
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

LUCAS VILELA SANCHES DE MAMANN

APRENDIZADO OFFLINE E ONLINE DE REDES NEURAIS NO CONTEXTO DE
CASAS INTELIGENTES E DE COMPUTAÇÃO EM NÉVOA

CURITIBA

2023

LUCAS VILELA SANCHES DE MAMANN

APRENDIZADO OFFLINE E ONLINE DE REDES NEURAIS NO CONTEXTO DE

CASAS INTELIGENTES E DE COMPUTAÇÃO EM NÉVOA

Offline and online neural network learning in the context of smart homes

and fog computing

Dissertação apresentada como requisito para
obtenção do título de Mestre em Ciências do
Programa de Pós-Graduação em Engenharia
Elétrica e Informática Industrial da Universidade
Tecnológica Federal do Paraná.

Orientadora: Profª. Drª. Myriam Regattieri De
Biase da Silva Delgado

Coorientador: Prof. Dr. Daniel Fernando Pigatto

CURITIBA

2023

Esta licença permite compartilhamento, remixe, adaptação e criação a partir do traba-
lho, mesmo para fins comerciais, desde que sejam atribuídos créditos ao(s) autor(es).
Conteúdos elaborados por terceiros, citados e referenciados nesta obra não são co-
bertos pela licença.

4.0 Internacional

https://creativecommons.org/licenses/by/4.0/deed.pt_BR

AGRADECIMENTOS

Meus maiores agradecimentos vão aos meus orientadores Profª. Drª. Myriam e Prof.

Dr. Daniel. Sem eles esta jornada certamente não teria nem mesmo se iniciado. Agradeço

por terem aceitado me orientar durante este projeto, por terem sido pacientes, por terem me

apoiado e incentivado e por terem contribuído de diversas formas durante todo o caminho. Não

me esquecerei do tempo e esforço que ambos empregaram ao longo destes anos.

Agradeço também ao Maurício Copatti, por ter participado de discussões e experimen-

tos, agregando conteúdo ao trabalho, especialmente na área de Fog.

RESUMO

À medida que aplicações de sistemas inteligentes baseados em Redes Neurais Artificiais

(RNA), e em particular os modelos baseados em aprendizado profundo, se tornam altamente

populares, surgem algumas desvantagens da implementação tradicional baseada em compu-

tação na nuvem. Questões como alto custo monetário para armazenar e executar aplicativos,

baixa privacidade em dados e modelos, e alta latência que afeta estes modelos executados

na nuvem podem dificultar seu uso, levando a experiências insatisfatórias por parte de seus

usuários. A computação em névoa aparece então como uma possibilidade interessante. Este

trabalho explora, no contexto de casas inteligentes, uma topologia de névoa como alternativa

aos métodos de aprendizado online e modelos baseados em RNA executados offline. O

trabalho propõe o uso de diferentes componentes rasos para formar modelos mais profundos

e a utilização de um modelo recorrente profundo tradicional para tratar os dados de forma

temporal. Nos experimentos envolvendo aprendizado offline, comparam-se seus desempenhos

na resolução de oito problemas de classificação distintos. Os problemas dizem respeito às

atividades realizadas por um morador, em cada um dos oito cômodos de uma casa inteligente

usada como estudo de caso. Os resultados mostram que a hibridização de um modelo de

autoencoder com classificadores baseados em redes neurais de múltiplas camadas é capaz de

detectar atividades raras e fornecer bons resultados para quase todos os cômodos, especial-

mente quando abrangendo pipelines de dimensões adequadas. No entanto, vale mencionar que

o modelo tradicional de múltiplas camadas é bastante competitivo. No contexto online, embora

o desempenho do melhor modelo diminua, como esperado, algumas observações relevantes

resultam dos experimentos, principalmente o fato de que a computação em névoa fornece

resultados não muito distantes dos sistemas em nuvem, mas demandando menos recursos.

A proposta online baseada em névoa surge, portanto, como uma alternativa para operação

em ambientes com restrição de recursos computacionais ou tempo de processamento, como

ocorre em dados streaming.

Palavras-chave: redes neurais artificiais; aprendizado online/offline; computação em névoa;

problemas de classificação; atividades de usuário em casas inteligentes.

ABSTRACT

As smart applications based on Artificial Neural Networks (ANNs) become highly popular,

particularly the models comprising deep learning, some drawbacks of traditional cloud-based

deployment emerge. Issues like high monetary cost, for storing and running applications, low

privacy on data and models, and high latency experienced by cloud-based neural networks

might make their use difficult, leading to poor user experiences. Fog computing appears

therefore as an interesting alternative. This work explores, in the context of smart homes, a fog

topology as an alternative to online learning and ANN-based models running offline. The work

proposes using different shallow components to form deeper models; it also adopts a traditional

deep recursive approach to deal with temporal aspects of data. Experiments involving offline

learning compare their performance on eight different classification problems which consist of

activities performed by a user in each one out of eight rooms in the smart home addressed as

the case study. Results show that the hybridization of an auto-encoder with classifiers based on

multi-layer perceptrons can detect rare activities and provide good results for almost all rooms,

particularly when encompassing suitable neural structure sizes in the pipelines. However, it is

worth mentioning that the traditional multilayer model is quite competitive. In the online context,

although the performance of the best approach decreases, as expected, some relevant insights

result from experiments, especially that fog computing provides results not too far from cloud

systems, yet demanding fewer resources. The proposal based on fog computing and online

learning appears therefore as an alternative when dealing with streaming data on restricted

environments in terms of computation resources or time.

Keywords: artificial neural networks; online/offline learning; fog computing; classification pro-

blems; smart home user activities.

LIST OF FIGURES

Figura 1 ± A taxonomy of Cloud, Fog and Smart Home levels 16

Figura 2 ± An overview of an ANN shallow model 17

Figura 3 ± The most usual activation functions: Linear, ReLU, Sigmoid, and Tan-

gent hyperbolic. 18

Figura 4 ± An overview of a simple autoencoder 20

Figura 5 ± A recurrent neural network with 𝐻 neurons in the hidden layer (right),

where 𝑖, 𝑗, and 𝑘 (left) represent neurons in the input, hidden and output

layers, respectively. 21

Figura 6 ± Recurrent neural network unit (left) and its unfolded version (right). . . 22

Figura 7 ± Unfolded bidirectional recurrent neural network 23

Figura 8 ± Example of a recurrent unit . 24

Figura 9 ± Representation of the structure of a memory cell 25

Figura 10 ± Information gradient preservation by LSTM 28

Figura 11 ± Model1: a proposed model composed of an MLP classifier (𝐶 types of

activities plus one with no activity) with 2 hidden layers. 34

Figura 12 ± Model2, a proposed model with two Hierarchical MLPs : an MLP clas-

sifier (on/off) with 2 hidden layers and an MLP classifier (𝐶 types of

activities) also with 2 hidden layers. 35

Figura 13 ± Model3, a model composed of an autoencoder with #S inputs/outputs

plus a module that calculates how good is the reconstruction, an MLP

classifier (on/off) with 2 hidden layers and finally, an MLP classifier (ty-

pes of activities) also with two hidden layers encompassing small MLP

components. 36

Figura 14 ± Model4, a model composed of an autoencoder with #S inputs/outputs

plus a module that calculates how good is the reconstruction, an MLP

classifier (on/off) with 2 hidden layers and finally, an MLP classifier (ty-

pes of activities) also with two hidden layers encompassing large MLP

components. 37

Figura 15 ± Model5: a proposed model based on a hybrid classifier (𝐶 types of ac-

tivities plus one in red with no activity) with a biLSTM plus an MLP with

2 hidden layers. 38

Figura 16 ± Model6, a proposed model with two hybrid LSTMs: a biLSTM classifier

(on/off) with one bidirectional hidden layer whose outputs are inputs of

an MLP and a biLSTM classifier for 𝐶 types of activities, also with one

bidirectional hidden layer whose outputs are inputs of the final MLP in

the pipeline. 39

Figura 17 ± Scrutinizing the structure of the memory cells 44

Figura 18 ± Scrutinizing the flow of backward pass in the memory cells 47

Figura 19 ± Online learning for a complete pipeline CompF + ℒmod → CompC →

CompE that could represent the Model3 or Model4 proposed models. . 50

Figura 20 ± A possible perspective of the addressed smart home 52

Figura 21 ± Models’ overall performance (F-score average for all rooms) 59

Figura 22 ± Scatter chart for rooms’ characteristics and model performance 60

Figura 23 ± Average F-Score vs. Tested Samples for online learning 63

Figura 24 ± Average Retraining per Sample vs. Tested Samples for online learning . 64

LIST OF TABLES

Tabela 1 ± Description of proposed approaches . 33

Tabela 2 ± Description of components used by the models 34

Tabela 3 ± A summary of Dataset used in the experiments 54

Tabela 4 ± Model Parameters . 55

Tabela 5 ± Offline and Online Learning Parameters 57

Tabela 6 ± Offline: models’ average F-score for each room 58

Tabela 7 ± Pearson correlation index between rooms’ characteristics and model

performance . 60

Tabela 8 ± Online: results for the different combinations of setups 61

LIST OF ACRONYMS AND INITIALISMS

ANN Artificial Neural Network

BPTT Back-Propagation Through Time

CEC Constant Error Carousel

IoT Internet of Things

LSTM Long Short-Term Memory

MLP Multi-Layer Perceptron

ReLU Rectified Linear Unit

RNN Recurrent Neural Network

RTRL Real-Time Recurrent Learning

SUMMARY

1 INTRODUCTION . 11

1.1 Objectives and Research Questions . 12

1.1.1 General Objective . 13

1.1.2 Specific objectives . 13

1.1.3 Research Questions . 13

1.2 Main Contributions . 14

1.3 Organization . 14

2 BACKGROUND . 15

2.1 Fog Computing . 15

2.2 Artificial Neural Networks . 16

2.2.1 Multi-Layer Perceptrons . 17

2.2.2 Autoencoders . 19

2.2.3 Recurrent Neural Networks . 21

2.2.4 Bidirectional Networks . 23

2.2.5 LSTM Architecture . 24

2.3 Online versus Offline learning of neural models 28

2.3.1 Training Feedforward Neural Models . 30

2.3.2 Training Recurrent Neural Models . 31

3 METHODOLOGY . 33

3.1 The Proposed Approaches . 33

3.1.1 Pure Multilayer Perceptron Model . 33

3.1.2 Hierarchical Multilayer Perceptron Model 35

3.1.3 Hybrid Small Model . 35

3.1.4 Hybrid Large Model . 36

3.1.5 Simple Bidirectional LSTM . 37

3.1.6 Hierarchical Bidirectional LSTM . 38

3.2 Training the shallow components . 39

3.2.1 Offline Learning . 41

3.2.2 Online Learning . 50

4 EXPERIMENTS AND RESULTS . 52

4.1 The addressed problem . 52

4.2 Setup for the experiments . 54

4.2.1 Smart home dataset . 54

4.2.2 Neural model parameters for the topologies 55

4.2.3 Setup parameters for training . 56

4.3 Results . 56

4.3.1 Offline learning results . 57

4.3.2 Online learning results: fog versus cloud computing 61

5 CONCLUSIONS . 65

REFERENCES . 66

11

1 INTRODUCTION

The Internet of Things (IoT) is an environment of connected intelligent objects that inte-

ract using Internet communication protocols (POTRINO; RANGO; SANTAMARIA, 2019). Usu-

ally, such objects are embedded systems that consist of a highly-integrated hardware and soft-

ware set that performs specific functions under computational constraints e.g. memory, proces-

sing, and energy supply (GRANJAL; MONTEIRO; SILVA, 2015). IoT has been the key to integra-

ting these objects into new sets of applications, and it is often associated with Cloud Computing

due to the inherent dependence on systems that demand Internet connectivity. Cloud computing

is a model that enables ubiquitous, on-demand access to configurable sets of computing resour-

ces (e.g. networks, servers, storage, applications, and services). Cloud platforms are important

for IoT applications providing powerful computing resources with a less expensive infrastructure

(STERGIOU et al., 2018).

As more smart applications become cloud-based and the number of constrained connec-

ted devices increases, the volume of data generated and the need for less costly solutions and

with improved privacy increase as well. Cloud architectures are known for the large geographic

distance between end devices and servers in the Cloud, which is often criticized regarding pri-

vacy issues. Although cloud services can potentially reduce infrastructure costs, they usually

charge for processing time and data traffic, which may lead to high costs for applications that

deal with high amounts of data. In many cases, this scenario makes applications that handle

large amounts of data unfeasible.

A way to minimize centralized processing and cloud privacy problems is known as Fog

Computing, as proposed by Cisco (BONOMI et al., 2012). With solutions located closer to the

network edge, Fog Computing makes room for a new profile of applications and services that

can take advantage of geographically closer processing and improved data privacy. According

to Bonomi et al. (2012), the main characteristics of Fog are low latency and location knowledge;

widespread geographic distribution; mobility and heterogeneity; a large number of nodes; the

predominant role of wireless access; and finally, a strong presence of streaming and real-time

applications.

Artificial Neural Networks (ANNs) have been widely used in mobile devices and smart

applications such as smart homes and cities, achieving promising results on various tasks. Cur-

rent examples include object recognition (BANGARU et al., 2021; LIAN et al., 2022), computer

vision, speech recognition, smart city (ALSAMHI et al., 2021) and smart home (SKOCIR et al.,

2016; YU; ANTONIO; VILLALBA-MORA, 2022; VARDAKIS et al., 2022) applications. ANN struc-

tures are composed of connected layers encompassing single processing units called neurons.

Input data are processed by each layer until the last one outputs the calculated result (HAYKIN;

NETWORK, 2004).

As more layers and neurons are used, more computational resources are demanded as

well. A common solution for that is to deploy such networks in cloud computing services with

12

nearly unlimited computing resources. As previously commented, although highly available and

scalable, cloud servers may experience issues such as high latency, and low privacy (YI et al.,

2015), which can negatively impact task requirements. Then, Fog Computing is an alternative to

deal with online learning in the context of neural networks.

An online neural learning method is one capable of processing streaming data, piece-

by-piece in a serial fashion, without having the entire input available from the start. In contrast,

an offline neural learning method receives the whole problem data from the beginning and is

required to output an answer which solves the problem at hand. Online and offline neural models

have their own advantages and disadvantages (PUTTIGE; ANAVATTI, 2007). Offline models can

handle large datasets, as computation time and memory are not critical to their functioning. They

are robust to small variations but fail to adapt to larger changes in the system. Online models

can adapt quickly to variations in the non-linear behavior of inputs but might be less accurate

because of small sets of training data given as batches. Moreover, due to their usual low memory

capability, forgetting large amounts of past data is frequent in the learning of online models.

By exploring offline ANN learning methods, the present work provides neural network

models to classify activities in the context of smart homes. The proposed models include those

based on shallow components, which are segments of the network with less hidden layers

(not enough layers to be considered a deep model), those using autoencoders, which are mo-

dels specialized in detecting outlier data, and those encompassing a Long Short-Term Memory

(LSTM) (HOCHREITER; SCHMIDHUBER, 1997), a traditional recurrent deep model for time

series. Aiming to mitigate cloud service issues, the work also proposes an alternative solution

for online ANN learning which is based on fog computing. In the experiments, eight different

classification problems are addressed; each one is described as the problem of classifying the

activities that occur in a particular room of a smart home, based on the information provided by

sensors distributed in the room. The results of proposed approaches running in offline mode are

compared among each other. The best-proposed model for the most difficult room is selected to

run in an online mode and the results under different setups are analyzed. Although other works

have already explored the subject (SKOCIR et al., 2016), the investigation of modular ANN on-

line and offline learning in the context of smart homes and fog/cloud computing is, to the best of

our knowledge, an unexplored field.

1.1 Objectives and Research Questions

This section outlines the research objectives, including the specific ones regarding two

different contexts: offline and online learning. The section also presents the research questions

or hypotheses being investigated.

13

1.1.1 General Objective

The work aims to evaluate artificial neural network-based models trained offline in the

Cloud and online in the Fog to classify activities in each room of the addressed smart home.

1.1.2 Specific objectives

The specific objectives regarding the offline learning mode are:

• To evaluate the result of hybridizing autoencoder and multi-layer perceptron models;

• To compare the performance of different models (hybrid and non-hybrid) on solving

eight addressed classification problems;

• To evaluate the influence of the number of classification levels on the models’ perfor-

mance;

• To test different architecture complexities in the proposed models;

• To compare the performance of a model based on LSTM with the ones based only on

shallow components.

