 9 - Types of parking spaces in the testing scenario 

 

Source: Own authorship (2023) 
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3.3.1.9 Components positioning 

The positioning and installation of components in the prototype were carefully 

considered to ensure optimal performance and functionality. Each component was 

strategically placed to fulfill its designated role in the autonomous parking system. 

Starting with the ultrasonic sensors, they were initially positioned as shown in 

photograph 10, one at the front of the vehicle, simulating an obstacle detection sensor, 

and another at the front right, simulating a parking space detection sensor. This 

configuration allowed for simultaneous testing of both functionalities. 

Photograph 10 - The initial arrangement of components in the small-scale prototype 

 

Source: Own authorship (2023) 

The LiDAR sensor, known for its high-precision distance measurement 

capabilities, was strategically positioned on the front right side of the prototype. This 

specific placement was carefully chosen to ensure optimal data acquisition for 

detecting parking spots. By being situated in this position, the LiDAR sensor effectively 

scanned the surrounding environment, capturing detailed information that played a 

critical role in the autonomous parking system. This data was utilized to create a cost 

map and generate a virtual representation of the environment, both of which were 

essential for the subsequent stages of the project. 

The encoder was meticulously positioned on the left rear wheel of the 

prototype, utilizing a custom-designed 3D-printed plastic adapter. This adapter served 

the dual purpose of securely mounting the encoder and facilitating precise 

measurement of wheel rotation. The choice to install the encoder on the rear wheel 

was primarily based on its ease of attachment and stability. This location ensured that 

the encoder accurately captured the rotation of the wheels, providing essential 
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feedback for the autonomous parking system's navigation and motion control 

algorithms. It should be noted that due to the limited number of digital ports available 

on the Arduino Uno, it was necessary to disconnect and remove one of the ultrasonic 

sensors in order to accommodate the connection of the encoder. This trade-off was 

made to ensure the successful integration of all components within the system's 

hardware constraints. 

The Arduino was placed in a convenient and accessible location, ensuring 

ease of programming and monitoring during the development and testing stages. This 

positioning enhanced the efficiency and flexibility of the system, allowing for efficient 

debugging, adjustments, and improvements as needed. Additionally other essential 

electronic components were strategically positioned on the central plate of the vehicle. 

This placement allowed easy access to all the components, facilitating quick 

architectural modifications if necessary. Careful attention was given to establishing 

proper electrical connections to enable smooth communication between the 

components and the control system.  

Furthermore, the OLED display, which provided real-time distance 

visualization, was strategically positioned next to the sensors, ensuring clear line of 

sight. This placement facilitated easy monitoring and debugging of the detected 

distances from the sensors. By having the display in close proximity to the sensors, it 

allowed for convenient observation of the real-time data, ensuring accurate 

assessment of the system's performance. 

All the mentioned components can be seen in photograph 11 in their final 

positioning. 

Photograph 11 - Final prototype view 

 

Source: Own authorship (2023) 
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3.3.2 PC software 

Aiming to process data obtained from sensors, perform parking detection, 

measurement, and classification, as well as path planning and all necessary logic, a 

software written in Python has been developed. This software offers an intuitive 

approach for testing, allowing for analysis and saving of captured data for later 

examination. With the purpose of optimizing the performance of the parking assistance 

system, the software becomes a fundamental component for extracting valuable 

information from the sensors. By processing data efficiently and reliably, it enables 

accurate parking spot detection, precise measurement of their dimensions, and 

appropriate classification of available parking types. 

Written in Python, a widely-used programming language, the software 

provides an intuitive interface that facilitates testing and experimentation. This intuitive 

approach allows for easier interaction with the system, enabling users to conduct tests, 

capture data, and analyze it later. Additionally, the ability to save captured data is an 

important functionality of the software. This allows for detailed and in-depth analysis of 

the data at a later time, aiding in system refinement and obtaining valuable insights for 

future improvements. 

With the development of this software, the aim is to provide an efficient and 

flexible tool for data processing, parking spot detection, and path planning. It becomes 

an essential component to enhance the accuracy and efficiency of the parking 

assistance system, enabling a more intuitive and reliable experience for users.  

In the following sections, we will delve deeper into the functionalities and 

benefits of this Python-written software, highlighting how it contributes to intuitive 

testing, data capture and analysis, as well as its fundamental role in the processing 

and logic of the parking assistance system. 

3.3.2.1 Interface 

The interface is an essential part of many software applications, and in the 

current program, it was developed to facilitate data acquisition, representation, and 

saving, as well as to simplify the testing process with the prototype. The tkinter library 

was used for developing the interface, which allows for easy addition of buttons, 

checkboxes, text boxes, and other elements, and subsequently associating functions 

with each element. An example could be seen in the figure 41. 
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Figure 41 - Tkinter example 

 

Source: Adapted from Stack Overflow (2021) 

The main class of the program is the "Interface" class, which serves as a 

central point from where all other program functions are called. Texts were instantiated 

to provide information, and buttons were created to trigger essential functions, such as 

reading data through the serial port. An option menu was also included to enable the 

selection of the serial port from which the information will be received. 

To allow for the selection of sensor data to be collected, there are two 

checkboxes, one for selecting data from the ultrasonic sensor and another for selecting 

data from the LiDAR sensor. Additionally, to display the results of parking space 

detection, measurement, and classification, a table element was implemented. This 

table is used to represent the calculated values. 

3.3.2.2 Data reception 

One of the fundamental steps of the program is data reception. Through these 

classes, the data acquired by the prototype is received and organized into variables 

within the program, to be subsequently used by other classes and functions. The data 

reception process is divided into two classes: real-time data reception from the 

prototype, triggered by the "Read Data" button, and the reading of previously acquired 

data from a CSV file, triggered by the "Read CSV" button. 

Firstly, the real-time data reception class establishes a connection with the 

Arduino UNO through the computer's USB port, utilizing the selected serial port 

specified by the user through the program's interface. The buffer is then cleared, and 
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data reception begins. A function searches for arrow symbols "<>" since these symbols 

were defined in the Arduino code to encapsulate the messages, ensuring the reading 

of a complete message during each iteration. 

Upon receiving a complete message, it is parsed and separated into variables 

using semicolons as delimiters. The received message includes the acquisition time in 

milliseconds, distance traveled in meters, distance detected by the LiDAR sensor in 

meters, and distance detected by the ultrasonic sensor in meters. 

When it is desired to open a previously acquired file, the program reads the 

data from a CSV spreadsheet, separating it into variables in a similar manner to the 

real-time data acquisition class. Both classes enable the reception of data, either in 

real-time or from pre-acquired files, ensuring that the acquired information is properly 

organized and available for further processing and analysis within the program. 