And the specific objectives regarding the online learning mode are:

• To compare the performance of online learning based on fog with online learning based

on cloud computing;

• To explore different setup configurations for online learning and fog/cloud computing

resources of one particular model (deepest/largest model considered the best one)

running in a specific room (classified as the most difficult one);

1.1.3 Research Questions

1. Can a shallow standalone model solve the addressed problems?

2. Can two classification levels improve the solution provided by a unique level?

3. Can the hybridization of shallow models outperform the non-hybrid ones?

4. How is the performance of online learning based on fog computing compared with the

one obtained through cloud computing?

5. What is a good trade-off between transmission rate and memory/processing capacity

to run the largest model in online mode?

14

1.2 Main Contributions

Aiming to achieve the described objectives and answer the raised questions, the present

work contributes by providing different models trained offline to solve the addressed smart home

problems (classify activities in each room); and then by exploring different configurations of online

learning and fog/cloud computing resources for one particular model running in a specific room.

The work also contributes: a) by presenting shallow components that can be get together to

provide a deeper model capable of solving the addressed smart home problem; b) by comparing

pure Multi-Layer Perceptron (MLP) models and hybrid ones encompassing autoencoder and

MLP in the context of offline learning; c) by expanding the area of application of fog computing

to the context of online learning in smart homes.

The following publication (MAMANN; PIGATTO; DELGADO, 2022) in a relevant Brazilian

conference (Qualis A41) is a direct result of this dissertation:

• MAMANN, L. V. S. ; PIGATTO, D. F. ; DELGADO, M. R., . Offline and Online Neural

Network Learning in the Context of Smart Homes and Fog Computing. In: Brazilian

Conference on Intelligent Systems, 2022. Proceedings of BRACIS, 2022. v. 1. p. 357-

372.

As an indirect contribution, the work resulted in the following publication (MAMANN et al., 2021)

in another relevant Brazilian conference (Qualis A4):

• MAMANN, L. V. S. ; SIMAO, J. M. ; DELGADO, M. R. ; PIGATTO, D. F. Paradigma

Orientado a Notificações Aplicado à Programação de Microcontroladores. In: XI Sim-

pósio Brasileiro de Engenharia de Sistemas Computacionais, 2021, online. 2021: Anais

Estendidos do XI SBESC, 2021. v. 1. p. 1-6.

1.3 Organization

The text structure is divided into five chapters. After this introduction, Chapter 2 pre-

sents the fundamentals of fog computing, artificial neural networks (shallow and deep models,

recurrent and non-recurrent ones), and online versus offline learning. Chapter 3 describes the

proposed approaches. Chapter 4 presents and discusses the obtained results. Finally, Chapter

5 concludes the work and discusses directions for future research.

1 From https://www.gov.br/capes/pt-br/centrais-de-conteudo/documentos/avaliacao/09012022_RELA-
TORIOQUALISEVENTOS20172020COMPUTACAO.PDF

15

2 BACKGROUND

This section outlines the basic concepts concerning fog computing and artificial neural

networks, including their training aspects, and provides a foundation for understanding the signi-

ficance and contributions of the proposed approaches and the results.

2.1 Fog Computing

The popularity of IoT has increased over the years, which has led to an unprecedented

amount of data being generated every second, due to the number of devices connected to the

Internet. According to CISCO (2015), billions of devices generate data that need to be processed

somehow to make IoT-based solutions work. However, as the number of devices and volume of

data scale, people start to face challenges that need to be tackled.

One of the most common solutions is to integrate IoT with cloud services, which is justi-

fied by some characteristics of these services that are beneficial to IoT, such as scalability and

high availability of resources, nearly unlimited processing capabilities, storage capabilities, and

others (DHANARAJ et al., 2021). Yet, there are many aspects of the Cloud that make it not ideal

for all cases. For instance, there are problems such as ensuring the security of data for data-

sensitive applications, ensuring the latency is low for time-sensitive processes, and connecting

IoT devices to cloud services, either because vendors often do not follow the same standards

and protocols (DHANARAJ et al., 2021) or because it is costly to provide Internet access to

where the device is placed (OPENFOG, 2017). That does not mean the Cloud should be repla-

ced by another service, but that it could benefit from other structures or architectures. This is

where the fog comes into play.

Fog is an extension of the Cloud. It is an intermediary level of the network that brings

cloud resources closer to the devices that generate data and to the devices that use these data

(CISCO, 2015; MATT, 2018). In order to extend the Cloud, fog systems use nodes that could be

any type of device that can provide some level of processing and storage capabilities and that

is connected to the network. These nodes are usually placed somewhere geographically closer

to the IoT devices, which could be any place, even remote locations with limited internet access

such as offshore oil platforms (CISCO, 2015), oil pipelines, or roads (OPENFOG, 2017). The

task of fog nodes is to process and filter data, especially what is time sensitive, and later send to

the cloud only what needs big data analysis (MATT, 2018).

There are a few points that can be improved when adding a fog layer to the project

structure. First of them is latency, as the fog nodes are closer to the end devices and are often

connected to managed local networks, thus communicating faster with IoT devices and even a

small improvement in latency might be crucial depending on the application. Another key point

is security, as many applications deal with business-critical data that cannot be exposed to the

17

Classification tasks, in particular, have been leveraged by the emergence of deep models (SCH-

MIDHUBER, 2015; ALZUBAIDI et al., 2021). This section provides neural network concepts that

are necessary to understand the basic components the proposed models are composed of, es-

pecially Multi-Layer Perceptrons, Autoencoders, and recurrent networks, in particular the Long

Short-Term Memory model.

2.2.1 Multi-Layer Perceptrons

In 1986, Frank Rosenblatt proposed the MLP (RUMELHART; HINTON; WILLIAMS,

1986), a model that, after a long period of discredit, reintroduced Artificial Neural Networks as a

hot topic in Artificial Intelligence research. Used in a standalone way or as a final component of

deep models, MLP is still useful in many applications. In a typical configuration, the neurons of

such a model are arranged as a feedforward layered structure, as shown in Figure 2.

Figure 2 ± An overview of an ANN shallow model

...

...
...

𝑥1

𝑥2

𝑥3

𝑥𝑛

ℎ1

ℎ𝐻

𝑦1

𝑦𝐾

Input
layer

Hidden
layer

Ouput
layer

(a) multi-layer perceptron with one hid-
den layer.

Neuron
Output

𝑓(𝑢)
𝑢

Activation function

∑︀

𝑏

𝑥2
𝑤2

𝑥1

𝑤1

...𝑥𝑛

𝑤𝑛

(b) detailed functioning of a neuron in the hidden layer.

Source: Adapted from https://tikz.net/neural_networks/

Figure 2 (a) shows an MLP with one hidden layer, capable of dealing with non-linear

separability in data. MLP models represent an improvement over single-layer networks like per-

ceptrons (ROSENBLATT, 1958), i.e., those models with no hidden layer, which can only handle

linearly separable problems (MINSKY; PAPERT, 1969; MINSKY; PAPERT, 2017).

In a more detailed view of the neuron functioning depicted in Figure 2 (b), we have a node

with a bias 𝑏; 𝑛 inputs1 𝑥1, 𝑥2, . . . , 𝑥𝑛, associated with weights 𝑤1, 𝑤2, . . . , 𝑤𝑛, that emulate the

role of the synapse by reinforcing or decreasing the importance of the respective neuron input to

the neuron output; and an activation potential 𝑢 that is computed based on a dot product. The

1 The dashed circles represent identity functions in which the inputs are available to be directly used by
the neural networks.

https://tikz.net/neural_networks/

18

activation potential is calculated as described by Equation 1.

𝑢 = w · x+ 𝑏 =
𝑛
∑︁

𝑖=1

𝑤𝑖𝑥𝑖 + 𝑏 (1)

The neuron output is computed as a function of the activation potential 𝑢 (from Equation 1), as

given by Equation 2.

𝑓(𝑢) = 𝑓(w · x+ 𝑏) (2)

where 𝑓 is the activation function that except for specific choices (e.g. Linear), always poses

nonlinear characteristics in the neuron’s behavior (GRAVES, 2012). Figure 3 shows the most

usual activation function found in the literature.

Figure 3 ± The most usual activation functions

(a) Top left - Linear (𝑓(𝑢) ∈ [−∞, + ∞]); (b) Top right - ReLU (𝑓(𝑢) ∈ [0, + ∞]); (c) Bottom left -
Sigmoid (𝑓(𝑢) ∈ [0,+ 1]); (d) Bottom right - Tangent hyperbolic (𝑓(𝑢) ∈ [−1,+ 1]).

Source: Author

A linear activation function can be used in neurons at the output level of the neural

network structure to provide linear combinations of non-linear functions 𝑓 computed in the pre-

19

vious layers (𝑦𝑘 = 𝑢𝑘 =
∑︀𝐻

𝑗=1 𝑤𝑗𝑘𝑓(𝑢𝑗)). Besides that, there are several types of activation

functions such as sigmoid, hyperbolic tangent, and Rectified Linear Unit (ReLU), the latter one

widely used in domains involving images. The choice of a particular activation function is usu-

ally restricted by its derivative properties, which allow or not its use in most traditional training

algorithms.

In Section 3.1 we show MLP-based components and MLP standalone models used in the

proposed approaches. In Section 4.2, we describe the main parameters used in the experiments

for those models.

2.2.2 Autoencoders

Firstly used as unsupervised pre-training of ANNs in (BALLARD, 1987), an autoencoder

is a neural network that when properly modeled as well as properly pre-processed can extract

information from obvious inputs (HAWKINS et al., 2002; DONG et al., 2018; ZHAI et al., 2018).

Figure 4 shows an autoencoder that turns a high-dimensional input into a latent low-dimensional

representation (encoder), and then performs a reconstruction of the input with this latent code

(the decoder).

Although using multiple hidden layers can boost the performance by extracting sligh-

tly higher level features (COATES; NG; LEE, 2011), a model with a single hidden layer enables

extracting important features and can be used as an outlier detection in many applications (HAW-

KINS et al., 2002).

As illustrated in Figure 4 (a) and (b), in the simplest case, the encoder receives the input

x ∈ R
𝑛 and maps it through the activation function 𝑓 𝑒, to the hidden layer. Applying Equation 2

to this layer we get its output, given by Equation 3.

𝑦𝑗 = 𝑓 𝑒(w𝑒
𝑗 .x+ 𝑏𝑒𝑗), 𝑗 = 1,...,𝐻 (3)

where w𝑒
𝑗 is the vector representing encoder weights of the 𝑗𝑡ℎ neuron out of the 𝐻 neurons in

the hidden layer and 𝑏𝑒𝑗 is its bias.

After that (see Figure 4 (a) and (c)), the decoder stage maps the hidden layer to the

reconstruction x̂ ∈ R
𝑛. To get the reconstructed output of the network, we apply Equation 2 to

the output layer, resulting in Equation 4.

�̂�𝑘 = 𝑓𝑑(w𝑑
𝑘.y

hidden + 𝑏𝑑𝑘), 𝑘 = 1,...,𝑛 (4)

where w𝑑
𝑘 is the vector representing decoder weights of the 𝑘𝑡ℎ neuron out of the 𝑛 neurons in

the output layer and 𝑏𝑑𝑘 is its bias. Notice that 𝑓𝑑, w𝑑
𝑘 and 𝑏𝑑𝑘 for the decoder may be unrelated

to their encoder counterparts.

20

Figure 4 ± An overview of a simple autoencoder

Input Layer
n = 8

Latent
Representation

(hidden
layer)

H = 5

Output Layer
n = 8

W
e

H×n W
d

n×H

(a)

Network
Inputs

Hidden
Output
𝑦𝑗 = 𝑓 𝑒(.)

Activation function

∑︀

𝑏𝑒

𝑥2
𝑤𝑒

2

𝑥1

𝑤𝑒
1

...𝑥𝑛

𝑤𝑒
𝑛

(b)

Hidden
Outputs

Network
Output
�̂�𝑘 = 𝑓𝑑(.)

Activation function

∑︀

𝑏𝑑

ℎ2 𝑤𝑑
2

ℎ1

𝑤𝑑
1

...

ℎ𝐻

𝑤𝑑
𝐻

(c)

(a) an example of a model with 𝑛 inputs/outputs neurons and a single hidden layer (latent re-
presentation) with 𝐻 neurons, W𝑒 and W

𝑑 are the matrices of encoder and decoder weights,
respectively; (b) detailed functioning of a neuron in the encoder layer; (c) detailed functioning of
a neuron in the decoder layer.

Source: Adapted from https://tikz.net/neural_networks/

https://tikz.net/neural_networks/

21

Although there are several variants taken from the model depicted in Figure 4 (DONG et

al., 2018; ZHAI et al., 2018), in the present work we consider only the basic model, in an attempt

to identify novelty or outliers in a simple way. In the performed experiments, outliers represent

rare activities occurring in each room of a smart residence.

2.2.3 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are special types of networks in which a neuron can

connect to the next, previous, or its own level, forming cyclic connections. While a non-recurrent

network can only map from input to output vectors, an RNN can in principle map from the entire

history of previous inputs to each output (GRAVES, 2012). The key point is that the recurrent

connections allow a ‘memory’ of previous inputs to persist in the network’s internal state and

thereby influence the network output.

Figure 5 shows a neural network with an external input layer, a recurrent hidden layer,

and an external output layer.

Figure 5 ± A recurrent neural network with 𝐻 neurons in the hidden layer (right), where 𝑖, 𝑗, and 𝑘

(left) represent neurons in the input, hidden and output layers, respectively.

h1 h2 h3 hH⇐⇒j

k

i

B

B

B

B

B

B

B

B

. . .

. . .

. . .

Input

Hidden

Output

Source: Author.

As depicted in Figure 5, the cyclic connections make the previous outputs also network

inputs. Consequently, the network takes information from previous states to construct the current

state. This is a characteristic of a system with memory. According to Hochreiter and Schmidhuber

(1997), the recurrent connections can be interpreted as short-term memory, as their weights

change more quickly. This characteristic is crucial for time series problems, such as the one

discussed in this work, where not only the last data but also all historical data are relevant.

The input 𝑢 received by an output unit 𝑘 at time 𝑡 can be calculated from the hidden

activations similarly to the feedforward networks (see Equations 1 and 2) as given by Equation 5.

23

2.2.4 Bidirectional Networks

Basic neural networks receive inputs in only one direction, i.e., the oldest data are pre-

sented before the most recent data. For recurrent networks, a single direction of data means that

the network only has a memory of past contexts. However, for applications such as time series, it

is also interesting for the network to know future contexts. The concept of bidirectional networks

can be used to implement this idea. For the scenario used in this work though, it is not possible

to use actual future data, since this is the data that the network is trying to predict. However we

can still use the idea of future and past context within a time window containing the data that is

available to the network.

As depicted in Figure 7, bidirectional networks have two hidden (recurrent) layers, which

are independent of each other but connected to the same output layer. For one of the layers,

data are presented in the natural order of the events, while for the other, data are presented in

the reverse sequence. The responses from the two hidden layers are then concatenated and

sent to the output layer. This way, one layer analyzes the inputs considering past contexts and

another analyzes the inputs considering future contexts (GRAVES, 2012).

Figure 7 ± Unfolded bidirectional recurrent neural network

· · · yt−1

←−−

ht−1

−−→

ht−1

· · ·xt−1

yt

←−

ht

−→

ht

xt

yt+1
· · ·

←−−

ht+1

−−→

ht+1

xt+1
· · ·

Outputs

Backward Layer

Forward Layer

Inputs

Source: Adapted from https://tikz.net/neural_networks/.

According to Graves (2012), the mathematical formulation of bidirectional networks is the

same as other networks, since they are just the junction of two layers. The only modification that

occurs is the fact that one of the layers receives the inputs in reverse sequence.

The bidirectional layer could be composed of any kind of recurrent model. In this work, we

use LSTM cells to build the bidirectional layer. Thus, the input of the network will be presented,

simultaneously, to two LSTM layers, one layer will receive the data within a time window in natural

order, whereas the other layer will receive the same data in reverse order. The outputs of both

https://tikz.net/neural_networks/

24

LSTM layers will be combined by a set of neurons generating a single array of outputs, as if it

had been processed by a conventional LSTM layer.

2.2.5 LSTM Architecture

In their work on the LSTM architecture, Hochreiter and Schmidhuber (1997) present an

issue of recurrent networks with respect to error signals and propose a solution, along with an

appropriate learning algorithm. According to them, when using conventional algorithms for trai-

ning recurrent ANNs, such as Back-Propagation Through Time (BPTT) or Real-Time Recurrent

Learning (RTRL), the error signal tends to explode or vanish. When the error grows exponen-

tially, the weights can start oscillating and the network becomes unstable. On the other hand,

when the error decreases exponentially, the network cannot learn.

As the error variation is the problem, Hochreiter and Schmidhuber (1997) suggest ke-

eping the error sign constant, with the method called Constant Error Carousel (CEC). This is

the central idea of LSTM networks. The CEC approach can be understood considering a single

self-recurring unit as depicted in Figure 8a) with a linear activation function, and the weight value

fixed as 1.0 for the recurrent connection, as depicted in Figure 8b).

Figure 8 ± Example of a recurrent unit

𝑓𝑗
𝑥𝑡
𝑗 𝑓(𝑥𝑡

𝑗)

𝑤𝑗𝑗

Activation Function

a)

/
𝑥𝑡
𝑗 𝑥𝑡

𝑗

1.0

Linear
activation function

b)

(a) Generic recurrent unit 𝑗 with a weight 𝑤𝑗𝑗 connecting the neuron 𝑗 to itself; b) CEC approach
for a recurrent unit.

Source: Author

As shown in Figure 8 a), the recurrent connection of a unit can produce a backpropagated

error given by Equation 8.

𝜖𝑡𝑗 = 𝑓 ′
𝑗

(︀

𝑥𝑡
𝑗

)︀

𝑤𝑗𝑗𝜖
𝑡+1
𝑗 (8)

where 𝑒 is the error sign that is used in the backpropagation step, 𝑥𝑡
𝑗 is the input at time 𝑡 directly

connected to the neuron 𝑗 and 𝑓 ′ is the derivative of the unit activation function. In Equation (8),

to achieve a constant error, i.e. 𝜖𝑡𝑗 = 𝜖𝑡+1
𝑗 , we assume

𝑓 ′
𝑗

(︀

𝑥𝑡
𝑗

)︀

𝑤𝑗𝑗 = 1 (9)

25

Integrating Equation 9, we get Equation 10.

𝑓𝑗
(︀

𝑥𝑡
𝑗

)︀

𝑤𝑗𝑗 = 𝑥𝑡
𝑗 (10)

As shown in Figure 8 b), in practice we consider 𝑤𝑗𝑗 = 1, which leads us to a linear

activation function (𝑓(𝑢) = 𝑢) (HOCHREITER; SCHMIDHUBER, 1997). That is, the output of

the unit is the input itself and the output is reintroduced to the input. In this way, a pulse-type

input would cause the cell to keep the same value indefinitely at its input and output.

Figure 9 ± Representation of the structure of a memory cell

Source: Graves (2012).

According to Graves (2012), the set of gates and activation functions, shown in Figure 9,

is called a memory cell. The unit called cell, in Figure 9, is the self-recurring unit shown in Figure 8

b), responsible for keeping the internal state of the cell. The three gates are nonlinear summation

units that collect activations from inside and outside the block, and control the activation of the

cell via multiplications (small black circles). The input and output gates multiply the input and

output of the cell while the forget gate multiplies the cell’s previous state. No activation function

is applied within the cell. The gate activation function ‘f’ is usually the logistic sigmoid, so that

the gate activations are between 0 (gate closed) and 1 (gate open). The cell input and output

activation functions (‘g’ and ‘h’) are usually tanh or logistic sigmoid, though in some cases ‘h’ is

the identity function. The weighted connections from the cell to the gates are shown with dashed

lines. All other connections within the block are unweighted (or equivalently, have a fixed weight

of 1.0). The only outputs from the block to the rest of the network emanate from the output gate

multiplication.

26

According to Graves (2012), Hochreiter and Schmidhuber (1997), the memory cell output

at instant 𝑡 is given by Equation 11, with input, forget, and output gates providing, respectively,

the outputs 𝑦𝑡inG, 𝑦𝑡forgG, and 𝑦𝑡outG.

𝑦𝑡𝑐 = 𝑦𝑡outG ℎ

(︃

𝑦𝑡forgG 𝑠𝑡−1
𝑐 + 𝑦𝑡inG 𝑔

(︃

𝑛
∑︁

𝑖=1

𝑤𝑖𝑐𝑥
𝑡
𝑖 +

𝐻
∑︁

𝑗=1

𝑤𝑟
𝑗𝑐𝑦

𝑡−1
𝑗

)︃)︃

(11)

where, 𝑐 is the CEC cell with activation functions 𝑔 and ℎ for its input and output, respectively;

𝐻 is the set of memory cells.

Equation (11) demonstrates that the current state 𝑠𝑡𝑐 kept by the cell, i.e. the argument of

the function ℎ, and given by Equation 12.

𝑠𝑡𝑐 = 𝑦𝑡forgG 𝑠𝑡−1
𝑐 + 𝑦𝑡inG 𝑔

(︃

𝑛
∑︁

𝑖=1

𝑤𝑖𝑐𝑥
𝑡
𝑖 +

𝐻
∑︁

𝑗=1

𝑤𝑟
𝑗𝑐𝑦

𝑡−1
𝑗

)︃

(12)

is the same as the previous state, however, the percentage of retained information is controlled

by the output of forget gate at time 𝑡. The current cell input goes through the 𝑔 transformation

and is weighted by the output value of the input gate at time 𝑡. In this way, it can be noticed

that the closer the forget gate is to 1, the greater the part of the previous information that will be

kept; and, the closer the input gate is to 1, the more new information will be incorporated into the

current state of the cell.

Functions 𝑔 and ℎ, shown in Figure 9, are two differentiable activation functions that play

the role of resizing the input and output of the cell, respectively (HOCHREITER; SCHMIDHU-

BER, 1997). The function 𝑔 reduces the dimensionality of the input, as the cell receives a vector

of inputs, weighted by weight values and delivers only a scalar value to the current state. On the

other hand, after function ℎ, the dimensionality of the cell’s output increases, as it receives a sca-

lar value, i.e., the current state of the cell, and delivers the output value, weighted by the weight

values, to the other units of the network. Therefore, these functions are responsible for making

the input and output dimensions compatible with the cell’s internal state through its connections

and activations.

The final three components of the memory cell shown in Figure 9 are the gates, which

have similar functions and formulations.

The output of each gate is its activation function 𝑓 applied to its input. Equations 13, 14

and 15 describe the outputs of input, forget and output gates, respectively.

𝑦𝑡inG = 𝑓

(︃

𝑛
∑︁

𝑖=1

𝑤inG𝑖𝑥
𝑡
𝑖 +

𝐻
∑︁

𝑗=1

𝑤𝑟
inG𝑗𝑦

𝑡−1
𝑗 +

∑︁

𝑐

𝑤𝑠
inG𝑐𝑠

𝑡−1
𝑐

)︃

(13)

27

𝑦𝑡forgG = 𝑓

(︃

𝑛
∑︁

𝑖=1

𝑤forG𝑖𝑥
𝑡
𝑖 +

𝐻
∑︁

𝑗=1

𝑤𝑟
forG𝑗𝑦

𝑡−1
𝑗 +

∑︁

𝑐

𝑤𝑠
forG𝑐𝑠

𝑡−1
𝑐

)︃

(14)

𝑦𝑡outG = 𝑓

(︃

𝑛
∑︁

𝑖=1

𝑤outG𝑖𝑥
𝑡
𝑖 +

𝐻
∑︁

𝑗=1

𝑤𝑟
outG𝑗𝑦

𝑡−1
𝑗 +

∑︁

𝑐

𝑤𝑠
outG𝑐𝑠

𝑡
𝑐

)︃

(15)

where 𝑠𝑡𝑐 is the current state of cell 𝑐, 𝑤inG*, 𝑤forgG* and 𝑤outG* are the weight values for input,

forget and output gates, respectively, which are connected to the external input, other hidden

units or to the cell state (GRAVES, 2012).

Analyzing Equations (11) to (15), we notice that the gates are responsible for controlling

the amount of information that enters (input gate), leaves (output gate), or remains (forget gate)

in the cell. Such control is done by multiplying, as in Equation (11), the gate output, i.e., its

activation value, by the information to be controlled. As the activation value 𝑓 of the gates is

usually fixed as sigmoid, it varies between 0 and 1, and the result of this multiplication will always

be a percentage of the original value of the information.

It is important to note that the constant error signal occurs only in the CEC cell as it

has a recurrent weight fixed as 1.0 and a linear activation function. The weights of the input,

forget and output gate (𝑤inG*, 𝑤forgG* and 𝑤outG*) are updated in a standard way during the

backpropagation step, otherwise, the network would never be able to learn, as the error would

never be reduced.

The idea of having a constant error is just to ensure that the internal state of a cell is

able to store information for countless instants of time. Likewise, when necessary, according to

what the gates learned during training, the cell is able to release this information and/or allow

more information to be stored. However, the internal state of the cell does not modify (loses)

the information being stored, due to an eventual reduction of the error signal. The multiplicative

gates allow LSTM memory cells to store and access information over long periods of time, the-

reby mitigating the exponential increase or decrease of the influence of recurrent inputs on the

network’s output, known as the vanishing gradient problem, when the gradient approximates to

zero very fast, and maybe completely stopping the neural network from further training (BASODI

et al., 2020).

Figure 10 illustrates the preservation over time of gradient information by an LSTM unit.

In this example, as long as the input gate remains closed (i.e. has an activation near 0), the

activation of the cell will not be overwritten by the new inputs arriving in the network, and can

therefore be made available to the net much later in the sequence, by opening the output gate.

In the image, the large circles represent the information being presented to the cell (labeled as

‘Inputs’), the information being kept in the cell’s internal state (labeled as ‘Hidden Layer’) and

the information leaving the cell (labeled as ‘Outputs’). Black circles represent one possible value,

e.g. off or zero, and white circles represent another possible value, e.g. on or one. The small

circles around the Hidden Layer’s cell indicate the status of each gate: input positioned below

28

Figure 10 ± Information gradient preservation by LSTM

Source: Graves (2012).

the cell, output positioned above the cell or forget position at the left side of the cell. Circle signs

indicate that the gate is open, and the dash signs indicate that the gate is closed. This diagram

is showing a simplification of the aforementioned concept, where information can flow into the

cell when the input gate is open (Hidden Layer’s input has a small circle in it), and that same

information remains in the cell for as long as the forget gate is open (Hidden Layer’s connection

to the next time step has a small circle in it). On the output side, we can notice that the output

gate can control when the current cell state will be passed forward (small circle on the output) or

not (dash sign on the output).

2.3 Online versus Offline learning of neural models

Offline learning, also known as batch learning, involves training machine learning models

using the entire dataset or large batches of data. Offline learning is suitable when the entire

dataset is available beforehand or when the computational resources allow the processing of

larger batches efficiently. The traditional gradient descent method is an example of this type of

learning. Many machine learning paradigms, particularly neural network models, often work in a

batch learning or offline learning fashion. In this approach, the model processes data samples in

batches and updates the weights based on the average gradient computed across each batch.

Used mainly in supervised training of MLPs, traditional offline learning updates model

parameters by some learning algorithm from an entire training dataset at once (it might also con-

sider validation processes), and then the model is deployed for inference without performing any

update afterward. Such learning methods suffer from expensive re-training costs when dealing

with new training data, and thus are poorly scalable for real-world applications. In the era of big

data, traditional batch learning paradigms become more and more restricted, especially when

live data grow and evolve rapidly (HOI et al., 2021).

29

Besides facing huge volumes of data, computational systems are exposed to a conti-

nuous flow of information when dealing with some practical problems and thus are required to

learn from dynamic data distributions. Learning capabilities are therefore crucial for such sys-

tems and autonomous agents interacting in the real world and processing continuous streams

of information (PARISI et al., 2019).

Online learning, also known as incremental learning, involves updating model parameters

continuously as new data become available. In this approach, the model learns from individual

data samples in real time. The model is updated incrementally after each sample, adapting to

new information and potentially adjusting its predictions.

According to Hoi et al. (2021), depending on the types of learning tasks and the forms

of feedback information, the existing online learning works can be classified into three major

categories: (i) online supervised learning where full feedback information is always available, this

is the type adopted in the present work; (ii) online learning with limited feedback, and (iii) online

unsupervised learning where no feedback is available.

In the context of ANNs, online learning is used for updating the weights of neural models

after processing each training sample. However, online learning remains a challenge for ANNs

since the continual acquisition of incrementally available information from non-stationary data

distributions generally leads to catastrophic forgetting or interference, i.e., training a model with

new information interferes with previously learned knowledge (PARISI et al., 2019).

Mini-batch gradient descent is a compromise between online which trains using a unique

sample at a time and offline learning which uses the entire dataset. It processes the data in small

batches, typically ranging from a few tens to a few hundreds of samples, to balance the benefits

of processing in parallel and update efficiency. This is the approach adopted in the present work

in the offline learning mode even when training non-deep models (e.g. autoencoders and MLPs).

There are several studies on ANN using either online or offline learning; discussing each

of these works is out of the scope of this work. Although less frequent, works exploring both

methods are likewise not new (KESKINOCAK, 1998). Puttige and Anavatti (2007) compare the

methods when training two network models used to calculate lateral and longitudinal dynamics

of an unmanned aerial vehicle. Bessa, Miranda and Gama (2009) adopt entropy concepts to

the training of neural networks aimed at predicting wind power based on speed and direction

characteristics for wind parks connected to a power grid. Even though the authors do not com-

pare both methods, they use them to evaluate the benefits of introducing the entropy concepts.

More recently, Zhang, Bengio and Liu (2017) propose new benchmarks for both online and of-

fline handwritten Chinese character recognition, as well as a deep learning model to solve them.

Less related to ANN learning, but also in the deep context, Lee et al. (2022) propose a method

that balances online and offline information aiming to improve sample efficiency and final perfor-

mance of fine-tuned robotic agents on various locomotion and manipulation tasks.

It is important to point out that the choice between online and offline learning depends

on factors such as the available computational resources, the nature of the data stream, and

30

the desired trade-off between responsiveness and accuracy. Different learning algorithms and

variations can be employed within each approach to optimize training performance.

2.3.1 Training Feedforward Neural Models

Training a neural network is the process in which the free parameters of the network,

e.g. weights and bias, are changed by the continuous stimulation caused by the environment

the network is inserted in; that is, the network parameters are iteratively adjusted. In this work,

all models are used in a supervised way where there is one (or more) target output(s) for each

training input pattern.

MLP networks most of the time are trained through the backpropagation algorithm. In

backpropagation, for each pattern or a set of patterns presented at iteration 𝑡, the output produ-

ced by the neural network is compared with the desired outcome through a loss function ℒ, which

measures how good the model performs in terms of being able to predict the expected outcome

± in case of hidden layers such an outcome is estimated based on the backpropagated error.

Then, for each layer, the adjustments ∆(w(𝑡)) in the weights w can be calculated to

minimize the error in the output according to the gradient descent (Equation 16).

w(𝑡+ 1) = w(𝑡) + ∆(w(𝑡)) = w(𝑡)− 𝜂∇ℒ (16)

where 𝜂 is the step size of each update, and ∇ℒ is the gradient of the cost or loss function ℒ as

shown in Equation 17.
∇ℒ =

(︂

𝜕ℒ

𝜕𝑤1𝑗

,
𝜕ℒ

𝜕𝑤2𝑗

...,
𝜕ℒ

𝜕𝑤𝑖𝑗

, ...

)︂

(17)

with a component of the gradient vector associated with 𝑤𝑖𝑗 , i.e., the weight connecting neuron

𝑖 with neuron 𝑗, given by Equation 18.

𝜕ℒ

𝜕𝑤𝑖𝑗

=
𝜕ℒ

𝜕𝑦𝑗

𝜕𝑦𝑗

𝜕𝑢𝑗

𝜕𝑢𝑗

𝜕𝑤𝑖𝑗

= 𝜖𝑗𝑓
′(𝑢𝑗)input𝑖 = 𝛿𝑗 input𝑖 (18)

where 𝜖𝑗 is the output error or the error backpropagated from the next layer to the current layer;

𝛿𝑗 = 𝜖𝑗𝑓
′(𝑢𝑗) ; and input𝑖 is the input directly connected to the weight 𝑤𝑖𝑗 .

We can also adopt the version of backpropagation with momentum (Equation 19):

w(𝑡+ 1) = w(𝑡) + ∆(w(𝑡)) + 𝜁∆(w(𝑡− 1)) (19)

where 𝜁 is the momentum factor (GRAVES, 2012).