3.3.2.3 Parking spot detection 

With the data stored in the software's memory, they are used as parameters 

for the parking detection class, which performs the detection using the logic of 

analyzing the acquired points. The first step is to identify the reference distance, which 

is defined as the initial distance from the car to the first obstacles, as shown in figure 

42 as dR. 

Figure 42 - Parking spot detection 

 

Source: Own authorship (2023) 



96 

 
 

 

This distance is then used for comparison to check the condition of equation 

23. If the vehicle width, reference distance, and safety distance are greater than the 

detected distance, a parking space is identified. 

 𝑑𝑃𝑆 > 𝑑𝑅 + 𝑑𝐶𝑊 + 𝑑𝑆 (23) 

3.3.2.4 Parking spot measurement 

After identifying a parking space, its components are measured both 

longitudinally and laterally, obtaining the values of x and y for the parking space. Figure 

43 represents the values to be found. 

Figure 43 - Measurement of parking spot size 

 

Source: Own authorship (2023) 

The lateral distance xi, is calculated by averaging the internal distance values 

within the parking space measured by the sensor, values between the indices ib e ie. 

To measure the longitudinal distance yi, it is calculated using encoder data by 

subtracting the displacement value at index ie from the displacement value measured 

at index ib. Equations 24 and 25 demonstrate the calculations. 

 

 

𝑥𝑖 = ∑
𝑥

𝑖𝑒 −  𝑖𝑏

𝑖𝑒

𝑖𝑏

 (24) 

 𝑦𝑖 = 𝑦𝑖𝑒 − 𝑦𝑖𝑏 (25) 



97 

 
 

 

 After obtaining the calculated measurements, a preliminary 

classification is necessary because the parking space size calculation is divided into 

two methodologies: one for parallel and perpendicular parking spaces and another for 

angled parking spaces. To select the appropriate methodology, the angle of the 

parking space distance data is calculated, as shown in figure 44. This angle is referred 

to as φ (phi). 

Figure 44 - Angle φ in the three types of parking 

 

Source: Own authorship (2023) 

The angle φ is calculated using the trigonometric relationship between the 

measurements xi e yi the arctangent function is applied, as shown in equation 26. When 

φ falls within the range of 20° to 70°, the parking space is classified as angled. When 

the angle is outside this range, the parking space proceeds to the next classification 

stage, which aims to identify whether it is parallel or perpendicular. 

 

 φ = 𝑎𝑟𝑐 𝑡𝑔 (
𝑥𝑖

𝑦𝑖
) (26) 

 

When the parking space is classified as parallel or perpendicular, the 

parameters xi e yi represent the size of the space. However, when the parking space 

is classified as angled, additional calculations need to be performed to determine the 

size of the space. These calculations are illustrated in figure 45, where the variables L 

(length) and W (width) are introduced. 
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Figure 45 - Relevant measurements in the calculation of an angled parking space 

 

Source: Own authorship (2023) 

Equation 27 was used to find the relationship between φ and the angle α. 

Subsequently, by substituting α into the trigonometric relationship in equation 28, it is 

shown that the angles θ and φ are equal. Thus, by using the sine and cosine of the 

angle φ it is possible to obtain the measurements L and W as shown in equations 29 

and 30. 

 φ +  α + 90 = 180 

α = 180 − 90 − φ = 90 − φ 
(27) 

 θ + α = 90  

θ = 90 −  α  

θ = 90 −  90 + φ 

θ = φ 

(28) 

 sin φ =
𝑥𝑖

𝐿
  

𝐿 =
𝑥𝑖

sin φ
  

(29) 

 
cos φ =

𝑊

𝑥𝑖
  

𝑊 = 𝑥𝑖 cos φ 

(30) 
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3.3.2.5 Parking spot classification 

The classification of the parking space takes into account the obtained 

measurements xi, yi e φ. When the calculated angle φ is outside the range of 20° to 

70°, the parking space can be parallel or perpendicular, as in these cases the angle φ 

would be 90°. Thus, the parking spaces are classified based on the relationship 

between xi e yi. When the ratio is less than 1, the parking space is classified as parallel, 

and when the ratio is greater than 1, the parking space is classified as perpendicular. 

Table 4 summarizes this idea. 

Table 4 - Classification table of parking space types 

Type of parking spot Mathematical relation 

Parallel (φ < 20 or φ > 70) 𝑎𝑛𝑑 
𝑥𝑖

𝑦𝑖

< 1 

Perpendicular (φ < 20 or φ > 70) 𝑎𝑛𝑑 
𝑥𝑖

𝑦𝑖

> 1 

Angled 20 < φ < 70 

Source: Own authorship (2023) 

After the classification, calculations can be performed to determine whether 

the detected parking space has sufficient size for safe parking. The size of the parking 

space is compared with the size of the car, considering a safety coefficient. By adding 

the necessary safety margin to the measurements, the suitability of the parking space 

can be evaluated. 

3.3.2.6 Plotting the data 

To analyze the data, a plotting function was created using the matplotlib library. 

The class was designed to enable real-time plotting or plotting from previously saved 

data. The data is structured with the x-component representing distance 

measurements obtained from the distance detection sensors. It is possible to plot data 

from either the ultrasonic sensor, the LiDAR sensor, or both simultaneously. Two 

checkboxes in the interface are used for this selection. 
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When the "simulation" button on the interface is pressed, the preloaded data 

is plotted as points using the scatter function. Additionally, a custom function is called 

to visually represent parallel and perpendicular parking spaces by drawing rectangles 

with dimensions corresponding to the identified parking space. Figure 46 provides an 

example of a parallel parking space graphically represented by the simulation function 

of the program. 

Figure 46 - Parallel parking space plot using real data 

 

Source: Own authorship (2023) 

3.3.2.7 Saving the data 

One of the needs encountered during the project's development was to store 

the data acquired by the sensors for later analysis. The "save" class of the program 

serves this purpose by saving the data in a CSV file format, which is widely accepted 

by various programs, thus facilitating data analysis. The data is saved with the file 

name being the current date and time obtained from the computer system on which 

the software is being executed. 
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3.4 Chapter’s considerations 

Chapter 3.1 described the Bibliography Analysis and Literature Review 

methodology using the PRISMA (Preferred Reporting Items for Systematic Reviews 

and Meta-Analyses) methodology to obtain a relevant bibliographic portfolio for the 

research. The stages of identification, selection, eligibility, and inclusion of studies 

were conducted, resulting in a total of 88 studies. These studies underwent bibliometric 

analysis, revealing publication trends over the years. The most frequent keywords 

were identified, as well as the key authors in the field. These findings provide valuable 

insights for future research related to the topic of autonomous parking. 