31

In autoencoder models, weights and biases are usually randomly initialized and then up-

dated iteratively during training through backpropagation, which is performed just like other feed-

forward neural networks. In other words, it aims to minimize the reconstruction error measured

by a “lossº function ℒ, such as the squared error (Equation 20).

ℒ(x,x̂) = ‖x− x̂‖2𝑝 = ‖x− 𝑓𝑑(W𝑑(𝑓 𝑒(W𝑒x+ b𝑒)) + b𝑑)‖2𝐿 (20)

where ‖.‖2𝐿 is the squared error dependent on the 𝐿-norm, x is the input vector, x̂ is the output

vector (from Equations 3 and 4), b𝑒 = (𝑏𝑒1,...,𝑏
𝑒
𝐻), b

𝑑 = (𝑏𝑑1,...,𝑏
𝑑
𝑛), are the vectors encompassing

all the biases of encoder and decoder neurons respectively, W𝑒 = [w𝑒
1,w

𝑒
2,...,w

𝑒
𝐻]

′ is the matrix

of encoder weights, W𝑑 = [w𝑑
1,w

𝑑
2,...,w

𝑑
𝑛]

′ is the matrix of decoder weights (DONG et al., 2018).

2.3.2 Training Recurrent Neural Models

In recurrent neural networks, time 𝑡 is important for the adjustments. Then neuron inputs

and outputs are now identified by the time step 𝑡. There are different algorithms proposed to train

RNNs, in this work, we adopt the BPTT algorithm. It assumes that the same weights are reused

at every time step. Then, we have Equation 18 adapted to sum over the whole sequence to get

the derivatives with respect to the network recurrent weight 𝑤𝑟
𝑖𝑗 connecting neurons 𝑖 and 𝑗 as

Equation 21.

𝜕ℒ𝑝

𝜕𝑤𝑟
𝑖𝑗

=
𝑇
∑︁

𝑡=1

𝜕ℒ𝑝

𝜕𝑦𝑡𝑗

𝜕𝑦𝑡𝑗

𝜕𝑢𝑡
𝑗

𝜕𝑢𝑡
𝑗

𝜕𝑤𝑟
𝑖𝑗

=
𝑇
∑︁

𝑡=1

𝜖𝑡𝑗𝑏𝑘𝑝𝑓
′(𝑢𝑡

𝑗)input𝑡𝑖 =
𝑇
∑︁

𝑡=1

𝛿𝑡𝑗 input𝑡𝑖 (21)

where 𝛿𝑡𝑗 = 𝜖𝑡𝑗𝑏𝑘𝑝𝑓
′(𝑢𝑡

𝑗) and input𝑡𝑖 = 𝑦𝑡𝑗 due to the recurrence.

Equation 21 shows that like standard backpropagation, BPTT consists of a repeated ap-

plication of the chain rule. The difference is that, for recurrent weights, the error backpropagated

to neuron 𝑗 at instant 𝑡 (𝜖𝑡𝑗𝑏𝑘𝑝) depends not only on the output layer but also on the hidden layer

at the next time step, as shown in Equation 22.

𝛿𝑡𝑗 = 𝑓 ′(𝑢𝑡
𝑗)𝜖

𝑡
𝑗𝑏𝑘𝑝 = 𝑓 ′(𝑢𝑡

𝑗)

(︃

𝐾
∑︁

𝑘=1

𝛿𝑡𝑘𝑤𝑗𝑘 +
𝐻
∑︁

𝑗′=1

𝛿𝑡+1
𝑗′ 𝑤𝑗𝑗′

)︃

(22)

The complete sequence of 𝛿𝑡𝑗 can be calculated by starting at 𝑡 = 𝑇 and recursively

applying Equation 22, decrementing 𝑡 at each step and assuming 𝛿𝑇+1
𝑗 = 0, since no error is

received from beyond the end of the sequence.

The main steps performed by BPTT algorithm are described below.

1. LSTM feedforward pass:

For every cell in the hidden layer

32

• for 𝑡 = 1,..,𝑇 in Forward layer (𝐹) and 𝑡 = 𝑇,..,1 in Backward layer (𝐵).

• calculate the output of the current cell for each pair of elements in 𝐹 or 𝐵.

Calculate LSTM output for pattern 𝑝 encompassing all the cell.

2. LSTM backward pass:

Calculate the errors and 𝛿s for cells and gates;

Calculate the adjustment for each weight due to each pattern in each memory cell;

For every layer, accumulate the adjustments and update the weights for the current

batch.

In Section 3.2.1 we detail the steps performed in the present work in both phases of the

BPTT algorithm, adapted to feedforward information from a bidirectional LSTM model to an MLP

positioned next in the proposed pipeline.

33

3 METHODOLOGY

In the present work, ANN-based components are proposed to compose MLP-based mo-

dels and pipelines of hybrid models, aimed at solving a classification problem resulting from

the smart home problem formulation. In summary, each problem has at most 5 classes: up to

4 classes indicating activities in a particular room at the smart home being addressed and NA

indicating no activity in the room. Additionally, two LSTM-based models are also proposed, one

encompassing only one biLSTM model and another with two.

3.1 The Proposed Approaches

The proposed approaches aim to answer the questions raised in the introduction. For

this, we build the six different approaches described in Table 1.

Table 1 ± Description of proposed approaches

Name Description

Model1 a pure multi-layer perceptron model (see Figure 11);
Model2 a hierarchical model composed of two MLP-based classifiers used in the pipe-

line (see Figure 12);
Model3 hybrid and hierarchical model encompassing an autoencoder and two MLP

classifiers in its pipeline (see Figures 13);
Model4 hybrid and hierarchical model encompassing an autoencoder and two MLP

classifiers in its pipeline (see Figures 13);
Model5 a model containing a bidirectional LSTM layer and MLP layers (see Figure 15);
Model6 a hierarchical model containig two classifiers composed by a bidirectional LSTM

layer and MLP layers (see Figure 16).

Although there is no consensus on how many layers a model should encompass to be

considered deep, we assume that, except for the first one, all the remaining proposed models

involve learning a sequence of representations via composite functions or modules. Therefore,

they could be considered deep models built up from shallow components; the two last approa-

ches are classified as deep recurrent models.

Table 2 shows the list of components that are used by the models described in the fol-

lowing sections.

3.1.1 Pure Multilayer Perceptron Model

This section describes the Pure MLP model (Model1) depicted in Figure 11. It is com-

posed of a unique module encompassing a Multi-class plus 1 component (CompA), which is

responsible for the whole classification process. The CompA component has an input layer with

𝑛 neurons (𝑛 is #S), 2 hidden layers with 𝐻1 > 𝐻2 neurons, an 𝑓=tanh activation function, and

34

Table 2 ± Description of components used by the models

Name Description

CompA an MLP component composed of multiple layers, with the output having one
neuron for each class plus a ‘no activity’ neuron;

CompB an MLP composed of multiple layers, with the output having only 2 neurons,
representing on and off states;

CompC an MLP component composed of multiple layers, with the output having only
2 neurons, representing on and off states. This component has more neurons
per layer than CompB;

CompD an MLP component composed of multiple layers, with the output having one
neuron for each class (without a neuron for ‘no activity’);

CompE an MLP component composed of multiple layers, with the output having one
neuron for each class (without a neuron for ‘no activity’). This component has
more neurons per layer than CompD;

CompF an autoencoder component composed of only one hidden layer, and with the
same number of neurons in the input and output layers;

CompG a component composed of a bidirectional LSTM layer and multiple MLP layers,
with the output having one neuron for each class plus a ‘no activity’ neuron;

CompH a component composed of a bidirectional LSTM layer and multiple MLP layers,
with the output having only 2 neurons, representing on and off states;

CompI a component composed of a bidirectional LSTM layer and multiple MLP layers,
with the output having one neuron for each class (without a neuron for ‘no
activity’);

ℒmod a component to calculate the loss value.

an output layer with #𝐶 + 1 neurons using 𝑓=tanh+softmax; each neuron is associated with a

particular class or activity and the last one indicates a non-activity output (the red output depic-

ted in Figure 11). This proposal aims to answer the question regarding the possibility of a simple

standalone MLP being capable of solving the whole classification problem.

Figure 11 ± Model1: a proposed model composed of an MLP classifier (𝐶 types of activities plus
one with no activity) with 2 hidden layers.

MLP: All Activities + Off

CompA
Sensors

Addressed Room

cloud/fog
communication

Source: Author

35

3.1.2 Hierarchical Multilayer Perceptron Model

This section describes the hierarchical model (Model2) depicted in Figure 12. It encom-

passes two components:

1. CompB (an MLP on/off) - input layer with 𝑛 = #𝑆 neurons, 2 hidden layers with 𝐻1 >

𝐻2 neurons, 𝑓=tanh, and an output layer with 2 neurons, 𝑓=tanh+softmax, indicating if

there is (On) or there is not (Off) an activity occurring in the addressed room.

2. CompD (an MLP for all activities) - input layer with 𝑛 = #𝑆 neurons, 2 hid-

den layers with 𝐻1 > 𝐻2 neurons, 𝑓=tanh, and an output layer with #𝐶 neurons,

𝑓=tanh+softmax, each neuron associated with a particular activity.

Figure 12 ± Model2, a proposed model with two Hierarchical MLPs : an MLP classifier (on/off) with
2 hidden layers and an MLP classifier (𝐶 types of activities) also with 2 hidden layers.

MLP On/Off

CompB

On XOff

MLP All Activities

CompDSensors

Addressed Room

cloud/fog

communication

Source: Author

3.1.3 Hybrid Small Model

This section describes the Hybrid with Small components model (Model3) depicted in

Figure 13. It encompasses four modules (three ANN shallow components and a Loss module)

in its pipeline CompF → ℒmod → CompB → CompD:

1. CompF (Autoencoder) - input layer with 𝑛 = #𝑆 neurons, 1 hidden layer with 3

neurons, an output layer also with 𝑛 neurons.

2. ℒmod (loss module) - it calculates the difference between the autoencoder input x

and its output x̂; then it uses it to update the autoencoder weights and also to feed

the next component. It might update the 𝑖th input importance 𝜉𝑖 to the target output to

provide the loss function whenever the weighted version is adopted.

36

3. CompB (small MLP on/off) - input layer with 1 neuron (i.e. the output received from

ℒmod), 2 hidden layers with 𝐻1 > 𝐻2 neurons, 𝑓=tanh, and an output layer with 2 neu-

rons, indicating if there is (On) or there is not (Off) an activity occurring in the addressed

room.

4. CompD (small MLP all activities) - an input layer with 𝑛 = #𝑆 neurons, 𝑓=tanh,

2 hidden layers with 𝐻1 > 𝐻2 neurons, and an output layer with #𝐶 neurons,

𝑓=tanh+softmax, each one associated with a particular class or activity.

Figure 13 ± Model3, a model composed of an autoencoder with #S inputs/outputs plus a module
that calculates how good is the reconstruction, an MLP classifier (on/off) with 2 hidden
layers and finally, an MLP classifier (types of activities) also with two hidden layers
encompassing small MLP components.

Autoencoder

CompF

in × out
Lmod

Loss L

Small MLP On/Off

CompB

On
Off

Small MLP All Activities

CompD

Sensors

Addressed Room

X

cloud/fog

communication

cloud/fog

communication

pipeline

Source: Author

3.1.4 Hybrid Large Model

This section describes the Hybrid with Large components model (Model4) depicted in

Figure 14. Its pipeline also encompasses four modules CompF → ℒmod → CompC → CompE

of the previous model, except for the numbers of neurons in each hidden layer of components

CompC and CompE that are quite larger than the previous model.

1. CompF (Autoencoder) - the same component described in the previous model.

2. ℒmod (loss module) the same module previously described.

3. CompC (an MLP on/off) - the same component described in the first two models.

37

4. CompE (an MLP all activities) - the same component described in the first two models.

Figure 14 ± Model4, a model composed of an autoencoder with #S inputs/outputs plus a module
that calculates how good is the reconstruction, an MLP classifier (on/off) with 2 hidden
layers and finally, an MLP classifier (types of activities) also with two hidden layers
encompassing large MLP components.

Autoencoder

CompF

in × out
Lmod

Loss L

MLP On/Off

CompC

On
Off

MLP All Activities

CompE

Sensors

Addressed Room

X

cloud/fog

communication

pipeline

Source: Author

3.1.5 Simple Bidirectional LSTM

This section describes the Bidirectional LSTM model (Model5) depicted in Figure 15.

It is composed of a unique module encompassing a recurrent Multi-class plus 1 component

(CompG), which is responsible for the whole classification process.

• CompG component can be described as a hybrid model encompassing a bidirectional

LSTM and an MLP model. It is composed of an input layer with #𝑆 neurons, each one

receiving from the sensor 𝑠 an input sequence of size 𝑇 . This way, the entire input of

the network is composed of a matrix 𝑋𝑇 × #𝑆 , i.e. a matrix with 𝑇 rows, and #𝑆 co-

lumns, indicating all the #𝑆 sequences (one for each sensor) of size 𝑇 . Each hidden

layer (feedforward or backward) of the bidirectional LSTM is composed of 𝐻 recurrent

units (memory cells) each using 𝑓 𝜄 = 𝑅𝑒𝐿𝑈 as activation function, and whose charac-

teristics and unfolded version are depicted in detail in the top of Figure 15. The outputs

of the recurrent units in the hidden layer of the biLSTM model are used as inputs for

an MLP with 2 hidden layers composed of 𝐻1 > 𝐻2 neurons using 𝑓=softmax as

activation function, and an output layer with #𝐶 + 1 neurons using 𝑓=softmax; each

output neuron is associated with a particular class or activity and the last one indicates

a non-activity output (the red output).

39

Figure 16 ± Model6, a proposed model with two hybrid LSTMs: a biLSTM classifier (on/off) with one
bidirectional hidden layer whose outputs are inputs of an MLP and a biLSTM classifier
for 𝐶 types of activities, also with one bidirectional hidden layer whose outputs are
inputs of the final MLP in the pipeline.

.

.

.

↓↑↓↑↓↑

↓↑↓↑↓↑

↓↑↓↑↓↑

.

.

.

.

.

.

.

.

.

.

.

.

CompH

biLSTM On/Off

On XOff
.

.

.

↓↑↓↑↓↑

↓↑↓↑↓↑

↓↑↓↑↓↑

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

biLSTM All Activities

CompI

Addressed
Room

Sensors

𝑡 = 1,...,𝑇 cloud/fog

communication

Source: Author

3.2 Training the shallow components

The four shallow components used by the MLP-based proposed approaches are:

• CompF: an autoencoder with one single hidden layer to detect outliers (e.g., sparse

room activities);

• CompC and CompB: MLP binary classifiers conceived to separate activities from non-

activities;

• CompE and CompD: MLP classifiers designed with a softmax final layer to separate

among the different possible activities in a particular room;

• CompA: an MLP classifier designed with a softmax final layer to perform the entire

classification task (i.e. to separate among all possible classes: up to 4 different possible

activities in the room plus non-activity NA).

Besides the first three shallow components (CompF; CompB or CompC; CompD or

CompE), the hybrid approaches (Model3 and Model4) also encompass:

• ℒmod: a component that compares the autoencoder input and the reconstructed out-

put.

The LSTM models use the following shallow components:

• CompH: a bidirectional LSTM followed by an MLP with two hidden layers and two output

neurons for on/off activity;

40

• CompI: a bidirectional LSTM followed by an MLP with two hidden layers and #𝐶 output

neurons for all activities;

• CompG: a bidirectional LSTM followed by an MLP with two hidden layers, #𝐶 + 1

output neurons for all activities plus a non-activity NA.

One training parameter of paramount importance for all models is the loss function ℒ.

The ℒ setting depends on the type of component being considered and the learning mode taking

place, which can be conducted in an offline or online way. In the present work, we adopt three

different loss functions (ℒ), each one being used by one or more of the components as described

in Table 5:

• cross-entropy: ℒ(y,ŷ) = −
∑︀𝐾

𝑘=1 𝑦𝑘 · log 𝑦�̂�

• squared error: ℒ(y,ŷ) = ‖y − ŷ‖22 =
∑︀𝐾

𝑘=1((𝑦𝑘 − 𝑦𝑘))
2

• weighted squared error: ℒ𝜉(y,ŷ) = ‖y − ŷ‖22𝜉 =
∑︀𝐾

𝑘=1(𝜉𝑘(𝑦𝑘 − 𝑦𝑘))
2

where y and ŷ are, respectively, the vectors of target and estimated outputs of the considered

component, 𝐾 is the number of neurons in the output layer with 𝐾 ∈ {2,#𝐶,#𝐶 + 1}; and

𝜉𝑘 is estimated before training based on the correlation input × output. Each single output 𝑦𝑘 in

ŷ = (𝑦1, 𝑦2,...𝑦𝐾) is given by 𝑦𝑘 = 𝑓(𝑢) where 𝑓 is the activation function and 𝑢 is the activation

potential given by Equation 23, derived from Equation 1.

𝑢 = w𝑘 · y
hidden + 𝑏𝑘 =

𝐻
∑︁

𝑗=1

𝑤𝑗𝑘𝑦𝑗 + 𝑏𝑘 (23)

Notice that 𝑢 depends on the neuron bias 𝑏𝑘, weights w𝑘 and yhidden, i.e., the output of

the last hidden layer which is composed of 𝐻 neurons. It measures the compatibility between the

𝐻 values 𝑦1, 𝑦2, . . . , 𝑦𝐻 received by the 𝑘th output neuron and its 𝐻 weights 𝑤1𝑘, 𝑤2𝑘, . . . , 𝑤𝐻𝑘.

As depicted in Figures 13 and 14, in the hybrid proposed approaches (Model3 and Mo-

del4), the rule of loss function can extrapolate the training phase, as it can also support the

inference process. In our hybrid models, it is used as an input of CompB or CompC components

in addition to setting the weights/bias updates.

In the learning of shallow components, the target output depends on which component is

being trained. Considering the whole set of training data {(x,y)𝑝}𝑡𝑟, whose cardinality is given

by 𝑃 = |{(x,y)𝑝}𝑡𝑟|, we have the inputs and target outputs defined as:

• CompF : {(x𝑝,x̂𝑝)}, 𝑝 = 1,...,𝑃 with �̂�𝑖𝑝 = 𝑥𝑖𝑝, 𝑖 = 1,..,𝑛;

and for all the other components we have one-hot encoding:

41

• CompB, CompC CompH: {(x𝑝,y𝑝)}, with y𝑝 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(1,0) if the target class is on

(0,1) if the target class is off

• remaining ones: {(x𝑝,y𝑝)}, with

y𝑝 = (𝑦1𝑝,...,𝑦𝐾𝑝),

𝑐𝑘 ∈ {𝑐1,𝑐2,...𝑐#𝐶},

𝐾𝑝 = #𝐶 and

𝑦𝑘𝑝 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 if the target class is 𝑐𝑘

0 otherwise

For both modes of learning (offline and online), independently of which type of compo-

nent, the weights and biases are randomly initialized, and then iteratively updated through the

supervised learning performed by the chosen optimizer. All shallow components use an optimi-

zer whose basis is the backpropagation algorithm.

3.2.1 Offline Learning

In the offline learning conducted in the present work, the whole set of training data

{(x,y)𝑝}𝑡𝑟, 𝑝 = 1,...,𝑃 , is available and the testing phase using {(x,y)𝜍}𝑡𝑠, 𝜍 = 1,...,𝑆 oc-

curs only when the model finishes its training. Aiming to diminish the dependence of results on

the data partition, a 5-fold cross-validation process is also considered. In this case, we consider

a validation phase using {(x,y)𝑣}𝑣𝑙, 𝑣 = 1,...,𝑉 to decide when the training should stop.

The training data have been divided into batches ℬ, each one with size |ℬ| > 1 (for

offline learning experiments). At each iteration and for each pattern 𝑝 in the current batch ℬ, the

output vector ŷ𝑝 = (𝑦1𝑝,𝑦2𝑝,...,𝑦𝐾𝑝), with the 𝑘-th element given by 𝑦𝑘𝑝 = 𝑓(w𝑘 · y
ℎ𝑖𝑑𝑑𝑒𝑛
𝑝 + 𝑏𝑘)

with bias 𝑏𝑘 and weight vector w𝑘, is obtained in the feedforward pass as Equation 24.

ŷ𝑝 = 𝑓(𝑊 𝑜𝑢𝑡 · yℎ𝑖𝑑𝑑𝑒𝑛
𝑝 + b𝑜𝑢𝑡) (24)

where 𝑊 𝑜𝑢𝑡 is the matrix of output weights with 𝐾 lines and 𝐻ℎ𝑖𝑑𝑑𝑒𝑛 columns, each line corres-

ponding to the vector w𝑘.

The vector yℎ𝑖𝑑𝑑𝑒𝑛
𝑝 = (𝑦ℎ𝑖𝑑𝑑𝑒𝑛1𝑝 ,𝑦ℎ𝑖𝑑𝑑𝑒𝑛2𝑝 ,...,𝑦ℎ𝑖𝑑𝑑𝑒𝑛𝐻𝑝) at the output of the last hidden layer is

described by Equation 25.

yℎ𝑖𝑑𝑑𝑒𝑛
𝑝 = 𝑓(𝑊 ℎ𝑖𝑑𝑑𝑒𝑛 · yℎ𝑖𝑑𝑑𝑒𝑛−1

𝑝 + bℎ𝑖𝑑𝑑𝑒𝑛) (25)

42

where 𝑊 ℎ𝑖𝑑𝑑𝑒𝑛 is a matrix 𝐻ℎ𝑖𝑑𝑑𝑒𝑛 ×𝐻ℎ𝑖𝑑𝑑𝑒𝑛−1, and 𝑦ℎ𝑖𝑑𝑑𝑒𝑛𝑗𝑝 = 𝑓(w𝑗 · y
ℎ𝑖𝑑𝑑𝑒𝑛−1
𝑝 + 𝑏𝑗) is the 𝑘-th

element of yℎ𝑖𝑑𝑑𝑒𝑛
𝑝 . The backward pass is repeated until ℎ𝑖𝑑𝑑𝑒𝑛 − 1 is the input layer, in this

case, yℎ𝑖𝑑𝑑𝑒𝑛−1
𝑝 = x𝑝.

The output vector ŷ𝑝 is then compared with the target output vector y𝑝, and the prediction

error 𝜖𝑝 is calculated through the loss function ℒ𝑝(y𝑝,ŷ𝑝)
1. For every layer, the adjustments

(Equation 26) are calculated to minimize the error in the output according to the mini-batch

gradient descent.

∆ℬ(w(𝑡)) = −𝜂∇(
1

|ℬ|

|ℬ|
∑︁

𝑝=1

ℒ𝑝) = −𝜂
1

|ℬ|
(

|ℬ|
∑︁

𝑝=1

∇ℒ𝑝) (26)

where 𝜂 is the learning rate and ∇ℒ𝑝 =
(︁

𝜕ℒ𝑝

𝜕𝑤1𝑗
,

𝜕ℒ𝑝

𝜕𝑤2𝑗
, ...,

𝜕ℒ𝑝

𝜕𝑤𝑖𝑗
, ...
)︁

for w = (𝑤1𝑗,𝑤2𝑗,..., 𝑤𝑖𝑗,...)

is the vector of all weights connected to a neuron 𝑗. For every component 𝑤𝑖𝑗 of the gradient

vector, the adjustment is given by Equation 27.

𝜕ℒ𝑝

𝜕𝑤𝑖𝑗

=
𝜕ℒ𝑝

𝜕𝑦𝑗𝑝

𝜕𝑦𝑗𝑝

𝜕𝑢𝑗𝑝

𝜕𝑢𝑗𝑝

𝜕𝑤𝑖𝑗

= 𝜖𝑗𝑝𝑓
′(𝑢𝑗𝑝)input𝑖𝑝 (27)

where 𝜕ℒ𝑝

𝜕𝑦𝑗𝑝
= 𝜖𝑗𝑝 is the error for neuron 𝑗 for pattern 𝑝, 𝜕𝑦𝑝

𝜕𝑢𝑗𝑝
=

𝜕𝑓(𝑢𝑗𝑝𝑝)

𝜕𝑢𝑗𝑝
=

𝑑𝑓(𝑢𝑗𝑝)

𝑑𝑢𝑗𝑝
= 𝑓 ′(𝑢𝑗𝑝) is

the derivative of activation function of neuron 𝑗 with respect to 𝑢𝑗𝑝, and input𝑖𝑝 =
𝜕𝑢𝑗𝑝

𝜕𝑤𝑖𝑗
is the 𝑝-th

input directly connected to 𝑤𝑖𝑗 .

For every weight associated with a neuron in the output layer, the error 𝜖𝑝 can be ea-

sily calculated based on the difference between the target and estimated outputs. However, for

the weights in all other layers, the error depends on neurons in the following layers the weight

is connected to. In this case, the error is referred to as retro-propagated error (𝜖𝑏𝑘𝑝), and the

adjustment of the weight 𝑤𝑗 of a neuron 𝑗 in the current layer is given by Equation 28.

𝜕ℒ𝑝

𝜕𝑤𝑗

=
𝜕ℒ𝑝

𝜕𝑦𝑗𝑝

𝜕𝑦𝑗𝑝

𝜕𝑢𝑗𝑝

𝜕𝑢𝑗𝑝

𝜕𝑤𝑗

= 𝜖𝑗𝑏𝑘𝑝𝑓
′(𝑢𝑗𝑝)input𝑗𝑝 (28)

where 𝜖𝑗𝑏𝑘𝑝 =
∑︀

𝑘 𝛿𝑘𝑝𝑤𝑗𝑘, with 𝑤𝑗𝑘 indicating a weight connecting a neuron 𝑗 in the current layer

and 𝑘 in the next layer, 𝛿𝑘𝑝 = 𝜖𝑘𝑝𝑓
′(𝑢𝑘𝑝), and input𝑗𝑝 is the input directly connected to 𝑤𝑗 .

Then, the value of the gradient for each pattern (∇ℒ𝑝) is accumulated to provide

∆ℬ(w(𝑡)) and the weight updates occur only when each batch is complete. Based on backpro-

pagation with momentum (Equation 19), the weight update will be calculated as per Equation 29.

w(𝑡+ 1) = w(𝑡) + ∆ℬ(w(𝑡)) + 𝜁∆ℬ(w(𝑡− 1)) (29)

where 𝜁 is the momentum parameter.

1 for hidden layers such an error is estimated based on the backpropagated error.

43

For autoencoder components, we consider 𝑛 = #𝑆 and one hidden layer with 𝑛 >> 𝐻 ,

as an attempt to detect outliers in the sensor’s activities.

The training data have also been divided into batches ℬ, each one with size |ℬ|. At

each iteration and for each pattern 𝑝 in the current batch ℬ, every component of the vector

yℎ𝑖𝑑𝑑𝑒𝑛
𝑝 = (𝑦ℎ𝑖𝑑𝑑𝑒𝑛1𝑝 ,𝑦ℎ𝑖𝑑𝑑𝑒𝑛2𝑝 ,...,𝑦ℎ𝑖𝑑𝑑𝑒𝑛𝐻𝑝) produced by the neural network in the hidden layer, is

obtained in the feedforward pass as described by Equation 30.

𝑦ℎ𝑖𝑑𝑑𝑒𝑛𝑗𝑝 = 𝑓 𝑒(w𝑒
𝑗 · x𝑝 + 𝑏𝑒𝑗) (30)

where 𝑏𝑒𝑗 and w𝑒
𝑗 are the bias and the weight vector of neuron 𝑗 in the encoder layer, respectively,

and x𝑝 is the input vector; the output vector x̂𝑝 = (�̂�1𝑝,�̂�2𝑝,...,�̂�𝑛𝑝) has components given by

Equation 31.

�̂�𝑘𝑝 = 𝑓𝑑(w𝑑
𝑘 · y

ℎ𝑖𝑑𝑑𝑒𝑛
𝑝 + 𝑏𝑑𝑘) (31)

where 𝑏𝑑𝑘 and w𝑑
𝑘 are the bias and the weight vector of neuron 𝑘 in the decoder layer, respectively.

The adjustments are also calculated based on equations 26 to 29. However, they aim to

minimize the reconstruction error measured by the loss function ℒ given by Equation 32.

ℒ𝑝(x𝑝,x̂𝑝) = ‖x𝑝 − 𝑓𝑑(W𝑑(𝑓 𝑒(W𝑒x𝑝 + b𝑒)) + b𝑑)‖22 (32)

where ‖.‖22 is the squared error dependent on the Euclidean norm; 𝑓 𝑒 and 𝑓𝑑 are the

activation functions of encoder and decoder neurons; b𝑒 = (𝑏𝑒1,...,𝑏
𝑒
𝐻), b

𝑑 = (𝑏𝑑1,...,𝑏
𝑑
𝑛), are

the vectors encompassing all the biases of encoder and decoder neurons respectively, W𝑒 =

[w𝑒
1,w

𝑒
2,...,w

𝑒
𝐻]

′ is the matrix of encoder weights, W𝑑 = [w𝑑
1,w

𝑑
2,...,w

𝑑
𝑛]

′ is the matrix of decoder

weights.

Therefore, in the case of autoencoders, we have Equation 27 adapted, resulting in Equa-

tion 33.

𝜕ℒ𝑝

𝜕𝑤𝑞

=
𝜕ℒ𝑝

𝜕𝑦

𝜕𝑦

𝜕𝑢

𝜕𝑢

𝜕𝑤𝑞

=
𝜕ℒ𝑝(x𝑝,x̂𝑝)

𝜕𝑥
𝑓 ′(𝑢)input𝑞 = 𝜖𝑟𝑝𝑓

′(𝑢)input𝑞 (33)

where 𝜖𝑟𝑝 =
𝜕‖x𝑝−x̂𝑝‖22

𝜕𝑥
is the reconstruction error for pattern 𝑝.

Finally, for bidirectional LSTM learning, we have to consider the particularities of the pro-

posed models. As depicted in Figures 15 and 16, the outputs of every memory cell (squared

nodes in the figures) are multiplied by the weights of its output layer (white nodes in the figures),

this way, providing the outputs of LSTM models. These outputs become the inputs of an MLP

that is positioned in the sequence of the pipeline and used to classify the activity performed by

the user in the addressed room. Moreover, different from the remaining approaches, in LSTM

models, the time is important and the patterns are collected as sequences with 𝑇 steps. The-

refore, input data encompass a matrix 𝑋𝑇 × #𝑆 , i.e. a matrix with 𝑇 rows, and #𝑆 columns,

indicating all the #𝑆 sequences (one for each sensor) of size 𝑇 .

45

𝑠𝑡𝑐 = 𝑦𝑡𝜑𝑠
𝑡−1
𝑐 + 𝑦𝑡𝜄𝑓

𝜄(𝑢𝑡
𝑐) (35)

where 𝑛 = #𝑆 in our case and 𝐻 is the set of memory cells (fixed with the same value for

both directional layers); 𝑓 𝜄 is the input activation function of the cell, 𝑦𝑡𝜄 and 𝑦𝑡𝜑 are the outputs at

instant 𝑡 of input gate (𝜄) and forget gate (𝜑), respectively.

Equation (34) indicates that the input of the cell at instant 𝑡 is composed by the current

input vector x𝑡 = (𝑥𝑡
1,...,𝑥

𝑡
𝑛), weighted by vector w𝑐 = (𝑤1𝑐,...,𝑤𝑛𝑐); and also by the outputs of

all memory cells at the previous time instant, y𝑡−1 = (𝑦𝑡−1
1 ,...,𝑦𝑡−1

𝐻), weighted by the recurrent

weight vector w𝑟
𝑐 = (𝑤𝑟

1𝑐,...,𝑤
𝑟
𝐻𝑐). That is, the cell receives the new inputs (x𝑡) and, due to

network recurrence, it also receives the system’s response at the previous instant (y𝑡−1).

As depicted in Figure 17, each gate receives three inputs: the current input vector (x𝑡),

the vector of previous outputs of all units in the hidden layer (y𝑡−1), and the state of the cell itself

(𝑠𝑡 or 𝑠𝑡−1 depending on the gate).

Assuming, as shown in brown in Figure 17, that {w𝜄,w
𝑟
𝜄 ,𝑤

𝑠
𝑐𝜄} is the set of weights associ-

ated with the input gate (𝜄), {w𝜑,w
𝑟
𝜑, 𝑤

𝑠
𝑐𝜑} is the set of weights associated with the forget gate (𝜑)

and {w𝑜,w
𝑟
𝑜,𝑤

𝑠
𝑐𝑜} is the set of weights associated with the output gate (𝑜), the formulations for

the inputs for all the gates are the ones presented in Equations (36) to (38).