Chapter 3.2 discussed the simulation of the proposed APS. Simulation plays 

a crucial role in the development of the APS, allowing for a thorough analysis of its 

capabilities, efficiency, and safety in a controlled environment. The chapter covers 

software selection, parking space identification, maneuvering in and out of parking 

spaces, creating a cost map, and path planning for different parking scenarios. 

Chapter 3.3 presented the small-scale prototype, showcasing the hardware 

and software requirements. It demonstrates the development methodology of a testing 

platform, explaining how each component of the prototype was planned. Additionally, 

the methodology for developing the parking calculation software is exposed, which was 

implemented in Python. The software aims to provide identification, measurement, and 

classification of parking spaces, as well as display them in the interface and save the 

relevant data. 
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4 RESULTS 

In this section, the results obtained by applying the mentioned methodology 

will be presented, considering all the stages of the APS. 

4.1 Bibliography Analysis and Literature Review 

Through a meticulous bibliography analysis, the researcher identifies and 

selects key works that have played a pivotal role in shaping the research field. These 

sources serve as the foundation for building the theoretical framework and 

contextualizing the research within the existing body of knowledge. 

The literature review aims to critically assess the findings, methodologies, and 

theoretical perspectives presented in the selected sources. It involves synthesizing the 

information from various studies and identifying common themes, patterns, and gaps 

in the literature. By doing so, the researcher establishes the basis for the current study, 

highlighting its significance and contribution to the field. 

4.1.1 Publications per year analysis 

Using Microsoft Excel software, it was possible to map the development of the 

theme over the years. Figure 47 represents this analysis. It is possible to perceive that 

the topic has taken on a greater proportion from 2020. The more recent articles have 

an approach more related to the use of Artificial Intelligence (AI), Motion Planning, and 

Algorithms such as RRT*, while the older ones aimed at classical methods, 

mathematical and geometric approaches to path planning. 

Figure 47 - Publications per year 

 

Source: Own authorship (2023) 
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4.1.2 Keywords analysis 

The keyword analysis is represented in figure 48 and was generated with the 

help of the VOSVIEWER software. 

Figure 48 - Portfolio Keywords 

 

Source: Own authorship (2023) 

The figure 48 is a keyword analysis generated with the VOSVIEWER software, 

and it is useful to check the suitability of the portfolio of works with the researched 

topic. Furthermore, it provides a better view of the most frequent keywords present in 

the literature, which can be used in future works. The most recent keywords are 

represented in yellow, while the older ones are in blue. Some of the most commented 

keywords include "Path Planning", "Vehicles", "Wheels", "Trajectory" and "Planning". 

4.1.3 Analysis of Authors 

The author analysis is represented by figure 49, which was generated using 

VOSVIEWER software. It can be observed that the main authors in the researched 

topic are "Zhang, P", "Zhang, Y", "Chen, H", and "Xiong, L". All of these authors have 

a large number of citations and are involved in relevant research in the field of path 

planning and mobile robotics. There are two main research axes that are loosely 

related, as represented in the figure. 
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Figure 49 - Author Analysis 

 

Source: Own authorship (2023) 

4.2 Simulation 

The comprehensive simulation of the complete system allows for a thorough 

analysis of the performance and effectiveness of the APS in different scenarios and 

conditions. By analyzing the results obtained from the simulation, a clear 

understanding of the APS performance can be gained, enabling the identification of 

strengths and areas that require improvement. This information is valuable for the 

continuous development of the system, ensuring its efficiency, reliability, and safety. 

Figure 50 presents a state diagram that illustrates the simulation process of an 

APS. The diagram consists of a series of states, represented by nodes, connected by 

transitions, represented by directional arrows. Each state represents a specific step in 

the autonomous parking process, while the transitions indicate the state changes that 

occur as the system progresses. 
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Figure 50 - Diagram of the APS simulation process 

 

Source: Own authorship (2023) 

4.2.1 Parking spot identification 

As a result of the scenario created in section 3.2.2, data regarding the distance 

measured with the simulated ultrasonic sensor were obtained. In this way, the distance 

between the side of the ego car and the nearest object to the right is obtained. In figure 

51, the waveform generated by the sensor when passing through the first two cars, the 

parking space, and then another car can be observed. The X-axis represents the 

number of samples and the Y-axis represents how many meters the sensor identified 

an obstruction. 

Figure 51 - Sensor data with longitudinal movement of the ego vehicle 

 

Source: Own authorship (2023) 

In figure 51, the first plateaus in the signals can be observed, separated by a 

peak. These are then classified by the code as the first two parked cars. Then there is 
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a new peak in the detection and then a large drop, showing the value zero. This signal 

represents that the sensor is not identifying any objects and is therefore classified as 

a parking space. After the parking space, there is a peak and another higher plateau, 

close to 2 meters, which is the third parked car. A problem was identified with the 

sensor, because in short, the non-identification of obstruction implies that the variable 

is not returned, which is then defined as zero by the code. In this way, it is not possible 

to identify whether the sensor is detecting an empty space or if it is experiencing 

problems, not returning any variable. 

4.2.2 Path planning  

During and after the development of the merge algorithm between the native 

path planning system of MATLAB and the simulation in the driving scenario, tests were 

carried out. It was identified that sometimes the trajectory was too complex to follow, 

with no natural movement. This problem was solved by increasing the minimum and 

maximum number of attempts of the path planning algorithm, as this allows more 

trajectories to be found, and through the internal optimization of the algorithm, human-

like trajectories are generated. The result can be seen in figure 52, with the trajectory 

to a parallel parking space. 

Figure 52 - Trajectory generated for parking a vehicle in parallel 

 

Source: Own authorship (2023) 

Thus, the parking occurred as expected, and after a few seconds, the car left 

the parking space. However, various bugs and lack of optimization hindered this step 
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in particular. The "trajectory" command has several problems, and a programming 

logic was implemented to avoid values that caused error for no apparent reason during 

execution. 

4.2.3 Parallel parking 

Through previous tests, concise results could be identified in the utilization of 

the described data acquisition and path planning methods to identify, measure, and 

classify a parallel parking space, as well as to perform the parking using path planning. 

Some of the identified problems consist of incorrect measurement of the parking space 

size due to the considerably high FOV of the ultrasonic sensor. In addition, erratic 

execution of path planning paths was observed.  

Such problems can be resolved by selecting a sensor with a smaller FOV for 

the measurement of the parking space size. For path planning, other configurations 

were experimented with, which reduced the variations in the generated paths. 

4.2.4 Perpendicular parking 

In the perpendicular parking test, it is understood that choosing the parameter 

of the car's width, that the measurement error will make up a significantly larger portion 

of the measure. As the measured space parallel to the car is smaller, the error remains 

proportional. Solutions found in the literature for this problem are as follows: 

1) Use of cameras and radars to perform sensor fusion and reduce 

measurement error; 

2) Replacement of the ultrasonic sensor used for parking space measurement 

with a lidar sensor. 

Due to the possibility of a very low viewing angle of some lidar sensors, this 

characteristic theoretically allows almost complete elimination of the error in measuring 

parking space size, as sensors of this type with a field of view of less than two degrees 

can be found, which compared to the fifteen degrees of ultrasonics represents a 

significant improvement. 

These solutions are also effective against the problems encountered in parallel 

parking tests, as these problems are the same. 
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4.2.5 Angled parking 

For the angled parking scenario, it was necessary to adapt the simulation 

model as shown in section 3.2.9 of the methodology. The ultrasonic parking detection 

sensor was replaced with a vision sensor. However, using the vision sensor of the 

driving scenario, a cohesive identification of the space was not obtained, as the 

software sends few points of the position of the identified cars, and there is no 

configuration to change this behavior. Therefore, it would be necessary to use another 

sensor in the simulation, such as radar or lidar. This falls outside the scope determined 

for the identification of the space, being a software problem. 

4.3 Small scale prototype 

Conducting tests and obtaining results in a small-scale prototype is of utmost 

importance, both in terms of hardware and software. These tests allow for the 

evaluation of system performance and effectiveness in a controlled environment, 

identifying potential issues and enabling improvements before large-scale 

implementation. 

4.3.1 Hardware 

By integrating the sensors and actuators separately, it was possible to perform 

the necessary tests to validate each component of the prototype, as well as the codes 

for the Arduino microcontroller. Figure 53 illustrates the entire system in a block 

diagram format. 

Figure 53 - System block diagram 

 

Source: Own authorship (2023) 
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4.3.1.1 Electric motors 

In order to ensure the proper functioning of the prototype, tests were conducted 

to evaluate the traction and steering motors. For the traction motor, the objective was 

to determine the minimum PWM value required to achieve a consistent and uniform 

movement of the car. Through the tests, it was discovered that a PWM value of 40, 

equivalent to 15.69% of the total motor force, represented the minimum activation 

speed at which the car would start moving. 

A similar test was carried out with the steering motor. However, it was found 

that only the maximum PWM activation value of 255 was capable of achieving the 

desired result of effectively steering the front axle. 

4.3.1.2 Ultrasonic sensors 

With the aim of validating the minimum and maximum detection distances with 

ultrasonic sensors, tests were conducted. It was possible to identify that there is high 

precision in identifying distances from 10 cm to 2 m, with data becoming increasingly 

uncertain beyond two meters, with inconsistent readings. 

Thus, it is understood that ultrasonic sensors may have lower limits than those 

found in datasheets, since the HC-SR04 ultrasonic sensor has a maximum measuring 

distance of 4 meters. Through tests, it was found that this information does not 

correspond to reality. This is due to the quality of the sensors, as there is no renowned 

manufacturer that produces this model of ultrasonic sensor. 

Tests were conducted using two ultrasonic sensors at the same time and data 

was obtained that corresponds to their correct operation. 

4.3.1.3 TFmini Plus LiDAR sensor 

The sensor's functionality was evaluated by connecting it to a computer via a 

serial conversion board and utilizing the manufacturer's dedicated software, 

Benewake. This software provides the capability to test the ultrasonic sensor under its 

factory conditions and offers the flexibility to adjust various settings, including frame 

rate (ranging from 1 to 1000 Hz), trigger detection, output format, baud rate, and more. 

The conducted tests were performed using the sensor's default settings. 
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4.3.1.4 LPD3806 rotary encoder 

Tests were conducted with the LPD3806 encoder to validate the developed 

code. Initially, the goal was to test if the encoder's rotation count was accurate. To do 

this, the prototype's tire was marked with paint, allowing manual rotations to be 

performed and the code's output to be verified. It was found that the Arduino's output 

in relation to the rotations was correct. 

Next, the calculated distance traveled by the Arduino code was tested and 

compared to the physically measured distance. It was observed that the error was 

below 3%, indicating acceptable values for further calculations. 

4.3.1.5 Measurement Error 

When connecting the LiDAR sensor TFmini Plus to the Arduino UNO, 

measurement errors were encountered during tests. These errors occurred when 

attempting to measure the distance to an object with a matte black surface. This type 

of object is known to be one of the most challenging to measure accurately with a 

LiDAR sensor, as the reflectivity of the black paint can be below 5% (CASTRO et al., 

2008). 

The values obtained from the sensor differed from the actual measurement by 

more than 30%, which is not an expected result according to the product datasheet. 

Therefore, hardware and software checks were conducted to identify the cause of the 

incorrect measurements. It was discovered that there was a problem with the output 

voltage of the Arduino, which powers the TFmini Plus sensor. The voltage was below 

the minimum recommended for the sensor's operation, as the current required by the 

sensor exceeds the maximum current of the Arduino UNO. 

It was observed that the voltage on the Arduino's 5V output was significantly 

lower than expected. Photograph 12 depicts a) the voltage with all devices connected, 

b) the voltage with only the TFmini Plus sensor connected, and c) the voltage 

measured when no devices were connected to the Arduino's 5V output. 
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Photograph 12 - Voltages at the 5V output of the Arduino 

 

Source: Own authorship (2023) 

The measured voltage was approximately 3.458V when all devices were 

connected, 3.840V when only the TFmini Plus was connected, and 4.831V at the 

Arduino's output when no devices were connected. This test shows a voltage drop of 

approximately 1V when connecting the LiDAR sensor. It is understood that there is a 

limitation on the Arduino's ability to provide the required power to the systems, as there 

was also a voltage drop of approximately 0.4V when connecting the other devices. 

The measured voltages are insufficient to properly power the devices. 

According to the datasheet, the TFmini Plus sensor requires a power supply of 5V ± 

0.5V, and the other devices have similar operating conditions. The main reason for the 

voltage drop is that the LiDAR sensor consumes a maximum current of 500mA, which 

exceeds the 200mA limit supported by the Arduino UNO. This causes a voltage drop 

at the Arduino's output, as it cannot provide the necessary power to the sensor, 

resulting in incorrect measurements. 