𝑢𝑡
𝜄 =

𝑛
∑︁

𝑖=1

𝑤𝑖𝜄𝑥
𝑡
𝑖 +

𝐻
∑︁

𝑗=1

𝑤𝑟
𝑗𝜄𝑦

𝑡−1
𝑗 +

∑︁

𝑐

𝑤𝑠
𝑐𝜄𝑠

𝑡−1
𝑐 = w𝜄.x

𝑡 +w𝑟
𝜄 .y

𝑡−1 + 𝑤𝑠
𝑐𝜄𝑠

𝑡−1
𝑐 (36)

𝑢𝑡
𝜑 =

𝑛
∑︁

𝑖=1

𝑤𝑖𝜑𝑥
𝑡
𝑖 +

𝐻
∑︁

𝑗=1

𝑤𝑟
𝑗𝜑𝑦

𝑡−1
𝑗′ +

∑︁

𝑐

𝑤𝑠
𝑐𝜑𝑠

𝑡−1
𝑐 = w𝜑.x

𝑡 +w𝑟
𝜑.y

𝑡−1 + 𝑤𝑠
𝑐𝜑𝑠

𝑡−1
𝑐 (37)

𝑢𝑡
𝑜 =

𝑛
∑︁

𝑖=1

𝑤𝑖𝑜𝑥
𝑡
𝑖 +

𝐻
∑︁

𝑗=1

𝑤𝑟
𝑗𝑜𝑦

𝑡−1
𝑗 +

∑︁

𝑐

𝑤𝑠
𝑐𝑜𝑠

𝑡
𝑐 = w𝑜.x

𝑡 +w𝑟
𝑜.y

𝑡−1 + 𝑤𝑠
𝑐𝑜𝑠

𝑡
𝑐 (38)

From equations (36) to (38), we notice that current inputs, previous outputs, and previous states

(or the current one, in the case of the output gate which has no time delay) influence the flow of

information in the network.

The output of each gate is its activation function applied to its input, as described by

Equations 39 to 41.

𝑦𝑡𝜄 = 𝑓 𝑔(𝑢𝑡
𝜄) (39)

𝑦𝑡𝜑 = 𝑓 𝑔(𝑢𝑡
𝜑) (40)

𝑦𝑡𝑜 = 𝑓 𝑔(𝑢𝑡
𝑜) (41)

46

The memory cell output is given by Equation 42.

𝑦𝑡𝑐 = 𝑦𝑡𝑜𝑓
𝑜(𝑠𝑡𝑐) (42)

where 𝑓 𝑜 is the cell output activation function and 𝑦𝑡𝑜 is the output of output gate (𝑜).

Figure 17 and Equations (36) to (38) show that, due to the recurrence, the memory cell

output 𝑦𝑡𝑐 becomes the input of another cell in the next time step.

Moreover, as depicted in Figure 7, in the unfolded view of a memory cell, each output pair

(from the Forward layer y𝑐𝐹 = (𝑦1𝑐𝐹 ,𝑦
2
𝑐𝐹 ,...,𝑦

𝑇
𝑐𝐹) and Backward layer y𝑐𝐵 = (𝑦𝑇𝑐𝐵,𝑦

𝑇−1
𝑐𝐵 ,...,𝑦1𝑐𝐵),

which are independent of each other) is weighted by 𝑤𝐹
𝑐𝑘 and 𝑤𝐵

𝑐𝑘 and further joined in the output

layer of the bidirectional LSTM model as described by Equation 43.

𝑦𝑡𝑘 = 𝑓(𝑤𝐹
𝑐𝑘.𝑦

𝑡
𝑐𝐹 + 𝑤𝐵

𝑐𝑘.𝑦
𝑡
𝑐𝐵) (43)

where 𝑤𝐹
𝑐𝑘 is the weight connecting cell 𝑐 to the 𝑘th output neuron. Then, the LSTM output vector

for all 𝐾 output neurons at instant 𝑡 is given by Equation 44.

y𝑡
𝐿𝑆𝑇𝑀 =

(︀

𝑦𝑡1, 𝑦
𝑡
2..., 𝑦

𝑡
𝐾

)︀

(44)

In our proposals, LSTM output has the same dimension of the hidden layer, then 𝐾 = 𝐻 .

Moreover, the LSTM ouputs are feedforwarded to the MLP considered in the pipeline of the

proposed classifiers to transform a time series prediction into a classification problem.

Figure 18 illustrates the flow of information performed by the backward pass of BPTT

algorithm.

As depicted in Figure 18, BPTT demands the definition of two elements that appear in the

adjustments of all the weights in the memory cell: 𝜖𝑡𝑐, that is the error backpropagated to the cell

output (at the right side of the emphasized memory cell) and 𝜖𝑡𝑠 that is the error backpropagated

to the cell state (in red at the center of the emphasized memory cell), calculated by Equations 45

and 46, respectively.

𝜖𝑡𝑐
def
=

𝜕ℒ

𝜕𝑦𝑡𝑐
=

𝐾
∑︁

𝑘=1

𝛿𝑡𝑘𝑤𝑐𝑘 +
𝐻
∑︁

𝑗=1

𝛿𝑡+1
𝑗 𝑤𝑟

𝑐𝑗 (45)

𝜖𝑡𝑠
def
=

𝜕ℒ

𝜕𝑠𝑡𝑐
= 𝑓 𝑜′(𝑠𝑡𝑐)𝑦

𝑡
𝑜𝜖

𝑡
𝑐 + 𝑦𝑡+1

𝜑 𝜖𝑡+1
𝑠 + 𝑤𝑠

𝑐𝜄𝛿
𝑡+1
𝜄 + 𝑤𝑠

𝑐𝜑𝛿
𝑡+1
𝜑 + 𝑤𝑠

𝑐𝑜𝛿
𝑡
𝑜 (46)

where, 𝑤𝑐𝑘 is the weight of the connection between 𝑐 and the 𝑘-th output, 𝑤𝑟
𝑐𝑗 is the recurrent

weight of the connection between 𝑐 and the 𝑗-th neuron in the hidden layer (including itself),

𝑤𝑐𝜄 is the weight of the connection between the internal state and the input gate, 𝑤𝑐𝜑 is the

48

where 𝛿𝑜, 𝛿𝑡𝜑 and 𝛿𝜄 are weighting factors of input, output, and forget gate, respectively.

From Equation 50 we see that the input gate error depends on the internal state of the

cell and the input scaled by 𝑓 𝜄. Equation 48 indicates that the output gate error depends both on

the output error and on the internal state scaled by 𝑓 𝑜. On the other hand, Equation 49, shows

that forget gate error depends only on the internal states of the cell. They show, in fact, the error

going the opposite way (flow in green in Figure 18) to the flow of information shown in Figure 17.

In the following we describe the general steps of the BPTT algorithm adapted to our

proposed approach.

For every epoch 𝑒 in the total of epochs 𝐸

. For every batch ℬ in the current epoch 𝑒

. For every pattern 𝑏 in the batch ℬ

1. LSTM feedforward pass:

For every cell in the hidden layer

• for 𝑡 = 1,..,𝑇 in Forward layer (𝐹) and 𝑡 = 𝑇,..,1 in Backward layer (𝐵)

• calculate the output of the current cell for each pair of elements in 𝐹 or 𝐵

Calculate LSTM output for pattern 𝑝 encompassing all the cells

2. MLP feedforward pass:

for all patterns 𝑝, calculate the activations for each layer

3. MLP Backward pass:

Calculate the backpropagated errors for each layer

Calculate the adjustment for each weight in the layer

4. LSTM backward pass:

Calculate the errors and 𝛿s for cells and gates

Calculate the adjustment for each weight due to each pattern 𝑏 in each memory cell

For every layer, accumulate the adjustments for ℬ update the weights

The details of the previous steps are described in the following.

49

For every pattern 𝑏 in the batch ℬ and epoch 𝑒

1. LSTM feedforward pass:

For every cell in the hidden layer

• for 𝑡 = 1,..,𝑇 in Forward layer (𝐹) and 𝑡 = 𝑇,..,1 in Backward layer (𝐵)

a) Input Gates: 𝑦𝑡𝜄 = 𝑓 𝑔 (w𝜄.x
𝑡 +w𝑟

𝜄 .y
𝑡−1 +w𝑠

𝜄 .s
𝑡−1)

b) Forget Gates: 𝑦𝑡𝜑 = 𝑓 𝑔
(︀

w𝜑.x
𝑡 +w𝑟

𝜑.y
𝑡−1 +w𝑠

𝜑.s
𝑡−1
)︀

c) Cells: 𝑠𝑡𝑐 = 𝑦𝑡𝜑𝑠
𝑡−1
𝑐 + 𝑦𝑡𝜄𝑓

𝜄(w𝑐.x
𝑡 +w𝑟

𝑐 .y
𝑡−1)

d) Output Gates: 𝑦𝑡𝑜 = 𝑓 𝑔 (w𝑜.x
𝑡 +w𝑟

𝑜.y
𝑡−1 +w𝑠

𝑜.s
𝑡)

e) Cells outputs: 𝑦𝑡𝑐 = 𝑦𝑡𝑜𝑓
𝑜(𝑠𝑡𝑐)

f) Store y𝑐𝐹 = (𝑦1𝑐𝐹 ,𝑦
2
𝑐𝐹 ,...,𝑦

𝑇
𝑐𝐹) and y𝑐𝐵 = (𝑦𝑇𝑐𝐵,𝑦

𝑇−1
𝑐𝐵 ,...,𝑦1𝑐𝐵)

• for every pair 𝑝 of elements, calculate 𝑦cell
𝑝 = 𝑓(𝑤𝐹

𝑐𝑘.𝑦
𝑝
𝑐𝐹 + 𝑤𝐵

𝑐𝑘.𝑦
𝑝
𝑐𝐵)

LSTM output: y𝐿𝑆𝑇𝑀
𝑝 =

(︀

𝑦cell1
𝑝 , 𝑦cell2

𝑝 ,..., 𝑦cell𝐻
𝑝

)︀

2. MLP feedforward pass: for 𝑝 = 1,..,𝑇

a) Hidden 1: y𝐻1
𝑝 = 𝑓(𝑊𝐻1y𝐿𝑆𝑇𝑀

𝑝 + b𝐻1)

b) Hidden 2: y𝐻2
𝑝 = 𝑓(𝑊𝐻2y𝐻1

𝑝 + b𝐻2)

c) Output: ŷ𝑝 = 𝑓(𝑊 𝑜𝑢𝑡y𝐻2
𝑝 + b𝑜𝑢𝑡)

3. MLP Backward pass:

a) Output: ∇ℒ𝑏 =
(︁

..., 𝜕ℒ𝑏

𝜕𝑤𝑗𝑘
, ...
)︁

, 𝜕ℒ𝑏

𝜕𝑤𝑗𝑘
=
∑︀𝑇

𝑝=1 𝜖𝑘𝑝𝑓
′(𝑢𝑘𝑝)𝑦

ℎ𝑖𝑑𝑑2
𝑗𝑝 , 𝑘 = 1,..,𝐾

b) Hidden2: ∇ℒ𝑏 =
(︁

..., 𝜕ℒ𝑏

𝜕𝑤ℎ𝑗
, ...
)︁

, 𝜕ℒ𝑏

𝜕𝑤ℎ𝑗
=
∑︀𝑇

𝑝=1 𝜖𝑗𝑏𝑘𝑝𝑓
′(𝑢𝑗𝑝)𝑦

ℎ𝑖𝑑𝑑1
ℎ𝑝 , 𝑗 = 1,..,𝐻2

c) Hidden1: ∇ℒ𝑏 =
(︁

..., 𝜕ℒ𝑏

𝜕𝑤𝑖ℎ
, ...
)︁

, 𝜕ℒ𝑏

𝜕𝑤𝑖ℎ
=
∑︀𝑇

𝑝=1 𝜖ℎ𝑏𝑘𝑝𝑓
′(𝑢ℎ𝑝)𝑥𝑖𝑝, ℎ = 1,..,𝐻1

4. LSTM backward pass:

a) Cells’ output errors: 𝜖𝑡𝑐 given by Equation (45).

b) Output Gates: ∇ℒ𝑏 =
(︁

..., 𝜕ℒ𝑏

𝜕𝑤*𝑜
, ...
)︁

, 𝜕ℒ𝑏

𝜕𝑤*𝑜
=
∑︀𝑇

𝑡=1 𝛿
𝑡
𝑜𝑖

𝑡
*𝑜, 𝛿

𝑡
𝑜 by Equation (48)

c) Cells’ state errors: 𝜖𝑡𝑠 given by Equation (46)

d) Cells: ∇ℒ𝑏 =
(︁

..., 𝜕ℒ𝑏

𝜕𝑤*𝑐
, ...
)︁

, 𝜕ℒ𝑏

𝜕𝑤*𝑐
=
∑︀𝑇

𝑡=1 𝛿
𝑡
𝑐𝑖

𝑡
*𝑐, 𝛿

𝑡
𝑐 by Equation (47)

e) Forget Gates: ∇ℒ𝑏 =
(︁

..., 𝜕ℒ𝑏

𝜕𝑤*𝜑
, ...
)︁

, 𝜕ℒ𝑏

𝜕𝑤*𝜑
=
∑︀𝑇

𝑡=1 𝛿
𝑡
𝜑𝑖

𝑡
*𝜑, 𝛿𝑡𝜑 by Equation (49)

f) Input Gates: ∇ℒ𝑏 =
(︁

..., 𝜕ℒ𝑏

𝜕𝑤*𝜄
, ...
)︁

, 𝜕ℒ𝑏

𝜕𝑤*𝜄
=
∑︀𝑇

𝑡=1 𝛿
𝑡
𝜄𝑖

𝑡
*𝜄, 𝛿

𝑡
𝜄 by Equation (50)

For every layer

w(𝑖𝑡𝑒𝑟 + 1) = w(𝑖𝑡𝑒𝑟)− 𝜂 1
|ℬ|
(
∑︀|ℬ|

𝑏=1 ∇ℒ𝑏) + 𝜁∆ℬ(w(𝑖𝑡𝑒𝑟 − 1))

50

3.2.2 Online Learning

Concerning the online learning performed in the present work, the main differences com-

pared to offline mode comprise:

1. the role played by each pattern - it can be used for both, first testing and then training,

since all data matter;

2. the concept of epoch or iteration that completely changes in the performed online lear-

ning;

3. the two novel control parameters:

• the rate 𝜏 in which data are sent from sensors to cloud/fog systems, where the

shallow components are built in;

• the budget of memory 𝑀 considered for each component, which might be less

restrictive in the cloud compared to fog computing.

Besides these two control parameters, there are two additional factors that impact the

system’s performance, nevertheless, they are not under control. First, there is a delay that natu-

rally occurs in communication systems, particularly for cloud computing, where communication

occurs mainly through the Internet. Second, there is the actual processor capacity of systems

that operate with multiple users in cloud computing. Although not directly controlled, it is usually

assumed superior to the one available for fog computing.

Figure 19 shows an overview of the online learning of a complete pipeline built in and run-

ning on fog or cloud computing. The figure could represent any proposed model, where the pro-

posed Model1 model would encompass only CompE, Model2 would not include CompF+ℒmod

and the hybrid models would be composed of all components depicted in the figure.

Figure 19 ± Online learning for a complete pipeline CompF + ℒmod → CompC → CompE that
could represent the Model3 or Model4 proposed models.

fog/cloud

CompF+ℒmod

online learning

M
em

or
y

bu
ffe

r

Retraining

𝐶𝑜𝑚𝑝𝐶

online learning

M
em

or
y

bu
ffe

r

Retraining

Coupled block

𝐶𝑜𝑚𝑝𝐸

online learning

M
em

or
y

bu
ffe

r

Retraining

𝑆2

𝑆1

𝑆#𝑆

...

sending samples at rate 𝜏

Source: Author

51

In the case of online learning, the batch size is |ℬ| = 1, which means the Stochastic

gradient descent, where the weights are updated for each pattern 𝑝 at every iteration 𝑡. Then, for

the backpropagation with momentum, we need to use Equation 51.

w(𝑡+ 1) = w(𝑡) + ∆𝑝(w(𝑡)) + 𝜁∆𝑝(w(𝑡− 1)) (51)

where the weight adjustment element is given by Equation 52.

∆𝑝(w(𝑡)) = −𝜂∇ℒ𝑝 (52)

Training time is an important criterion as the system runs on small values of sample

time. Thus, differently from offline learning, when adapting weights/bias in an online way, the

proposals use each sample 𝑝 as soon as it arrives and past experience can be completely

lost since data streaming can provide new data when there is not enough memory to store all

patterns. As in the offline case, some components could be trained separately - e.g. the coupled

block (CompF+ℒmod→CompC) independently from the CompE component - but it is necessary

to synchronize them in a way that whenever the output of the coupled block is ‘on’ it enables the

direct communication between the inputs (i.e. sensors information) and the CompE component

as both must process the same input. Due to their longer pipelines, synchronization is more

critical in deeper models (Model3 and Model4).

53

inhabited by a single occupant and this person was performing routine activities in all rooms of

the house.

Each room of the house had a different set of sensors, and there were also global sen-

sors, that could be shared by all rooms. The sensors could generate binary, real, integer or

categorical data. Examples of these sensors are: presence, door, luminosity, CO2 and noise

sensors, switches, voltage, power and water consumption, appliance working modes. As for the

global sensors, they measured values that applied to the entire house, such as weather conditi-

ons, time and total power consumption.

The activity labels in the dataset were generated by the occupant of the house. They

would annotate the start and end time, as well as the activity category during the day. Since

there was a single person in the house, there can be only one label at any time, and only one

room has activity, while the other rooms receive a virtual ‘no activity’ label. There is a predefined

list of possible activities, and not all of them can be executed in all rooms.

The following list summarizes the number of sensors (#𝑆) in each room (total of sensors,

combining room-specific and global sensors), and the total of classes (#𝐶), i.e., the total of

possible activities in each room performed by the smart home user:

1. Entrance with #𝑆=55 and #𝐶=2: x ∈ R
55, 𝑌 = {𝑐1,𝑐2}, where 𝑐1 is entering the

house and 𝑐2 is leaving the house;

2. Staircase with #𝑆=51 and #𝐶=2: x ∈ R
51, 𝑌 = {𝑐1,𝑐2}; 𝑐1 is going upstairs and 𝑐2

is going downstairs;

3. Bathroom with #𝑆=68 and #𝐶=4: x ∈ R
68, 𝑌 = {𝑐1,𝑐2,𝑐3,𝑐4}; 𝑐1 is showering, 𝑐2 is

using the sink , 𝑐3 is using the toilet and 𝑐4 is cleaning;

4. Livingroom with #𝑆=80 and #𝐶=4: x ∈ R
80, 𝑌 = {𝑐1,𝑐2,𝑐3,𝑐4}; 𝑐1 is watching TV ,

𝑐2 is using the computer , 𝑐3 is eating and 𝑐4 is cleaning;

5. Toilet with #𝑆=47 and #𝐶=1: x ∈ R
47, 𝑌 = {𝑐1}; 𝑐1 is using the toilet ;

6. Office with #𝑆=62 and #𝐶=3: x ∈ R
62, 𝑌 = {𝑐1,𝑐2,𝑐3} where 𝑐1 is watching TV , 𝑐2

is using the computer and 𝑐3 is cleaning;

7. Kitchen with #𝑆=94 and #𝐶=4: x ∈ R
94, 𝑌 = {𝑐1,𝑐2,𝑐3,𝑐4}; 𝑐1 is preparing food , 𝑐2

is cooking, 𝑐3 is washing the dishes and 𝑐4 is cleaning;

8. Bedroom with #𝑆=76 and #𝐶=4: x ∈ R
76, 𝑌 = {𝑐1,𝑐2,𝑐3,𝑐4}; 𝑐1 is cleaning, 𝑐2 is

dressing, 𝑐3 is reading and 𝑐4 is napping.

As mentioned before, the Orange4Home dataset has different types of values. To be

able to feed this data into the neural networks, it was necessary to preprocess the data. All

values were normalized to a scale of real numbers ranging from 0 to 1, i.e., binary numbers

54

were converted to 0 or 1, integer and real numbers were rescaled, and categorical values were

assigned to evenly spaced numbers between 0 and 1. As for the activity classes, they were

converted to a one-hot encoding.

In this smart home application, the number of constrained connected devices is high,

and the volume of data generated is also high. First, we consider a solution running offline in

the Cloud, which presents as its main characteristics the large geographic and logical distance

between end devices and servers. Next, we select the best approach to also run in the Fog under

online learning aiming to evaluate its latency and response time.

4.2 Setup for the experiments

In this section, we describe the setup for the experiments. First, we separate data from

each room of the addressed smart home and then we describe the parameters of the neural

models and training setup.

4.2.1 Smart home dataset

Table 3 shows data distribution according to the rooms: number of sensors #S, number

of activities or classes #C (excluding NA class), the total of samples, and the percentage of

samples that represent an output class other than NA (non-activity), of each room separately.

Table 3 ± A summary of Dataset used in the experiments

Room #S #C
Total of

Activity
Difficulty

Samples Average Rank

Kitchen 94 (1) 4 (1) 69417 (3) 10.46% (4) 2.3
Livingroom 80 (2) 4 (1) 120598 (1) 18.83% (5) 2.3
Bedroom 76 (3) 4 (1) 45405 (4) 19.46% (5) 3.3
Bathroom 68 (4) 4 (1) 36860 (5) 18.82% (5) 3.8
Office 62 (5) 3 (3) 104290 (2) 84.24% (6) 3.8
Entrance 55 (6) 2 (3) 30216 (7) 2.34% (2) 4.5
Staircase 51 (7) 2 (3) 33629 (6) 2.83% (3) 4.8
Toilet 47 (8) 1 (4) 28947 (8) 0.33% (1) 6.7

The numbers in parenthesis represent the classification regarding the challenge posed

by each room. Lower numbers indicate higher difficulty (higher number of sensors, classes,

samples, and more unbalanced classes - rare activities). The last column shows the average

rank.

55

4.2.2 Neural model parameters for the topologies

The experiments conducted in the present work compare the six proposed approaches

described in Section 3.1 (Model1, Model2, Model3, Model4, Model5 and Model6), whose para-

meters are shown in Table 4.

Table 4 ± Model Parameters

Model Component parameter Value

Model1 CompA
number of inputs #S
number of outputs #𝐶 + 1
hidden layers [neurons per layer] 2 [10, 5]

Model2

CompB
number of inputs #S
number of outputs 2
hidden layers [neurons per layer] 2 [10, 5]

CompD
number of inputs #S
number of outputs #C
hidden layers [neurons per layer] 2 [10, 5]

Model3

CompF
number of inputs #S
number of outputs #S
hidden layers [neurons per layer] 1 [3]

CompB
number of inputs 1
number of outputs 2
hidden layers [neurons per layer] 2 [10, 5]

CompD
number of inputs #S
number of outputs #C
hidden layers [neurons per layer] 2 [10, 5]

Model4

CompF
number of inputs #S
number of outputs #S
hidden layers [neurons per layer] 1 [3]

CompC
number of inputs 1
number of outputs 2
hidden layers [neurons per layer] 2 [100, 25]

CompE
number of inputs #S
number of outputs #C
hidden layers [neurons per layer] 2 [200, 50]

Model5 CompG
number of inputs #S
number of outputs #C + 1
hidden layers [neurons per layer] 3 [10, 200, 100]

Model6

CompH
number of inputs #S
number of outputs 2
hidden layers [neurons per layer] 3 [10, 200, 100]

CompI
number of inputs #S
number of outputs #C
hidden layers [neurons per layer] 3 [10, 200, 100]

56

4.2.3 Setup parameters for training

The learning process can occur in two different modes: offline and online. In the online

mode, neural network models can be built in two computing systems: cloud and fog. First, we

deploy each model to learn, in an offline way, the behavior of the smart home user in the eight

different rooms described in Section 4.1. Then we evaluate, in a particular room (kitchen), the

performance of Model4 model when receiving streaming data in an online learning scheme.

In the offline learning mode, we divide the total of samples in each room, i.e. sensor

measures and the respective target output (one activity among the #C possible ones), into three

different groups. Therefore in the offline learning we have {(x,𝑦)} for a particular room divided

into training {(x,𝑦)}𝑡𝑟 = 64%, validation {(x,𝑦)}𝑣𝑙 = 16% and testing {(x,𝑦)}𝑡𝑠 = 20% groups

of data. The set {(x,𝑦)}𝑡𝑠 changes according to each fold of a 5-fold cross-validation process

performed in the room.

In online learning, there is no such a distinction, and the whole dataset for each room

encompasses individual samples (x,𝑦)𝜏𝑡 that are sent to the fog/cloud system at a rate 𝜏 and

received and processed at time 𝑡 by the addressed model. Such a sample plays the role of a test

sample first and then it is (re)trained as many times as the memory buffer size 𝑀 allows it to.

Besides initialization of internal model parameters (weights and bias of every layer in the

neural models), it is also necessary to set up the parameters that control the learning process.

Table 5 describes the main learning parameters as well as their values considered in the ex-

periments. The table separates parameters whose values are common to both learning modes

(𝑂𝑝𝑡, 𝜂, 𝛽1, 𝛽1), from others that are exclusive for each mode (𝐸 and 𝑇 - exclusive of offline

learning - and 𝑀 - exclusive of online mode) or those that are common but have different values

depending on the learning mode, i.e. parameters ℒ, ℬ and 𝑆𝑡𝑝.

For online learning experiments, two environments are set up: one with higher processing

capacity, to simulate a cloud platform; and another with less computing power, to simulate a fog

system. The first environment runs on a computer with Intel(R) Core(TM) i7-8565U processor,

having 8 CPUs @ 1.80GHz, to receive the streaming data and train the NNs. A Raspberry Pi 4

Model B, with a Cortex-A72 processor and 4 CPUs @ 1.5GHz, is used as the fog platform. To

also take into account the traffic of data in the experiments, the cloud scenario has data being

sent from US East (N. Virginia) region to a local computer in Brazil whilst in the fog scenario,

data are exchanged between two computers within a local network.

4.3 Results

The results in this section are organized based on the research questions, aiming to

discuss the significance of the findings.

57

Table 5 ± Offline and Online Learning Parameters

Name/symbol Description

Adam 𝑂𝑝𝑡 Adaptive Moment Estimation (Adam) is an optimizer that
combines two other approaches i) AdaGrad and ii) RMSProp,
using moving averages of the first and second moments of
the gradient (KINGMA; BA, 2014);

learning rate 𝜂 controls how the weights are updated during the training;
decay rates 𝛽1, 𝛽2 decay rates for the first and second moment estimates;
loss function ℒ measures how high is the (reconstruction) error
epochs 𝐸 the number of times the learning algorithm will work through

the entire training dataset;

batch size |ℬ|
refers to the number of training samples propagated through
the network before each weight update takes place;

stop condition 𝑆𝑡𝑝 the rule established to finish the learning process;
transmission rate 𝜏 samples per second transmitted by sensors in the smart home;
memory buffer 𝑀 size of the buffer of each component in the proposed models;
input timesteps 𝑇 number of steps (inputs) back in time to be used along with the

current input.

Symbol (learning mode) Autoencoder MLP LSTM

𝑂𝑝𝑡 (online & offline) Adam Adam Adam
𝜂 (online & offline) 0.01 0.01 0.001
𝛽1,𝛽2 (online & offline) 𝛽1=0.9, 𝛽2=0.999 𝛽1=0.9, 𝛽2=0.999 𝛽1=0.9, 𝛽2=0.999
ℒ (offline) ℒ𝜉: weighted Squa-

red Error
ℒ: Cross Entropy

ℒ: Categorical Cross
Entropy

ℒ (online) ℒ: Squared Error
|ℬ| (offline) 10 25 100
|ℬ| (online) 1 1 N/A
𝑆𝑡𝑝 (offline) achieve 𝐸 = 1000

epochs
achieve 𝐸 = 200
epochs

achieve 𝐸 = 100
epochs

𝑆𝑡𝑝 (online) Total of tested sam-
ples (4000)

Total tested of sam-
ples (4000)

N/A

𝜏 (online) {high,med,low} {high,med,low} N/A

𝑀 (online)
cloud={low,high} cloud={low,high}
fog={low,high} fog={low,high} N/A

𝑇 (offline) N/A N/A 10

4.3.1 Offline learning results

In the first phase of the experiments, we assume that all the proposed approaches have

been trained offline considering each room individually. Having the results with the highest ave-

rage highlighted, Table 6 shows the performance (F-score average and standard deviation) from

a 5-fold cross-validation process, where each non-overlapping set {(x,𝑦)}𝑡𝑠 is fixed as a fold

test once in the five repetitions.

From Table 6, we notice that hybrid models perform quite differently depending on the

size of their components (small or large). MLP performance also changes due to the hierarchy.

58

Table 6 ± Offline: models’ average F-score for each room

Room/Model Fscore from 5-fold

Kitchen Avg ± stdv
Model1 0.626 ± 0.258
Model2 0.791 ± 0.040
Model3 0.715 ± 0.245
Model4 0.884 ± 0.017
Model5 -
Model6 -
Livingroom Avg ± stdv
Model1 0.910 ± 0.012
Model2 0.719 ± 0.286
Model3 0.551 ± 0.151
Model4 0.614 ± 0.101
Model5 0.502 ± 0.026
Model6 0.491 ± 2.6·10−3

Bedroom Avg ± stdv
Model1 0.795 ± 0.345
Model2 0.921 ± 0.050
Model3 -
Model4 -
Model5 -
Model6 -
Bathroom Avg ± stdv
Model1 0.858 ± 0.018
Model2 0.695 ± 0.129
Model3 0.682 ± 0.228
Model4 0.911 ± 0.021
Model5 0.603 ± 0.175
Model6 0.583 ± 0.159

Room/Model Fscore from 5-fold

Office Avg ± stdv
Model1 0.768 ± 0.318
Model2 0.591 ± 0.216
Model3 0.857 ± 0.204
Model4 0.963 ± 0.021
Model5 0.710 ± 0.299
Model6 -
Entrance Avg ± stdv
Model1 0.906 ± 0.006
Model2 0.924 ± 0.031
Model3 0.915 ± 0.011
Model4 0.908 ± 0.015
Model5 0.499 ± 3.2·10−5

Model6 0.499 ± 3.2·10−5

Staircase Avg ± stdv
Model1 0.831 ± 0.009
Model2 0.858 ± 0.016
Model3 0.821 ± 0.021
Model4 0.854 ± 0.028
Model5 0.499 ± 6.2·10−5

Model6 0.499 ± 6.2·10−5

Toilet Avg ± stdv
Model1 0.800 ± 0.171
Model2 0.817 ± 0.073
Model3 0.889 ± 0.025
Model4 0.865 ± 0.014
Model5 0.499 ± 2.2·10−5

Model6 -

Considering the rooms’ characteristics shown in Table 3, including the rank of difficulty

posed by each one, we see from Table 6 that all approaches are performing well (F-score >

0.8) for simpler rooms, i.e., the last three in the right side of the table. The exceptions are the

LSTM-based approaches that did not achieve good results for any of the experiments. Model4,

in contrast with Model3, has the highest average performance for the most difficult problems:

the rooms with a high number of sensors/classes (kitchen, bathroom, and office). Both, Model3

and Model4, have good performance in the room with the lowest percentage of activities (Toilet),

highlighting the outlier (rare activity) detection capability of their autoencoders. Finally, the pure

MLP model (Model1) is better for the room with the highest number of samples (Livingroom)

and its hierarchical version (Model2) is performing well for two simple cases (Entrance and Stair-

case), and one difficult (Bedroom), in which neither of the hybrid approaches have converged.

In the case of Model4, it is important to point out that, it is among the best ones for the five most

difficult addressed rooms, and except for the Livingroom and Bedroom, it achieved a higher

average performance than the baseline Model1 in all the addressed problems.

59

Aiming to investigate an overall performance for offline learning, we performed a compa-

rison in terms of average performance for all the rooms where the approaches have converged.

Figure 21 shows the overall average performance of all proposed approaches.

Figure 21 ± Models’ overall performance (F-score average for all rooms)

Model1 Model2 HybS HybL LSTM1 LSTM2
0.4

0.5

0.6

0.7

0.77

0.84

Proposed Approaches

F
-s

co
re

Source: Author.

From the analysis of Figure 21, we can conclude that all the approaches based on shallow

components (Model1, Model2, Model3 and Model4) outperform those based on LSTM. One

possible justification for this poor performance could be some choices made for the biLSTM +

MLP models. In the case of the activation functions, we chose tanh for the gates and softmax

for the hidden layers of the MLP. With these functions the gates might not be properly blocking

new information to flow through the network, and softmax could be forcing only one neuron to

be active in each hidden layer. On the other hand, for the remaining models, the performance

was good and the approaches with the best overall performance are the simplest and the largest

ones.