To solve this problem, a circuit with a voltage regulator using the LM317T was 

proposed. This regulator can provide an adjustable and stable voltage to the sensor. 

The input to the regulator is a 12V source that is already being used in the prototype 

to power an H-bridge that drives the two motors of the prototype. 

The LM317T regulator has three terminals: input (IN), output (OUT), and 

adjustment (ADJ). The output voltage is determined by the equation 23: 

 

 
𝑉𝑂𝑈𝑇 = 𝑉𝑅𝐸𝐹 (1 +

𝑅2

𝑅1
) + 𝐼𝐴𝐷𝐽𝑅2 (23) 
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Where: 

• 𝑉𝑂𝑈𝑇 is the voltage at the regulator's output; 

• 𝑉𝑅𝐸𝐹 is the internal reference voltage of the regulator (approximately 1.25V); 

• 𝑅1 and 𝑅2 are the resistors in the voltage divider; 

• 𝐼𝐴𝐷𝐽 is the current at the ADJ terminal of the regulator (typically 50µA). 

To obtain an output voltage of 5V, the values of the resistors can be calculated 

using the above formula. The term IADJR2, can be disregarded since the value of 𝐼𝐴𝐷𝐽 

s very small. With 𝑅1 = 330 Ω, we have the equation 24: 

 

 
5 = 1,25 (1 +

𝑅2

330
) (24) 

 

Solving for 𝑅2, we have the value shown in equation 25: 

 

 𝑅2 = 990 Ω (25) 

 

Therefore, a resistor close to this value can be used to obtain an output voltage 

close to 5 V. In this case, a commercial resistor of 1 kΩ was used, resulting in an output 

voltage of approximately 5.09 V, as shown in the diagram in figure 54. 

Figure 54 - Circuit with the LM317T voltage regulator 

 

Source: Own authorship (2023) 
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With this circuit, it was possible to power the TFmini Plus LiDAR sensor with a 

suitable and independent voltage from the Arduino's output. Photograph 13 shows the 

voltage measured with a digital multimeter when no devices were connected to the 

circuit. 

Photograph 13 - Voltage at the output of the circuit with the devices disconnected 

 

Source: Own authorship (2023) 

It can be observed that the voltage difference between the simulated and actual 

designed circuit was approximately 1.32%, with a voltage of 5.023 V being suitable for 

the circuit. After this test, the modules and sensors were connected, and photograph 

14 shows the obtained values. 

Photograph 14 - Voltage at the output of the circuit with the sensors and modules connected 

 

Source: Own authorship (2023) 
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It can be observed in photograph 14 that there was a decrease in voltage from 

5.023 V to 4.785 V. However, this is a normal variation due to the current consumption 

of the system. The voltage of 4.785 V is within the operating range of the used systems. 

4.3.1.6 Sensor’s comparison 

The inclusion of the ultrasonic sensors served the purpose of conducting a 

comparative analysis with the LiDAR sensor within the context of the autonomous 

parking system. The tests conducted allowed for the evaluation of the effectiveness of 

each sensor type in obstacle detection during the parking maneuver. The obtained 

results provided valuable insights into the performance and limitations of each sensor, 

facilitating the selection of the most suitable sensor for the system. 

Figure 55 depicts one of the performed tests, where the actual parking space 

is shown in dashed lines. The blue dots represent data from the LiDAR sensor, while 

the black dots represent data from the ultrasonic sensor. It can be observed from the 

figure that the LiDAR sensor displays fewer variations in its data. It is also interesting 

to note the gradient displayed at the beginning of the parking space identification, 

indicating that the actual boundaries of the space were not straight. At the end of the 

space, a dot can be seen, which represents the final boundary of the parking spot that 

was not detected by the ultrasonic sensor. 

Figure 55 - Acquisition of a parallel parking spot performed by the ultrasonic sensor and LiDAR 

 

Source: Own authorship (2023) 
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According to the conducted tests, the LiDAR sensor exhibited higher precision 

and consistency in the acquired data. It is also worth mentioning that ultrasonic sensors 

have higher precision in short-range measurements, able to measure up to 

approximately 4 meters, while the utilized LiDAR sensor has the capability to measure 

up to 12 meters. 

As a way to validate the claims of superior performance of the LiDAR sensor 

compared to the ultrasonic sensor, comparative tests were conducted in the three 

types of parking spaces: parallel, perpendicular, and angled. All tests were conducted 

by placing the small-scale prototype a few centimeters before the beginning of the 

parking space. The motor of the prototype was then automatically activated, and both 

LiDAR and ultrasonic sensors were simultaneously used to acquire data, which was 

sent to the computer. The computer performed the necessary filtering and processing 

of the data. 

4.3.1.6.1 Parallel parking spot 

In this series of tests, the performance of the LiDAR and Ultrasonic sensors in 

measuring width and length in a parking space was evaluated, the results obtained 

have been summarized in the table 5. The real values for width and length were 

consistent at 35 cm and 70 cm, respectively.  

Table 5 - Comparative tests of LiDAR and ultrasonic sensors in parallel parking 

 
LiDAR Width 
(cm) 

Ultrasonic Width 
(cm) 

LiDAR Length 
(cm) 

Ultrasonic 
Length (cm) 

Real Value 35 35 70 70 

Test 1 34.48 31.44 76.00 1.00 

Test 2 35.87 19.78 71.00 1.00 

Test 3 34.13 15.22 71.00 3.00 

Test 4 33.81 18.47 71.00 38.60 

Test 5 31.81 15.69 67.42 36.72 

Source: Own authorship (2023) 

The data revealed some interesting findings. The LiDAR measurements for 

width ranged from 31.44 cm to 35.87 cm, with test 1 showing the closest measurement 

to the real width value at 34.48 cm. On the other hand, the Ultrasonic measurements 
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for width varied between 15.22 cm and 31.44 cm, indicating higher variability and 

potentially less accuracy. 

The length measurements using the LiDAR sensor showed little variation, with 

only the measurement of 76 cm in test 1 being an outlier. However, the measurements 

obtained from the ultrasonic sensor proved to be unreliable, which can be explained 

by the way the parking space measurement logic was developed. The calibration and 

design of rules and algorithms took into account the characteristics of the LiDAR 

sensor, known for its higher reliability and fewer outliers. Figure 56 illustrates the graph 

comparing test 1.  

Figure 56 - Test 1 comparing LiDAR and ultrasonic sensors in a parallel parking space 

 

Source: Own authorship (2023) 

 It is possible to identify the discrepancy in the data between the sensors in 

figure 56, focusing on the edges of the parking spaces. In these positions, there are 

many variations in values for the ultrasonic sensor, which appears to identify points 

before reaching the actual end of the parking space. 

4.3.1.6.2 Perpendicular parking spot 

Subsequently, tests were conducted to identify a perpendicular parking space, 

and the results can be observed in table 6. The real values for the size of the parking 

space are 52 cm in width and 36 cm in length. 
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Table 6 - Comparative tests of LiDAR and ultrasonic sensors in perpendicular parking 

 
LiDAR Width 
(cm) 

Ultrasonic Width 
(cm) 

LiDAR Length 
(cm) 

Ultrasonic 
Length (cm) 

Real Value 52 52 36 36 

Test 1 44.42 18.13 36.00 47.42 

Test 2 42.53 14.91 35.00 44.01 

Test 3 40.68 18.67 35.00 5.00 

Test 4 42.11 5.78 33.00 25.00 

Test 5 44.40 42.38 28.00 23.00 

Source: Own authorship (2023) 

As tests for the parallel parking space, the LiDAR sensor obtained consistent 

results, showing values with little variation in each test, both for width and length 

calculations, with the exception being seen in the length calculated in test 5, which 

presented a higher variation. 

On the other hand, the ultrasonic sensor did not achieve consistent results, 

obtaining a large percentage of error for both width and length measurements in 

several tests. The exception was test 5, where the values were closer to the real values 

and also closer to the LiDAR sensor results. However, even in this case, it was possible 

to identify that the calculated parking space size was smaller than the real size. This is 

likely due to the error caused by the ultrasonic sensor's larger FOV compared to the 

LiDAR sensor. Figure 57 shows a side-by-side comparison of performance. 

Figure 57 - Test 5 comparing LiDAR and ultrasonic sensors in a perpendicular parking space 

 

Source: Own authorship (2023) 
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 It is possible to identify that in Figure 69, both the LiDAR and ultrasonic sensors 

exhibited similar behaviors in reconstructing the parking space. However, it is 

noteworthy that the LiDAR sensor's points show more continuity and a reduced number 

of outliers. It can be understood that it is possible to identify, measure, and classify a 

parking space using only an ultrasonic sensor, as shown in figure 57. However, the 

result obtained is less precise and requires more sophisticated algorithms to attempt 

to compensate for the lack of consistency in the data obtained. 

4.3.1.6.3 Angle parking spot 

To assess the capability of LiDAR and ultrasonic sensors in identifying an angled 

parking space, the same comparative tests conducted previously for parallel and 

perpendicular parking spaces were carried out. The actual values for the width, length 

and angle of the angled parking space were provided as reference, measuring 34.4 

cm, 62 cm and 55 degrees, respectively. 

The results of these tests are of utmost importance as they will provide valuable 

insights into the sensors performance in a more complex and realistic parking scenario, 

such as the angled parking space. It is expected that the angular geometry of this 

parking space will pose additional challenges to the sensors, requiring higher precision 

in detecting and measuring the space's dimensions. The results could be seen in table 

7. 

Table 7 - Comparative tests of LiDAR and ultrasonic sensors in angle parking 

 
LiDAR 
Width (cm) 

Ultrasonic 
Width (cm) 

LiDAR 
Length 
(cm) 

Ultrasonic 
Length 
(cm) 

LiDAR 
Angle 
(degrees) 

Ultrasonic 
Angle 
(degrees) 

Real Value 34.4 34.4 62 62 55 55 

Test 1 25.74 10.78 51.66 28.00 47.35 70.43 

Test 2 25.19 5.44 51.09 32.00 49.76 82.33 

Test 3 27.05 49.03 54.56 31.00 48.72 86.82 

Test 4 26.05 45.78 52.40 26.00 48.09 76.55 

Test 5 25.34 49.80 50.99 28.00 48.18 84.51 

Source: Own authorship (2023) 
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The results obtained from the tests indicate that both LiDAR and ultrasonic 

sensors face difficulties in accurately measuring the dimensions and angle of the 

angled parking space. However, the LiDAR sensor generally provides more consistent 

measurements, especially for the angle, where its results closely match the real value. 

Therefore, it is understood that improvements can be made to the results obtained by 

modifying the algorithm, making it more robust and accurate. On the other hand, the 

ultrasonic sensor's measurements display larger variations and inconsistencies, 

indicating its limitations in accurately capturing the parking space's dimensions and 

angle. Figure 58 presents the results of the sensors side by side. 

Figure 58 - Test 5 comparing LiDAR and ultrasonic sensors in a perpendicular parking space 

 

Source: Own authorship (2023) 

 It is possible to observe that the LiDAR sensor exhibits a pattern resembling 

an angled parking space in its plotted data, while the ultrasonic sensor shows data 

without any reference, obtaining erratic values. 

4.3.1.6.4 Tests interpretation 

With the tests, it was possible to understand the actual difference between the 

results obtained by the one-dimensional LiDAR sensor and the ultrasonic sensor. It 

was demonstrated that the LiDAR sensor provides greater precision and reliability in 

the data, while the ultrasonic sensor produced erratic measurements. 

This behavior may be due to the nature of the ultrasonic sensor, which relies 

on sound waves to measure distances. Ultrasonic waves can bounce off surfaces, 

causing reflections and inaccuracies, especially in situations where the surface is 

irregular or has multiple reflective points, such as the edges of the parking space. 
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On the other hand, the LiDAR sensor uses laser beams to measure distances 

and is known for its ability to provide more accurate and reliable measurements, even 

in complex environments. It can better distinguish individual objects and surfaces, 

making it more suitable for precise measurements of the parking space boundaries. 

As a result, the data from the ultrasonic sensor may exhibit more variations and 

inaccuracies, while the LiDAR sensor provides more consistent and trustworthy 

measurements, particularly at the edges of the parking space. This highlights the 

advantage of using LiDAR technology in such applications, where precision and 

reliability are crucial for parking and navigation systems. 

4.3.2 Software 

This section presents the tests, results, problems, and potential improvements 

related to the Python software developed for an autonomous parking system. It 

highlights the objective of the software, discusses the outcomes of the tests conducted, 

and analyzes encountered issues. Additionally, it proposes possible enhancements to 

optimize the system's performance. 

4.3.2.1 Interface 

On the initial screen of the interface, it is possible to select the sensor to be 

used for data acquisition: ultrasound, LiDAR, or both for result comparison. Initially, the 

Serial COM needs to be defined, which represents the serial port through which the 

microcontroller sends data to the program. Then, you can press the "Read Data" button 

to acquire the data. Another option is to open a pre-recorded CSV file by pressing the 

"Read CSV" button. The initial screen is shown in figure 59. 