Aiming to perform a deeper comparison among the approaches with the highest overall

average performance (Model4 and Model1), we proceeded by investigating possible correlations

between the performance of each model and the characteristics of each addressed room.

Figure 22 presents the scatter chart for the performance (F-score) regarding the different

characteristics of each addressed room: number of sensors (#𝑆), number of classes (#𝐶),

number of samples and percentage of activities in the input patterns.

Table 7 presents the Pearson correlation for each graphic depicted in Figure 22.

61

as the most challenging one. For this, Model4 was chosen as the evaluated approach since it

achieved the best results for this room.

4.3.2 Online learning results: fog versus cloud computing

In the online mode we consider the Model4 proposed model running either on cloud or

fog computing (see Figures 1 and 19 for more details). Aiming to compare both systems under

different conditions of sensors and NN components, we consider six combinations of memory

buffer sizes 𝑀 ∈ {1000,100,10} and transmission rates 𝜏 ∈ {2.5,1.25,0.83} (samples per

second).

Table 8 shows average times (in seconds) spent by different topology setups of Model4

to process each test sample. As expected, the average time to process each sample in the

Table 8 ± Online: results for the different combinations of setups

𝜏 cloud cloud fog fog
Setup Combinations (smp/s) 𝑀 time(s) 𝑀 time(s)

High 𝜏 with Low 𝑀 2.5 100 1.43 10 2.43
High 𝜏 with High 𝑀 2.5 1000 1.14 100 2.34
Med 𝜏 with Low 𝑀 1.25 100 1.22 10 2.36
Med 𝜏 with High 𝑀 1.25 1000 1.10 100 2.27
Low 𝜏 with Low 𝑀 0.83 100 1.20 10 2.31
Low 𝜏 with High 𝑀 0.83 1000 1.31 100 2.28

fog system is higher (almost twice) than that in the Cloud. The time seems mainly affected by

processing capacity, which is quite lower in the fog system. However, the fog system seems to

be more robust to changes in 𝑀 and 𝜏 than the Cloud. Whereas in the Cloud, when memory

increases 10 times, time relative gains are {∼= 20%,∼= 10%,∼= −6%} for the three 𝜏 rates, in the

Fog, the corresponding relative gains are smaller, and almost constant {∼= 4%,∼= 4%,∼= 1%}

for all 𝜏 .

Figure 23 presents the curves for the average F-Score versus total of samples presented

so far. They result from three runs, each one with 𝑆𝑡𝑝=4000 testing samples, as well as different

weight/bias initialization and order of samples presentation. From Figure 23, we notice that in

general fog performs quite similarly to the Cloud. The exceptions occur for Medium 𝜏 , where

High 𝑀 provides the best fog’s performance and Low 𝑀 , the worst one.

Figure 24 shows, in a log-scale to enable cloud × fog comparison, the average number

of times each sample is retrained. It is important to highlight that every streaming sample is

first tested and then (re)trained as many times as possible until the memory buffer 𝑀 becomes

full and the oldest samples start getting discarded. The gap (most visible for larger 𝑀 sizes)

in the average retraining curves is due to the time taken to fill the memory buffer, after which,

discarding process starts and the number of retraining per sample can be computed. The initial

peak on the graphs, indicating a higher number of repetitions, occurs because the first training

62

rounds take less time to complete since they have fewer examples to go through. Subsequently

to this ‘warm-up’ period, the curves tend to become stable, and the stabilization F-score value

represents the bottleneck of processor capacity for that hardware. As expected, in all scenarios

the cloud environment is capable of training each sample many more times (4 to 10 times),

because of its more powerful processor and larger memory.

Taking all results into account, we can notice that, even though ANNs executing in the fog

take a larger time to process samples and to converge, they stabilize at a similar performance

level. That means the amount of retraining has a low impact on the final result over time, i.e.,

less expensive fog hardware could be used as a replacement or as a support to a cloud solution

and could still achieve comparable performance.

63

Figure 23 ± Average F-Score vs. Tested Samples for online learning

(a)

(b)

(c)
High and Low Memory sizes versus (a) High, (b) Medium, and (c) Low Data Rate.

Source: Author

64

Figure 24 ± Average Retraining per Sample vs. Tested Samples for online learning

(a)

(b)

(c)
High and Low Memory sizes versus (a) High, (b) Medium, and (c) Low Data Rate.

Source: Author

65

5 CONCLUSIONS

This work has investigated artificial neural network models under offline and online lear-

ning in the context of smart homes and fog/cloud computing. First, it has evaluated six different

models trained offline to solve the addressed problems of classifying activities in each room of

a smart home. Then the work has explored different configurations of streaming data in online

learning and one particular model (the one with a good performance in offline mode) running

in a specific room (the one considered the most challenging room) using fog/cloud computing

resources.

Based on the achieved results, we note that in offline learning, adding an extra classi-

fication level to the neural architecture to split samples into activity/non-activity, before actually

performing the activity classification, can improve the results only when it is coupled with an

autoencoder and has a pipeline with a certain level of complexity. In our case, setting 10 and 5

neurons in the first and second hidden layers, respectively, was considered insufficient and the

performance increased only when we set more than 100 neurons in the first hidden layer and 25

neurons in the second one. Otherwise, a simple multilayer perceptron is capable of performing

the whole task. We noticed that the autoencoder is capable of learning, in an unsupervised way,

the characteristics of activities that are addressed as “outliersº in the model. Another observation

was that the deep recursive models failed to perform like classifiers when coupled with multilayer

perceptions. After scrutinizing the functioning of our bidirectional long short time memory model

we notice that it might be due to some particular configurations adopted for the gates’ and MLPs’

hidden layer activation functions. However, more investigation would be necessary to confirm

this hypothesis. Moreover, the simplest model appeared as quite competitive, showing that the

increase in complexity did not result in a significant performance improvement. In online learning,

the fog proposed topology was capable of performing comparably with one using cloud compu-

ting even if it uses much less retrained samples. Yet the addressed model performed worse than

in the offline learning way - what in fact was expected - when compared with the cloud results,

the performance was not significantly affected by the lower computational resources available in

the fog environment.

In future work, we intend to consider online learning for all models and rooms and in-

clude other online learning algorithms. Another topic for future studies is the modification of the

neural models to solve time series prediction problems instead of classification ones, as already

addressed in the current work. In this case, the LSTM model can benefit from the new context

and suitable configuration. This, besides opening room for solving predictive control problems,

could help eliminate the dependency on human feedback when determining the ground truth ac-

tivity class during the training phase. Such a task can be quite challenging, particularly for online

learning.

66

REFERENCES

ALSAMHI, S. H. et al. Predictive estimation of optimal signal strength from drones over iot
frameworks in smart cities. IEEE Transactions on Mobile Computing, p. 1±1, 2021.

ALZUBAIDI, L. et al. Review of deep learning: concepts, CNN architectures, challenges,
applications, future directions. 2021. 1-74 p.

BALLARD, D. H. Modular learning in neural networks. In: Aaai. [S.l.: s.n.], 1987. v. 647, p.
279±284.

BANGARU, S. S. et al. Ann-based automated scaffold builder activity recognition through
wearable emg and imu sensors. Automation in Construction, Elsevier, v. 126, p. 103653,
2021.

BASODI, S. et al. Gradient amplification: An efficient way to train deep neural networks. Big
Data Mining and Analytics, TUP, v. 3, n. 3, p. 196±207, 2020.

BESSA, R. J.; MIRANDA, V.; GAMA, J. Entropy and correntropy against minimum square error
in offline and online three-day ahead wind power forecasting. IEEE Transactions on Power
Systems, v. 24, n. 4, p. 1657±1666, 2009.

BONOMI, F. et al. Fog computing and its role in the internet of things. In: Proceedings of the
first edition of the MCC workshop on Mobile cloud computing - MCC ’12. [S.l.: s.n.], 2012.
p. 13.

CISCO. Fog computing and the internet of things: Extend the cloud to where the things are. In:
White Paper. [S.l.: s.n.], 2015. v. 2015, p. 1±6.

COATES, A.; NG, A.; LEE, H. An analysis of single-layer networks in unsupervised feature
learning. In: Proceedings of the fourteenth international conference on artificial
intelligence and statistics. [S.l.: s.n.], 2011. p. 215±223.

CUMIN, J. et al. A dataset of routine daily activities in an instrumented home. In: SPRINGER.
Ubiquitous Computing and Ambient Intelligence: 11th International Conference, UCAmI
2017, Philadelphia, PA, USA, November 7±10, 2017, Proceedings. [S.l.], 2017. p. 413±425.

DHANARAJ, R. K. et al. A review paper on fog computing paradigm to solve problems and
challenges during integration of cloud with iot. In: IOP PUBLISHING. Journal of Physics:
Conference Series. [S.l.], 2021. v. 2007, n. 1, p. 012017.

DONG, G. et al. A review of the autoencoder and its variants: A comparative perspective from
target recognition in synthetic-aperture radar images. IEEE Geoscience and Remote Sensing
Magazine, v. 6, n. 3, p. 44±68, 2018.

FERNÁNDEZ-DELGADO, M. et al. An extensive experimental survey of regression methods.
Neural Networks, v. 111, p. 11±34, 2019.

GRANJAL, J.; MONTEIRO, E.; SILVA, J. S. Security for the internet of things: A survey of
existing protocols and open research issues. IEEE Communications Surveys Tutorials, v. 17,
n. 3, p. 1294±1312, 2015.

GRAVES, A. Supervised Sequence Labelling with Recurrent Neural Networks.
[S.l.]: Springer Berlin, Heidelberg, 2012. (Studies in Computational Intelligence). ISBN
9783642247972.

67

HAWKINS, S. et al. Outlier detection using replicator neural networks. In: SPRINGER.
International Conference on Data Warehousing and Knowledge Discovery. [S.l.], 2002. p.
170±180.

HAYKIN, S.; NETWORK, N. A comprehensive foundation. Neural networks, v. 2, n. 2004,
p. 41, 2004.

HOCHREITER, S.; SCHMIDHUBER, J. Long short-term memory. Neural computation, MIT
press, v. 9, n. 8, p. 1735±1780, 1997.

HOI, S. C. et al. Online learning: A comprehensive survey. Neurocomputing, v. 459, p.
249±289, 2021.

KESKINOCAK, P. On-line algorithms: How much is it worth to know the future. [S.l.]: IBM
Thomas J. Watson Research Division, 1998.

KINGMA, D. P.; BA, J. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

LEE, S. et al. Offline-to-online reinforcement learning via balanced replay and pessimistic
q-ensemble. In: Conference on Robot Learning. [S.l.: s.n.], 2022. p. 1702±1712.

LIAN, C. et al. Ann-enhanced iot wristband for recognition of player identity and shot types based
on basketball shooting motion analysis. IEEE Sensors Journal, v. 22, n. 2, p. 1404±1413,
2022.

MAMANN, L. et al. Paradigma orientado a notificações aplicado à programação de
microcontroladores. In: Anais Estendidos do XI Simpósio Brasileiro de Engenharia
de Sistemas Computacionais. Porto Alegre, RS, Brasil: SBC, 2021. p. 134±139. ISSN
2763-9002. Disponível em: https://sol.sbc.org.br/index.php/sbesc_estendido/article/view/18505.

MAMANN, L. V. D.; PIGATTO, D. F.; DELGADO, M. R. Offline and online neural network learning
in the context of smart homes and fog computing. In: SPRINGER. Brazilian Conference on
Intelligent Systems. [S.l.], 2022. p. 357±372.

MATT, C. Fog computing: Complementing cloud computing to facilitate industry 4.0. Business
& information systems engineering, Springer, v. 60, p. 351±355, 2018.

MINSKY, M.; PAPERT, S. Perceptrons: An introduction to computational geometry. Cambridge
tiass., HIT, v. 479, p. 480, 1969.

MINSKY, M.; PAPERT, S. A. Perceptrons, Reissue of the 1988 Expanded Edition with a new
foreword by Léon Bottou: An Introduction to Computational Geometry. [S.l.]: MIT press,
2017.

OPENFOG. Openfog reference architecture for fog computing. In: . [S.l.: s.n.], 2017.

PARISI, G. I. et al. Continual lifelong learning with neural networks: A review. Neural Networks,
v. 113, p. 54±71, 2019.

POTRINO, G.; RANGO, F. D.; SANTAMARIA, A. F. Modeling and evaluation of a new iot security
system for mitigating dos attacks to the mqtt broker. 2019 IEEE Wireless Communications
and Networking Conference (WCNC), p. 1±6, 2019.

PUTTIGE, V. R.; ANAVATTI, S. G. Comparison of real-time online and offline neural network
models for a uav. In: 2007 International Joint Conference on Neural Networks. [S.l.: s.n.],
2007. p. 412±417.

https://sol.sbc.org.br/index.php/sbesc_estendido/article/view/18505

68

ROSENBLATT, F. The perceptron: a probabilistic model for information storage and organization
in the brain. Psychological review, v. 65, n. 6, p. 386, 1958.

RUMELHART, D. E.; HINTON, G. E.; WILLIAMS, R. J. Learning representations by back-
propagating errors. Nature, Springer Science and Business Media LLC, v. 323, n. 6088, p.
533±536, out. 1986.

SCHMIDHUBER, J. Deep learning in neural networks: An overview. Neural Networks, v. 61, p.
85±117, 2015.

SKOCIR, P. et al. Activity detection in smart home environment. In: KES. [S.l.: s.n.], 2016.

STERGIOU, C. et al. Secure integration of iot and cloud computing. Future Generation
Computer Systems, v. 78, p. 964±975, 2018.

VARDAKIS, G. et al. Smart home: Deep learning as a method for machine learning in
recognition of face, silhouette and human activity in the service of a safe home. Electronics,
v. 11, n. 10, 2022.

YI, S. et al. Fog computing: Platform and applications. In: 2015 Third IEEE Workshop on Hot
Topics in Web Systems and Technologies (HotWeb). [S.l.: s.n.], 2015. p. 73±78.

YU, J.; ANTONIO, A. de; VILLALBA-MORA, E. Deep learning (cnn, rnn) applications for smart
homes: A systematic review. Computers, v. 11, n. 2, 2022.

ZHAI, J. et al. Autoencoder and its various variants. In: 2018 IEEE International Conference
on Systems, Man, and Cybernetics (SMC). [S.l.: s.n.], 2018. p. 415±419.

ZHANG, G. Neural networks for classification: a survey. IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews), v. 30, n. 4, p. 451±462, 2000.

ZHANG, X.-Y.; BENGIO, Y.; LIU, C.-L. Online and offline handwritten chinese character
recognition: A comprehensive study and new benchmark. Pattern Recognition, v. 61, p.
348±360, 2017. ISSN 0031-3203.

	Agradecimentos
	Resumo
	Abstract
	List of Figures
	List of Tables
	List of Acronyms and Initialisms
	Summary
	1 Introduction
	1.1 Objectives and Research Questions
	1.1.1 General Objective
	1.1.2 Specific objectives
	1.1.3 Research Questions

	1.2 Main Contributions
	1.3 Organization

	2 Background
	2.1 Fog Computing
	2.2 Artificial Neural Networks
	2.2.1 Multi-Layer Perceptrons
	2.2.2 Autoencoders
	2.2.3 Recurrent Neural Networks
	2.2.4 Bidirectional Networks
	2.2.5 LSTM Architecture

	2.3 Online versus Offline learning of neural models
	2.3.1 Training Feedforward Neural Models
	2.3.2 Training Recurrent Neural Models

	3 Methodology
	3.1 The Proposed Approaches
	3.1.1 Pure Multilayer Perceptron Model
	3.1.2 Hierarchical Multilayer Perceptron Model
	3.1.3 Hybrid Small Model
	3.1.4 Hybrid Large Model
	3.1.5 Simple Bidirectional LSTM
	3.1.6 Hierarchical Bidirectional LSTM

	3.2 Training the shallow components
	3.2.1 Offline Learning
	3.2.2 Online Learning

	4 Experiments and Results
	4.1 The addressed problem
	4.2 Setup for the experiments
	4.2.1 Smart home dataset
	4.2.2 Neural model parameters for the topologies
	4.2.3 Setup parameters for training

	4.3 Results
	4.3.1 Offline learning results
	4.3.2 Online learning results: fog versus cloud computing

	5 Conclusions
	References