Figure 59 - Parking assistant program home screen 

 

Source: Own authorship (2023) 
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After collecting the data, it is possible to calculate the size of the detected 

space by pressing the "Parking Space Calc" button. The value is displayed in the 

Parking Space table along with the type, width, and length, as shown in figure 60. If 

the data is read using the "Read Data" option, the user is given the option to save the 

data in CSV format. 

Figure 60 - Initial screen of the parking assistant program 

 

Source: Own authorship (2023) 

To demonstrate the size of the space, you can press the "Simulation" button. 

Afterward, a graph is plotted with the acquired points, and the parking space is shown 

with a rectangle, as depicted in figure 61. 

Figure 61 - Detected parking space after pressing the simulation button 

 

Source: Own authorship (2023) 
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If the first option chosen is "Read Data," at the end of the data reception 

process, the "Save" option is displayed. This option saves the received data to a CSV 

file within the "Save" folder located in the program's project directory. 

4.3.2.2 Data reception 

In order to validate the data reception process, tests were conducted to 

analyze the integrity of the data received through the serial connection. A small-scale 

prototype was used as the data emitter for these tests. Errors were identified in the 

serial port opening and data reading, particularly with the first data received by the 

software. To address these errors, error handling using try-except blocks was 

implemented. This ensures that the software does not crash when such errors occur. 

To minimize these errors, a function was implemented to clear the serial port 

buffer. However, it was observed that these errors are stochastic, meaning they occur 

without a concrete pattern. After implementing the error handling function, the impact 

of these errors on the software and data collection is minimal. Typically, only one or 

two data points at the beginning of the data series are lost. Considering the sampling 

frequency of 20 Hz of the prototype's sensors, it is understood that these lost data 

points have negligible impact on future data analysis. 

4.3.2.3 Parking spot detection 

For the detection of parallel and perpendicular parking spaces, no significant 

issues were encountered as they exhibit a sharp change in the sensor data, making 

the detection algorithm reliable. However, when it comes to the detection of oblique 

parking spaces, problems arose due to the small variation in distance registered by the 

sensors, especially at the beginning of the space. As a result, the code captures only 

a portion of the values corresponding to the parking space. There is a need to improve 

the detection logic for this type of space to properly segregate the detected values 

belonging to the space, thus achieving a more robust system. 

4.3.2.4 Parking spot measurement and classification 

To validate the system, it was decided to perform five tests for each type of 

parking space. The tests were conducted on the constructed model of parallel, 

perpendicular, and oblique parking spaces. The small-scale prototype was positioned 
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just before the beginning of each space, as shown in Error! Reference source not f

ound.. Data was then acquired while the model moved forward until it reached a 

position just after the space, as also depicted in photograph 15. A screenshot of the 

synchronous plot, i.e., the data being plotted simultaneously with the test, was then 

taken. The "simulation" button in the software was pressed to open the plot with the 

drawn parking space and the calculated size of the space.  

Photograph 15 - Representation of the prototype's position at a small scale at the beginning 
and end of the tests 

 

Source: Own authorship (2023) 

4.3.2.4.1 Parallel parking spot 

The values obtained from the classification and measurement tests in the 

parallel parking space are shown in table 8, along with the actual measured value using 

a tape measure.  

Table 8 - Tests of classification and measurement of parallel parking spaces 

 Type Width (cm) Length (cm) 

Real Value Parallel 35 70 

Test 1 Parallel 38.18 70.00 

Test 2 Parallel 38.33 73.00 

Test 3 Parallel 36.75 69.00 

Test 4 Parallel 39.50 76.00 

Test 5 Parallel 37.59 71.00 

Source: Own authorship (2023) 
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It can be observed that in all tests, the parking space was correctly classified 

as parallel, and the calculated width values showed an average variation of 9.09%, 

while the length values showed an average variation of 1.43%. Most of the results 

deviate towards larger values than the actual measurements.  

4.3.2.4.2 Perpendicular parking spot 

Next, tests were conducted with the perpendicular parking space, and the 

results are shown in table 9. 

Table 9 - Tests of classification and measurement of perpendicular parking spaces 

 Type Width (cm) Length (cm) 

Real Value Perpendicular 52 36 

Test 1 Perpendicular 55.56 33.00 

Test 2 Perpendicular 54.32 38.00 

Test 3 Perpendicular 53.61 35.00 

Test 4 Perpendicular 56.28 34.00 

Test 5 Angled 43.69 53.40 

Source: Own authorship 

Based on the tests conducted on the perpendicular parking space, it can be 

observed that the width measurements resulted in values above the actual 

measurement, similar to the previous tests with the parallel parking space. The 

average error in width measurements is calculated to be 6.85%. However, the length 

measurements showed a uniform distribution around the actual value, with an average 

error of 5.56%. 

It is noteworthy that test 5 yielded an incorrect result from the algorithm, which 

classified the parking space as oblique and consequently calculated its size incorrectly. 

This error can be explained by analyzing figure 62, which presents the raw data from 

the prototype and the processed data from the software. It can be understood that the 

algorithm identified an angle smaller than 70 degrees, as indicated in figure 62, leading 

to a misclassification of the parking space as oblique. 

This highlights the need for further improvement in the algorithm's logic for 

detecting oblique parking spaces to ensure accurate classification and measurement. 
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Figure 62 - Raw data from test 5 with the perpendicular parking space 

 

Source: Own authorship (2023) 

4.3.2.4.3 Angle parking spot 

Then tests were performed with the oblique parking space, and the results are 

shown in table 10. 

Table 10 - Tests of classification and measurement of angle parking spaces 

 Type Width (cm) Length (cm) Angle (degrees) 

Real Value Angle 34.40 62.00 55.00 

Test 1 Angle 31.95 65.44 51.20 

Test 2 Angle 30.28 66.57 57.26 

Test 3 Parallel 37.41 49.00 73.99 

Test 4 Angle 31.70 64.66 50.65 

Test 5 Angle 24.38 53.54 57.20 

Source: Own authorship (2023) 

It is possible to analyze that in all tests with the oblique parking space, correct 

classifications were obtained in tests 1, 2, 4, and 5, while only in test 3 did it obtain the 

classification as a parallel parking space, indicating an incorrect measurement of the 
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angle of the parking spot. Figure 63 presents the raw data from the test, and it can be 

observed that two outliers were considered for the angle calculation. This fact led to 

an incorrect calculation of the angle. 

Figure 63 - Raw data from test 4 with the angle parking space showing two outliers 

 

Source: Own authorship (2023) 

An average error of 8.43% was found in measuring the width of the parking 

space, 7.37% in measuring the length, and 6.91% in measuring the angle. These 

measurement errors are greater than the errors obtained from the tests on the parallel 

and perpendicular parking spaces, which is likely due to calculations performed on the 

measurements that sometimes amplify errors.  

This type of parking space proved to be challenging; however, an adequate 

level of accuracy was achieved. With further refinements to the system, it is considered 

possible to obtain even better data. Figure 64 presents the raw results from test 4, 

which had the lowest error count in the series. 
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Figure 64 - Raw data from test 4 with the angle parking space 

 

Source: Own authorship (2023) 

 In the data from figure 64, it is possible to identify the classic shape of an 

oblique parking space. The presented data has been confirmed to have excellent 

average precision when compared to actual measurements of distance and size. There 

is an understanding of the need for improvement in the acquisition process to avoid 

repeated values, as indicated by the red circle in figure 64. This can be achieved 

through configuring the LiDAR sensor and adjusting the microcontroller code. By doing 

so, more accurate values can be obtained, thereby impacting the calculations 

performed. 

4.4 Chapter’s considerations 

In chapter 4.1 was presented the results of the applied methodology for the 

APS, encompassing the bibliography analysis and literature review. By critically 

analyzing key works, the theoretical framework is established, and the significance of 

the study is highlighted. The Publications per Year analysis shows an increased focus 

on AI and motion planning in recent years. The Keywords Analysis identifies essential 

keywords for future research, and the Author Analysis highlights prominent 



128 

 
 

 

contributors in the field. These insights serve as a solid foundation for shaping the APS 

project and advancing knowledge in the area. 

In chapter 4.2, the results of applying the proposed methodology in all stages 

of the APS simulation were presented. The comprehensive system simulation allowed 

for the analysis of the APS performance and effectiveness in different scenarios and 

conditions. Ultrasonic sensors were used for parking space identification; however, 

some detection and measurement issues were observed during the tests. Adjustments 

were made to improve trajectory planning and generate more natural movements. 

Parallel, perpendicular, and angled parking tests provided concise results, but also 

encountered difficulties such as measurement errors and erratic trajectory execution. 

In chapter 4.3, the results of executing tests on the small-scale prototype were 

shown, validating the performance of hardware components like electric motors and 

sensors. During these tests, limitations in the ultrasonic sensors were identified, as 

well as the need for adjustments in the power supply for the LiDAR sensor. When 

comparing the sensors, it was observed that LiDAR exhibited greater precision and 

consistency in the acquired data. Lastly, the Python-developed software was tested 

and yielded satisfactory results, also identifying possible improvements to be 

implemented. 
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5 CONCLUSION 

The work carried out in this master's thesis has significantly contributed to the 

development of an APS by addressing various aspects related to its implementation 

and performance evaluation. Through the utilization of simulations and the creation of 

a scaled-down prototype, the fundamental components and functionalities of the APS 

have been examined and refined. This preliminary testing phase has provided valuable 

insights into the system's behavior, allowing for improvements to be made before real-

world implementation. By identifying and rectifying errors, as well as evaluating 

potential challenges and opportunities, the APS can be optimized to deliver superior 

performance. 

One significant challenge encountered during the development process was 

the utilization of the LiDAR TFmini Plus sensor in conjunction with the Arduino UNO 

microcontroller. The high current consumption of the sensor resulted in a voltage drop 

at the Arduino's output, compromising its ability to power the sensor adequately. To 

overcome this issue, a circuit with the LM317T voltage regulator was introduced, 

enabling the provision of a stable and adjustable voltage supply for the sensor. This 

solution ensured the correct operation of the LiDAR sensor and other 5V devices within 

the prototype. 

Additionally, a comparative analysis was conducted between ultrasonic and 

LiDAR sensors for measuring parking spaces. The results indicated that LiDAR 

sensors offer advantages over ultrasonic sensors, including improved measurement 

precision and a wider range. The developed APS prototype serves as a testing and 

validation platform, offering valuable insights into the system's performance and 

capabilities. While the prototype demonstrated the feasibility of detecting, measuring, 

and classifying parking spaces, further refinement and validation are necessary to 

ensure accuracy and reliability in real-world scenarios. Factors such as sensor 

calibration, environmental conditions, and trigonometric calculations for oblique 

parking spaces must be taken into account for future iterations. 

In conclusion, the future advancement of the APS relies on several key areas 

of focus to enhance its accuracy, robustness, and adaptability in various parking 

scenarios. Exploring alternative sensing techniques, refining data processing 

algorithms, and conducting extensive testing on a larger scale prototype will contribute 

to a comprehensive evaluation under diverse environmental conditions and parking 
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space configurations. These efforts aim to develop a reliable and efficient autonomous 

parking solution that meets the demands of real-world applications. 

In the next steps, the implementation of a path planning model based on RRT* 

in the small-scale prototype of the APS system will be pursued. With this trajectory 

planning model, efficient and safe routes for autonomous vehicle parking will be 

enabled by the system. The development of a control system will serve as a bridge 

between the path planning algorithm and the sensors and actuators of both the 

prototype and the vehicle. This control system will be responsible for orchestrating the 

execution of the planned parking trajectory by coordinating the actions of the vehicle's 

motors, brakes, and steering mechanism. 

The control system will receive inputs from the APS sensors, including 

distance measurements, obstacle detection, and environmental conditions. It will 

process this information and generate appropriate commands to ensure precise and 

smooth execution of the parking maneuver. It will continuously monitor the vehicle's 

position and adjust its actions in real-time, responding to any changes or unexpected 

obstacles encountered during the parking process. 

By seamlessly integrating the path planning algorithm with the sensors and 

actuators through the control system, the APS will be able to navigate complex parking 

scenarios with accuracy and safety. This integration will enable efficient coordination 

between the planned trajectory and the vehicle's physical. After these improvements 

are implemented in the prototype and extensive testing is conducted, the next step will 

involve the implementation of the system in a real vehicle model. This stage will require 

specific adaptations for the vehicle in question, as well as a comprehensive validation 

of the system under real operating conditions. 

In summary, this master's thesis has made significant contributions to the field 

of autonomous parking systems. By integrating simulations, prototype development, 

and comprehensive testing, valuable insights have been gained regarding system 

performance, sensor integration, and measurement accuracy. The findings and 

methodologies presented in this research serve as a foundation for further 

advancements in autonomous parking technology, with the goal of improving urban 

mobility and addressing parking challenges. 
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